

Fakultät Verkehrswissenschaften „Friedrich List“

DISKUSSIONSBEITRÄGE AUS DEM
INSTITUT FÜR WIRTSCHAFT UND VERKEHR

NR. 2/2017
STEPHAN HOCKE, CHRISTINA GAJEWSKI, MATHIAS
KASPER

A GENETIC ALGORITHM FOR VEHICLE
ROUTING PROBLEMS WITH TEMPORAL
SYNCHRONIZATION CONSTRAINTS

HERAUSGEBER: DIE PROFESSOREN DES
INSTITUTS FÜR WIRTSCHAFT UND VERKEHR
ISSN 1433-626X

In den Diskussionsbeiträgen aus dem Institut für Wirtschaft und Verkehr der TU Dresden
erscheinen in zeitlich loser Folge verkehrswirtschaftliche Arbeiten von allgemeinem Inter-
esse. Die Diskussionsbeiträge enthalten Vorträge, Auszüge aus Diplomarbeiten, interes-
sante Seminararbeiten, verkehrswirtschaftliche Thesenpapiere, Übersichtsarbeiten, eben-
so wie Beiträge, die zur Veröffentlichung in referierten Zeitschriften vorgesehen sind. Allen
Beiträgen gemeinsam ist wissenschaftliche Fundierung und wissenschaftlicher Anspruch,
jedoch je nach Zweck des jeweiligen Beitrages in unterschiedlichem Maße. Die in diesem
Diskussionsbeitrag vertretenen Standpunkte liegen ausschließlich in der Verantwortung
der Autoren und decken sich nicht zwingend mit denen der Herausgeber.

Als Herausgeber fungieren die Professoren des Instituts für Wirtschaft und Verkehr der TU
Dresden.

A Genetic Algorithm for Vehicle Routing
Problems with Temporal Synchronization

Constraints

Stephan Hocke, Christina Gajewski and Mathias Kasper

Technische Universität Dresden, Fakultät Verkehrswissenschaften “Friedrich List”,
Professur für Verkehrsbetriebslehre und Logistik, 01062 Dresden, Germany
Stephan.Hocke@tu-dresden.de, Christina.Gajewski@tu-dresden.de,

Mathias.Kasper@tu-dresden.de

Abstract

This paper presents a Genetic Algorithm for the Vehicle Routing and Scheduling
Problem with time windows and temporal synchronization constraints. That
means that as opposed to the usual procedure, in addition to the usual task
covering, some vertices must be served by more than one vehicle at the same time.
The chromosome coding used here is based on a proposed solution representation
by Mankowska et al. [19]. The Genetic Algorithm is able to solve their instance
types up to 20 vertices near to optimality. Even in greater instances with 100
vertices the solution quality of the Genetic Algorithm outperforms the Local
Search presented by Mankowska et al. [19], however with losses in runtime. In
order to get more comparable results, both solution approaches are evaluated
at the well-known benchmark instances of Bredström and Rönnqvist [6]. This
includes the presentation of a simple repair algorithm during the chromosome
crossover based on an insertion heuristic in order to achieve the hard time window
constraints of the benchmarks.

1 Motivation

The problem to create the most cost efficient routes from a depot to a set of ge-
ographically scattered customers was first mathematically described by Dantzig
and Ramser in 1959 [8]. During the last 50 years the so-called Vehicle Routing
Problem (VRP) has opened up a new research area in the operational research.
It was subject of countless scientific publications, which can be justified by its
intellectual challenge and its fundamental practical relevance in the field of trans-
portation, distribution and logistics [15]. The research in the field of VRP and
its variants is ongoing, motivated by still unsolved theoretical as well as practical
problems [10].

The Vehicle Routing Problem with synchronization constraints (VRPS) is
recently one of the most investigated extensions of the classical VRP. Synchro-
nization in the context of this paper implies that routes depend on each other

2 Stephan Hocke, Christina Gajewski, Mathias Kasper

in spatial and temporal aspects. That means that there is at least one vertex
which requires simultaneous operations of two vehicles or service operators, re-
spectively. Since cooperation between teams/workers is widely held precondition
to accomplish a task in the real world, the problem arises in various contexts.
Ioachim et al. [13] describe a weekly fleet assignment and routing problem. Be-
cause of marketing purposes uniform flights on different days have to be sched-
uled at the same time. The study by Dohn et al. [9] focuses on the scheduling
of ground handling tasks in some of Europe’s major airports. In some cases the
cooperation of several teams is required to complete one task between the arrival
and the subsequent departure of an aircraft.

Not only in the aviation industry teams must be formed, deployed, and dis-
band flexibly, Li et al. [16] tackle an efficient manpower allocation and scheduling
problem for the Port of Singapore. Another example are cable companies pro-
viding internet services, not infrequently services jobs require a combination of
different technicians whose visits must be synchronized or must fulfill precedence
constraints [24]. Salazar-Aguilar et al. [25] mentioned synchronization problems
at snow plowing operations. Since some roads have multiple lanes, the plowing
and spreading deicers operations on these roads have to be done by a synchro-
nized fleet of vehicles. Amaya et al. [1,2] study the road network marking in
Quebec, where service vehicles can be refilled at certain points, provided that a
corresponding refill vehicle was spatially and temporally synchronized. But also
the Home-Health-Care sector is a well studied application of the VRPS. Some
health care services enforce simultaneous cooperation of at least two nurses at
the home of one patient, e. g. for lifting of a disabled person. Furthermore, some
drugs must be administered a certain time before providing a meal or medications
may require monitoring at a later time of the day [19]. Another context of tem-
poral dependencies are forest operations described by Bredström and Rönnqvist
[6]. Since forwarding can only be done once the harvesting has been performed,
a coordination of both teams is mandatory.

The wide spread of VRPS increases the need for efficient solutions procedures,
however, the additional set of synchronization constraint forecloses an optimal
solution for real world problem sizes. Even heuristic approaches struggle to find
good solutions in justifiable computation time. Due to interdependencies caused
by synchronization constraints the change of one route may affect other routes
and their feasibility. This constitutes a fundamental difference to the traditional
VRP. Consequently, many established approaches and solution procedures are
not directly applicable. To the best of our knowledge, there is no Genetic Al-
gorithm (GA) adaption for the VRPS. Due to synchronization constraints, the
established chromosome decoding (splitting) process by Dynamic Programming
(DP) is excluded [7,22]. It is therefore impossible to label the auxiliary graph
completely, because decision stages (nodes), which require a simultaneous oper-
ation, cannot be evaluated. The aim of this paper is to overcome this problem.

The remainder of the paper is organized as follows. In section 2 we present
some background information about different modeling approaches of temporal
synchronization and the applied solutions methods. Section 3 provides a prob-

A GA for the VRP with Temporal Synchronization Constraints 3

lem description and defines the integer problem formulation. Subsequently, we
explain the adaption for our GA in section 4, which includes a modified permu-
tation solution representation by [19] for chromosome decoding, a corresponding
Append-Heuristic (AH) for the chromosome encoding, crossover procedure, pop-
ulation development and a repair algorithm to achieve possible hard time win-
dow constraints. The application is successfully tested on the provided problem
instances of [19]. However, these results are based on a very specific problem for-
mulation. To make the proposed procedure more comparable, the GA evaluates
the benchmark (BM) instances of Bredström and Rönnqvist [6]. The results are
presented in section 5 and some concluding remarks are given in section 6.

2 Literature Review

Due to the variedness of VRPS applications, literature offers a wide range of
solution approaches. An essential difference of these strategies lies in the mathe-
matical formulation of synchronization constraints. The use of a vehicle indepen-
dent time variable Ti determining the operation start time at vertex i is sufficient
to ensure temporal synchronization, providing an arc-variable based formulation
[9,16,17]. In doing so, there is no need for further explicit constraints linking
the scheduling variables of all involved vehicles [10]. The drawback is, that no
precedence can be expressed. Because of this, the majority of publications use a
vehicle-dependent scheduling variable Tik within an arc-variable based formula-
tion.

Regardless of the modeling these time variables, the methods of decompo-
sition - column generation and Branch-and-Price - are considered to be more
difficult. Usually, the time variable remains in the master problem in an path-
variable formulation. The dual variables of the corresponding constraints induce
linear costs on the vertices in the subproblems, which requires a non-trivial adap-
tion of the standard labeling algorithms. Ioachim et al. [13] and Bélanger et al.
[4] present an advanced labeling procedures to deal with this issue. Dohn et al.
[9] achieve a master problem which does not contain the scheduling variable Ti.
This is possible because a column within their Branch-and-Price approach intro-
duces an additional time dimension, containing every possible start time within
the schedule horizon, measured in minutes. That means, to meet a customers de-
mand for vehicles, the master problem has to obtain a vehicle-path-combination
with identical operation start times for the associated vertex of every involved
vehicle or column, respectively.

Moreover, to obtain synchronization within the master problem several au-
thors propose to branch on time windows [4,5,9,13,23]. That means, if a solution
of the relaxed master problem contains paths visiting the same vertex at different
times, two new branches are created. This is done by splitting a fractal Ti or in
the middle of two different Tik contravening the synchronization constraint. The
goal is to limit the possible operation start time more and more, until ultimately
only one possible start time remains. In many cases, it becomes necessary to
check the feasibility of all paths within the current tableau of the master prob-

4 Stephan Hocke, Christina Gajewski, Mathias Kasper

lem with regard to the new time window restrictions. However, a prerequisite
is that the time assumes as a discrete dimension, which is not a requirement of
reality. Furthermore, branching on time windows is not sufficient to guarantee
the integerity of a solution, mostly branching on the common path-variables is
used at the end [10].

Haddadene et al. [12] investigate the influence of different objectives and
formulations of the VRPS as mixed integer linear program (MILP) using IBM
Optimization Programming Language (OPL). Kergosien et al. [14] propose sev-
eral cutting techniques and a two criteria objective in a lexicographic way to
improve the exploration significantly. The first term is a cost criteria repre-
senting the accumulated distance or travel time, respectively. The second term
depicts a corrective term that helps to avoid the exploration of identical solu-
tions considering homogeneous vehicles. Bredström and Rönnqvist [6] developed
a matheuristic, which iteratively solves their MILP formulation [5], wherein the
amount of arcs contained in the graph is greatly reduced. In every iteration
only some randomly generated additional arcs and arcs used in the current best
known solution are allowed. If a better solution is obtained, it serves as the best
known solution in the next iteration.

