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Motivation

Modelling of integrated smart-grid
materials has particular importance for:

— risk minimisation as a result of robust
and effective location as well as of
monitoring of AAM devices,

— ensuring structural-mechanical
requirements when equipping with
smart grid networks.

Holistic modeling at component and
material level is essential for:

— the efficient use of existing component
Cross sections,

— reliable functional expansion of
standard components.

Figure 1: Active and passive interaction between AAM device and integrated smart grid

Methods

Modeling smart-grid building materials
and components requires:

— integration of smart grid elements at
component or material level,

— numerical analysis of the smart grid
functionality,

— numerical calculation of the functional
and load-bearing capacity using the
Finite Element Method (electro-
magneto-mechanically coupled
analysis) and

— evaluation of the long-term
characteristics under environmental
influences using time homogenization

[1].
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Results

Networking in the RTG
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Multi-physical simulation model for smart
grid integration enables:

— evaluation of the multifunctional
component properties during
integration at component level and at
material level,

— assessment of long-term usability
along different time scales and

— an example catalog for structural
components with integrated basic
elements of the smart grid.

Figure 2: Holistic numerical component analysis using multi-scale models [2], [3]
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Numerical structural modeling contributes
to networking with other research topics in
the RTG by:

— provides a basis for the development of
safe landing sites for AAM aircraft (T3),

— provides a basis for evaluating the
optimal location of landing sites for
AAM aircraft (T4),

— enables the necessary data redundancy
for sensor fusion and robust
movement trajectories (T5, T6) and

— active and passive digital landmarks for
adaptive navigation (T8).
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