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1. Introduction 

    1. stellar distance reveals luminosity of stars 
 
    2. stellar distance reveals mass of stars 

    3. stellar distance reveals radius of stars

    4. stellar distance reveals age of stars

   Why is the distance of the stars so important ?  

 But how to determine the distance to the stars ? 



Distance measurement of stars by parallax





Johann Wilhelm Bessel 

1838
 = 0.3 as  (11 light-years) 

(as = arcsecond ~ 5 x 10-6  rad)

Determination of parallax of star (61 Cygni)

Heliometer of Koenigsberg Observatory



The Hipparcos Space Astrometry Mission (ESA, 1989) 

Spacecraft orbits 
around the Earth

2. Astrometry at milli - arcsecond (mas) level of accuracy 

one telescope ( diameter: 29 cm )



           Results of Hipparcos Space Astrometry Mission

1.   120.000 stars with astrometric precision up to   
 = 1 mas for stars with apparent magnitude 
      V = 7 mag (Hipparcos Catalogue, 1997)

2.   2.500.000 stars with astrometric precision up to 
       = 20 mas for stars with apparent magnitude 
      V = 10 mag (Tycho-2 Catalogue, 2000)

           Some examples of apparent magnitude: 

           apparent magnitude of Wega:           0 mag 

               apparent magnitude of Polarstar:      2 mag 

               apparent magnitude of 61 Cyg:         5 mag 

               apparent magnitude visible to eye:    6 mag 



3. Astrometry at micro - arcsecond (as) level of accuracy 

The Gaia Space Astrometry Mission (ESA, 2013) 

- two telescopes on-board
- Gaia rotates slowly around its axis
- scans the entire sky 

Gaia orbits  around L2



The scanning law of Gaia spacecraft:



The optical equipment of Gaia spacecraft:

two telescopes ( 1.4 m x 0.5 m ) 



The primary aims of the Gaia Mission:

- measurement of positions and velocities of 1 billion stars

-  determination of their brightness and temperature 

- creation of a three-dimensional map of our galaxy 

The additional discoveries to be expected: 

- about 7.000 exoplanets

- about 500.000 quasars

- about 1.000.000 Solar System objects



      Some recent results of Gaia Space Astrometry Mission

     1.   1.700.000.000 stars with astrometric precision up to  
            = 30 as for stars with brightness   V = 15 mag  
           (Gaia Data Release 2, 2018) 

    2.   1.700.000.000 stars with astrometric precision up to 
           = 5 as for stars with brightness V = 10 mag 
          (final Gaia Data Release)
     



4. Astrometry at sub-micro - arcsecond (sub-as) level

  - it is obvious that a long-term goal of astrometry is sub-as precision

  - the scientific objectives of sub-as are overwhelming, for instance: 

    
a) detection of Earth-like exoplanets  

b) enables direct distance measurements of extra-galactic sources

c) precise mapping of dark matter outside the Milky Way 

d) would allow for more precise tests of relativity 



   Space Astrometry Missions proposed to ESA: 

1. Gaia-NIR ( as – astrometry )

2. Theia ( sub-as – astrometry ) 

3. NEAT ( nas – astrometry )  

  aimed astrometric accuracy: 50 nas 

   aim: detection of Earth-like planets within 50 light-years 

   concept: pair of spacecraft flying in formation at 40 m distance



5. Relativistic theory of light propagation 

5.1 The effect of light deflection

n



 =    (,n)

light deflection
Barycentric Celestial Reference System

BCRS  ( x0, x1, x2, x3 )   

x1

x2

x3

asymptotically Cartesian x0

)<

body



Magnitude of light deflection for grazing ray at giant planets 

Jupiter

Saturn

 conclusion: sub – as astrometry has to account for higher
 multipoles as well as for the motion of Solar System bodies 

 16.3 mas      240 as         0.2 as       0.7 as 
   5.8 mas        95 as       0.04 as       0.2 as 

S.A. Klioner, Sov. Astron. 35 (1991) 523 



5.2 The exact geodesic equation

geodesic equation:

Christoffel symbols:

  is the four-coordinate of the light signal

What is the metric tensor of the Solar System?