However, the synchronization constraints are not only difficult to handle
for exact procedures. Most heuristics exploit the independence of routes, e. g.
the (intra and inter) shift and swap operators of Local Search (LS). Note that
the determination of scheduling variables and feasibility of not directly affected
routes is time intensive. Even a simple reallocation of one vertex within a route
may require the rescheduling of all other routes. To avoid this, Eveborn et al.
[11] split all vertices which require a synchronization between two vehicles into
two independent visits and fix a common starting time of those visits. They
formulate the resulting Vehicle Routing Problem with time windows (VRPTW)
as minimum matching problem. Subsequently, a repeated matching algorithm
is used to assign the vertices and vehicles or routes, respectively. The described
procedure is part of a decision support system LAPS CARE, which is currently
in operation at a number of home care providers in Sweden.

There are only few publications using established LS operators. Lim et al.
[17] apply shift, exchange and rearrange operator to explore the neighborhood
of a feasible solution. Since they collect information about the feasibility of an
arc during the graph construction, the feasibility check of these operators can be
done in constant time. Unfortunately, they do not give any information about
this procedure. Due to the fact that they not only apply their Local Search
operators on individual vertices but entire route segments, probably a related
method to Vidal et al. [33] was used, which would require a preprocessing with
the time complexity O(n2). Since Vidal et al. [33] do not consider interdepen-
dencies between routes, it may be necessary to repeat this preprocessing after
each move. In addition, Lim et al. [17] do not describe how their operators deal
with synchronization vertices. Even with a vehicle-independent scheduling vari-
able Ti, the arrival times of all participating vehicles at the associated vertex are
required regardless of whether a synchronization customer is directly affected by

A GA for the VRP with Temporal Synchronization Constraints 5

an Local Search operator or not. Since whole route segments were allocated it
would be very sophisticated by a single arc validation to ensure a consistent order
of customers to be synchronized across all routes. An example of an inconsistent
ordering is illustrated in figure 1. This problem occurs if at least two synchro-
nization vertices are operated by the same vehicles. In both corresponding routes
the associated vertices must be served in the same order.

Ri Rj

R′
j R′

i

Fig. 1. Inconsistent order of customers to be synchronized across two routes

The implementation of Append Heuristics (AH) in various procedures turned
out to be particularly promising. The concept is to represent the solution as a
permutation of vertices. Iteratively, from the first element of the permutation
to the last element, the corresponding vertex is added to the end of a specific
route or two routes, respectively, if the vertex requires a simultaneous opera-
tion. Because the inserted vertex is always the current last, rescheduling is not
required, which represents the main advantage of these procedures. All vertices,
which require synchronization, are fully processed within one iteration. That
means, that the operation start time at the associated vertex is simultaneously
determined for all involved vehicles in one step. In addition, a consistent order
of these customers across routes is guaranteed. Within the permutation, the tra-
ditional LS-operators can be used. However, the LS-operator usually requires a
reconstruction of the solution by AH. This approach is part of different heuristic
procedures involving LS [15,16,19]. Labadie et al. [15] generate a solution from
a given sequence or permutation, respectively, of all customers by a straight for-
ward algorithm. At each iteration a set of vehicles is determined which are able
to serve the associated vertex. If several vehicles can fulfill the operation without
time window violation, the vehicle with the lowest travel costs is selected. In case
of insufficient number of vehicles to serve a customer, the solution is infeasible
and is discarded. Starting from a feasible permutation Labadie et al. [15] apply
a relocate operator during an iterative Local Search. Subsequently, the detailed
solution is obtained by the AH.

Li et al. [16] propose a Simple-Append and a Block-Insertion heuristic to con-
struct a solution from a given permutation. Since their objective is to minimize
the total number of workers and new hires are allowed, these procedures always
generate a feasible solution no matter what the input sequence is. So they can
easily apply a Block-Transposition and a Block-Reverse to generate neighbors
within a Simulated Annealing approach. Mankowska et al. [19] developed a ma-
trix solution representation including all vehicle-vertex assignments in a column

6 Stephan Hocke, Christina Gajewski, Mathias Kasper

wise notation. They introduce eight different Local Search operators which can
be applied to their solution representation. At each iteration of their AH the
vertex within one column is scheduled at the end of the routes of all vehicles
that have an entry of the associated vertex in their row. Furthermore, they use
a soft constraint for the latest possible operation start time of a vertex. In doing
so, Mankowska et al. [19] obviate time consuming checks of time window com-
pliance. Moreover, this ensures that their operators produce feasible solutions
exclusively. Overall, they introduce three different LS procedure, which includes
a steepest descent search, a merged neighborhood search and an adaptive vari-
able neighborhood search. All procedures were successfully tested at real world
instances with up to 300 vertices.

A further solution approach used is constraint programming (CP). The CP
paradigm has been successful in solving hard combinatorial problems especially
in tightly constrained problems. Problems are expressed in terms of variables,
domains and constraints specifying which assignments of values in the domain
of variables are allowed. The solution procedure uses complete search techniques
such as depth-first search and branch and bound. Rousseau et al. [24] use a
Constrained-Based-Insertion to generate a initial solution, which is further im-
proved by Local Search operators and Tabu-Search. Their application was suc-
cessfully tested at Solomon [30] benchmark instances.

3 Problem formulation

Let G = (N̄ , A) be a complete directed graph, where N̄ = {o, d, 1, ..., n} is a
node set and A = {(i, j)|i 6= j, i ∈ N̄ \ {d}, j ∈ N̄ \ {o}} is the arc set. For
each arc (i, j) ∈ A the weight dij is defined by the positive distance or traveling
time, respectively. The nodes o and d represent the central depot for a fleet of
vehicles K and the nodes N = {1, ..., n} are the customers to be served. Due to
synchronization N = NR ∪ NS contains two disjunct subsets. Let NS denote
the set of all vertices which require synchronized operations of two vehicles and
let NR denote the set of all regular vertices which can be proceeded by a single
vehicle. Moreover, for each vertex i ∈ N an associated time window is defined
as [ei, li], where ei ≥ 0 and li ≥ 0 terminate the earliest and the latest possible
start time of a vehicle operation at vertex i. The duration of an operation at
vertex i ∈ N is equal to hi.

We use a preprocessing step to generate the subset Ki including all compat-
ible vehicles for a customer i ∈ N and the subset Ak including all relevant arcs
for a vehicle k ∈ K, if there is a heterogeneous fleet. In doing so, the model is
able to express required vehicle qualifications for serving a customer i ∈ N or
possible preferences between vehicles and customers. The presented core model
of VRPS (equations (1)-(7)) is an approach to unite the problem formulations
of Bredström and Rönnqvist [6] and Mankowska et al. [19]. The model contains
at least two decision variables, the binary routing variable Xijk ∈ {0, 1} and the
scheduling variable Tik ≥ 0. Furthermore, we introduce the binary Yk ∈ {0, 1}
to consider if a vehicle is used in the solution or not.

A GA for the VRP with Temporal Synchronization Constraints 7

∑
k∈Ki

∑
j|(i,j)∈Ak

Xijk =

{
1 if i ∈ NR

2 otherwise
∀i ∈ N (1)

∑
j|(o,j)∈Ak

Xojk =
∑

j|(j,d)∈Ak

Xjdk = 1 ∀k ∈ K (2)

∑
j|(o,j)∈Ak∧j∈N

Xojk ≤ Yk ∀k ∈ K (3)

∑
j|(i,j)∈Ak

Xijk −
∑

j|(j,i)∈Ak

Xjik = 0 ∀i ∈ N, k ∈ Ki (4)

Tik + dij + hi −M(1−Xijk) ≤ Tjk ∀k ∈ K, (i, j) ∈ Ak (5)

M

2−
∑

j|(j,i)∈Ak

Xjik −
∑

j|(j,i)∈Al

Xjil

 ≥ Til − Tik ∀i ∈ NS , l, k ∈ Ki (6)

−M

2−
∑

j|(j,i)∈Ak

Xjik −
∑

j|(j,i)∈Al

Xjil

 ≤ Til − Tik ∀i ∈ NS , l, k ∈ Ki (7)

Constraint (1) guarantees that every vertex i ∈ N is served according to
it’s requirements. Since some vertices require a simultaneously treatment, the
number of incoming arcs must be equal to 1 or 2, respectively. If a vehicle k ∈ K
is used in a solution, it’s origin o and destination d must be the central depot
(2). In constraint set (3) the Yk is linked to the routing variable Xijk. Hence,
Yk = 1 if a vehicle k leaves the origin o to serve a vertex i ∈ N . Equation
(4) represents the flow conservation constraint. Constraints (5) determine the
start times Tik of the operations with respect to the proceeding time hi and the
traveling time dij . It ensures that Tik of operations along the route of a vehicle k
are strictly increasing. Since a return to an already served vertex would violate
the start time of the prior operations, the constraints (5) avoid cycles, so no
further sub-tour elimination is necessary.

The equations (6) and (7) are the additional synchronization constraints.
The constraint sets enforce the equality of start times Tik and Til providing
vehicles k and l serve vertex i. If further temporal dependencies of operations like
precedence should be considered a maximum time distance δmax

i and minimum
time distance δmin

i could be added at the left hand side of the constraints (6)
and (7), respectively.

The following constraints represent two different modeling approaches of time
windows. Both differ in their handling of delays. These approaches are briefly
presented separately, since the developed GA can be applied to both. Bredström
and Rönnqvist [6] strictly forbid start times earlier than ei and later than li.
Their corresponding constraint (8) imposes that Tik = 0 in case of

∑
j|(j,i)Xjik =

0, meaning that the hard time window constraint is binding, if and only if, the
vehicle k performances the operations at vertex i directly after the operation at
vertex j.

8 Stephan Hocke, Christina Gajewski, Mathias Kasper

ei
∑

j|(i,j)∈Ak

Xijk ≤ Tik ≤ li
∑

j|(i,j)∈Ak

Xijk ∀i ∈ N, k ∈ Ki (8)

Unlike Bredström and Rönnqvist [6], Mankowska et al. [19] allow an ex-
ceedance of li, which is expressed by a tardiness Zi in constraint (9). So in case
of soft time window constraint li, there is at least one additional non-negative de-
cision variable Zi ≥ 0. Furthermore, Mankowska et al. [19] introduced Zmax ≥ 0
denoting the maximal tardiness observed in the whole solution in equation (10).
In doing so, they avoid an unbalanced distribution of tardiness Zi between cus-
tomers i ∈ N . That means, it should be ruled out that only a few customers
accumulate a large amount of tardiness at the favor of the remaining customers.

Tik ≤ li + Zi ∀i ∈ N, k ∈ Ki (9)

Zmax ≥ Zi ∀i ∈ N (10)

Note, this MILP does not contain an objective. There are a several publi-
cations with many different objectives, which mostly depend on additional side
constraints caused by their specific applications. A variety of objective can al-
ready be applied for the model presented here. An examination of some of the
most common objective criteria is done in the computational study in section 5.

