

Faculty of Transport and Traffic Sciences, Institute of Transport and Economics, Chair of Transport Services and Logistics

How To Setup Routes in B-u-S-Sim ?

b-u-s-sim.de // Prof. Dr. Jörn Schönberger

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Agenda

Routes in B-u-S-Sim What is a Route? What is Needed to Define a Route in B-u-S-Sim ? The **BUSSIM_LINE**-Object Required C++ - Code Extensions / Modifications

Rotations - Sending a Vehicle Along a Route Specification of a Vehicle Construction of a Vehicle Rotation Scheduling the Start of a Vehicle Rotation

Incorporating a Yard in Route Specification Modeling the Depot with **BUSSIM_POINT**- & **BUSSIM_ARC**-Instances Deployment- & Parking-Routes

▲日▼▲□▼▲目▼▲目▼ 回 ろくで

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger,

What is a Route?

Figure: Example graph

- It starts at a node *i*START and terminates at a node *i*DEST
- Both nodes are *BUSSIM_POINT* instances and must be of the type switch or trackpos!
- In B-u-S-Sim , we represent a route as a finite sequence of adjacent BUSSIM_ARC instances
- Preparation: to have at least one required terminal or start node in each *BUSSIM_STOP*-instance
 - assign node 0 to the **BUSSIM STOP**-instance with ID=0
 - assign nodes 4 & 5 the *BUSSIM_STOP*-instance with ID=2

What is Needed to Define a Route in B-u-S-Sim ?

- One route represents a one-directional trip from A to B
 - can be used to represent circle routes
 - modeling a complete round trip with a second route going from B to A
 - The backward route (B \rightarrow A) may differ from a pure reversal of the forward route (A \rightarrow B)
- Properties that define a route
 - a unique identification number
 - a key value that allows to group several routes (e.g. Linie 13 route from Prohlis to Kaditz with Linie 13 route from Kaditz to Prohlis)
 - A line name (verbal description, e.g. "Linie 13")
 - A color for displaying the route in the simulation window (given in RGB color scheme)
- A sequence of **BUSSIM_ARC** instances defining the travel path

Routes in the Example Infrastructure

- Route 0: from stop 0 to stop 2 (platform 4) (0;1), (1;2), (2;3), (3;4), (4;5) ⇒ arc sequence 0, 1, 2, 3, 5
- Route 1: from stop 2 (platform 4) to stop 0 (6;7), (7;8), (8;0) ⇒ arc sequence 7, 8, 9
- Route 2: from stop 0 to stop 2 (platform 5) (0;1), (1;2), (2;3), (3;5), (5;5) ⇒ arc sequence 0, 1, 2, 4, 6

Figure: modified graph

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger, <ロト <回ト < 回ト < 回ト < 回ト :

The *BUSSIM_LINE*-Object

attribut	type	description	orange	magenta	blue
ID	int	unique key to identify a route	0	1	2
SERVICE	int	value to group several BUS -	13	13	13
		SIM_LINE instances			
RED	double	degree of red color according	1.0	1.0	0.0
		RGB-model (all values between			
		0 and 1 are allowed)			
GREEN	double	degree of green color according	0.55	0.0	0.0
		RGB-model (all values between			
		0 and 1 are allowed)			
BLUE	double	degree of blue color according	0.0	1.0	1.0
		RGB-model (all values between			
		0 and 1 are allowed)			
LineName	char[256]	string containing a short verbal	13:->2(p4)	13:->0	13:->2(p5)
		description of this instance			

Table: attributes to be set for a BUSSIM_LINE instance (with 3 examples)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Required C++ - Code Extensions / Modifications

Adjustment of the 5th parameter of the BUSSIM NETWORK - constructor in main.cpp

class BUSSIM_NETWORK NET(3,9,10,1, 3,0,0,0);

BUSSIM_LINE-instantiation

- BUSSIM_LINE::configure(int _ID, int _SERVICE, double _RED, double _GREEN, double _BLUE, const char _LINENAME[256])
- one call for each instance to be placed in BUSSIM_NETWORK::specify_lines(void)

BUSSIM LINE-route construction

- BUSSIM_LINE::append_arc(class BUSSIM_ARC _ARC)
- to be placed in BUSSIM_NETWORK::specify_lines(void)
- after the call of the BUSSIM_LINE::configure(...) instruction of an instance,