5.3 The metric tensor of the Solar system

is the retarded timewhere

solution of linearized field equations:

linearized field equations:

expansion of metric tensor for weak gravitational fields:

where is the flat metric

… Schwarzschild radius

… radius of body



post-Newtonian expansion (1.5PN approximation) of metric tensor:

... orbital velocity of body

expansion of metric tensor for weak gravitational fields and slow-motion of bodies:

where

and



  Thorne 1980, Blanchet/Damour 1986, Damour/Iyer 1990, Damour/Soffel/Xu (DSX) 1991

The multipole-expansion of metric tensor of a system of N bodies:

STF (symmetric tracefree) differential operator:



   metric tensor describes a system of N arbitrarily moving bodies, 

   having arbitrary shape, inner structure, oscillations, rotations: 



mass-multipoles  (shape, inner structure, oscillations):

spin-multipoles (rotations, inner circulations, convections):

these so-called local multipoles are defined in the local coordinate system of the body

multipoles are integrals over stress-energy tensor of the body



5.4 The geodesic equation in 1.5PN approximation

where



6. Integration of geodesic equation in 1.5PN approximation

unique solution of geodesic equation requires two conditions

second condition defines coordinate of the photon at the moment of emission

first condition defines direction of the photon at past null-infinity



first integration of geodesic equation yields the velocity of the light signal:

second integration of geodesic equation yields the trajectory of the light signal:



1. solution of first iteration is just the unperturbed light ray:

3. solution of third iteration is the light ray in 1.5PN approximation:

geodesic equation is solved by iteration

2. solution of second iteration is the light ray in 1PN approximation:

one is confronted with a serious problem when integrating the geodesic equation



Let us consider an example

By inserting the  multipole-expansion of the metric tensor  in the 
geodesic equation one encounters the following kind of integrals: 

The differentiation 
                

leads to involved terms, e.g.: 

Problem: Such procedure leads to terrible integrals, 

where 

because the differentiation has to be performed before integration



1.  first of all to differentiate with respect to the field point  

 The following terrible integral is only a piece of the example under consideration:

Problem is caused by the fact that one has 

2.  to insert the unperturbed light ray 

3.  afterwards to perform the integration



   solution of this problem found by S. Kopeikin, J. Math. Phys. 38 (1997) 2587 
   for bodies at rest with full multipole-structure: 

Inverse transformation yields: 

Introduction of new variables: 

coordinate time: 

unperturbed light ray: 

new time-variable:

new spatial-variable: 

new auxiliary constant:



Spatial derivative in terms of the new variables

Time – derivative in terms of the new variables



in such cases the differentiation is performed after integration

Solution of the problem:  integration in terms of new variables

in such cases the integration can be performed immediately



the STF differential operation in terms of the old variables 

the STF differential operation in terms of the new variables 

Trinomial formula



 The example under consideration leads now to the following expression:

The Integral is of considerably simpler structure now

just a comment: the specific case p - q = 0 is not a problem at all

Problem is solved because the differentiation is performed after integration

where



 Light propagation in field of a moving monopole

exact analytical post - Minkowskian solution for light trajectory found by 
S. Kopeikin, G. Schäfer, Phys. Rev. D 60 (1999) 124002

7. The state-of-the-art before our investigation



Light propagation in field of a moving and rotating monopole

   exact analytical post - Minkowskian solution for light trajectory found by 
   S. Kopeikin, B. Mashhoon, Phys. Rev. D 65 (2002) 064025



exact analytical post - Minkowskian solution for light trajectory in terms 
of global multipoles found by 
S. Kopeikin, P. Korobkov, A. Polnarev, Class. Quantum Grav. 23 (2006) 4299

gravitational field 
characterized by 
mass moments and 
spin moments

Light propagation in field of an extended body at rest



8. Light-trajectory in the field of N moving bodies with M
L
, S

L

unknown world-line  x
A

(+t*)   of body necessitates to integrate the geodesic equation by parts



S. Zschocke, Physical Review D 92 (2015) 063015

1PN solution of light-trajectory in the field of N moving bodies: M
L



S. Zschocke, Physical Review D 93 (2016) 103010

1.5PN solution of light-trajectory in the field of N moving bodies: M
L, 

S
L



Magnitude of light-deflection for grazing rays at giant planets
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9. Summary and Outlook 

todays astrometry has reached a precision at micro-arcsecond level (Gaia)  

the present status in the theory of light propagation is the following: 

metric of arbitrarily shaped, rotating and oscillating bodies in 
arbitrary motion is known in the (post-Newtonian) DSX scheme

for sub-micro-arcsecond astrometry many subtle problems have to be solved

future astrometry at sub-micro-arcsecond level (e.g. Theia, NEAT) needs a
considerably improved theory of light propagation

fully analytical model for the light propagation in the Solar System 
has been obtained in 1PN and 1.5PN approximation 

without details: many work needs to be done in 1PN and 1.5PN approximation

light trajectory needs to be known in 2PN approximation (enhanced terms)

light trajectory needs also to be known in post-Minkowskian scheme (far-zone)
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