4 Genetic Algorithm

Genetic Algorithms are randomized metaheuristics inspired by natural evolution.
Classical GAs maintain a population of chromosomes that encode the properties
of the corresponding individuals. The objective value of each solution represents
the fitness of the associated individual, e. g. distance or travel time. The repro-
duction process, known as crossover, is stochastically biased, since individuals
who are better adapted to their environment imply a higher probability of repro-
duction. The crossover selects two parent individuals and combines their most
promising features to create a new solution. The resulting offsprings exhibit some
characteristics of each parent. Furthermore, random mutations provide the nec-
essary diversity of the population to avoid premature convergence. According
the Darwinian principle only the fittest individuals of each generation survive.

Most of the adaptations of the classical GA to the VRP differ in terms to chro-
mosome encoding. In several publications this aspect is completely renounced
to apply various operations directly on the solution [21,28]. However, due to
the fact that these procedures cannot guarantee a consistent order of customers
to be synchronized across all routes, sophisticated repair algorithms would be
necessary to obtain feasibility in the context of VRPS [29]. An example for an
inconsistent order can be seen in figure 1.

Another recurring technique is the clustering according to the polar angle
or sweep-algorithm, respectively. In Thangiah [31,32] chromosomes encode a

A GA for the VRP with Temporal Synchronization Constraints 9

number polar angle according to the amount of available vehicles. These angles
are used to form independent clusters of customers, each served by a single
vehicle. Baker and Ayechew [3] encode an ordered list of vehicle assignment
(index of the associated vehicle), wherein the order is determined by the sorted
polar angles of the customers. Unfortunately, this encoding is foreclose, since
multiple vehicles have to operate within one cluster to obtain synchronization
or customers require more than one vehicle assignment, respectively.

The last mentioned chromosome encoding is the permutation of customers
without trip delimiter like in the context of Traveling Salesman Problems. In
the context of the Capacitated Vehicle Routing Problem Prins [22] introduced
a splitting procedure based on Dynamic Programming to ascertain the optimal
solution for each permutation. This method was successfully adapted to the
VRPTW by Cheng et al. [7] and to the VRP with simultaneous Pickup and
Delivery and Time Windows in Liu et al. [18] and Scheffler et al. [27]. Since
synchronization vertices require two assigned vehicles, the splitting by Prins [22]
is also excluded. However, an AH according to Labadie et al. [15] and Li et al.
[16] would be possible. Nevertheless, we have decided against it, as with this
decoding algorithms, even with unlimited computation time no optimality is
guaranteed. The following subsection introduces a new chromosome decoding
which overcomes all problems mentioned above.

4.1 Solution representation and chromosome encoding

The developed solution representation for the chromosome encoding is based on
a shortened matrix representation of Mankowska et al. [19]. The matrix Θr×c

is composed of c = 1, . . . , |N | columns and r = 3 rows. The top row r0 or the
horizontal header, respectively, indicates a vertex i ∈ N . The two rows r1 and r2
underneath contain the indices of the vehicles k, l ∈ Kr0 assigned to the vertex
in row r0 of the corresponding column. Depending on simultaneous treatment
requirements, each column has one or two vehicle assignments. Table 1 shows a
complete translation of a sample permutation with |N | = 7| and |K| = 3.

Table 1. Solution representation as permutation

c1 c2 c3 c4 c5 c6 c7
r0 7 2 4 3 6 5 1 Route k = 1: o− 7− 4− 6− d

Θr×c = r1 1 2 1 3 1 3 2 → AH → Route k = 2: o− 7− 2− 1− d
r2 2 - - - 3 - - Route k = 3: o− 3− 6− 5− d

Note, that this representation can be easily adapted to modified synchroniza-
tion constraints. If more vehicles are necessary for service operations on a vertex
at the same time, the matrix could be extended by the number of additional rows
needed. By using the row index of the assigned vehicles, precedence constraints
can also be described.

10 Stephan Hocke, Christina Gajewski, Mathias Kasper

A permutation of all columns (vertex-vehicle assignments) is transformed to a
feasible schedule using a Simple Append Heuristic successively. The correspond-
ing vertex i of the current column is scheduled to the route end of the assigned
vehicles. For every vertex j, the arrival time is determined as ajk = dij+hi+Tik,
where i denotes the predecessor of vertex j within route k. Given that the first
vertex is added to an empty route, we fix aik = max (ei, d0i).

As an operation can not start before the corresponding earliest possible start
ei, we set Tik = max(aik, ei) ∀i ∈ NR. In the case of synchronization require-
ments we determine Tik = Til = max(aik, ail, ei) ∀i ∈ NS . This procedure is
repeated iteratively for all columns c until the last column (vertex) is processed.
Since Θ encode a complete solution and neither duration nor waiting times are
part of the objective, optimality is guaranteed, providing unlimited computa-
tion time of the GA. Note, due to the simplification as to the computation of
the start times this procedure is still a heuristic. Our experimental studies have
shown that the ability of this proceeding to minimize route duration and waiting
time is poorly evolved. However, our approach to determine the operation start
times as early as possible does not differ from the most common heuristics in the
context of the VRPTW. This is because this method is the most promising to
obtain time window compliance. Nevertheless, it is not guaranteed in any case
that the start time of each operation can be terminated before the latest possible
start time li of the associated vertex i.

In contrast to Mankowska et al. [19], the benchmark instances of Bredström
and Rönnqvist [6] include hard time windows. Regarding the operation start
time, an additional procedure is necessary to obtain feasibility. So we check if
Tik ≤ li ∀i ∈ N . For violation issues, the concerned vertex is skipped and remains
in the set U ⊂ N of unscheduled vertices for the moment.

After the complete processing of the permutation or solution representation,
respectively, an insertion heuristic is used to assign every unscheduled vertex
u ∈ U ⊂ N to one or two (if u ∈ NS) vehicle(s). The aim is to find the best
insertion position for every u ∈ U so that the increase in the overall cost is the
lowest.

4.2 Crossover and mutation

Traditional crossover procedures can be applied to the solution representation in
form of column recombination. Fig. 2 shows an Ordered-Crossover (OX). After
selecting two random parent chromosomes P1 and P2, two randomized crossover
points ζ1 and ζ2 = ζ1 + 1

2 |N | representing column indices within P1 are selected.
The resulting successive partial column sequence is transfered into the offspring
C. For each vertex i denoted by θP1

0c |ζ1 ≤ c ≤ ζ2 within the subsequence we
set a flag to track that these vertex has been transmitted. Subsequently, P2 is
proceeded column by column starting with c = 1. If no flag for the associated
vertex j in θP2

0c has been set yet, the column θP2
•c is copied at the first vacant

position within the offspring C and the transmission flag for j is set. In case
of an already set flag, the column is skipped. To put it simple, the remaining
columns are placed in the offspring C in the same order as they appear in P2.

A GA for the VRP with Temporal Synchronization Constraints 11

P1 7 2 4 3 6 5 1
1 2 1 3 1 3 2
2 - - - 3 - -

ζ1 ζ2

P2 2 4 7 5 3 1 6
1 3 1 3 1 2 1
- - 2 - - - 3

C 2 7 4 3 6 5 1
1 1 1 3 1 3 2
- 2 - - 3 - -

ζ1 ζ2

Fig. 2. Chromosome recombination with OX

Obviously, no new assignments can be created in this way. Therefore mu-
tations are an indispensable part of our Genetic Algorithm. Since the column
entries r1 and r2 remain unchanged during the crossover our mutation operator
focuses on creating new vertex-vehicle assignments. Let i denotes the associated
vertex in θ0c and k, l ∈ Ki denote the assigned vehicles in θ1c and θ2c. Then,
the mutation operator interchange k to k′ ∈ Ki \ {l} or l to l′ ∈ Ki \ {k},
respectively. During our parameter setting we achieved the best results using a
mutation probability of 15 % considering the convergence of the GA, wherein
10 % of the vertex-vehicles assignments where changed. Because the detailed
solution can only be generated from a complete and consecutive permutation,
the mutation feasibility has not been tested. That is, any column crossover and
any possible mutation of the assignment rows can be applied. The observance of
the time windows is only checked within the AH.

4.3 Preprocessing and efficient feasibility testing

The efficient feasibility testing is already subject of several publications [20,26,33].
Nevertheless, these procedures need an adaption to the synchronization con-
straints. Before looking for the best possible insertion of the unscheduled ver-
tices, we calculate the Possible-Push-Forward Pi for every already scheduled
vertex i within route Rk = {ι = 1, ..., |Rk|}, wherein k ∈ K and ι denote the
operation index within Rk. Let ∆Rkι = lRkι−TRkι represent the difference of the
operation start time Ti and the latest possible start time li of vertex i denoted
by operation Rkι. In addition, ∇Rkι = PRkι+1

+ WRkι+1
is the sum of Possible-

Push-Forward of the successor operation Rkι+1 and the waiting time WRkι+1

of operation Rkι+1. Note, since we start from a feasible solution, synchroniza-
tion is already obtained, so Ti can be treated as vehicle independent variable.
However, during the AH for each Rkι ∈ NS the corresponding partner opera-
tion Rlι′ must be safed. The operation pair (Rkι, Rlι′) represents a single vertex
i ∈ NS . The equations (11) and (12) contain the calculation rules to evaluate
the Possible-Push-Forward which determine the maximum postponement of an
operation measured in time.

