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Abstract
Laser Doppler techniques are widely used for measuring both fluid flows and moving solid
surfaces. The measurement uncertainty of laser Doppler sensors is fundamentally limited by
the uncertainty of the Doppler frequency estimation. Generally, the minimum achievable
uncertainty of any unbiased estimator is given by the Cramér–Rao lower bound (CRLB).
While the CRLB is well known for laser Doppler burst signals of single tracer particles used in
flow research, no analytical expression for the CRLB has been known up to now for scattered
light signals of rough solid surfaces where speckle effects occur. Therefore, the aim of this
paper is to close this gap and to provide a simple analytical expression for the CRLB for the
Doppler frequency estimation from scattered light signals of moving rough solid surfaces for
the first time. A comparison with experimental data demonstrates the validity of the derived
analytical CRLB formula, which is also proven to be consistent with previous works. The
progress for science is that this analytical CRLB formula enables both an easy estimation of
the minimum achievable uncertainty of laser Doppler measurements at moving rough surfaces
and a direct analysis of the influences of certain system and signal parameters on the
measurement uncertainty. This reveals specific measuring features and capabilities of different
laser Doppler techniques. In addition, the CRLB is a valuable tool to evaluate the efficiency of
applied signal processing techniques.

Keywords: metrology, measurement and error theory, Cramér–Rao lower bound, laser
Doppler techniques, moving rough surfaces, speckles, frequency estimation, velocity
measurement, position and distance measurement

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Laser Doppler velocimetry (LDV) was invented in 1964 by
Yeh and Cummins [1]. Today it is a well-established technique
not only for measuring velocities of small scattering particles
in fluid flows [2, 3] but also for contactless and non-slip
measurements of feed speed and length of moving solid goods,
such as hot steel, sheet metals, wires, roofing fabric or foils
[4, 5]. Mostly, LDV sensors are set up in differential
configuration corresponding to a Mach–Zehnder
interferometer, where an interference fringe system is

generated in the intersection volume of two crossing coherent
laser beams constituting the measurement volume, see
figure 1. The scattered light signal of an object (small particle
or solid surface) passing through these interference fringes
spaced at intervals of d exhibits an amplitude modulation
with the Doppler frequency fD , which is directly related to the
transverse object velocity vx = fDd. The length of moving
solids can be obtained by integrating the velocity vx over
time.

Furthermore, advanced and extended laser Doppler
techniques were invented employing several superposed

0957-0233/11/055301+15$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0957-0233/22/5/055301
mailto:thorsten.pfister@tu-dresden.de
http://stacks.iop.org/MST/22/055301


Meas. Sci. Technol. 22 (2011) 055301 T Pfister et al

laser Doppler
velocimeter

vx

d

z

x

scattered light
signal

interference fringe system
amplitude

time

t0

Gaussian
envelope

1/fD

AA/e
2

wt

Figure 1. Working principle of a laser Doppler velocimeter for measuring the velocity vx of a small scattering particle. On the right, the
resulting scattered light signal is shown as an idealized model without noise.

but distinguishable interference fringe systems at the same
location forming multiple measuring channels [2, 3]. Thus,
not only multiple velocity components can be measured but
also further measurands can be determined concurrently and
independently, such as the axial position z of the object
while passing through the interference fringes. For this
purpose, recently, the laser Doppler distance sensor (LDDS)
was invented which enables simultaneous measurement of
both the axial position z and the transversal velocity vx

via two superposed fan-shaped interference fringe systems
[6, 7]. This allows measuring the shape as well as eccentricity,
deformations and vibrations of moving and rotating solids
in particular [7–10]. Concerning fluid flows, velocity profiles
e.g. within boundary layers can be determined instantaneously
without traversing. For this reason, the LDDS is also referred
to as laser Doppler velocity profile sensor [11–13].

In all laser Doppler techniques, the achievable measuring
accuracy is fundamentally limited by the uncertainty of the
Doppler frequency estimation σfD

. For conventional LDV, the
relative velocity uncertainty can be expressed as [3]

σvx

vx

=
√(

σfD

fD

)2

+
(σd

d

)2
. (1)

Thus, even if there is no uncertainty in the fringe spacing d, i.e.
σd = 0, which is impossible in practice because of the wave
front curvature of Gaussian laser beams, the relative velocity
uncertainty could not go below the relative uncertainty of the
Doppler frequency estimation σfD

/fD , which thus marks the
lower limit. For the LDDS, the uncertainties for velocity and
position measurements can be estimated by [6, 7]

σvx

vx

≈
√

3

2
· σfD

fD

and σz ≈
√

2

s
· σfD

fD

, (2)

where s denotes the slope of the calibration curve. Here
also, both uncertainties depend directly on the relative
uncertainty of the Doppler frequency estimation σfD

/fD .
Consequently, it is crucial to know the minimum achievable
uncertainty of the Doppler frequency estimation for judging
the potential of a certain laser Doppler technique and for
evaluating the efficiency of the signal processing techniques
used. The solution to this problem is to determine the
corresponding Cramér–Rao lower bound (CRLB), which
defines the minimum achievable uncertainty of any unbiased
estimator.

For noisy single-tone signals with constant amplitude,
the CRLB for frequency estimation is well known [2, 14].
Also for estimating the Doppler frequency fD of LDV burst
signals of single scattering particles used in flow research,
several analytical expressions for the CRLB have been derived
under certain assumptions [15–18]. However, for scattered
light signals of rough solid surfaces where disturbances due
to speckle effects occur, no analytical expression for the
minimum achievable uncertainty of the Doppler frequency
estimation has been known up to now. Therefore, the
aim of this paper is to close this gap by providing an
analytical expression for the corresponding CRLB for the
first time. Besides the benefit of allowing easy estimation of
the minimum achievable uncertainty of LDV measurements
at moving rough surfaces, this analytical expression directly
reveals the influences of certain system and signal parameters
on the attainable measurement uncertainty. Such information
is important for analyzing and optimizing the measuring
features of different laser Doppler sensors.