・ロト・西ト・田・・田・ ひゃぐ

Required C++ - Code-Snippets for Route Definitions

1	voi	d BUSSIM_NETWORK::specify_lines(void)
2	٤	this->LINE[0].configure(0,13,1.0,0.55,0.0,"13:->2(p4)");
4		this->LINE[0].append_arc(this->ARC[0]);
6		this->LINE[0].append_arc(this->ARC[1]); this->LINE[0].append_arc(this->ARC[2]);
8		this->LINE[0].append_arc(this->ARC[3]); this->LINE[0].append_arc(this->ARC[5]);
9		this->LINE[1].configure(1,13,1.0,0.0,1.0,"13:->0");
10 11 12		<pre>this ->LINE[1].append_arc(this ->ARC[7]); this ->LINE[1].append_arc(this ->ARC[8]); this ->LINE[1].append_arc(this ->ARC[9]);</pre>
13		this->LINE[2].configure(2,13,0.0,0.0,1.0,"13:->2(p5)");
14 15 16 17 18		<pre>this->LINE[2].append_arc(this->ARC[0]); this->LINE[2].append_arc(this->ARC[1]); this->LINE[2].append_arc(this->ARC[2]); this->LINE[2].append_arc(this->ARC[4]); this->LINE[2].append_arc(this->ARC[6]);</pre>

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Presentation in B-u-S-Sim -Simulation Window

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger,

Specification of a Vehicle

- In B-u-S-Sim vehicles can travel only along previously specified routes
- For each vehicle in the simulation it is necessary to determine in detail when and where it is during the simulation
- B-u-S-Sim uses three objects for storing the required information
 - a BUSSIM_VEHICLE-object instance stores the required vehicle properties incl. its initial position as well as the final vehicle position in the infrastructure graph
 - a BUSSIM_ROTATION-object instance exists uniquely for each stored BUSSIM_VEHICLE instance and contains the detailed travel path operated by a vehicle throughout the complete simulation
 - a BUSSIM_SCHEDULE-object instance exists uniquely for each stored BUSSIM_ROTATION instance and contains the detailed times when a BUSSIM_ROTATION-item is started
- Currently, a BUSSIM_SCHEDULE-object instance is automatically derived from a BUSSIM_ROTATION-object instance

▲日▼▲□▼▲□▼▲□▼ ● ● ● ●

The BUSSIM_VEHICLE-Object

attribute	type	description / content
ID	int	unique identification key
vehicle_category	int	determines if we have a (BUSSIM_VEHCAT_TRAM) or a bus
		(BUSSIM_VEHCAT_BUS)
velocity	double	average vehicle speed in km/h
capacity	int	max. amount of allowed passengers to be on board
ON_ARC	BUSSIM_ARC	initial arc (vehicle is position at its beginning)
parc_arc	BUSSIM_ARC	final arc (vehicle is parked at its end)

Table: attributes to be specified for a **BUSSIM_VEHICLE** instance

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BUSSIM_VEHICLE Instance Installation: C++ - Code-Modifications

Adjustment of the 6th parameter of the BUSSIM NETWORK - constructor in main.cpp

class BUSSIM_NETWORK NET(3,9,10,1,3, 1,0,0);

BUSSIM_VEHICLE-instantiation

- USING configure(int _ID, int _VEH_CAT, double _VELOCITY, int _CAPACITY, class BUSSIM_ARC _ON_ARC, class BUSSIM_ARC _PARK_ARC, class BUSSIM_NETWORK *_NET)
- to be placed in BUSSIM_NETWORK::specify_vehicles(void)

Example: places a tram vehicle with ID=0 at the beginning of the arc with ID=7 and the parking arc has the ID 5 (150 passengers, and average speed 60km/h)

```
void BUSSIM_NETWORK::specify_vehicles(void)
{
    this->VEHICLE[0].configure(0,BUSSIM_VEHCAT_TRAM,60,150,this->ARC[7],this->ARC[5],this);
}
```


A Vehicle Rotation as a Sequence of BUSSIM_ROUTE Instances

Figure: a vehicle rotation with 4 duties: rotation = $(i_1; i_2; i_3; i_4)$

- A rotation determines the travel path of a vehicle during the simulation
- Defined as a sequence of **BUSSIM_ROUTE** instances with adjacent start and end nodes
- The route in the *i*th position of a rotation is called *i*th duty of this vehicle
- IMPORTANT: the first arc in the 1st duty must be the initial arc, the final arc in the last duty in a rotation must coincide with the parking arc
 ロ > < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rotation Specification - Source Code Extensions (Example 1)