PRkι = min(∆Rkι ,∇Rkι) ∀Rkι ∈ NR (11)

PRkι = PRlι′ = min(∆Rkι ,∇Rkι ,∇Rlι′) ∀(Rkι, Rlι′) ∈ NS (12)

12 Stephan Hocke, Christina Gajewski, Mathias Kasper

Note, the Possible-Push-Forward PRkι for the last operation within a route
is equal to ∆Rkι , since the Pd of the depot d is infinity. The whole preprocessing
procedure is shown in figure 3. There are two partial routes R1 and R2 with one
operation pair (R13, R22) ∈ NS whose start time need to be synchronized. We
evaluate every route Rk step-by-step from their last operation up to its first.
Therefore, the parameter ωk denotes the index of the last evaluated operation
within Rk. In our example we start at ω1 = 4 and ω2 = 3. Furthermore we use a
recursive implementation of the algorithm. This special programming technique
breaks down the problem into smaller components. The aim of each component
is to evaluate the Possible-Push-Forward from operation Rkwk up to operation
Rkι|0 < ι ≤ ωk within Rk. If this route segment contains an operation Rkι which
requires a synchronization with operation Rlι′ , the route Rl must be evaluated
from Rlωl up to Rlι′ . So the algorithm is calling itself from an appropriated
Caller-Route to proceed a segment of a Receiver-Route.

eR11 lR11
eR12 lR12

eR13 lR13
eR14 lR14

R14

lR14 − TR14

R13

PR14

lR13 − TR13

R13R12

PR13

lR12 − TR12

R11

PR12

lR11 − TR11

dR11 R12 dR12 R13
dR13 R14

eR21 lR21
eR22 lR22

eR23 lR23
R23

TR23 − lR23

R22

PR23

TR22 − lR22

R21

PR22

TR21 − lR21

dR21 R22

dR22 R23

WR13

WR13

direction of algorithm

step 1step 3

step 2step 4

Fig. 3. Efficient preprocessing for insertion feasibility testing

In attempt to evaluate R1 from operation R14 up to R11, we encounter op-
eration R13 (step 1) which requires a synchronization with its partner operation
R22 within R2. Consequently, the algorithm is calling itself to proceed route R2

from operation R23 up to R22 (step 2). Afterwards the Possible-Push-Forward
of R13 and R22, respectively, can be determined according to equation (12). If
the algorithm detects another operation pair (Rlι, Rmι′) ∈ NS , which needs to
be synchronized, the algorithm will call itself another time and so on. Note,
since we start from a feasible solution, a consistent ordering of synchronization
vertices is guaranteed, so there is no danger of much recursion (stack overflow).

A GA for the VRP with Temporal Synchronization Constraints 13

That means, within one recursive call stack Rk can only be Caller-Route and
Receiver-Route once, except the first Caller-Route which can never be Receiver-
Route on the same call stack. After synchronization of (R13, R22) ∈ NS , the
original process continues from R13 up to R11 (step 3). Since ω2 = 2, in the final
step we evaluate R2 from operation R22 up to R21 (step 4).

Algorithm 1 Efficient preprocessing

1: initialize: ωk, P[k][ωk] . Indices and Possible-Push-Forwards
2:
3: proceedRegular=[&] (int k, Operation curOp) {
4: P[k][ωk] ← min(∆curOp,∇curOp)
5: ωk ← ωk − 1
6: }
7:
8: proceedSync=[&] (int k, int l, Operation curOp, Operation targetOp) {
9: P[k][ωk]←P[l][ωl]← min(∆curOp,∇curOp,∇targetOp)

10: ωk ← ωk − 1
11: ωl ← ωl − 1
12: }
13:
14: routeSyncAt=[&] (int indexReceiver, int indexCaller, Operation targetOp) {
15: do
16: Operation curOp←Route[indexReceiver][ωindexReceiver]
17: if curOp ∈ NR then
18: proceedRegular(indexReceiver, curOp)
19: else if curOp ∈ NS and curOp 6= targetOp then
20: routeSyncAt(curOp.k, indexReceiver, curOp)
21: else if curOp ∈ NS and curOp = targetOp then
22: proceedSync(indexCaller, indexReceiver, targetOp)

23: endif
24: while (curOp 6= targetOp)
25: }
26:
27: for k ← 1 to |K| do
28: while ωk ≥ 1 do
29: Operation curOp←Route[k][ωk];
30: if curOp ∈ NR then
31: proceedRegular(k, curOp)
32: else if curOp ∈ NS then
33: routeSyncAt(curOp.l, k, curOp)

34: endif
35: endwhile
36: endfor

A Pseudo-Code implementation of the preprocessing is illustrated in Algo-
rithm 1. There are two auxiliary function proceedRegular (lines 3-6) and pro-

14 Stephan Hocke, Christina Gajewski, Mathias Kasper

ceedSync (lines 8-12) which calculate the Possible-Push-Forward according to
equations (11) and (12), respectively, and update the operation index ωk. The
used syntax is based on the definition of lambda functions within C++. Hence,
the [&] implies that the whole scope is accessible within the function by reference,
e.g. the Possible-Push-Forward array initialized in line 1.

The third lambda expression routeSyncAt (line 14-25) represents a recursive
function which proceed a route segment within a receiverRoute. This function
is used by a callerRoute, if information about the Possible-Push-Forward of the
counterpart of targetOp within another route is required. To get to this infor-
mation, it is necessary to iterate from the current index ωk over all associated
operation within the receiverRoute till the equivalent to targetOp is reached. In
doing so, there are three possible cases that can occur. If the operation curOp is
a regular vertex (line 17) the Possible-Push-Forward could easily be determined
by calling proceedRegular. In the second case (line 19), curOp represents a vertex
different from targetOp which requires a synchronization. Consequently, before
the receiverRoute can be further processed, the synchronization between the
receiverRoute and another route must be taken into account. So, the function
routeSyncAt is called recursively. In the third case (line 21), curOp is equivalent
to targetOp, that is to say both operation correspond to the same vertex served
in different routes. If so, the Possible-Push-Forward can be calculated according
to equation (12) by calling the auxiliary function proceedSync. In addition, the
termination criterion of the function is reached.

Finally, the nested loops in lines 27-36 describe the whole algorithm used
in this paper for a preprocessing determining the Possible-Push-Forward. The
total preprocessing has a time complexity of O(|N | − |U | + |K|). Accordingly,
time complexity for the evaluation of the feasibility of an insertion is reduced
to O(1). While inserting an unscheduled vertex u ∈ U , we maintain a queue
which contains all directly and indirectly affected routes. All routes within the
queue require a new preprocessing, before the next unscheduled vertex can be
inserted. As soon as a permissible position for a vertex cannot be determined,
the chromosome repairing fails. In this case, the solution has to be discarded.

4.4 Population development

We halve the population S for an efficient implementation of the GA. One half
SG = {1, . . . , |S|/2} includes the fittest individuals that have been identified so
far, in descending order by their fitness. The other half SB = {1+ |S|/2, . . . , |S|}
contains random solutions created by the GA so far with lower fitness than
the individuals s ∈ SG with the lowest fitness within SG (SG|S|/2). For every
crossover, we take a random element from each set. The resulting offspring s∗ is
mutated with a probability of 15 %. By assuming that the AH and the insertion
heuristics are successful, we first check, if this fitness of s∗ is better than the
fitness of SG|S|/2. If s∗ � SG|S|/2 and s∗ /∈ SG we move SG|S|/2 at a random
position within SB, then s∗ is sorted from behind into SG. If s∗ ≺ SG|S|/2 and
s∗ /∈ SB the offspring s∗ replaces a random element s ∈ SB depending on the

A GA for the VRP with Temporal Synchronization Constraints 15

fitness of s∗ versus the average fitness of SB and a random factor. In both cases
s∗ is discarded, if s∗ ∈ SG or s∗ ∈ SB, respectively.

One drawback of the proposed solution representation Θr×c in section 4.1 is
its redundancy. There are many different matrices encoding the same solution.
Therefore we used the corresponding tour string with delimiter, which could be
easily maintained within the AH. In case of a homogeneous fleet, this approach
cannot ensure a disjunct population, however, it is still useful to avoid a too fast
convergence of the GA.

Algorithm 2 Genetic Algorithm

1: initialize: S from random permutations sorted by fitness
2: initialize: SG← {S1, ..., S|S|/2}
3: initialize: SB ← {S|S|/2+1, ..., S|S|}
4:
5: while terminated = false do
6: Chromosome Θ∗ ←crossover(P1 ∈ SG, P2 ∈ SB)
7: mutate(Θ∗, 0.15)
8: Solution s∗ ←appendHeuristic(Θ∗)
9: if s∗ isFeasible then

10: improveByLS(s∗)
11: if s∗ � SG|S|/2 and s∗ /∈ SG then
12: insertIntoSG(s∗)
13: else if s∗ ≺ SG|S|/2 and s∗ /∈ SB then
14: insertIntoSB(s∗)
15: else
16: discard(s∗)

17: endif
18: else
19: discard(s∗)

20: endif
21: update(terminated)

22: endwhile

The whole sequence of events of the GA is displayed in Algorithm 2. At first
the population sets SG and SB were initialized. Since we use the steady state
approach for our GA, a more differentiated consideration of individual itera-
tions is superfluous. The procedure is carried out until a termination criterion
has been reached (line 5), e.g. a certain amount of solutions has been generated
or a maximum time limit has been exceeded. In each iteration, one individual is
selected from both population halves, representing the parents for the crossover
described in section 2 (line 6). Subsequently, the chromosome encoding Θ∗ mu-
tates with a probability of 15 % (line 7). A detailed solution s∗ determining all
decision variables is created by the AH (line 8). Unless there are any unsched-
uled vertices U = ∅, the solution s∗ is feasible. If so, s∗ is insertedspe into the

16 Stephan Hocke, Christina Gajewski, Mathias Kasper

existing population as described above (lines 11 - 17). Finally, the termination
criteria will be updated (line 21).

Since the LS procedures developed by Mankowska et al. [19] can also be
applied to the solution representation introduced in section 4.1, a hybrid imple-
mentation of the GA is also possible. If s∗ is a permissible solution, LS can be
used to improve the fitness before attempting to add s∗ to the existing popu-
lation S (line 10). However, the disadvantage of the approach is that solutions
can still be discarded after a time-consuming improvement. In return, a multi
threaded implementation turns out to be very simple. That means, every time a
LS thread emits the signal to be finished (s∗ was discarded or inserted, respec-
tively), a connected slot of GA thread creates a new offspring s∗ representing
the initial solution for the restart of the LS thread.

5 Computational Results

We divide the computation results into two parts. In the main study we intro-
duce the multi critical objectives applied to the described benchmark instances
of Mankowska et al. [19] and Bredström and Rönnqvist [5]. We use GAMS
24.8/Cplex 12 running on a server with 24 threads Intel Xeon 3.47 GHz and
192 GB RAM to calculate integer solutions F or at least lower bounds LB. We
limit the computing time to 10 h per instance. In doing so, we compare the
determined Cplex results with the proposed GA and the proposed LS proce-
dures of Mankowska et al. [19]. That means a Steepest Descent Search (SDS),
a Merged Neighborhood Search (MN) and a Adaptive Variable Neighborhood
Search (AVN). In addition, we implement a hybrid GA (hGA) which is composed
of the procedures mentioned before. We tested the heuristics on a Intel Quad
Core i5-4670 3.4 GHz and 12 GB RAM, furthermore the runtime is restricted
to one hour. The settings are summarized in table 2.