The paper is structured as follows. First, in section 2, an
appropriate signal model for LDV scattered light signals of
rough solid surfaces is derived including a discussion about
relevant noise sources. In section 3, the general approach for
calculating the CRLB is described, and it is shown how this
calculation can be accomplished for the specific signal model
introduced before. As a result, the CRLB for the Doppler
frequency estimation from scattered light signals of rough solid
surfaces is obtained. Afterward, in section 4, this analytical
result is compared to experimental data using different signal
processing techniques. Additionally, conclusions for the setup
and for the application of laser Doppler sensors are discussed in
section 5. Finally, the most important results are summarized
in the last section.

2. Signal model

Generally, any detected scattered light signal x[k], k ∈
{0, 1, . . . , N − 1}, sampled with the sampling rate fs can be
written as

x[k] = m[k] + n[k], (3)

where m[k] is the undisturbed signal and n[k] denotes the
superposed noise. For calculating the CRLB, first of all,
appropriate models for the undisturbed signal m[k] as well
as for the superposed noise are required. The model for the
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Figure 2. Top: segment of a measured LDV scattered light signal of a moving aluminum panel with a mean roughness index of 0.2 μm.
Bottom: corresponding high-pass-filtered signal without low-frequency part including envelope (dashed line).

undisturbed scattered light signal of a moving rough surface
is based on the signal model for a single scattering particle,
which is therefore described first.

2.1. Undisturbed signal of a single scattering particle

In the case of LDV, the undisturbed detector signal of a
single scattering particle that crosses the measurement volume
perpendicular to the interference fringes (cf figure 1) can be
described by

m̃s[k] = A e− 2f 2
D

(k/fs−t0)2

w2 [1 + γ cos(2πfD(k/fs − t0))] ,

k = 0, . . . , N0 − 1, (4)

with the amplitude A, the modulation depth 0 � γ � 1 and
the total number of samples N0. The parameter w designates
half the interference fringe number Nfringes = 2w. Thus, it
is related to the half temporal 1/e2 width of the Gaussian
signal envelope wt = w/fD and to the corresponding half
lateral width of the interference fringe system wx = w · d.
The particle arrival time t0 denotes the time when the particle
passes the center of the measurement volume (see figure 1).
There is a fixed relationship between the Doppler modulation
and the Gaussian envelope, which is physically given by the
interference fringe system. Thus, the phase of the Doppler
modulation is always the same in the middle of each burst
signal where the Gaussian amplitude is maximal. The fringe
spacing d is assumed to be constant within the measurement
volume since the effect of fringe spacing variations will not be
taken into account here. Also the object velocity vx is assumed
to be constant and accelerations are neglected accordingly.

As proven in appendix A.1, the low-frequency part of this
signal corresponding to the first summand in equation (4) has
no impact on the CRLB of the Doppler frequency estimation
provided that the superposed noise can be assumed to be signal
independent which is fulfilled here (see section 2.3). Thus,
this low-frequency part can be neglected, and the signal model
simplifies to

ms[k] = Â e− 2f 2
D

(k/fs−t0)2

w2 cos(2πfD(k/fs − t0)),

k = 0, . . . , N0 − 1, (5)

with the peak value Â = Aγ . Also in practice, the low-
frequency part of the signal is normally not used for estimating
the Doppler frequency fD , but it is removed by electrical
filters. In particular in heterodyne sensor setups with carrier
frequency, this is done in the course of electrical mixing
processes, where the signals are usually mixed down into the
baseband for further evaluation. Hence, a carrier frequency
is not explicitly considered here but can be easily included in
the model by adding it to the Doppler frequency fD inside the
cosine term of equation (4).

The four unknown parameters of the signal ms[k] can be
summarized in the vector

�as = (fD, Â, w, t0)
T . (6)

2.2. Undisturbed scattered light signal of a moving rough
solid surface

For LDV measurements on a moving rough solid surface, the
signal shape is completely different as is visible in figure 2
[7, 19]. The reason is that the scattered light beams of many
different coherently and simultaneously illuminated points on
the rough surface are superposed in the detector plane with
different amplitudes and phases resulting in constructive or
destructive interference, respectively. Due to the random
nature of rough surfaces, the resulting speckle pattern changes
stochastically when the surface moves laterally (in the
x-direction) through the illuminating interference fringes. In
particular, for a lateral displacement of half a fringe spacing
d/2, the speckle pattern changes almost completely [5]. The
detector integrates the light intensity of this speckle pattern
over the detector surface for each point in time. Due to this
integration, the scattered light signal exhibits a relatively large
offset which is varying only slightly and slowly over time
compared to the Doppler modulation (see figure 2, top). This
Doppler modulation is caused by the structured illumination
with the interference fringe system. After removing the low-
frequency part including the slowly varying offset using a
high-pass filter, the remaining Doppler signal looks like a
sequence of successive burst signals ms,i , i = 1, . . . , M ,
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Figure 3. Top: three consecutive Doppler bursts with random arrival times t0,i . Bottom: simplified model where overlaps between
consecutive bursts are neglected but their random phases are maintained via the time offsets τ0,i . The dashed lines mark the signal
envelopes. Note that only the undisturbed signal is shown for Tb/Tw = 0.9.

of single scattering particles with random amplitude Âi that
are appearing at random times t0,i (see figure 2, bottom).
These burst signals ms,i originate from dominant speckles or
scattering centers on the object surface, which are passing
the measurement volume successively. Due to the constant
object velocity vx and the fixed shape of the interference
fringe system over time, the Doppler frequency fD and the
parameter w = Nfringes/2 are equal for all individual Doppler
bursts ms,i (cf figure 2). This means that all burst signals ms,i

are of equal duration Tw = 2wt = 2w/fD . Consequently,
the following model equation results for the undisturbed and
high-pass-filtered scattered light signal of a moving rough solid
surface:

m[k] =
M∑
i=1

ms,i[k]

=
M∑
i=1

Âi e− 2f 2
D

(k/fs−t0,i )
2

w2 cos(2πfD(k/fs − t0,i )),

k = 0, . . . , N. (7)

This model does not include the low-frequency part, i.e.
the slowly varying offset of the originally detected signal (cf
figure 2, top). However, this is acceptable since this slowly
varying offset contains no information about the Doppler
frequency fD and can be neglected accordingly. In particular,
the low-frequency part of the bursts ms,i , which is included
in this offset, does not influence the CRLB for the Doppler
frequency estimation (see appendix A.1) because the noise
contained in the detected signal can be assumed to be signal
independent by approximation (see subsection 2.3).

