Multipolar Post-Minkowskian Formalism

Sven Zschocke

Lohrmann-Observatory, TU Dresden, Germany

February 14, 2022



Table of Contents

Introduction

The metric tensor

The field equations of gravity

Field equations of gravity in flat space
The residual gauge transformation
Post-Minkowskian formalism

MPM formalism

MPM formalism in 1PM approximation

© © N o o & w N o=

MPM formalism in 2PM approximation

10. Summary



1. Introduction
1.1 Light trajectory through the solar system

e astrometry needs to determine light trajectory x (t)
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1.2 The geodesic equation

e light trajectory x (t) determined by geodesic equation
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e Christoffel symbols are functions of metric tensor
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e Talk is concerned with metric g, of solar system bodies



1.3 The space-time as semi-Riemannian manifold

a) set of points P € M (Hausdorff space)
b) each point P € M is mapped by coordinates x* (P)
c) locally at any P € M flat Minkowskian space-time

locally flat

P € M possible space-time event iff gauge is fixed , i.e.:

e space-time described by manifold and metric (M, g)

e (M,g) not unique: two pairs (M, g;) and (M, gy) are
isometric if ®*gy = g, where ® € diff (M) is an element
of all diffeomorphisms diff (M) on M (equivalence class)

e space-time described by one member of equivalence class

e in practice: gauge is fixed by four coordinate conditions



1.3.1 Classical differential geometry
e C.F.GauB, B. Riemann, E.B. Christoffel, G. Ricci, H. Weyl
T. Levi-Civita, A. Einstein, M. Grossmann, D. Hilbert
e illustrative approach for (local) basis vectors:

tangent vectors along coordinate lines B(u) € TpM
and their dual vectors b*) € THM
1.3.2 Subsequent developments in differential geometry

e E. Cartan, F. Hausdorff, J.A. Schouten, C. Chevalley,
J.L. Koszul, N. Nomizu
e abstract approach for (local) basis vectors:

partial derivatives (of some scalar function) 9, € TpM
and their dual vectors (one-forms) dx(*) € T M

educational representation of both approaches in Ref.[1]




1.3.3 Tangent space of semi-Riemannian manifold

€(n-1)

I €w

€0

Tp M is Minkowskian space: n = dim Tp M = dim M
M and Tp M assumed to be embedded in RN (N > n)
basis in RN : €, - €() = 1 = diag (—1,+1,...,+1)

N
b(,) expanded in terms of €(,), so by, - b,) and b, = by,
defined in terms of €(,) - €(,) and €(,) ® €,), respectively



Some comments are in order:

embedding of manifold M in RN is always possible:

(a) Riemann manifolds: Whitney(1936), Nash(1956)

(b) semi-Riemann manifolds: Clarke(1970), Greene(1970)

embedding of M in RN is a theoretical construction and

then tensor components w.r.t. basis vectors B(u) and b
however: manifold M exists without embedding in RN and
then tensor components w.r.t. basis vectors 5(# and dx®)
both approaches, either B(u), ™ or 8( , dx(" | lead to

the same transformation law of tensor components as
given by the second equation in Section 1.5.2

Ricci calculus (starting in Section 3) does not refer to
basis vectors explicitly and does not use embedding, but
just applies this transformation law of tensor components



1.4 The natural and dual basis
1.4.1  Example: 2-dimensional space

curved space X3 xt

M

P
iy2 iy2
dual basis
B(U)
‘NJ =12
basis index (which basis vector) basis index (which basis vector)
b, b =6 wher v=1,2
)b =6y where p,v =1,

e b, € TpM ... tangent space at P € M

e b ¢ THM ... dual tangent space at P € M



1.4.2

Example: 3-dimensional space

curved space

M

x3

|

dual basis

B(U) =1,2,3
~ ‘\H— -

basis index (which basis vector) basis index (which basis vector)
by B =67 wh ~1,2,3
(1) =0, whnere W,V =1, &,

tangent space at P € M
dual tangent space at P €¢ M



in general case: b, and b are not unit vectors

V developed in natural basis and dual basis

V=V'b, =V, b ()

in oblique and curvilinear coordinate systems:
natural and dual basis different b, # b

contravariant and covariant components different /' # V,

only in Cartesian coordinate systems:

natural and dual basis coincide b, = )

contravariant and covariant components coincide V" =V,



1.5 Coordinate transformations from {x} to {x'}

e How transform basis and vector components?

curved
space-time
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1.5.1 Transformation of basis and vector components

e natural basis and contravariant components

by = B"s by Ve =AY,V (6)

e dual basis and covariant components

E(O‘/) — Aa/u B(/i) Vﬁ’ _ BI/BI V,, (7)

e Jacobian and inverse Jacobian

o axa, v aXV
A w = (0)(#) and B 8 = <8Xﬁ,> (8)




1.5.2 Transformation of tensor components

e tensor T is a generalization of vector V in Eq. (5)

e T developed in natural basis and dual basis

L1 ook N o) > 7(1/) 7(1/)
T= T/ /V1~--V/ b(/u)‘ b(w) b"® ---@b"

tensor components natural basis dual basis

e transformation of components of T

o/...o/ _ Oé, O/ 141 v M1k
T kﬂ{---ﬁ/’_Alul"‘A kukB 5{8 5//7_ v

1.

e T are called tensors of rank (k, /) (geometrical objects)



1.5.3 Usefulness of covariant and contravariant components

1. complete tensor contraction (k = /) yields scalars

I Ta . 7 _

51 — T 1 /1 — T 11 — S]_
I _ ool _ 11 _

5 T %1% o = T 1l2u1u2 — 52 (9)
! _ Ta..a T M1 o

Sk =T" ka’l...a;( =T kul.“uk == Sk

2. incomplete tensor contraction yields new tensors

(10)

THL bk

Vi...pn.-.V|

3. tensor relations valid in any coordinate system, e.g.