Table 2. Computation setting

procedure processor threads RAM runtime

Cplex Intel Xeon 3.47 GHz 24 192 GB 10 h

Heuristics Intel i5-4670 3.4 GHz 4 12 GB 1 h

Subsequently, we evaluate the suitability of the heuristic providing differ-
ent weights of the objective terms within a sensitivity analysis. In doing so,
we discover a general weakness to minimize route duration of many heuristic
procedures in the VRPTW context.

5.1 Main study

At first, we solve the Home-Health-Care Routing and Scheduling Problem for-
mulated by Mankowska et al. [19]. Their modeling of a VRPS includes several

A GA for the VRP with Temporal Synchronization Constraints 17

more side constraints like qualifications of vehicles which are simplified within
our modeling by using vehicle and customer subsets (see section 3). However,
we lose the opportunity to serve a vertex twice by one vehicle. But this is only
relevant if precedence is considered. Furthermore they allow time window viola-
tions. The tardiness of a vertex operation Zi, defined in equation (9), plus the
highest observed tardiness within the whole solution Zmax, defined in equation
(10), are included in the objective function (13).

minF → γ1
∑

i∈N∪{o}

∑
k∈Ki

∑
j|(i,j)∈Ak

dijXijk + γ2
∑
i∈N

Zi + γ3Zmax (13)

We generated 10 instances per type (A)-(D) of the described benchmarks of
Mankowska et al. [19], wherein type (A) represents 10, type (B) 25, (C) 50 and
(D) 100 vertices. For the main study we applied an equal weight of the objective
terms γ1 = γ2 = γ3 = 1/3. The computational results can be seen in table 3. Bold
column entries represent the best obtained objective value. For every instance
the LS procedures solved the same 200 random initial solutions, provided there
is sufficient time available. The given entries FSDS , FMN and FAVN in table
3 correspond to the objective value of the best solution found, cpu denotes the
required computational time. The same 200 random initial solutions are used as
initial population of the GA and the hGA.

All algorithms find the optimal solution for type (A) within a few seconds.
The GA produces on average slightly better solution quality than the LS pro-
cedures in (B) and (C). However, LS procedures require less computing time.
For every instance type the developed hGA obtains the best observed objective
value. In each instance, for which an optimum could be determined by Cplex,
the corresponding solution was also determined by the hGA. Even in type (D)
the hGA proved to be the most suitable, although the hGA procedure is only
able to complete a few iterations. Nevertheless, the paradigm of evolutionary
development provides more promising solutions than using LS from random ini-
tial solutions. However, using the hGA is no longer applicable for even larger
problem instances with limited run time to one hour.

The solution quality of the stand-alone GA is comparable to the best solution
found for all LS procedures. From a problem size of 100 vertices, the approxima-
tion time of the GA increases significantly. Nevertheless, it is noticeable that the
GA, in contrast to the LS, is not polynomial. The procedure can also be carried
out completely for the largest examined instances. The is not the case with any
other method tested in this publication. Thus, not all 200 initial solution can be
processed by the LS and the hGA shows no signs of an approximation at the
time of termination.

In the second test, we solve 10 instances per type (A’), (B’) and (C’) ac-
cording to Bredström and Rönnqvist [6], which includes 25, 50 and 80 vertices,
respectively. The length of time windows for all vertices i are fixed to 120 minutes
and represent hard constraints according to constraint (8).

In contrast to Bredström and Rönnqvist [6] the objective (15) used here does
not contain terms for preferences and work balance of the vehicles. However, in
order to achieve the goal of a balanced vehicle utilization, we tried to add the

18 Stephan Hocke, Christina Gajewski, Mathias Kasper

Table 3. Mankowska et al. [19] benchmarks and objective (13)

F LB cpu FGA cpu FhGA cpu FSDS cpu FMN cpu FAVN cpu
A.0 224.4 224.4 <1 224.4 10 224.4 36 224.4 <1 224.4 <1 224.4 <1
A.1 196.9 196.9 <1 196.9 9 196.9 35 196.9 <1 196.9 <1 196.9 <1
A.2 227.9 227.9 <1 227.9 11 227.9 32 227.9 <1 227.9 <1 227.9 <1
A.3 286.9 286.9 <1 286.9 11 286.9 39 286.9 <1 286.9 <1 286.9 <1
A.4 189.1 189.1 <1 189.1 9 189.1 22 189.1 <1 189.1 <1 189.1 <1
A.5 156.0 156.0 <1 156.0 12 156.0 28 156.0 <1 156.0 <1 156.0 <1
A.6 224.0 224.0 <1 224.0 3 224.0 29 224.0 <1 224.0 <1 224.0 <1
A.7 270.6 270.6 <1 270.6 11 270.6 15 270.6 <1 270.6 <1 270.6 <1
A.8 263.7 263.7 <1 263.7 9 263.7 18 263.7 <1 263.7 <1 263.7 <1
A.9 239.2 239.2 <1 239.2 8 239.2 24 239.2 <1 239.2 <1 239.2 <1
B.0 564.1 564.1 6626 565.1 59 564.1 285 569.9 19 569.1 21 567.7 16
B.1 326.4 326.4 750 326.4 17 326.4 126 344.5 21 338.3 20 348.9 17
B.2 421.2 421.2 119 443.7 57 421.2 771 444.4 23 428.1 24 425.7 18
B.3 482.1 482.1 104 485.9 40 482.1 242 510.4 24 489.0 25 515,8 18
B.4 432.7 432.7 12361 432.7 53 432.7 312 449.7 18 445.2 21 450.9 16
B.5 428.9 428.9 423 431.3 97 428.9 160 438.7 22 437.8 25 451.9 18
B.6 336.3 336.3 3184 341.2 47 336.3 138 340.5 25 347.3 29 345.8 19
B.7 459.9 459.9 7777 459.9 70 459.9 234 474.1 22 461.9 23 472.2 17
B.8 328.2 328.2 1040 331.8 87 328.2 185 339.6 21 338.1 20 354.3 18
B.9 424.9 424.9 94 426.0 80 424.9 73 426.1 25 426.1 24 428.4 20
C.0 - 438.4 36000 725.2 385 628.3 1289 799.5 436 761.8 379 805.5 161
C.1 - 408.5 36000 1360.9 441 1101.0 2824 1432.1 673 1350.2 747 1426.7 456
C.2 1751.5 451.0 36000 612.8 534 579.4 1121 636.9 501 587.4 494 632.0 283
C.3 - 384.0 36000 626.4 126 549.4 769 666.8 439 668.1 431 669.1 263
C.4 - 397.0 36000 636.8 508 575.4 694 658.2 458 655.9 396 696.8 251
C.5 3099.9 443.4 36031 654.7 494 604.2 2657 705.9 391 683.5 422 669.8 259
C.6 - 415.9 36000 650.8 575 548.0 1126 608.8 229 667.5 402 651.1 159
C.7 - 397.8 36000 618.6 972 540.0 726 714.3 839 658.4 393 664.0 200
C.8 - 420.6 36000 661.6 970 574.0 1492 683.5 297 662.2 435 677.6 289
C.9 - 435.2 36000 691.3 467 648.1 1709 796.7 292 784.1 413 772.7 471
D.0 - 496.7 36022 1051.1 2595 973.2 3912 1145.5 3607 1089.0 3660 1174.2 3608
D.1 - 480.2 36016 1079.7 591 968.2 3760 1256.4 3618 1161.9 3663 1237.7 3606
D.2 - 489.6 36076 1126.8 2262 993.3 3645 1170.1 3605 1022.6 3606 1198.9 3602
D.3 - 567.6 36049 1235.2 521 1078.0 3849 1287.7 3642 1235.7 3627 1288.9 3606
D.4 - 510.2 36019 1127.5 1815 1079.1 4033 1361.6 3613 1175.2 3656 1289.9 3626
D.5 - 517.1 36020 1135.6 1849 974.1 3864 1165.8 3657 1094.2 3666 1135.8 3614
D.6 - 447.8 36046 1062.7 1797 927.8 3666 1215.4 3619 1061.5 3622 1176.7 3622
D.7 - 464.8 36017 1066.7 849 938.3 3965 1221.1 3667 1026.0 3626 1088.9 3615
D.8 - 483.2 36020 1028.0 1480 929.2 3698 1050.4 3631 1044.2 3622 1029.4 3610
D.9 - 494.9 36111 1071.7 2779 922.3 3656 1181.8 3614 1061.7 3637 1181.8 3628

term of route duration into the objective. Like mentioned before, the solution
quality of all heuristics is weak when juxtaposed with the objective value. Since
the determination of the operation start times Tik focuses on time windows com-
pliance during the AH, the ability to reduce the route duration and waiting time
is poorly developed (see section 4.1). Another approach to decrease waiting time
and increase utilization is to minimize the fixed costs of used vehicles within the
solution. For a better comparability of the implemented procedure, we decided
to limit our objective (15) to minimize the accumulated distance or travel time,
respectively. That means λ1 = 1 and λ2 = λ3 = 0 within the main study. Other
lambda settings are part of the sensitivity analysis (see section 5.2).

A GA for the VRP with Temporal Synchronization Constraints 19

Lk = Tdk − Tok ∀k ∈ K (14)

minF ′ → λ1

∑
i∈N∪{o}

∑
k∈Ki

∑
j|(i,j)∈Ak

dijXijk + λ2

∑
k∈K

Lk + λ3 · f ·
∑
k∈K

Yk (15)

The computational results are summarized in Table 4. Again, bold entries
represent the best obtained objective value. As in the first test, 200 initial so-
lutions are created from random permutations, which form the starting points
for all heuristics. An interesting observation is that the hard time window con-
straints have different effects on the runtime of the procedures. Since a cheapest
insertion heuristic is included within the chromosome crossover to obtain time
window compliance, the evolutionary methods approximate more quickly. In
contrast to the before mentioned methods, the LS procedures lead to increasing
runtimes. Due to the fact that the solution space is significantly reduced by hard
time windows, even Cplex is able to compute integer solutions for instance with
80 vertices. However, all these effects cannot be attributed solely to hard time
windows, since the benchmark instances differ slightly in many points.