In order to be able to calculate the CRLB analytically,
one further simplification has to be introduced to the
model represented by equation (7). The overlap between
consecutive burst signals is random and, thus, it is difficult
to model analytically. However, the average overlap at both
edges of the burst signal together amounts to only about
10–20% of the 1/e2 burst width in practice corresponding

to a relation of Tb/Tw = 0.8–0.9, where Tw = 2wt is the
constant 1/e2 burst width and Tb denotes the average time
interval between two successive bursts in the scattered light
signal. This holds in fact for scattered light signals from
objects with different surface characteristics. In addition, these
overlaps occur at the edges of the burst signals where the signal
amplitudes are much lower than in the center of the bursts (cf
figure 2). Thus it can be assumed that the amount of energy
superimposed from neighboring bursts is small compared to
the energy of the respective burst signal itself. Therefore, the
influence of the overlapping signal parts from adjacent bursts
on the Doppler frequency estimation will be relatively small.
Consequently, the overlap from neighboring burst signals can
be neglected in an initial approximation. However, the random
phase shifts between the harmonic Doppler oscillations of
successive burst signals must not be neglected. Otherwise,
all burst signals would have a fixed phase relationship, which
is not true. According to these considerations, we simplify our
model by assuming that the consecutive Doppler bursts ms,i

appear at constant time intervals Tb, whereupon Tb is defined
as the average time interval between two successive bursts in
the actual detected scattered light signal. Thereby, overlaps
between consecutive bursts ms,i are neglected. Essentially
this means that the bursts are shifted imaginarily in time to
the center of consecutive time intervals of equal width Tb as
shown in figure 3. Thus, their original arrival times t0,i are
replaced by

t̃0,i =
(

i − 1

2

)
Tb + τ0,i , i = 1, . . . ,M. (8)

The parameter τ0,i denotes a tiny random time offset that
shifts the individual bursts slightly away from the center of
the time intervals of width Tb (see figure 3). This is to
maintain the random phase of the consecutive Doppler bursts
which is uniformly distributed within the interval [−π;π ].
Consequently, subsequent bursts exhibit a random phase shift
with respect to the Doppler modulation. In contrast to the
original signal where a gradual phase transition occurred
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between successive bursts (see figure 3, top), the phase shifts
happen abruptly in the simplified model (see figure 3, bottom).
However, the effect of ending up with incoherent signal
sections is the same. As a result, the analytical model of
the undisturbed signal of equation (7) simplifies to

m[k] ≈ ms,i[k] = Âi e− 2f 2
D

(k/fs−t̃0,i )
2

w2 cos(2πfD(k/fs − t̃0,i ))

with i =
⌈

k

N0

⌉
and k = 0, . . . , (N − 1) and N = N0M

(9)

representing a chain of M equidistant Doppler bursts ms,i each
with a duration Tb = N0/fs corresponding to a length of N0

samples and with random amplitude and phase (cf figure 3).
This simplified signal model is a fundamental prerequisite
that enables calculating the CRLB analytically, and it is
used exclusively for this purpose. Neglecting the overlap of
consecutive bursts seems to be acceptable since numerically
simulated Doppler spectra using equation (9) coincide very
well with the spectra of measured scattered light signals. Also
the results presented in section 4 confirm the permissibility of
this simplification. Nevertheless, it should be investigated in
future if or how the requirement for this simplification can be
lifted.

In summary, the following assumptions and
simplifications have been made for deriving the
analytical model in equation (9) for the undisturbed
scattered light signal of a moving rough solid surface.

• The interference fringe spacing d is assumed to be constant
neglecting the effect of fringe spacing variations.

• The object is passing through the measurement volume
perpendicular to the interference fringes with constant
velocity vx (acceleration is not considered here).

• The low-frequency part of the signal without any Doppler
modulation is neglected since the noise can be assumed
to be signal independent (see subsection 2.3).

• The successive Doppler bursts ms,i exhibit equal Doppler
frequency fD and equal duration Tw = 2wt = 2w/fD

(w = constant) but random amplitude Âi and random
phase uniformly distributed within the interval [−π;π ].

• At the signal model, imaginary, the bursts are equally
spaced at time intervals Tb and the overlap between
consecutive bursts is neglected (see figure 3, bottom).

• The individual bursts are located approximately in the
center of the corresponding time intervals of length Tb

according to equation (8).