Unoog = W%y = U2, = Wi (11)
1 1Z1 vy




2. The metric tensor
2.1 Definition of metric tensor by line element

e definition of line element

ds® = 8 dx' dx”

curved
space-time

M

e How to get g, 7



e consider line element as norm ds? = dx - dX of vector dX

e dx ..

* by, -

curved ,
space-time AT ST xH
xV ~ ey -

four-vector with components dx* with 4 =10,1,2,3

. four basis vectors with 4 =0,1,2,3 at P €¢ M

dX = dx" B(/,,) (13)




then the line element is given by

ds® = B(#) -E(,,) dx* dx" = B(u) 'E(D) qu dx, (14)

metric tensor components (Eq. (44) in [1])

gW :E(u) . b(l,) and g‘“’ :B(M) . b(y) (15)

note that g =g} ie.  g"gu = 0L

metric tensor (Eq. (47) in [1])

g = 8w B(M) (29 B(V) = g“y B(“) ® B(V) (16)

often it is not distinguished between ds? and g, and g



e metric has n(n+ 1) /2 independent components in

n-dimensional space because of symmetry g, = g,

e e.g.: 10 independent components in 4-dimensional space

8w =

800
810
820
830

8o1
811
821
831

802
812
822
832

803
813
823
833

(17)



2.2 The metric tensor and angles

e consider two infinitesimal vectors dX, dy € Tp M

dx = dx" B(”) and dy = dy” B(y) (18)

curved

space-time

xH

dx - dy 8w dxtdy”
cosq = ————— =
[ax] |y \/gag dxdx? \/gag dyady?




2.3 The metric tensor and converting components

e contravariant in covariant components by metric tensor

V)= 8ua V°

20
T'u,z/ = 8o 8up Ta,B ( )

e covariant in contravariant components by metric tensor

VE =gl Vv,

21
THY — gua guﬁ Taﬁ ( )

e mathematical foundation behind Egs. (20) and (21)
Musical Isomorphism between Tp M and TH M  [2]



2.4 Examples for the metric tensor
2.4.1 Metric tensor of flat space R? in Cartesian coordinates
e Cartesian coordinates: (x!,x2) = (x,y)

2-dimensional
space

R - s
M=R be) Q=P+dP

_ 1 _ P
by = ( ) = e i >
[€N] 0 X P ! by, .

— 0 - u :‘
b = (1) e XU(P) = ()

e metric tensor

L 10
8w = b - bu) = (0 1) (22)

e line element
ds® = g, dx" dx” = dx* + dy? (23)




2.4.2 Metric tensor of flat space R? in Polar coordinates

e Polar coordinates: (x!,x?) = (r,¢)

2-dimensional P
space E(:)\

M=R?

— _ (cosg\ _ -
by = (sincp) = er

= _ [Tsing)y _ -
be = (rCOS(p ey

e metric tensor

o 1 0
8uw = b - by = e

e line element

ds® = g, dx" dx” = dr* + r* dy?




2.4.3 Some important conclusions

(1) metric components g, different in different coordinates

8uv 7é B (26)

but distance in Eq. (23) is the same as in Eq. (25)

ds; (P, Q) = ds; (P, Q) (27)

i.e. distance is independent of chosen coordinates

(2) therefore: metric g as geometrical object remains
the same under (passive) change of coordinates

(28)

e conclusions (1) and (2) are valid in general



2.4.4 Metric tensor of sphere S? in spherical coordinates

e Spherical coordinates: (x*,x?) = (0, )

2-dimensional

space

M=82

_ Rcos@ cos ¢ -

b = ( Rcos8 sin (p) =Reg
-R sin@

— -Rsin® sing _
b = RsinBcosg ) =Rsind e
0

e metric tensor

o R 0
u (1)~ P) 0 R2sin20

e line element

ds® = g, dx" dx” = R? d6? + R? sin® 0 dp? (30)




3. The field equations of gravity
3.1 Einstein’s field equations of gravity
e metric tensor g,p is determined by the field equations

1 87 G
Rap = 588 R= =73 Tas (31)
curvature of space matter

e Ricci tensor ("Ricci curvature" of space-time)
Rap = Tag,u = Tops + T Tap = Tau T (32)

pelaf T Lop v

e Ricci scalar

R=R.;8" (33)

e Riemann-Christoffel tensor (curvature of space-time)

R =Tos, —Th, g+ T8, Ths—T5,T" (34)

o vp ' af av ' pB




stress-energy tensor of matter T,z

Toap = Tso hence only 10 independent components

Too Tor To2 Tos
Two T T T3
Tog =
Too Tor Too Tos
Tso Tz Tz T3
Too ... energy-density
Toj .. energy-flux in x/-direction

(35)

Tik ... flux of x/~component of momentum in x*-direction



e Eqgs. (31) represent 10 equations for 10 components of g,z

but they are not independent of each other
e 4 Bianchi identities

1
(Raﬁ—zgaﬁR)_Bzo —  T,=0

(36)

covariant derivative for scalar S, vector V¢, tensor T¢8

S;uzs,u

Ve = Vo T VY

aB  __ Tap « vB B av
T 7 T 7u+r;w T +rﬂl’ T

Therefore:

e Egs. (31) represent only 6 independent equations
e Eqgs. (31) determine g,z up to (4 passive or 4 active)

coordinate transformations

(37)