Table 4. Bredström and Rönnqvist [5] benchmarks and objective (15)

F ′ LB cpu F ′GA cpu F ′hGA cpu F ′SDS cpu F ′MN cpu F ′AVN cpu
A’.0 666.4 681.2 <1 666.4 27 666.4 174 698.0 9 689.3 10 699.5 5
A’.1 659.6 659.6 <1 659.6 7 659.6 183 663.7 12 663.7 12 663.7 6
A’.2 704.0 704.0 <1 704.0 10 704.0 190 711.4 11 711.4 11 704.0 5
A’.3 672.0 672.0 <1 672.0 13 672.0 265 683.0 9 683.0 10 683.0 9
A’.4 622.5 622.5 <1 622.5 14 622.5 178 662.2 12 667.2 14 672.5 6
A’.5 757.4 757.4 <1 757.4 11 757.4 188 760.3 9 760.3 9 760.3 4
A’.6 768.9 768.9 <1 768.9 16 768.9 255 796.8 8 814.4 8 839.8 5
A’.7 724.3 724.3 <1 724.3 15 724.3 158 766.3 8 766.3 9 744.4 4
A’.8 618.5 618.5 <1 618.5 16 618.5 233 662.3 8 662.3 8 662.3 5
A’.9 618.5 618.5 <1 618.5 12 618.5 192 640.2 11 635.4 11 647.2 6
B’.0 1141.3 1026.2 36025 1171.8 128 1163.1 2230 1299.0 664 1308.8 907 1401.9 269
B’.1 1212.2 945.0 36000 1175.4 170 1169.9 3602 1330.1 878 1299.8 1100 1350.6 337
B’.2 1367.6 1227.2 36033 1390.4 201 1380.4 3608 1474.3 772 1497.9 1077 1523.7 315
B’.3 1258.9 1088.7 36000 1240.8 96 1210.8 3615 1344.5 790 1334.9 1084 1388.5 294
B’.4 1158.5 1119.3 36027 1158.5 199 1176.3 3606 1279.5 799 1268.6 900 1321.4 241
B’.5 1276.8 1157.5 36000 1287.7 164 1304.0 3603 1710.6 746 1423.2 1020 1467.7 281
B’.6 1285.3 1109.5 36000 1283.9 112 1276.3 3615 1411.8 768 1383.6 1084 1433.3 291
B’.7 1144.4 1047.1 36032 1158.7 129 1144.4 3602 1373.9 754 1308.4 1067 1314.7 303
B’.8 1105.9 1024.9 36021 1129.5 118 1105.9 3209 1684.9 720 1238.7 914 1300.7 281
B’.9 1112.6 804.2 36000 1059.9 170 1043.1 3601 1168.1 825 1141.3 1121 1215.9 344
C’.0 - 1207.4 36210 1632.9 427 2358.9 3663 1970.9 3681 2077.7 3921 2186.7 981
C’.1 - 1280.7 36026 1616.9 768 1795.2 3804 1924.0 3678 1978.7 3616 2137.4 824
C’.2 1727.5 1245.9 36107 1742.9 542 1903.6 3858 2040.1 3499 2032.7 3612 2284.8 955
C’.3 - 1086.6 36154 1681.6 687 1775.3 3677 1936.5 3607 1849.7 3617 1899.8 1084
C’.4 - 1145.5 36092 1653.3 705 1745.6 3822 1899.5 3600 1830.0 3605 1856.6 998
C’.5 - 1172.7 36003 1657.3 1079 1867.3 3782 1967.8 3488 1910.0 3617 2118.0 1072
C’.6 1959.6 1277.6 36055 1830.6 732 1942.7 3630 2042.3 3553 2058.7 3610 2030.1 950
C’.7 - 1169.4 36051 1609.2 617 1737.5 3811 1875.7 3376 1931.3 3613 1951.8 1037
C’.8 1848.8 1260.6 36003 1780.2 686 1953.1 3666 1934.4 3441 2006.5 3603 2225.4 1018
C’.9 - 1246.8 36045 1635.7 628 1829.7 3652 1981.8 3607 1890.8 3601 2038.1 1061

Moreover, the GA and hGA find the best objective values for all instances
of (A’) and (B’). However, the results of the Genetic-Algorithm FGA are very

20 Stephan Hocke, Christina Gajewski, Mathias Kasper

close to the entries of FhGA. On the contrary the results show that Local Search
procedures of Mankowska et al. [19] are less suitable for hard time windows. In
instance type (C’) the GA dominates all other procedures in terms of solution
quality and runtime. For a problem size of 100 vertices, the GA proves to be the
dominant method. The GA delivers both the highest solution quality and has
the shortest computing time.

5.2 Sensitivity analysis

We investigate the influence of different weights of the objective terms on solution
quality. In case of Mankowska et al. [19] benchmarks, the instances of type (B)
are solved again for the sole minimization of the individual terms in equation
(13). That means, minimizing the overall distance with γ1 = 1 (γ2 = γ3 = 0),
the accumulated tardiness with γ2 = 1 (γ1 = γ3 = 0) or maximal observed
tardiness with γ3 = 1 (γ1 = γ2 = 0), respectively. The results are shown in table
5. Again F denotes the best obtained objective value of the associated solution
procedure, LB is the lower bound determined by Cplex and cpu represents the
computational time.

Table 5 shows that minimizing the distance term is the most difficult cri-
terion to optimize for commercial solvers. As soon as time window violations
are no longer penalized, the amount of nodes within the branch-and-bound tree
significantly increases. The runtimes of the heuristic procedures remain almost
unchanged in the first scenario compared to the main study. However, apart from
the hGA, the solution quality of all heuristics decrease slightly when the distance
is the only objective criterion. Once again, the hGA proves to be the best heuris-
tic method for a VRPS with soft time window constraint for the latest possible
start, providing enough available computing time.The standalone GA proves to
be inferior to local search methods by Mankowska et al. [19]. Both, the overall
tardiness and the maximum observed tardiness are considered to be relatively
easy to minimize. Each instance is solved to an optimum by all procedures in a
short amount of time.

As one can see from the results in Table 5, the aim to obtain time win-
dow compliance not matter what the price is, requires a much lower computa-
tional effort. This is because we reduced the size of the coordinate system of
the Mankowska et al. [19] benchmarks until all patients or vertices, respectively,
can be operated within one day. For a balance, we reduce the size of the time
windows to 90 minutes. As it can be seen, the instances are now actually on the
verge of admissibility even for hard time window constraints.

We proceed in the same way with the benchmark instances of type (A’)
according to Bredström and Rönnqvist [5]. Since the minimization of the distance
was already part of the main study, the sensitivity analysis is limited to the
minimization of the route duration λ2 = 1 (λ1 = λ3 = 0) or vehicle fixed costs
λ3 = 1 (λ1 = λ2 = 0). The numerical results are presented in table 6.

Table 6 gives some interesting observations. As already mentioned, the opti-
mization potential of the heuristics is limited by the simplified determination of
the operation start time. But also on state-of-art solver, the consideration of tour

A GA for the VRP with Temporal Synchronization Constraints 21

Table 5. Sensitivity analysis Mankowska et al. [19] and objective (13)

Type F LB cpu FGA cpu FhGA cpu FSDS cpu FMN cpu FAVN cpu
D
is
ta

n
c
e
*

B.0 877.7 877.7 4135 960.9 62 877.7 519 945.9 31 943.2 36 991.2 26
B.1 616.8 616.8 5773 655.0 40 616.8 288 708.0 34 655.0 34 691.5 27
B.2 951.1 951.1 22770 1036.7 64 951.1 394 985.7 34 965.9 38 984.9 27
B.3 995.6 995.6 9290 1029.5 199 995.6 441 1085.9 39 1044.7 41 1120.9 29
B.4 899.5 899.5 460 949.4 114 899.5 336 970.7 25 916.3 28 972.4 20
B.5 967.0 922.8 36023 1065.2 309 967.0 596 1043.5 39 1014.2 39 1029.6 29
B.6 745.3 745.3 6075 868.4 91 745.3 216 815.1 39 789.9 42 799.0 29
B.7 882.9 882.9 29600 1012.8 66 882.9 466 926.4 29 920.1 34 882.9 23
B.8 723.9 723.9 5602 767.6 219 723.9 321 758.2 39 758.1 39 795.8 27
B.9 1005.0 976.2 36001 1185.0 41 1005.0 271 1072.6 35 1068.9 36 1056.7 27

T
a
rd

in
e
ss
*
*

B.0 151.4 151.4 132 151.4 21 151.4 65 151.4 28 151.4 32 151.4 26
B.1 0.0 0.0 8 0.0 16 0.0 38 0.0 25 0.0 24 0.0 17
B.2 5.0 5.0 56 5.0 17 5.0 41 5.0 29 5.0 29 5.0 19
B.3 0.0 0.0 11 0.0 21 0.0 91 0.0 34 0.0 34 0.0 24
B.4 19.6 19.6 27 19.6 17 19.6 42 19.6 24 19.6 25 19.6 19
B.5 0.0 0.0 9 0.0 23 0.0 80 0.0 34 0.0 35 0.0 25
B.6 0.0 0.0 10 0.0 21 0.0 100 0.0 34 0.0 39 0.0 35
B.7 0.0 0.0 11 0.0 16 0.0 43 0.0 27 0.0 28 0.0 28
B.8 0.0 0.0 25 0.0 19 0.0 16 0.0 7 0.0 35 0.0 35
B.9 0.0 0.0 9 0.0 15 0.0 42 0.0 29 0.0 27 0.0 20

M
a
x
T
a
rd

in
e
ss
*
*
*

B.0 104.1 104.1 35 104.1 20 104.1 67 104.1 7 104.1 33 104.1 23
B.1 0.0 0.0 10 0.0 16 0.0 47 0.0 29 0.0 34 0.0 24
B.2 5.0 5.0 23 5.0 17 5.0 54 5.0 8 5.0 41 5.0 26
B.3 0.0 0.0 23 0.0 21 0.0 89 0.0 9 0.0 52 0.0 32
B.4 19.6 19.6 28 19.6 17 19.6 42 19.6 35 19.6 37 19.6 26
B.5 0.0 0.0 10 0.0 23 0.0 65 0.0 8 0.0 44 0.0 29
B.6 0.0 0.0 10 0.0 19 0.0 94 0.0 7 0.0 53 0.0 30
B.7 0.0 0.0 13 0.0 16 0.0 48 0.0 7 0.0 43 0.0 27
B.8 0.0 0.0 15 0.0 15 0.0 66 0.0 6 0.0 37 0.0 22
B.9 0.0 0.0 10 0.0 15 0.0 42 0.0 23 0.0 42 0.0 28

* γ1 = 1, γ2 = γ3 = 0
** γ2 = 1, γ1 = γ3 = 0
*** γ3 = 1, γ1 = γ2 = 0

duration has a significant impact. However, finding good solutions is less difficult
than testing for optimality. That means, the reduction of the relative gap is asso-
ciated with a disproportional amount of time. In comparison to the main study,
it becomes clear that minimizing the distance in a VRPS with hard time window
constraints is a comparatively easy optimization problem. Since duration is the
only objective term, all heuristics are far away from the optimum for the first
time, however, the evolutionary algorithms obtain the higher solution quality.
All mentioned heuristics are limited by the AH as construction method. For
the minimization of route duration a more sophisticated construction method or
repair algorithms are required.