The 2M+2 unknown parameters of this signal model m[k]
are the Doppler frequency fD , the constant parameter w, the
amplitudes of the M successive Doppler bursts Â1, . . . , ÂM

and their individual arrival times t̃0,1, . . . , t̃0,M that include
implicitly the random and unknown phase shifts between the
consecutive burst signals. These unknown parameters can be
summarized in the vector

�a = (fD, Â1, . . . , ÂM,w, t̃0,1, . . . , t̃0,M)T . (10)

2.3. Noise

The measured scattered light signals always contain noise
which can be generally divided into two categories. On the
one hand, there is signal-independent noise which mainly
corresponds to thermal noise from the photodetector and
the subsequent electronics. It can be described in good
approximation by a Gaussian distribution [20]. On the other
hand, also signal-dependent shot noise is generated both
optically at the photon emission inside monochromatic laser
light sources and electrically during photodetection, which
follows a Poisson distribution. However, the offset in the
scattered light signals of moving rough solid surfaces is large
compared to the amplitude of the Doppler modulation. In
addition, this offset varies only slightly and slowly over time
as long as the object surface characteristics do not change
significantly (see figure 2, top). This is generally fulfilled
in good approximation within the finite time duration of a
short signal segment used for determining one individual
Doppler frequency breakpoint, because the object surface
moves only a short way within this finite time duration.
Furthermore, abrupt changes in the surface characteristics are
relatively unlikely to occur. Thus, the resulting shot noise
power can be assumed to be approximately constant over
time. Moreover, the large average signal amplitude (offset)
causes a large shot noise level resulting in a large mean of the
corresponding Poisson distribution. In this case, the Poisson
distribution can be approximated by a Gaussian distribution
[20]. Consequently, the noise can be regarded in total as
approximately time independent, and it can be described
collectively by a Gaussian distribution with constant variance
σ 2

n . Moreover, the consecutive samples of the scattered light
signal �x = (x[0], x[1], . . . , x[N − 1])T can be assumed
to be stochastically independent as long as the sampling
frequency fs does not exceed twice the noise bandwidth. As
a result, the following joint probability density function is
obtained:

p(�x, �a) =
N−1∏
k=0

1√
2πσ 2

n

e
− (x[k]−m[k])2

2σ2
n

=
(

1

2πσ 2
n

) N
2

e
− 1

2σ2
n

∑N−1
k=0 (x[k]−m[k])2

(11)

with N = N0M . This includes white noise assumption
and a detector bandwidth equaling the Nyquist frequency
fs/2. Considering only a single Doppler burst ms,i , i =
1, . . . , M , with sample length N0, the joint probability
density function of the corresponding signal �xi =
(xi[0], xi[1], . . . , xi[N0 − 1])T is

p(�xi, �as,i) =
(

1

2πσ 2
n

) N0
2

e
− 1

2σ2
n

∑N0−1
k=0 (xi [k]−ms,i [k])2

. (12)

3. CRLB calculation

3.1. Approach

For the general approach, first, the regularity condition

E

{
∂ ln p (�x, �a)

∂aj

}
= 0, j ∈ {1, 2, . . . , 2M + 2}, ∀�a,

(13)
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must be checked to be fulfilled. For Gaussian joint probability
density functions such as described by equations (11) and (12),
this is always true as proven in [18, 21]. Then the Fisher
information matrix I must be calculated. Its elements are
given by

Ihj = −E

{
∂2 ln p(�x, �a)

∂ah∂aj

}
, h, j ∈ {1, 2, . . . , 2M + 2}.

(14)

Finally, the CRLB is defined as the inverse of the Fisher
information I (fD). In case of the Doppler frequency
estimation, it equals the first diagonal element of the inverse
I−1 of the Fisher information matrix satisfying the condition

var(f̂D) � CRLB(f̂D) = 1

I (fD)
= [I−1]11. (15)

This means that the variance of any unbiased estimator f̂D

for the Doppler frequency fD is larger than or equal to the
CRLB. Hence, the CRLB represents the minimum achievable
uncertainty of the Doppler frequency estimation.

To facilitate the derivation of the CRLB for the Doppler
frequency estimation from scattered light signals of moving
rough solid surfaces, we are utilizing the additive nature
of the Fisher information [21]. According to equation (9),
we neglected the overlap between successive Doppler bursts
ms,i , i = 1, . . . ,M , in our signal model. In addition, the
consecutive samples of the scattered light signal �x can be
assumed to be stochastically independent (see section 2.3).
Consequently, the individual bursts ms,i are stochastically
independent too. Thus, the total Fisher information
I (fD) about the Doppler frequency fD equals the sum of
information gathered from observing these stochastically
independent bursts ms,i individually, which can be expressed
mathematically by

I (fD) =
M∑
i=1

Is,i(fD). (16)

Hence, equation (15) can be rewritten resulting in the following
relation for the CRLB:

var(f̂D) � CRLB(f̂D) = 1∑M
i=1 Is,i(fD)

. (17)

Since Is,i (fD) = 1/CRLBs,i (f̂D), the calculation of the CRLB
for the Doppler frequency estimation from the scattered light
signal of a moving rough solid surface, which is modeled
as a chain of M single Doppler bursts ms,i according to
equation (9), can be broken down to determine the respective
CRLB for these individual burst signals CRLBs,i (f̂D).

3.2. Generalized analytical expression for a single burst
signal

According to equation (17), it is necessary to derive an
analytical expression for CRLBs(f̂D) = 1/Is(fD) denoting
the CRLB for the frequency estimation from a single
burst signal modeled by equation (5) for signal-independent
Gaussian white noise.

In previous works, several analytical expressions for this
CRLB have been derived under different assumptions. After

the scattered light signal has been modeled as a harmonic
function in early works [14], Besson et al first calculated a
CRLB corresponding to the model of equation (5) also taking
into account the Gaussian signal envelope [15]. However,
the width of the Gaussian envelope was considered to be
a known parameter which is not appropriate in general (cf
appendix A.2). Later on, Shu [16] and Sobolev et al [17]
carried out similar calculations to Besson et al ’s by applying a
signal model comprising two harmonic signals with a π/2
phase shift. Such a signal pair can be obtained using a
carrier frequency and mixing down the burst signal to the
baseband in quadrature manner. However, the noises of both
signals were considered to be stochastically independent of
each other which is not true in general, e.g. for noise due to
photodetection. In [18] these constraints and limitations have
been overcome, but the signal duration Tb was assumed to be
large compared to the Gaussian envelope width Tw = 2wt =
2w/fD corresponding to Tb → ∞. Since the average burst
duration Tb within a scattered light signal of a moving rough
solid surface varies as a function of the surface characteristics
and is of similar size as the Gaussian envelope width Tw of the
individual bursts (cf section 2.2), this simplification is also not
acceptable here. Therefore, we calculated the CRLB without
this simplification.

