Mitigation of Signal Diffraction Effects on Precise GPS-Positioning

Lambert Wanninger, Volker Frevert, Steffen Wildt

Geodetic Institute, Dresden University of Technology, D-01062 Dresden, Germany Lambert.Wanninger@mailbox.tu-dresden.de

Signal diffraction is a common error source in precise GPS positioning if obstructions exist above the antenna horizon. It occurs whenever the direct signal is obstructed but nevertheless a diffracted signal is received and processed. The longer propagation time of a diffracted signal causes carrier phase errors of up to several cm. A common characteristic of all diffracted signals is their weak signal power as compared to a direct signal received under the same elevation angle.

In the case of Trimble GPS-receivers, the signal strength is given as SNR (signal-to-noise values of the $\rm L_1$ and $\rm L_2$ phase observations) in arbitrary, i.e. Trimble-specific, units. In order to be able to process these secondary observables, we extended our post-processing software Wa-Soft:

- ... to include Trimble-SNR values in the RINEX observation files according to RINEX version 2.1,
- ... to include weighting functions which are based on SNR values.

Comparison: Diffraction Effects, Multipath Effects

Examples of diffraction effects on phase observations and signal strength

Analysis of Trimble phase data / Weighting functions

<u>Elevation-dependence of Trimble-SNR-values:</u>

Trimble 4000 SSE / 4000 SSi / 4700 / 4800 - receivers: SNR given in arbitrary units (receiver-dependent)

template(el) = a_0 + a_1 *el + a_2 *el² for 0° < el < 60° a_0 + a_1 *60+ a_2 *60² for el > 60°

iterative calculation with elimination of SNR-values < template - 5 units,

individual templates for each receiver-antenna pair: differences up to 10 units

elevation-dependent

SNR-dependent

Kinematic Processing of a Static Baseline

baseline length 3 km, one station affected by signal diffraction

Rapid Static Positioning

network of 55 stations, 5 km x 6 km , two independent determinations, session lengths 10 minutes with minimum of 5 SVs, two permanent stations, rural area: signal obstructions by trees, buildings etc.

Algorithm	all 55 stations		11 stations with diffraction effects	
	horizontal	vertical	horizontal	vertical
equal weights	1.6	2.2	2.4	1.9
elevation-dependent weighting	1.3	1.9	2.1	2.1
SNR-dependent weighting	1.2	1.8	1.9	2.0
sigma-∆ weighting	1.0	1.6	1.4	1.7
sigma-∆ weighting + cleaning	0.9	1.5	1.3	1.6

RMS of coordinate differences [cm] between two independent network determinations.

20 ... 40 % improvement

cleaning - elimination of those 5 % of observations which cause the largest double-difference residuals (applicable to static observations only).

Results and Conclusions:

Phase errors due to signal diffraction can reach several cm. Most diffraction events are detectable in the signal-to-noise (SNR) values, if the elevation-dependence of SNR values are taken into account.

A slightly modified sigma- Δ weighting algorithm (after Brunner et. al 1999) improves kinematic and rapid static positioning results by 20 to 40 %.

Kinematic positioning can be further improved by elimination of those observations whose SNR values indicate large diffraction effects. Rapid static results gain by elimination of those 5 % of observations which cause the largest double-difference residuals.