Since at least two vehicles are required to proceed a synchronization vertex
and the total amount of available vehicles in A’ are 4 the problem to minimize
the vehicle counter becomes trivial. However, none of the heuristic methods has
an operator to reduce the number of vehicles. This is particularly evident in the
LS. In 50 % of the cases the Local-Search is not able to find the optimum. This
can be easily be justified because the LS procedure can only eliminate routes that

22 Stephan Hocke, Christina Gajewski, Mathias Kasper

Table 6. Sensitivity analysis Bredström and Rönnqvist [5] and objective (15)

Type F ′ LB cpu F ′GA cpu F ′hGA cpu F ′SDS cpu F ′MN cpu F ′AVN cpu
D
u
ra

ti
o
n
*

A’.0 1239.6 541.1 36001 1301.4 27 1301.4 405 1418.4 7 1399.8 8 1399.8 4
A’.1 1181.5 544.4 36003 1262.6 28 1262.6 181 1343.8 6 1343.8 6 1369.5 3
A’.2 1378.9 780.9 36005 1495.3 18 1495.3 342 1620.5 7 1620.5 8 1620.5 4
A’.3 1206.1 346.3 36030 1366.1 27 1297.3 313 1366.1 5 1390.0 7 1390.0 4
A’.4 1227.8 326.7 36021 1315.2 38 1315.2 430 1398.0 9 1398.0 9 1398.0 5
A’.5 1330.8 766.9 36039 1382.2 13 1382.2 213 1451.4 6 1445.4 7 1426.5 4
A’.6 1345.7 1209.5 36001 1445.3 36 1452.6 492 1547.6 5 1547.6 5 1644.3 4
A’.7 1262-9 690.5 36007 1315.4 12 1308.8 139 1375.9 5 1375.9 6 1375.9 3
A’.8 1101.6 548.2 36022 1224.5 14 1224.5 156 1385.9 5 1338.5 5 1421.5 3
A’.9 1105.0 450.5 36035 1155.9 18 1155.3 348 1290.0 8 1290.0 8 1290.0 4

V
e
h
ic
le

C
o
u
n
te
r*

*

A’.0 300.0 300.0 5 300.0 15 300.0 90 300.0 2 300.0 2 300.0 2
A’.1 300.0 300.0 24 300.0 10 300.0 43 400.0 2 400.0 2 400.0 2
A’.2 300.0 300.0 6 300.0 11 300.0 44 300.0 2 300.0 2 300.0 2
A’.3 300.0 300.0 21 300.0 13 300.0 90 400.0 2 400.0 2 400.0 2
A’.4 300.0 300.0 4 300.0 11 300.0 44 300.0 2 300.0 2 300.0 2
A’.5 300.0 300.0 34 300.0 14 300.0 86 400.0 2 400.0 2 400.0 2
A’.6 300.0 300.0 3 300.0 13 300.0 44 300.0 2 300.0 2 300.0 2
A’.7 300.0 300.0 7 300.0 16 300.0 91 400.0 2 400.0 2 400.0 2
A’.8 300.0 300.0 23 300.0 6 300.0 45 400.0 2 400.0 2 400.0 2
A’.9 300.0 300.0 89 300.0 13 300.0 92 300.0 2 300.0 2 300.0 2

* λ2 = 1, λ1 = λ3 = 0
** λ3 = 1, λ1 = λ2 = 0

contain only one vertex. If the initial solution does not contain such a route, the
procedures stops after the first iteration, since there is no other objective term
which can be optimized. Therefore, a minimization of the number of vehicles
is pure coincidence. In principle, the same applies to the evolutionary methods,
but due to the large population compared to the solution space in the scenario,
they were able to determine the optimal solutions.

6 Conclusion

We successfully applied the first Genetic Algorithm to the VRP with temporal
synchronization constraints using a permutation of the vertices as chromosome
decoding. The presented method has been designed for both soft and hard time
window constraints. In doing so, we introduced an efficient preprocessing for
feasibility checks to obtain hard time window constraints. To evaluate the pro-
cedure, we compare it with the Local-Search procedures by Mankowska et al.
[19]. As part of this, we also implement a hybrid metaheuristic hGA, which is a
combination of GA and LS.

The results for soft time window constraints show that GA, especially the hy-
brid design, is a promising solution approach. For all instances, hGA determines
the solution with the best objective value. These solutions always corresponded
to the optimum, providing Cplex could determine this. For the other instances,
the average savings compared to the LS is about 10 %. A disadvantage of the
hGA is that the maximum problem size is limited to 100 vertices. The solution
quality of the standalone GA can also keep up with the LS, but longer runtimes

A GA for the VRP with Temporal Synchronization Constraints 23

are necessary. In addition, it turns out that the GA approximates very slowly
for larger problem sizes (in case of soft time window constraints).

In case of hard time window constraints, the evolutionary metaheuristics
GA and hGA dominates LS procedures. Even for instances with 50 vertices the
deviation on average is not more than 5 % off the optimum. But even at 100
vertices, the solution quality of the evolutionary methods proved to be consider-
ably higher than in the LS. Since cheapest insertion heuristic is used to obtain
time window compliance if a violation occurs, the approximation of the GA is
significantly increased. It is therefore possible that the GA can solve even larger
instances within one hour, providing hard time window constraints.

Moreover, we uncovered a blind spot of heuristic procedure minimizing the
duration for the VRPS. As far as we know, there are no operators specifically
designed to minimize the duration of the tour. Even commercial solvers fail to
minimize the route duration. Although the GA and hGA achieved the highest
solution quality among the heuristics, but are far away from the optimum. Our
goal is to try to tackle this problem in future research. In doing so, we intend
to include a modification of the matheuristic by Bredström and Rönnqvist [6] in
the computational study. Based on fixed routing variables, the solver should be
able to reduce the tour duration, even if no optimality can be guaranteed.

According to the results presented, evolutionary methods appear to be quite
promising. Similar procedures to the proposed GA using a traditional TSP chro-
mosome encoding are possible. For decoding a AH introduced by Labadie et al.
[15] or Li et al. [16] can be used. But also Particle-Swarm-Optimization, which to
the best of our knowledge has not yet been applied to the VRPS, are conceivable
for both solution representations.

References

1. Alberto, Amaya, André Langevin, and Martin Trépanier: A heuristic method for
the capacitated arc routing problem with refill points and multiple loads. Journal of
the Operational Research Society, 61(7):1095–1103, 2010.

2. Amaya, Alberto, André Langevin, and Martin Trépanier: The Capacitated Arc
Routing problem with refill points. Operations Research Letters, 35(1):45 – 53,
2007, ISSN 0167-6377.

3. Baker, Barrie M. and M. A. Ayechew: A genetic algorithm for the vehicle rout-
ing problem. Computers & Operations Research, 30(5):787–800, April 2003,
ISSN 0305-0548.

4. Bélanger, Nicolas, Guy Desaulniers, François Soumis, and Jacques Desrosiers: Peri-
odic Airline Fleet Assignment with Time Windows, Spacing Constraints, and Time
Dependent Revenues. European Journal of Operational Research, 175(3):1754 –
1766, 2006.

5. Bredström, David and Mikael Rönnqvist: A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization constraints.
Discussion papers 2007/7, Department of Business and Management Science, Nor-
wegian School of Economics, 2007.

6. Bredström, David and Mikael Rönnqvist: Combined Vehicle Routing and Schedul-
ing with Temporal Precedence and Synchronization Constraints. European Journal
of Operational Research, 191(1):19–31, 2008.

24 Stephan Hocke, Christina Gajewski, Mathias Kasper

7. Cheng, Chi Bin and Keng Pin Wang: Solving a Vehicle Routing Problem with Time
Windows by a Decomposition Technique and a Genetic Algorithm. Expert Systems
with Application, 36(4):7758–7763, 2009.

8. Dantzig, Georg B. and J. H. Ramser: The Truck Dispatching Problem. Management
Science, 6(1):80–91, October 1959.

9. Dohn, Anders, Esben Kolind, and Jens Clausen: The Manpower Allocation Problem
with Time Windows and Job-Teaming Constraints: A Branch-and-Price approach.
Computers & Operations Research, 36(4):1145–1157, 2009.

10. Drexl, Michael: Synchronization in Vehicle Routing—A Survey of VRPs with Mul-
tiple Synchronization Constraints. Transportation Science, 46(3):297–316, 2012.

11. Eveborn, Patrik, Patrik Flisberg, and Mikael Rönnqvist: Laps Care—an opera-
tional system for staff planning of home care. European Journal of Operational
Research, 171(3):962 – 976, 2006.

12. Haddadene, S. R. Ait, Naciama Labadie, and Caroline Prodhon: Grasp for the
Vehicle Routing Problem with Time Windows, Synchronization and Precedence
Constraints. In 2014 IEEE 10th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pages 72–76, Oct 2014.

13. Ioachim, Irina, Jacques Desrosiers, Francois Soumis, and Nicolas Belanger: Fleet
Assignment and Routing with Schedule Synchronization Constraints. European
Journal of Operational Research, 119(1):75–90, 1999.

14. Kergosien, Yannick, Christophe Lenté, and Jean Charles Billaut: An Extended Mul-
tiple Traveling Salesman Problem. In Multidisciplinary International Conference
on Scheduling : Theory and Applications (MISTA 2009) 10-12, 2009.

15. Labadie, Nacima, Christian Prins, and Yanyan Yang: Iterated Local Search for a
Vehicle Routing Problem with Synchronization constraints. In ICORES 2014 -
Proceedings of the 3rd International Conference on Operations Research and En-
terprise Systems, pages 257–263, 2014.

16. Li, Yanzhi, Andrew Lim, and Brian Rodrigues: Manpower allocation with time
windows and job-teaming constraints. Naval Research Logistics, 52(4):302–311,
June 2005, ISSN 0894-069X.

17. Lim, Andrew, Brian Rodrigues, and L Song: Manpower allocation with time win-
dows. Journal of the Operational Research Society, 55(11):1178–1186, 2004.

18. Liu, Ran, Xiaolan Xie, Vincent Augusto, and Carlos Rodriguez: Heuristic algo-
rithms for a vehicle routing problem with simultaneous delivery and pickup and
time windows in home health care. European Journal of Operational Research,
230(3):475–486, 2013.

19. Mankowska, Dorota S., Frank Meisel, and Christian Bierwirth: The Home Health
Care Routing and Scheduling Problem with Interdependent Services. Health Care
Management Science, 17(1):15–30, 2014.