Inserting the signal model of equation (5) together
with the vector of unknown parameters (see equation (6))
into the general approach described in the previous subsection,
the following generalized analytical expression results for the
CRLB of the Doppler frequency estimation from a single burst
signal (see appendix A.1):

CRLBs(f̂ D) = 64σ 2
n√

ππ2fsÂ2T 3
wc2(η)

= 64√
ππ2c2(η)

· σ 2
n

fs

· 1

Â2Nfringes
3

· f 3
D (18a)

= 8 c(η)

π2N0T 2
wSNRs

(18b)

with

Tw = 2w

fD

= Nfringes

fD

η = Tb

Tw

= N0

fsTw

c2(η) = erf(2η) − 4η√
π

e−4η2

c(η) = erf(2η)

c2(η)
= erf(2η)

erf(2η) − 4η√
π

e−4η2

SNRs = Ps

σ 2
n

≈
√

πÂ2

8η
erf (2η)

σ 2
n

.

This universal result is consistent and in accordance with
previously derived CRLB formulas as verified in appendix A.3.
It can be expressed in two different ways: one is equation (18a)
that shows the fundamental dependencies of the CRLB for the
Doppler frequency estimation from a single burst signal on the
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signal amplitude Â, the noise power spectral density σ 2
n

/
fs ,

the number of interference fringes Nfringes, and the Doppler
frequency fD itself. For practical considerations, an expression
in terms of signal parameters such as the number of samples
N0, the temporal burst width Tw and the signal-to-noise ratio
SNRs defining the ratio between the average burst signal power
Ps and the noise power σ 2

n is often more convenient. Hence,
equation (18b) is given alternatively which reveals that the
minimum achievable uncertainty of the Doppler frequency
estimation decreases for a single burst signal with increasing
SNRs , with increasing temporal 1/e2 burst width Tw, and with
increasing number of acquired samples N0. The parameter η

defines the ratio between the burst signal duration Tb and the
1/e2 width of the Gaussian burst envelope Tw. Consequently,
c2(η) and c(η) converge to 1 when the signal duration is
large compared to the burst width (Tb 	 Tw) corresponding
to η → ∞. Already for η � 1.15, c2(η) > 0.99 and
c(η) < 1.01. However, for small values of η corresponding
to Tb � Tw, the parameters c2(η) and c(η) effect a significant
increase of the CRLBs(f̂D).

3.3. Analytical result for scattered light signals from moving
rough surfaces

For determining the CRLB of the Doppler frequency
estimation for scattered light signals from moving rough
surfaces, equation (18a) has to be inserted into equation (17)
with Is,i(fD) = 1/CRLBs,i (f̂D):

CRLB(f̂D) = 1∑M
i=1

1
CRLBs,i (f̂D)

= 64√
ππ2c2(η)

· σ 2
n f 3

D

fsNfringes
3M 1

M

∑M
i=1 Â2

i

. (19)

Using the mean square burst amplitude Â2 = 1
M

∑M
i=1 Â2

i and
the relation for the signal duration

T = M Tb = M η Tw = M η Nfringes

fD

, (20)

the following result is obtained:

var(f̂D) � CRLB(f̂D) = 64 η√
ππ2c2(η)

· σ 2
n

fs

· 1

Â2 Nfringes
2 T

· f 2
D (21a)

= 8 c(η)

π2N T 2
w SNR

(21b)

with

N = N0M = fsT and SNR = P

σ 2
n

=
√

π Â2

8ησ 2
n

erf (2η) .

Equations (21a) and (21b) provide for the first time a simple
analytical expression for calculating the minimum achievable
uncertainty of the Doppler frequency estimation for scattered
light signals from moving rough solid surfaces. Again, two
different expressions are given: equation (21a) shows the

fundamental dependences on the noise power spectral density

σ 2
n

/
fs , the mean square burst amplitude Â2, the number

of interference fringes Nfringes, the signal duration T, and
the Doppler frequency fD . Alternatively, equation (21b)
can be used for practical uncertainty estimations. It shows
that the minimum attainable uncertainty of the Doppler
frequency estimation decreases with increasing signal-to-noise
ratio (SNR), i.e. with increasing average signal power P or

mean square burst amplitude Â2, respectively, with increasing
temporal 1/e2 burst width Tw, with increasing number of
totally acquired samples N = fsT , i.e. with increasing signal
length, and with increasing time interval between consecutive
bursts Tb relative to Tw expressed by the parameter η.

Interestingly, if we assume a noisy single-tone signal
s[k] = A cos(2πf k/fs) with constant amplitude A but equal
SNR, the resulting well-known CRLB (see [2], equation (6.84)
on page 298)

var(f̂ ) � CRLBsingle−tone(f̂ ) ≈ 3f 2
s

π2N3SNR
= 3

π2NT 2SNR
(22)

exhibits the same structure as equation (21b) apart from a
constant factor 8 c(η)/3. However, the essential difference
is that the lower bound of equation (22) decreases with
the third power of the signal length ∼ 1/N3, whereas
equation (21b) decreases only linearly with increasing signal
length ∼ 1/N since it depends on the constant burst width Tw

instead of the total signal duration T. This is due to the fact
that consecutive Doppler bursts of a scattered light signal of a
moving rough solid surface have to be treated as independent
and non-coherent signal parts due to their random phase (see
section 2.2), which is not considered in equation (22). Thus,
the frequency estimation uncertainty is significantly higher for
a scattered light signal of a moving rough solid surface with
non-coherent signal parts (Doppler bursts) than for a coherent
noisy single-tone signal where all signal parts are in phase.