3.2 Invariance of GR by passive coordinate transformations

e keep points of M fixed and change coordinates

curved
space-time

M

e passive coordinate transformation implies four equations

x (P)

= y(P)

(38)



passive coordinate transformations do not change ds?

of points P, Q@ € M

ds® = gap (x (P)) dx®dx” = g (v (P)) dy"dy”

(39)

Eq. (39) means that these sets are physically equivalent

(i.e. these sets describe the very same physical system)

(M y 8apB (X)) — (M y Buv (y))

Eq. (39) implies transformation

8o (< (P)) = 22 2 g (v (P)

8.5 and g, components of same metric: g =g

(40)

(41)



3.3 Invariance of GR by active coordinate transformations

e keep coordinates fixed and change points of M

curved
space-time

diffeomorphism @

Zuv(y)

.

y

rR* rR*
e active coordinate transformation implies four equations

x(P) = x(®(P))=y(P) VP e M (42)




e active coordinate transformations do not change ds?
of points P, Q € M and their images ¢ (P),®(Q) € M

ds® =& ga5(P, Q) dx”dx” = g, (P(P) , ®(Q)) dy"dy”| (43)

where ®*g,5 ... pulled-back metric (¢*g=g)

8.5 and g, components of distinct metrics: g # g

Eq. (43) means that these sets are isometric (p.227 in [3])
i.e.: they are physically equivalent (Leibniz equivalence)

(M, ®7gag (X)) = (M, g (¥)) (44)

e Eq. (43) implies transformation

©gs (x (P)) = 2 O gy (P) (45)

if ® proceeds along congruence of Killing vector field
then g = g and in this case ® is an isometry (p.43 in [3])
one has carefully to distinguish isometric and isometry



3.4 Landau-Lifschitz formulation of gravity

e exact reformulation of Egs. (31) by Landau-Lifschitz [4, 5]

_167TG

H = —a— (=8) (7% +47)

e super potential
HCV[J,,BV _ Eaﬁ g;w . gau EB,LL

metric density

g% =\-gg"”
e g =det(gu) ... determinant of metric tensor
o t* .. Landau-Lifschitz pseudo-tensor

(46)

(47)

given by Eq. (6.5) in Poisson and Will, Gravity (2014)



e LL formulation ( i.e. Eq. (46)) is a reformulation of GR as
a non-linear field theory in flat background space-time M,
(diagrammatical representation is given in Section 4.1)

o cf. text in
D. Keppel, D.A. Nichols, Y. Chen, K.S. Thorne,

Physical Review D 80 (2009) 124015:

"... one reformulates the Einstein equations as a nonlinear

field theory in the space of that flat auxiliary metric..."

"... Landau-Lifshitz formulation of general relativity as a
nonlinear field theory in flat space-time..."

e general-covariant LL formulation as non-linear field theory
in flat background space-time has been developed in [5]



e Eq. (46) is valid in any curvilinear coordinates

which cover the flat background manifold M,

e Eq. (46) represents 10 equations for 10 components of g/

but they are not independent of each other

e 4 identity relations

Hozuﬁl/

JuvB T

= (&) (T +t%)]

)

=0
B

local law of conservation

e Eq. (46) represents only 6 independent equations

e Eq. (46) determines g% up to (4 passive or 4 active)

coordinate transformations

(49)

e Eq. (49) related to global energy-momentum conservation
as it will be discussed in Section 3.5



metric density

g =y—gg" with g=det(gu)

orthogonality relation

8" 81 =05

(50)

(51)

allows to switch between upper and lower components

metric tensor

g =28 with g=det (EW)

orthogonality relation
gaﬂ g/iﬁ — 5g

(52)

(53)

allows to switch between upper and lower components



3.5 The energy-momentum conservation

e local conservation law (49) admits global conservation law

of energy-momentum for isolated systems

P d g, o o B
== [ dx(g) (T +tif) =0 (54)

global law of conservation

e statements valid if (54) Minkowskian at spatial infinity:
integral (54) is convergent

integral (54) is coordinate-independent

w o=

integral (54) is global energy-momentum conservation

(i) E. Poisson, C. Will "Gravity" (Box 6.1)
(i) C. Misner, K. Thorne, J. Wheeler " Gravitation" (§20.5)



4. Field equations of gravity in flat space
4.1 Einstein’s field equations of gravity in flat space

as mentioned LL is reformulation of GR in flat space-time
separation of g, in flat metric ggﬂ and perturbation h,g

8as (X) = 8o (X) + hap (%) (55)

has propagates in flat background space-time

many physicists developed field-theoretical formulation:
M. Fierz, N. Rosen, A. Papapetrou, S.N. Gupta, S. Deser,
R. Kraichnan, W. Thirring, F.J. Belifante, L.D. Landau,
J.M. Lifschitz, R. Feynman, S. Weinberg, S.W. Hawking,
S.V. Babak, L.P. Grishchuk, A.N. Petrov, A.D. Popova,
an excellent historical overview is given by:

J. Brian Pitts, W.C. Schieve (2018) in gr-qc/0111004
Null Cones in Lorentz-Covariant General Relativity



e Eq. (55) in language of differential geometry

Field-theoretical formulation Geometrical formulation
of GR of GR

g (0 J———

P el el
8720 () =883(X) +hep®) B
’ ’ ’ 29500
X . N
$ ... Diffeomorphism
Y
X/
R* r*
oy oy¥
* —_—
¢ 8ap (X) T Ox OxB 8w (Y) (56)




e active coordinate transformations do not change ds?