20. Masson, Renaud, Fabien Lehuédé, and Olivier Péton: Efficient Feasibility Testing
for Request Insertion in the Pickup and Delivery Problem with Transfers. Opera-
tions Research Letters, 41(3):211–215, 2013.

21. Potvin, Jean Yves and Samy Bengio: The vehicle routing problem with time win-
dows part ii: Genetic search. INFORMS Journal on Computing, 8(2):165–172,
1996.

22. Prins, Christian: A simple and effective Evolutionary Algorithm for the Vehicle
Routing Problem. Computers & Operations Research, 31(12):1985–2002, 2004.

23. Rasmussen, Matias Sevel, Tor Justesen, Anders Dohn, and Jesper Larsen: The
home care crew scheduling problem: Preference-based visit clustering and temporal
dependencies. European Journal of Operational Research, 219(3):598 – 610, 2012.

A GA for the VRP with Temporal Synchronization Constraints 25

24. Rousseau, Louis Martin, Michel Gendreau, Gilles Pesant, Cp Succ Centre-ville,
and Hc J: The Synchronized Dynamic Vehicle Dispatching Problem. INFOR Infor-
mation Systems and Operational Research, 51, December 2002.

25. Salazar-Aguilar, Angélica, André Langevin, and Gilbert Laporte: Synchronized Arc
Routing for snow plowing operations. Computers & Operations Research, 39:1432–
1440, July 2012.

26. Savelsbergh, Martin W. P.: Local Search in Routing Problems with Time Windows.
Annals of Operations Research, 4(1):285–305, 1985.

27. Scheffler, Martin, Christina Hermann, and Mathias Kasper: Splitting procedure of
genetic algorithm for column generation to solve a vehicle routing problem. In Fink,
Andreas, Armin Fügenschuh, and Martin Josef Geiger (editors): Operations Re-
search Proceedings 2016: Selected Papers of the Annual International Conference
of the German Operations Research Society (GOR), Helmut Schmidt University
Hamburg, Germany, August 30 - September 2, 2016, pages 321–328. Springer In-
ternational Publishing, 2017.

28. Schönberger, Jörn: Operational Freight Carrier Planning: Basic Concepts, Opti-
mization Models and Advanced Memetic Algorithms. GOR-Publications. Springer
Berlin Heidelberg, 2005, ISBN 9783540253181.

29. Schönberger, Jörn: Implicit Time Windows and Multi-Commodity Mixed-Fleet Ve-
hicle Routing. Diskussionsbeiträge aus dem Institut für Wirtschaft und Verkehr,
(1/2017), 2017.

30. Solomon, Marius M.: Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints. Operations Research, 35(2):254–265, April 1987,
ISSN 0030-364X.

31. Thangiah, S. R., K. E. Nygard, and P. L. Juell: Gideon: a genetic algorithm system
for vehicle routing with time windows. In [1991] Proceedings. The Seventh IEEE
Conference on Artificial Intelligence Application, volume i, pages 322–328, Feb
1991.

32. Thangiah, S.R.: Vehicle routing with time windows using genetic algorithms. Tech-
nical report, Computer Science Department, Slippery Rock University, 1993.

33. Vidal, Thibaut, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins: A
hybrid genetic algorithm with adaptive diversity management for a large class of
vehicle routing problems with time-windows. Computers & Operations Research,
40(1):475 – 489, 2013, ISSN 0305-0548.

SEIT 2000 SIND FOLGENDE DISKUSSIONSBEITRÄGE ERSCHIENEN:

1/2000 Röhl, Klaus-Heiner: Die Eignung der sächsischen Agglomerationsräume
als Innovations- und Wachstumspole für die wirtschaftliche Entwicklung
des Landes

2/2000 Röhl, Klaus-Heiner: Der Aufbau der ostdeutschen Infrastruktur und sein

Beitrag zur wirtschaftlichen Entwicklung in Sachsen

3/2000 Kummer, Sebastian; Mating, Anette; Käsbauer, Markus; Einbock,

Marcus: Franchising bei Verkehrsbetrieben

4/2000 Westphal, Jan R.: Komplexitätsmanagement in der Produktionslogistik

5/2000 Röhl, Klaus-Heiner: Saxony’s Capital Dresden – on the Way to become

Eastern Germany’s first “Innovative Milieu”?

6/2000 Schramm, Hans-Joachim: Electronic Commerce im Lebensmitteleinzel-

handel - Auswertung einer Konsumentenbefragung im Großraum
Dresden

1/2001 Schramm, Hans-Joachim; Veith, Elisabeth: Schwerlasttransport auf

deutschen Straßen, Ergebnisse einer Befragung deutscher Schwerlast-
transportunternehmen

2/2001 Schramm, Hans-Joachim; Eberl, Katharina: Privatisierung und Going

Public von staatlichen Eisenbahnunternehmen - Versuch eines
adaptiven Vergleichs zwischen Japan und Deutschland

1/2002 Kummer, Sebastian; Schmidt, Silvia: Methodik der Generierung und

Anwendung wertorientierter Performance-Kennzahlen zur Beurteilung
der Entwicklung des Unternehmenswertes von Flughafenunternehmen

2/2002 Wieland, Bernhard: Economic and Ecological Sustainability - The Identity

of Opposites?

1/2003 Freyer, Walter; Groß, Sven: Tourismus und Verkehr - Die Wechselwir-

kungen von mobilitätsrelevanten Ansprüchen von touristisch Reisenden
und Angeboten (touristischer) Transportunternehmen

2/2003 Stopka, Ulrike; Urban, Thomas: Implikationen neuer Vertriebs- und
Distributionsformen auf das Customer Relationship Management und die
Gestaltung von virtuellen Marktplätzen im BtoC-Bereich

1/2004 Hoppe, Mirko; Schramm, Hans-Joachim: Use of Interorganisational

Systems - An Empirical Analysis

2/2004 Wieland, Bernhard; Seidel, Tina; Matthes, Andreas; Schlag, Bernhard:

Transport Policy, Acceptance and the Media

1/2005 Brunow, Stephan; Hirte, Georg: Age Structure and Regional Income

Growth

2/2005 Stopka, Ulrike; Urban, Thomas: Erklärungsmodell zur Beurteilung der

betriebswirtschaftlichen Vorteilhaftigkeit des Kundenbeziehungsmana-
gements sowie Untersuchung zur Usability von Online-Angeboten im
elektronischen Retailbanking

3/2005 Urban, Thomas: Medienökonomie

4/2005 Urban, Thomas: eMerging-Media: Entwicklung der zukünftigen Kommu-

nikations- und Medienlandschaft

1/2006 Wieland, Bernhard: Special Interest Groups and 4th Best Transport

Pricing

2/2006 Ammoser, Hendrik; Hoppe, Mirko: Glossar Verkehrswesen und

Verkehrswissenschaften

1/2007 Wieland, Bernhard: Laudatio zur Verleihung der Ehrendoktorwürde an

Herrn Prof. Dr. rer. pol. habil. Gerd Aberle

2/2007 Müller, Sven; Kless, Sascha: Veränderung der leistungsabhängigen

Schwerverkehrsabgabe in Abhängigkeit der Streckenbelastung

1/2008 Vetter, Thomas; Haase, Knut: Alternative Bedienformen im ÖPNV – Ak-

zeptanzstudie im Landkreis Saalkreis

2/2008 Haase, Knut; Hoppe, Mirko: Standortplanung unter Wettbewerb –
 Teil 1: Grundlagen

3/2008 Haase, Knut; Hoppe, Mirko: Standortplanung unter Wettbewerb –
 Teil 2: Integration diskreter Wahlentscheidungen

1/2009 Günthel, Dennis; Sturm, Lars; Gärtner, Christoph: Anwendung der

Choice-Based-Conjoint-Analyse zur Prognose von Kaufentscheidungen
im ÖPNV

2/2009 Müller, Sven: A Spatial Choice Model Based on Random Utility

1/2010 Lämmer, Stefan: Stabilitätsprobleme voll-verkehrsabhängiger Lichtsig-

nal-steuerungen

2/2010 Evangelinos, Christos; Stangl, Jacqueline: Das Preissetzungsverhalten

von Fluggesellschaften auf Kurzstrecken mit Duopolcharakter

3/2010 Evangelinos, Christos; Matthes, Andreas; Lösch, Stefanie; Hofmann,

Maria: Parking Cash Out – Ein innovativer Ansatz zur betrieblichen
Effizienzsteigerung und Verkehrslenkung

1/2011 Evangelinos, Christos; Püschel, Ronny; Goldhahn Susan: Inverting the

Regulatory Rules? Optimizing Airport Regulation to Account for Com-
mercial Revenues

2/2011 Evangelinos, Christos; Obermeyer, Andy; Püschel, Ronny: Preisdispersion

und Wettbewerb im Luftverkehr – Ein theoretischer und empirischer
Überblick

1/2012 Geller, Kathleen; Evangelinos, Christos; Hesse, Claudia; Püschel, Ronny;

Obermeyer, Andy: Potentiale und Wirkungen des EuroCombi in Deutsch-
land

2/2012 Deweß, Sigrun; Klier, Michael: Verfahren zur Beschränkung von Schwer-

punktmodulplätzen am Institut für Wirtschaft und Verkehr

1/2013 Evangelinos, Christos: Infrastrukturpreise - Eine normativ-theoretische

Analyse

2/2013 Evangelinos, Christos: Interessengruppen und Preissetzung im Verkehr

1/2014 Hermann, Christina: Die kombinierte Touren- und Personaleinsatzpla-
nung von Pflegediensten – Teil 1: Literatur und Modell

2/2014 Hirte, Georg; Stephan, Andreas: Regionale Beschäftigungswirkungen von

öffentlichen Investitionen in Straßen- und Schieneninfrastruktur

1/2015 Schönberger, Jörn: Vehicle Routing with Source Selection - Integrating

Sourcing in Fleet Deployment

2/2015 Schönberger, Jörn: Scheduling of Sport League Systems with Inter-

League Constraints

 3/2015 Schönberger, Jörn: Hybrid Search and the Dial-A-Ride Problem with

Transfer Scheduling Constraints

1/2016 Hermann, Christina: Die kombinierte Touren- und Personaleinsatzpla-

nung von Pflegediensten – Teil 2: Ergebnisse

2/2016 Evangelinos, Christos; Wittkowski, Antje; Püschel, Ronny: A Note on

"Price Cap Regulation of Congested Airports"

1/2017 Schönberger, Jörn: Implicit Time Windows and Multi-Commodity Mixed-

Fleet Vehicle Routing

2/2017 Hocke, Stephan; Gajewski, Christina; Kasper, Mathias: A Genetic Algo-

rithm for Vehicle Routing Problems with Temporal Synchronization
Constraints