4. Comparison with experimental results

In order to demonstrate the validity of the analytical result of
equations (21a) and (21b), a comparison with experimental
data was made. For this purpose, measurement data sets
have been used that originate from experimental investigations
carried out independently of and previously to the theoretical
work presented in this paper. The employed laser Doppler
sensor setup is described in [9]. In contrast to [9], the
front lens of the sensor head had been exchanged resulting in
interference fringe systems that exhibited a length of 1.5 mm
and a lateral width of 0.1 mm. The average interference
fringe spacing d amounted to about 7 μm in the middle of
the measurement volume. For the investigations described in
this section, the scattered light signals of only one interference
fringe system have been evaluated. The axial position z, where
the test object surface passed the interference fringes, has
been the same for all measurements considered here. As a
test object, a planar piece of aluminum sheet exhibiting an
arithmetical mean surface roughness index Ra = 0.2 μm
has been used, which was moved laterally through the
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Figure 4. Left: amplitude spectrum of a detected and high-pass-filtered scattered light signal of a rough solid surface together with a
Gaussian regression curve (dashed line). Right: corresponding logarithmic spectrum with parabolic regression curve (dashed line).

interference fringes with a constant velocity vx = 6.9 m s−1.
The resulting Doppler frequency fD was estimated by
evaluating the detected scattered light signal using different
signal processing techniques, which are described in the
following subsection 4.1. Via repeated measurements, the
relative standard deviations σfD

/fD of the estimated Doppler
frequencies were determined and compared to the derived
CRLB in section 4.2.

4.1. Signal processing techniques for Doppler frequency
estimation

Several different techniques for Doppler frequency estimation
based on counting procedures, correlation techniques, analog
and digital spectral analysis or quadrature demodulation
methods are known [2]. Many of these techniques were
developed for evaluating burst signals of single scattering
particles in fluid flows. For application to scattered light
signals of rough solid surfaces exhibiting random amplitude
fluctuations and phase jumps (see section 2.2), extended and
more sophisticated methods are required. For our study, we
used four different signal processing techniques for Doppler
frequency estimation, which are briefly described in the
following.

The first two techniques are based on digital spectral
analysis employing a fast Fourier transform (FFT) to calculate
the spectrum of the detected and high-pass-filtered scattered
light signals. The one-sided spectrum S[fk] of the signal m[k]
according to equation (7) or (9), respectively, can be written
as

S[fk] =
√

π

2

w

fD

e
− π2w2

4f 2
D

(fk−fD)2

·
M∑
i=1

Âie
−j2πfkt0,i + N [fk]

with fk = kfs/N and k = 0, . . . ,
N

2
− 1. (23)

N [fk] denotes the spectrum of the superposed noise. Because
of the invariance of the Gaussian function with the Fourier
transform, the spectral peak at the Doppler frequency fD again
exhibits a Gaussian shape. However, this Gaussian peak is
severely distorted (see figure 4, left) due to the sum term

in equation (23) which results from the random amplitude
fluctuations and phase jumps in the time domain scattered light
signal caused by speckles [7]. These distortions are concealing
the center frequency of the Gaussian peak that is equal to the
Doppler frequency fD . Thus, in method one named ‘FFT +
Gaussian curve fit’, a Gaussian regression curve is fitted to the
spectral Doppler peak via an iterative least-squares algorithm
to determine fD (see figure 4, left). The main drawback of
this method is that the necessary iterative curve fit is time
consuming.

Therefore, a second method called ‘ln(FFT) + parabolic
curve fit’ employs the natural logarithm of the spectrum
described by equation (23) exhibiting a parabolic shape except
for the approximately constant noise floor ln (|N [fk]|). Thus
a parabolic curve fit can be used to determine the Doppler
frequency (see figure 4, right), which is much faster than the
iterative Gaussian fit of method one since it can be calculated
analytically. However, the fitting region has to be well confined
to the Doppler peak in order to minimize the influence of the
noise floor ln (|N [fk]|), for which reason some part of the
available information is lost.

The third method working in time domain employs a
quadrature demodulation technique (QDT) [22], where the
complex analytical signal

m∗[k] = m[k] + jH {m[k]} (24)

is evaluated, which can be generated using the Hilbert
transform H. If m[k] is a harmonic function, the momentary
signal frequency f [k] equals the derivative of the phase ϕ[k]
with respect to time according to

f [k] = ϕ[k] − ϕ[k − 1]

2πfs

with ϕ[k] = arg{m∗[k]}

= arctan

{
H {m[k]}

m[k]

}
. (25)

Finally, the sought after Doppler frequency is obtained as
the weighted average of f [k]. However, for a correct and
precise Doppler frequency determination, it is crucial to apply
an appropriate weighting function and to eliminate the phase
jumps between consecutive signal bursts reliably. This is very
difficult and laborious.

8
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Figure 5. Central region of the autocorrelation function (ACF) of a
detected and high-pass-filtered scattered light signal of a rough solid
surface together with the corresponding Hilbert transform (light
green curve) representing a 90◦ phase-shifted signal version.

For this reason, a fourth method named ‘ACF + QDT’ was
invented. It applies the QDT not to the scattered light signal
itself but to its autocorrelation function (ACF). The advantage
of using the ACF is that the central region of the ACF shown in
figure 5 exhibits no phase jumps and almost no noise apart from
the very center, where the white noise is concentrated. Thus,
a few signal points around zero time shift have to be excluded
from evaluation. Except for that, the QDT algorithm described
before can be applied very easily to the central region of the
ACF enabling a relatively quick and robust Doppler frequency
estimation.