ds® = g, (y) dy"dy” = ®*gas (x) dx* dx”
in M in Mo
= ggﬁ (x) dx*dx” + hag (x) dx® dx”
—_—— ————
dsg in Mg fieldsin Mg in Mo

e Eq. (57) means that these sets

(Mo, ®"gas (x)) == (M, g (¥))

describe the same physical system equivalently
in spite that manifolds M, and M are not isometric

dy* Oy"
ggﬂ( );é axa a ng.l/(.y)

(58)

(59)



4.2 Landau-Lifschitz formulation in flat space

e instead to insert (55) into Einstein's field equations (31)
Landau-Lifschitz formulation (46) is more appropriate

to get field-theoretical formulation of GR in closed form

e separation of metric g,z into flat metric g3; = 7,4 and
perturbation h,g implies in terms of metric density:

— o Taf
g =n"—h (60)

e harmonic gauge

B3 =0 = Ox*=0 (61)

e curved d'Alembert: O, = (—g) /%8, ((—g)l/2 g’“’) 0y
e curved d'Alembert in harmonic coordinates: [, = g# 0,0,



e inserting (60) and (61) into (46) yields non-linear
wave-equation in flat background manifold M,

167 G
-

OR* =

(7 + %) with O =" 9, 0,| (62)

e Eq. (62) so-called relaxed Einstein's field equations
o 1 = (—g) T
o 10 = (—g) (17 + 1)
° tﬁﬁ ... harmonic gauge term
given by Eq. (6.53) in Poisson and Will, Gravity (2014)

EQ'B”B = 0 equivalent to local conservation law Eq. (49)

af

>

(T“B+ta’8) =0 =

y 5=0 (63)




5. The residual gauge transformation
5.1 The class of harmonic coordinates

e harmonic coordinates not uniquely determined by Eq. (61)

O x* =0

e consider a coordinate transformation of the form
X' = x4 % (x) (64)

e these new coordinates {x’} are also harmonic if
g " (x) =0 (65)

e Eq. (61) selects a class of infinitely many harmonic systems



e it is advantageous to adopt the following convention:

X/a — Xa _'_ (pa (X)

e {x'} are curvilinear harmonic coordinates which map M,

{x} are Minkowskian coordinates which map M,

e “(x) are gauge functions in Minkowskian coordinates

note that Eq. (65) implies g 0, 0, ¢* =0
hence Eq. (65) using Eq. (60) can be written in the form

O¢° (x) = B 0,0, " (x) =0 (66)




5.2 Diagramatical representation of Eq. (60) and Eq. (64)

Field-theoretical formulation Geometrical formulation
of GR of GR

3 3P0 = neb -1 %)

2" g Py = P P )




5.3 The residual gauge transformation of metric density

e change of metric density under coordinate transformations

glaﬁ (X/) _

1

ox'® Ox'P

|J(x)| Ox+ Ox¥

g" (x)

e where J is Jacobian determinant of Eq. (64)

e series expansion yields in Minkowskian system {x}

|
=1 N

1
g/aB _ gaB 4 < 1)

]

g

1 —rVa (0% — v
M(@ WECHO B et 0, )

%)
1 —af

— 8

M1
e P

'

Hn

e the gauge terms have no impact on observables

(67)

(68)



5.4 The residual gauge transformation of metric tensor

e change of metric tensor under coordinate transformations

ox'* ox'v ., .,
gaﬁ (X) = axa axg g/.LV (X)

e series expansion yields in Minkowskian system {x}

8o = 8o+ 0 8s ¢ 58 TP A" 5 &

(0 ) (54 ) D B

n=1

e the gauge terms have no impact on observables

(69)

(70)



6. Post-Minkowskian formalism

6.1 Post-Minkowskian expansion of field equations

e exact field equations in Eq. (62) were given by:

16C7Z G (Taﬁ 4 l'aﬂ)

OR = —

(71)

e perturbation of metric and metric density in powers of G

hag = Z G"h ™ and A Z G" o

e "energy-momentum tensors" in powers of G

TS 6y
n=1

t* = Z G" C:fPM

(72)

(73)



e yields hierarchy of field equations in flat background
manifold M, covered by Cartesian coordinates {x}

—aﬂ 167T a
|:| h(lPM) - —7 T ﬂ
—af 167w af af
O h =—— t
(2PM) o (riteany + (o) (78)
—af 167T a a
U hweny = =~ (i nyeny T to-nypm)
e Egs. (74) solved by iteration
e T8 is stress-energy of matter in special relativity
e harmonic gauge must be satisfied order by order
—af
h(nPM),,B =0 (75)

ensures local law of conservation due to Eq. (63)



6.2 Post-Minkowskian expansion of residual gauge fields

e post-Minkowskian series of residual gauge fields

o (x) = i 6" Sy (3) (76)

e inserting Eq. (76) and Eq. (72) into Eq. (66) yields

0 (’Qa(lPM) (X) =0

(77)




6.2.1 The residual gauge transformation of metric tensor

e inserting (72) and (76) into (70) yields in {x}

Z G" h(nPM) Z G" ( l(nPM +9 OjldPM + QanBPM ) (78)

e linear gauge terms for metric tensor

nPM nPM nPM
AU ™M = PN gy o P (79)

e non-linear gauge terms for metric tensor

QS’?’” Q(nPM {(pu(mPM)} with m < n (80)