- Initially, the vehicle (•) is placed at the beginning of arc with ID=7
- Example 1: The vehicle should travel one round trip through node 4 \Rightarrow rotation = (1;0)

Rotation Coding in BUSSIM_NETWORK::specify_rotations(void)

```
1 void BUSSIM_NETWORK::specify_rotations(void)
2 {
3     this->append_duty_to_vehicle_rotation(0,1);
4     this->append_duty_to_vehicle_rotation(0,0);
5 }
```

Figure: modified graph

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger, ・ロト ・四ト ・ヨト ・ヨト

= nar

Rotation Specification - Source Code Extensions (Example 2)

- Initially, the vehicle (•) is placed at the beginning of arc with ID=7
- Example 2: The vehicle should travel a first round trip through node 4 followed by a second round trip through node 5 and a third round trip through node 4 ⇒ rotation = (1;0;1;2;1;0)

Rotation Coding in BUSSIM_NETWORK::specify_rotations(void)

```
1 void BUSSIM_NETWORK::specify_rotations(void)
2 {
3     this->append_duty_to_vehicle_rotation(0,1);
4     this->append_duty_to_vehicle_rotation(0,0);
5     this->append_duty_to_vehicle_rotation(0,1);
6     this->append_duty_to_vehicle_rotation(0,2);
7     this->append_duty_to_vehicle_rotation(0,1);
8     this->append_duty_to_vehicle_rotation(0,0);
9 }
```

Figure: modified graph

人口 医水理 医水理 医水理 医

Scheduling the Start of a Vehicle Rotation

- General scheduling rules in B-u-S-Sim
 - every vehicle rotation requires the specification of the execution starting time
 - at least one vehicle's rotation requires the starting time 0
- use the method BUSSIM_VEHICLE::set_activation_time(double _activation_time) to set the
 rotation starting time

Specification of rotation activation time in BUSSIM_NETWORK::specify_vehicle_activation_times(void)

1 void BUSSIM_NETWORK::specify_vehicle_activation_times(void)
2 {
3 // set the vehicle activation times
4 this->VEHICLE[0].set_activation_time(0);
5 }

▲日▼▲□▼▲□▼▲□▼ ● ● ● ●

Incorporating a Yard in Route Specification - Preparations

- Define at least one entry node (A) and at least one exit node (B) of the yard (both are BUSSIM_POINT instances of type regular)
- Model the yard's infrastructure using *BUSSIM_POINT* instances as well as *BUSSIM_ARC* instances
- Add an additional *BUSSIM_STOP* instance (3)
- Assign all BUSSIM_POINT instances (A-G) as well as BUSSIM_ARC instances (10-18) to this BUSSIM_STOP instance

- * ロ * * 個 * * 目 * * 目 * の < @

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger,

Slide 17 of 19

Incorporating a Yard in Route Specification - Deployment & Parking

- Situation
 - vehicle ν_{0} waits at the beginning of arc 17 for its deployment
 - it is planned to serve route (0;1;2;3;5)
 - after this service it has to park at the end of arc 10 in the yard
- Routes to be specified
 - the regular route (0;1;2;3;5)
 - the deployment route (22;20;9) from the yard's exit
 (A) to the beginning of the first regular route
 - the parking route (7;8;21) from the last regular route end to the yard's entry (B)
- B-u-S-Sim automatically adds
 - the first part (17;18;14) on the yard of the deployment route to the yard's exit node (A), and
 - the final part of the parking route (10) from the yard's entry node B to the parking position on the yard

(日本)(周本)(日本)(日本)(日本)

Summary

Routes in B-u-S-Sim What is a Route? What is Needed to Define a Route in B-u-S-Sim ? The **BUSSIM_LINE**-Object Required C++ - Code Extensions / Modifications

Rotations - Sending a Vehicle Along a Route Specification of a Vehicle Construction of a Vehicle Rotation Scheduling the Start of a Vehicle Rotation

Incorporating a Yard in Route Specification Modeling the Depot with **BUSSIM_POINT**- & **BUSSIM_ARC**-Instances Deployment- & Parking-Routes

▲日▼▲□▼▲目▼▲目▼ 回 ろくで

How To Setup Routes in B-u-S-Sim ? Institute of Transport and Economics, Chair of Transport Services and Logistics // Prof. Dr. Jörn Schönberger,