4.2. Comparison

To validate equations (21a) and (21b), respectively,
scattered light signals of the moving rough test object
surface were recorded at a sampling frequency of
fs = 5 MHz and evaluated using the signal processing
techniques described above. The Doppler frequency
amounted to fD = 1.01 MHz on average (cf
figure 4). The signal length, i.e. the number of acquired
samples per signal, was varied within the interval N =
76 · · · 9000, for which the minimum length of N = 76 samples
corresponds to the 1/e2 width Tw = 76/fs = 2w/fD = 15 μs
of a single Doppler burst. For each of the selected signal
lengths, 180 repeated measurements were carried out under the
same conditions and for the same region on the test object for
calculating the respective relative standard deviations σfD

/fD

of the estimated Doppler frequencies. The relative average
time interval between consecutive bursts was determined from
the measured scattered light signals to be η = Tb/Tw = 0.816
resulting in c(η = 0.816) = 1.08. The average SNR of the
detected scattered light signals varied for the different selected
signal lengths between 13.8 and 15.4 dB. By transforming
equation (21b) according to

σfD

fD

�
√

8 c(η)

π Tw fD

√
N

√
SNR

(26)

10
2

10
3

10
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σ f D
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f D

FFT + Gaussian curve fit
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Figure 6. Relative standard uncertainty σfD
/fD of the Doppler

frequency estimation as a function of the length N of the detected
and digitalized scattered light signals of a moving rough test object
experimentally obtained using four different signal processing
techniques described in section 4.1 in comparison with the
calculated CRLB.

and inserting the above values into this equation, the CRLB
for the relative standard uncertainty of the Doppler frequency
estimation σfD

/fD was calculated for each case, and it was
compared to the experimentally obtained results using the four
different signal processing techniques described in section 4.1.
The results of this comparison are shown in figure 6.

According to equation (26), σfD
/fD decreases with

1/
√

N . The CRLB curve in figure 6 deviates slightly from
this 1/

√
N -dependence, because the CRLB is also influenced

by the SNR which was not precisely constant but varied a
little from one test series to the next (see above as well as
equation (26)). Nevertheless, all four measurement curves
follow this dependence approximately and decrease with about
1/

√
N . In particular, the measurement results for the signal

processing methods ‘FFT + Gaussian curve fit’ and ‘ACF
+ QDT’ follow the CRLB curve very closely. On average,
the outcomes of both methods are only by a factor of 1.3
larger than the calculated CRLB according to equation (26)
indicating high efficiency of these methods (see figure 6).
For the methods ‘ln(FFT) + parabolic curve fit’ and ‘QDT’,
the obtained relative standard uncertainties σfD

/fD are farther
away from the CRLB with differences amounting to factors of
3.4 and 3.9, respectively. In the case of the method ‘ln(FFT)
+ parabolic curve fit’, the higher uncertainty is due to the fact
that some part of the information contained in the spectrum
cannot be used for estimating the Doppler frequency fD via
the parabolic fit because of the distracting noise floor (see
section 4.1). In the ‘QDT’ method, it is hardly possible
to eliminate reliably all the phase jumps occurring between
consecutive signal bursts which results in disturbances for the
Doppler frequency estimation.

Altogether, the obtained experimental results agree
very well with the derived analytical CRLB according to
equations (21a), (21b) and (26), which defines the theoretical
lower limit for the achievable uncertainty of the Doppler

9
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frequency estimation for scattered light signals of rough solid
surfaces for any unbiased estimator. This also holds for
test results obtained at different object velocities, at different
SNR, and with other surfaces exhibiting different mean surface
roughness indices, respectively, which are not shown here for
reason of conciseness. In particular, the excellent conformity
with the determined relative standard uncertainties σfD

/fD

using the signal processing methods ‘FFT + Gaussian curve fit’
and ‘ACF + QDT’ substantiates the validity and the correctness
of the derived analytical CRLB result (see figure 6).

5. Implications for laser Doppler measurements on
moving rough surfaces

Both for conventional LDV sensors and for extended laser
Doppler techniques such as the LDDS, which is able to
measure the axial position z of moving rough object surfaces
in addition to its transverse velocity vx , the relative standard
uncertainty σvx

/vx of the velocity measurement depends
directly on the relative standard uncertainty of the Doppler
frequency estimation σfD

/fD (see equations (1) and (2)).
Using equation (21a), the CRLB for σfD

/fD can be expressed
analytically by

σfD

fD

�
8
√

η

π5/4
√

c2(η)
·
√√√√σ 2

n

fs

· 1

Â2 N2
fringes T

. (27)

Consequently, the minimum attainable relative standard
uncertainty of the velocity measurement σvx

/vx of laser
Doppler methods on rough moving surfaces decreases with
decreasing noise power spectral density σ 2

n /fs , with increasing

mean square burst amplitude Â2, i.e. with increasing signal
power, with increasing number of interference fringes Nfringes,
and with increasing signal duration T. It is important to note
that the noise power spectral density σ 2

n /fs is constant for
a given detector and cannot be influenced by varying the
sampling rate fs . The parameter η is normally around 1. Thus,
also c2(η) has no significant influence as long as η does not
fall considerably below 1 (cf section 3.2).

In the case of the LDDS, the axial object position
z is measured as well [6, 7]. Aside from a calibration
factor s, the position standard uncertainty σz depends on
the relative standard uncertainty of the Doppler frequency
estimation σfD

/fD too (see equation (2)). Here, approximately
equal Doppler frequencies fD1 ≈ fD2 ≈ fD and frequency
uncertainties σfD1 ≈ σfD2 ≈ σfD

are assumed for the two
measuring channels of the LDDS which is fulfilled in good
approximation in practice [6, 7]. For position and distance
measurements, the lateral resolution 	x is of particular interest
which is equal to the lateral averaging length on moving object
surfaces. Hence, the CRLB of the position estimation is
expressed in terms of 	x by inserting the relations