6.2.2 The residual gauge transformation of metric density

e inserting (72) and (76) into (68) yields in {x}

Z Gn nPM)

ZG"(

/aﬂ

_ *OLB
(mpPM) T a@(fPM) + Q(nPM))

e linear gauge terms for metric density

a4/9(1?P1v1)

© ISHPIVI) T}u[j’ + 99/‘3 (nPM) n,uoc o

M

u(nPM) af

Ui

e non-linear gauge terms for metric density

—af
Q(nPM) -

Q(nPM {90

B (mPM)]

with m < n

(81)

(82)

(83)



7. MPM formalism

1. iterative approach to solve Eq. (74) outside isolated

source in terms of symmetric tracefree multipoles

2. simplification by gauge transformation Eq. (81)

e pioneering work: K. Thorne (1980) [6]
e further developed: L. Blanchet and T. Damour (1986) [7]

e subsequent developments (1986 - 2008)
T. Damour, L. Blanchet, B. lyer, G. Faye, P. Jaranowski,
G. Esposito-Farese, S. Sinha, S. Kopeikin, G. Schafer



7.1 Definition of an isolated source of matter

1. compact source of matter inside sphere with radius ry

T (t,x) =0 for r>n

where r = | x|

2. Fock-Sommerfeld boundary conditions:
(a) asymptotically Minkowski space

: TaB
lim A (t,x)=0
t+£:const

(b) no-incoming radiation

. 6 —af a —af3 .
lim (c‘?rrh (t,x)—l—%rh (t,x)>—0

r_
t+ s =const

(84)

(85)



7.2 General MPM solution of metric density

e general solution of metric density

ggen af _

ZG”h

%2;1(\)6/[/6)) [IL7 JL? WL7 XL) YL) ZL]

e simplification by gauge transformation

(07

= Xgen + Z G" (/D?HPM) (Xgen)

Xcan -
n=1
geanaf _ geenal | Z G" Oupan) + Z G" Opr
n=1
e canonical solution of metric density
gemad _ Z G" houpaty [M1, S

(87)

(88)

(89)

(90)



7.3 Why MPM is focussed on metric density?

e determination of gravitational waves in far-zone

far wave zone
of gravitational system
just plane waves

huge distance ( ~ 1025 m)
between body and observer
— e TT projection of metric relevant

\\."&ﬁ/ TT =TT

i/\“v?f$5“" hUB = haB

observer




7.4 Why do we need metric tensor?
e determination of light trajectories in near-zone

near-zone
of gravitational system
not simply plane waves .
‘ DY b small distance ( ~ 1012 m)
between body and observer

entire metric relevant

hap # [P

observer



7.5 General MPM solution of metric tensor

e general solution of metric tensor

8genap = Taps + Z G" hgxf:gﬁ [IL7 JL7 WL7 XL: YL» ZL]
n=1

e simplification by gauge transformation

XO[

can ~

n=1

= X;en + Z G" Qp?nPM) (Xgen)

8canapf = 8genaf —

Z Gn nPM

ZG”

e canonical solution of metric tensor

8canaf

= o + > G" b

can af

n=1

nPM)

[ML, ]

(91)



8. MPM formalism in 1PM approximation
8.1 The field equations

e field equation and gauge condition

—af 167 o —af
Ohapvy = —— T #and hipyy 5 =0 (95)
e solution
—aB lom __,_,
hapwy (t, x) = —7DR1T (t, x) (96)

e inverse d'Alembert operator

f(t,x)
|x —

1
O (t,x) = —ﬂ/ds‘x/

x|




e graphical representation of Eq. (96)

e variable x’ runs over three-dimensional space of source

. T oB
h(lPM) (t,X)

(t,x) t,x ... arbitrary but fixed



8.2

Solution in terms of time-independent multipoles

for motivation consider simple case: 7% (x') = const
origin of spatial coordinates has to be near body's CoM
sphere with radius ry and r = |x|, r' = |X/|

body enclosed in that sphere: T (x') =0 for r' > g

—ap
h(lPM) (X)

X ... arbitrary but fixed



series expansion valid for r' < r

1 = (_1)I / 1
- o, =
|x — x'| ; /1 L=t
X[ =X . x’ and oL = 831 a
XL aLi Z Z Z . a, a1 ..ay ;

ar= 132 1

some examples reveal STF structure:

1 1 X3
O = = (—1)! 22
Loy
1 2 Xa1Xa 533
83132?:(_1) (3 ,1,52_ r132>
1 21— DN x4
8[_ - (_1)/ ( ) X(a1...ar)

r rl+1 r!

(99)



from n; n, = n] f; follows
L Lhn

1 1
X/L 8L—:§<’L aL* (100)
r r
where %] = x_, ...x; . are STF with respect to a; ... a

one obtains metric density in terms of STF multipoles

00 r-of
> O (101)

fof — / &X' 3T (x') (102)

multipoles I:_a are STF with respect to a; ... a
from now on: simpler notation for mu|t|poles FLB = F



8.3 Solution in terms of time-dependent multipoles

e sphere with radius ry and r = |x|, r' = |X/|
e body enclosed in that sphere: T (x',t') =0 for r' > g

t,x ... arbitrary but fixed



e case of time-dependent multipoles is complicated [6, 7]

o (_ 1Y 0455
R (x) = 2 5 W 5 ATE) (103)

retarded time s =t — |x|/c

e these 10 time-dependent STF multipoles are given by:

/
FEVB /d3X/)A(£/dZ 5/( ) Tab <S+zr ,X’) (104)

C

e Egs. (103) - (104) given in [10]
e detailed proof of Egs. (103) - (104) in my manuscript [9]



8.4 Decomposition in irreducible STF multipoles

e metric density in Eq. (103) in terms of 10 multipoles

00 4 = (-1 . F(s)

hpwy (t; x) = P IZ;) il L Lr

hiipa (t,x) = P ; ( l!) oL r( ) (105)
i 4 = (=1)" . Hy(s)

h(ijM)(t> x) = P /Z% il L JLr

e F; is irreducible (STF in L)
e Gy is reducible (STF in L but not STF in iL )
e Hjy is reducible (STF in L but not STF in ijL )



multipoles are integrals over stress-energy tensor

s+zr

ﬂ@z/fﬂﬂjwau)ﬂ%C

s+zr

/&x%/w&()ﬂ(c

s+zr

/d3x'§<£/dz 6 (z) TV (c

L] TOO = Too and TOi = TOI. = _TOi and T’J — TU

(106)



e metric density in terms of 10 irreducible multipoles [10]

—00 4G (-1 ) A,
T — 1
4 ct =l OL p (107)
4o Y () B ¢ Dy
h0:7 ( |) ((9 N 1+€labaaL =2 1) (108)
ctizg M p
i 4G 2 (-1 i g )
h-’ —_ _ ( ) <8UL + 5]] aL + aL 1 g )L 1
ct = | p
- H j T (109)
_ , c,
+ €an(i0))aL—1 Pl 0 0 2b(;)bL2>

10 irreducible multipoles: A;,B.,Ci, D1, E1, Ly, G, He, T, T



e some examples:

AL:/ x'f(;/dz 5 T

+1
1 2041
Bi=——— "> [ @353, / dz /41 TO
I+12/+3 J
1 20 +1
B35 & /d5
L= /+1/+22/+5/ Kot | 2 012 T

(110)



8.5 The local law of conservation (gauge condition)

e these 10 multipoles in Egs. (107) - (109) not independent
e 4 relations of 1PM local conservation law (cf. Eq. (63))

T°‘575:0 —

h

af
(1PM),8 — 0

C[_ == —AL—BL
G, =-2B,—-2& —21,

TL=-2D - H,

for

for

jL:2AL+4BL+2£L+2j:L for

for

(111)

(112)

e only 6 independent STF multipoles: A, B, D, &, T, H,
e detailed proof of Eqgs. (112) is given in my manuscript [11]



8.6 Definition of new multipoles

e definition of new irreducible multipoles

AL—i-QBL—l—IL) for 1>0

(DL + = ’HL) for I>1

—— (Bt 5L> for />0
X = ; for >0 1)
Y, = —|—(BL+5L —l—I,_) for 1>0
Z = —;’F[L for 1>1

6 (new) independent STF multipoles: I, J;, W, X;, Y1, Z1



8.7 The general 1PM solution of metric density

e general solution of 1PM metric density (cf. Eq. (87))

EEn = i — GRS i, Wi, X YL 2| (114)

e gauge transformation in 1PM approximation (ﬁzﬁ)M) =0)

Xcan = Xgon T G 99EX1PM) (Xgen)

—canaf __ —genaf 1 n—apf
gaprm) = g%lPM +G &p 1PM)

e canonical 1PM metric density (cf. Eq. (90))

an aff (115)

Ef??f‘ﬁ =n* —G'h C1PM) ML, 5]




e explicit form of 1PM canonical metric density perturbation:

——can 00 4 = (-1 M (s
h(lPM)(t7x):+szo( )aL Ls)

p /! r
——can 0i 4 == (—1)/ MiL—l (S)
ey (8, x) = s ; il 01
4 = (—1)I / SbLfl (S)
& I ML 116
c3;(/+1)!6b oy (116)
can i 4 = (—1)/ M, L — (S)
h(lPl\J/I) (t,x) = +§ > il Op—o—~ rl

cti= (I +1)! r




e 1PM gauge terms for metric density:

890 (1PM) —

- lglPM)

0?4 P (M)

n"

w(1PM) af

N

e 1PM gauge functions for metric density:

IPM

1PM

+28L

+Z€9,L—+Z6)L 1 =

+ Z 6iabaaLfl

=1

ZbL—l

(117)

(118)



8.8 The general 1PM solution of metric tensor

e general solution of 1PM metric tensor (cf. Eq. (91)):

géifﬁ“g = Tap + G o) [, Jo, Wi, X, Ye, Zi]

gen aff

e gauge transformation in 1PM approximation (Q

a .« 1, «
Xcan — Xgen + G (/Q(IPM) (Xgen)

PM PM PM
g(galna/o? = gg(;ina,ﬁ) + Gl 0(}985 )

e canonical 1PM metric tensor (cf. Eq. (94)):

g™ = g + GLAEM ML, S1]

(119)
(i — o
(120)
(121)
(122)



e explicit form of 1PM canonical metric tensor perturbation:

2 = (=1) . M, (s
R (620 =+ 5 3 5 o M0
=0 '
4 2 (-1) M1 (s)
RUPM (¢ x) = +— _
can 0/ ( ,X) +C3 it /| aL 1 r
s (—1)I / SbLfl (5)
Y ia 83 — -
= ;(/H)! Ciab Cal =1~
2 & (-1, M (s)
h((:;lrjl’lz//[) (t,X) - +72 5IJZ /N oL p
/=0 )
4 = (-1) Mii_2 (s)
e ; TG
8 = (-1) 1 €an(i b2 (5)
+ ct ;(/—i—l)' al=2 r

(123)



e 1PM gauge terms for metric tensor:

1PM 1 (1PM
Apls™ = (M) s o P (124)

e 1PM gauge functions for metric density (cf. Eq. (118)):

IPM +ZOL
lPM +261L7+28L 1 ’L ! (125)

Z 6IabaaL 1

ZbL 1




9. MPM formalism in 2PM approximation

e sphere with radius ry and r = |x|, r' = |X/|
e body enclosed in that sphere: T (x',t') =0 for r' > g

N h (tx) =0

(1PM)

t,x ... arbitrary but fixed



9.1 The field equations

e field equations and gauge condition

1670 , TaB
Dh(QPM) T ( (1€M) + t(lPM)) and hopypy 5 = 0/(126)

e formal solution

—af 167
hapwy (t: X) = _7[]1{ (T(IPM) + t(lPM)) (t, x)| (127)

e inverse d'Alembert operator (x’ runs over entire space)

1 f(t,x
Dﬁlf(t,x):—ﬂ/d3x’ (£, x)

|x — x|

(128)




aff .
® T(ipn) IS NON-zero forr<n

af a
Tapm) = M h(lPM) T’

° tafDM) is non-zero for r < ry

« Taf

t(l@M +h (1PM),v h(lPM),,u hip,
—(1PM),a

+ SR

1 (0% loa 14
+ h(lPM) h(lPM) + g Onprn h,

1
_ fnaﬁh

L oo gl
h(lPM)_an Hh

(1PM) v ,w
n,w h(lPM) + 277 vp, [

E(IPM) ) 6 EOZV )

h(lPM hBV S

(1PM) —

lPM) @

g
7
h,,

(1PM)

1 aﬁh(lpM) e

(1PM)

I

(1PM)

A

h 1PM)
1PM),8

1PM)
PO, W

e problem: thus far EZBPM) only determined for r > ry

therefore: treatment of 2PM different from 1PM

(129)

(130)



9.2 Separation of spatial space
e separation of spatial space into three areas

Diy=Dj N Dy
intermediate
near-zone

external

near-zone ;
internal

near-zone

e D.: post-Minkowskian expansion F:’B (in vacuum)

e D;: post-Newtonian expansion E?ﬂ (with matter)

e D,,: matching both solutions Fjﬁ and Eaﬂ valid



9.3 The 2PM solution in D,

e 2PM field equations in vacuum

—af 167
O h(QPM) = ch t(lf—-’M) (131)

e formal 2PM solution in vacuum

of 167 _ _,
hapy (t,X) = —751{1 b (%) (132)

e inverse d'Alembertian Oz* in (132) runs over entire space

i.e. one needs tﬁ%M) in entire space

. —af . .
i.e. one needs hpyy in entire space



1PM field equations in vacuum

iaﬁ
O h(lPM) =0

(133)

1PM solution in vacuum in entire space (r # 0) as function
of 10 field multipoles (F{* are not integrals over T°F) [6]

o 4 X _1/ Faﬁ S
h(ﬁDM)(faX):*Z( )8 L (5)

L
/! r

(134)

1PM solution in vacuum in entire space (r # 0) as function
function of 6 STF field multipoles by Egs. (105) - (118)

Betoan (£ %) = Btoan Ui i Wa, Xe, Ye, Z]

ie. Iy, Ji, Wi, X, Y., Z, are not integrals over T¢?

(135)



e (135) into (132) via (130) yields divergent integrals since
(135) is valid in R2 x R (entire space-time with r # 0)

e finite integrals by Hadamard technique to cut r =0

cf. inverse d'Alembertian in Eq. (128)

FPs_o(Og

'),

/B / /
x):—i im [d3x'[ = Ft,x)
4

7 B—=0 |x — x'|

(136)

e 2PM solution in vacuum as function of 6 field multipoles

—af
hpwmy

(tv X) =

167
_7FPB oOr't] (IPM) (t, x)

(137)

where taf)M) is given by Eq. (130) with h(ag,M) in Eq. (135)



from Egs. (135) and (137) one obtains for special case D,

= G'h(upany + G2 heapayy + O (G3)

with 1PM perturbation in D,

—ap
he(lPM)

(t7 X) = E:(BIPM) [/L7 JL? WLJ XL7 YL; ZL]

with 2PM perturbation in D,

—ap
he (2PM)

(t7 X) = E:(BQPM) [/L7 JL? WL7 XL7 YL; ZL]

(138)

(139)

(140)

where I, J;, Wi, X;, Y., Z, are STF field multipoles, i.e.
they are not integrals over T®% but general functions of s



9.4 The 2PN solution in D;

e exact field equations in Eq. (62) were given by:

—af 167G / 05 | L«
OR" = —3~ (77 + ) (141)

e post-Newtonian expansion v < ¢ of Eq. (141) yields [12]

1 4 14
OR" = — 6726 <1— 2V) TP+ V, V., +0(6)
C C
-oi 16 G
OR = C” T + O(5) (142)

1 4 ,
OR’ = 6C”GT'J S (V V-V vk‘;) +0(6)

e Eqs. (142) are 2PN approximation in MPM formalism [12]



e 2PN solution of Egs. (142) [12]

00

1

4

7O _

c2

V—;(W@—2W>+O®)

—oi 4
hi = 5Vi+0(5)

—ij 4
hf = FWij + 0(6)

e where the potentials are given by [12]

V=—47G0Ox"

Vi=—47 GOz
c

TOi

c2

1

Ti
VV,-J-:—47TGD§1 l&+<wiwj_wkvk

G

0jj

2

)

(143)

(144)



9.5 Matching

e matching: field multipoles (general functions of s)
into source multipoles (integrals over T<%)

e matching condition in (cf. Eq. (2.28) in [8] )

M) = M)

7 ~
post-Newtonian expansion multipole-expansion of
of MPM expansion of ng‘ post-Newtonian expansion of E?B

o E:ﬂ is given by Egs. (138) - (140)
o 1" is given by Egs. (143) - (144)



9.6 General 2PM solution of metric density
e general 2PM solution of metric density [12]

ghnet = 1" — G Rypan [, i Wi, Xe, e, Z4]

o (145)
-G (2PM [IL7 JL7 WL7XL7 YLJ ZL]

e gauge transformation in 2PM approximation

«

Xean = gen + G 5‘9 (1PM) (chn) + G 9’9 (2PM) (chn)

—canaf _ —genaq —af ~ab
8(2pPM) = g%lPMﬁ + G 0@ 1PM) +G? ((999(2%M) + Q(2PM)>

e canonical metric density in 2PM approximation

—can « ——can af
g(ZPMB) =" -G hapwy [ML, Si

can « (146)
- G* h(szﬁ [ML, Si]




e canonical metric density perturbation [12]
in the order O (6,5, 6)

e (00 =+ (3 G o 1)

At \iz r
——can 0/
hepwy (. x) =0
can' 1 (& (=1 . M(s)\
h(2P1\J/I)( ) +§ 6’] (Z ( /|) 8’— Lr( )>
1=0 :
4 o (_ 1y 0 (1Y

_7FPB o0 (8 Z( /|1) 8LMLr(S)><ajZ( “1) 8LMLr(S)>

1=0 ' 1=0 '

o Eﬁ;‘ﬁfd) associated with Hadamard technique in Eq. (136)
e solution for time-dependent quadrupole-quadrupole [12]




9.7 General 2PM solution of metric tensor

e general solution of 2PM metric in my manuscript [13]

(2PM)
ggen af T

Nag + G BTN 11 Wi X, YL 2]

gen af

+ G2 ) e, Jo, Wi, X, Yo, 21

gen af

e gauge transformation in 2PM approximation

«

(147)

Xoan = Xgen T G ©(1pm) (Xgen) + G’ ©(apm) (Xgen)
2PM 2PM) (1PM) (2PM) (2PM)
g(ganaﬂ) gg(enaﬁ + G 89’ af + G2 <89/ + Q >

e canonical metric tensor in 2PM approximation

gar) = o + G h((;;ilt\fﬁ [M¢, 5]

+ G2 IML, S/

can af

(148)



e canonical metric perturbation in my manuscript [13]
in the order O (6,5, 6)

h

h

h

0o / 2

(2PM) 2 (-1) M (s)
canOO( X)——g (; T aL r
Gno? (£, x) =0

2 (& (=1) . M (s)\°
e e =+ 2oy (2 G o M)

c e r
4 —1’ M, (s © (—1) M, (s

_74FPB:O|:|51 (6,2 T aL L( ))(aj ( /I) aL L( ))

c =0 r = ! r

o HPPM

) associated with Hadamard technique in Eq. (136)

can ij
e solution for time-independent quadrupole-quadrupole is
given in detail in my manuscript [13]



9.8 Impact of 2PN effects on light deflection and time delay
e 2PN light deflection (e.g. grazing ray at Jupiter)

G>M3 X1 XX

MaxMa < 16 < 16 uas
PN =R Py (x0+x) ~ 8 (149)

ab
carn = 4oh M U = 0.95 pas  [16]

micro-arcsecond ... 1pas ~ 4.85 x 10712 radians

M, and P4 ... mass and radius of body A

J3' ... second zonal harmonics of body A

Xo and x; ... distance body-source and body-observer
ESA astrometry mission Gaia: launched December 2013
aimed precision in angular measurements: ¢ ~ 5 uas
Near-future astrometry able to detect 2PN effects beyond
monopole structure

[16] S. Zschocke, Physical Review D 105 (2022) 024040



2PN time delay (e.g. grazing ray at Jupiter)

2712
A < g EMax X0 g4
c*P3 ¢ xo+x (150)

Max M3b Max My
Atypy ~ AtypN

JzA‘ ~ 0.6ps (guess)

pico-second ... 1ps = 1072 seconds

atomic clocks on Earth (optical clocks): At/t = 10718
atomic clocks in Space (DSAC): At/t = 1071

e.g. precision for a signal t=10*s: At=(0.01 — 10) ps

. ps-level in time-delay measurements achieved by VLBI [14]
(about subsequent discussions see also my manuscript [15])

. note that today's precision in distance Earth-Moon 10~3m
by LLR corresponds to precision in time of At = 3 ps
Today's VLBI facilities and atomic clocks are almost able
to detect 2PN effects beyond monopole structure



10. Summary

MPM is an approach to determine metric density g**
from metric density g*° one may obtain metric g,

MPM makes use of field-theoretical formulation of GR

general solution depends on 10 irreducible multipoles
AL B, CL D EG L G, Hi, T, T

6 irreducible multipoles independent (local law of
conservation) /L, JL, WL) XL) YL; ZL

2 multipoles physically relevant (residual gauge) M, S,

In foreseeable future 2PN effects beyond monopole
structure are detectable
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