T = 	x

vx

= 	x

fDd
and Nfringes = 2wx

d
, (28)

as well as equation (27) into equation (2). As a result, we
obtain

σz � 8
√

2η

s π5/4
√

c2(η)
·
√

σ 2
n

fs

· fD d3

Â2 (2wx)2 	x
, (29)

in which 2wx denotes the lateral width of the measurement
volume, i.e. of the two superposed interference fringe systems
(cf section 2.1). The parameter d identifies the average fringe
spacing. For a given sensor setup, the parameters s, d and 2wx

are constant. Generally, the parameter c2(η) ≈ 1 since usually
η ≈ 1. The Doppler frequency fD depends on the lateral object
velocity. Consequently, the minimum attainable standard
uncertainty σz of the position estimation of the LDDS on
rough moving surfaces can be decreased mainly by decreasing
the noise power spectral density σ 2

n /fs via the use of a low-
noise detector, by increasing the signal power corresponding

to Â2, and by increasing the lateral averaging length on the
object surface 	x (see equation (29)). The latter constitutes
an uncertainty relation between lateral resolution 	x and axial
position resolution σz.

For comparison with experimental data, it is again
advantageous to rewrite equation (29) in terms of the SNR
according to

σz � 4
√

c(η)

s π
·
√

fD

fs

· d3

SNR (2wx)2 	x
, (30)

which does not change the dependence of σz on 1/
√

	x. To
validate equations (29) and (30), test measurements have been
carried out using the same test object as for the experiments
described in section 4. The employed LDDS exhibited the
following design parameters: s = 0.36 mm−1, d ≈ 6.97 μm
and 2wx = 105 μm. The test object surface was moved
laterally along the x-axis through the measurement volume
of the LDDS at a fixed position z and with a constant
velocity vx = 6.9 m s−1. The measured Doppler frequencies
amounted to about 1 MHz at a sampling frequency of fs =
5 MHz. The detected scattered light signals exhibited an
SNR of about 14.5 dB and the parameter η was determined
to be η = 0.82 resulting in c(η) = 1.08. At different
lateral averaging lengths 	x, 30 repeated measurements
were carried out in each case at a constant object position
z. From the measured positions, the standard deviations
σz were calculated and compared to the CRLB according
to equation (30). The results are shown in figure 7. The
experimental results are in very good agreement with the
analytically derived CRLB. On average, the measured position
uncertainties are larger than the CRLB only by a factor of 1.32,
which demonstrates the efficiency of the signal processing
algorithms used for position estimation. On the other
hand, this excellent agreement between experimental results
and theory underlines the validity of the derived analytical
relations of equations (21a), (21b) and (30). Besides, these
measurement results confirm the uncertainty relation between
the lateral resolution 	x and the axial position resolution σz.
In the LDDS setup used, a standard position uncertainty σz <

2 μm is obtained for averaging lengths 	x > 0.65 mm (see
figure 7).

Consequently, the derived analytical CRLB expression of
equations (21a) and (21b) allows not only an easy estimation
of the minimum attainable measurement uncertainties of
laser Doppler sensors on moving rough solid surfaces for
the first time, it also shows directly the influences of
certain system and signal parameters on these measurement
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Figure 7. Experimentally obtained position standard uncertainty σz

as a function of the lateral averaging length 	x on a moving rough
test object surface (aluminum sheet) in comparison with the CRLB
calculated via equation (30).

uncertainties revealing specific measuring features and the
arising capabilities of the respective sensors. Moreover, it is a
useful tool to judge and to compare the efficiency of different
signal processing algorithms.

6. Conclusions

In this paper, a simple analytical expression has been derived
for calculating the CRLB for the Doppler frequency estimation
from scattered light signals of moving rough solid surfaces for
the first time to the best of our knowledge. This is important for
judging the potential of any specific laser Doppler sensor since
the achievable measuring accuracy is fundamentally limited by
the uncertainty of the Doppler frequency estimation in all laser
Doppler techniques.

The CRLB represents the minimum achievable
uncertainty of any unbiased estimator. The general approach
for its derivation is well known. It requires an appropriate
signal model that was deduced neglecting the effects of
interference fringe spacing variations, object acceleration and
the overlap between consecutive burst signals, which originate
from dominant speckles passing through the interference
fringe systems successively. In particular, the latter
simplification is not entirely fulfilled in general, but it
simplifies the calculations a lot since consecutive Doppler
bursts can be treated independently accordingly. In future,
it should be investigated if or how this simplification can be
superseded. However, despite neglecting the overlap between
consecutive Doppler bursts, the derived analytical CRLB
formula agrees very well with experimental results, which
confirms that this simplification is acceptable. In addition it
was shown that the noise can be modeled collectively by a
Gaussian distribution because of the large signal offset.

Using the general approach, first a generalized analytical
expression for the CRLB for the Doppler frequency estimation

from a single burst signal was derived, which has been proven
to be consistent and in accordance with previous works. From
this result, the CRLB for the Doppler frequency estimation
from scattered light signals of moving rough solid surfaces has
been deduced making use of the additive nature of the Fisher
information. The final result is a simple analytical expression,
which shows directly the influences of certain system and
signal parameters on the minimum attainable measurement
uncertainty.

In order to demonstrate the validity of this analytical
result, a comparison with experimental data measured on a
moving piece of aluminum sheet was carried out, in which
four different signal processing techniques have been used
for Doppler frequency estimation. The obtained experimental
results agree very well with the analytically derived CRLB.
In particular, the outcomes of two of the signal processing
techniques used exceed the calculated CRLB only by a factor
of 1.3 on average indicating excellent efficiency of these
techniques. On the other hand, this excellent agreement
between experimental results and theory substantiates the
validity and the correctness of the derived analytical CRLB
formula. In addition, this experiment demonstrates that the
CRLB is a valuable tool to evaluate the efficiency of signal
processing techniques.

The main progress for science is that the derived CRLB
formula allows an easy estimation of the minimum attainable
measurement uncertainties of laser Doppler sensors on moving
rough solid surfaces for the first time. In addition, it directly
shows the influences of certain system and signal parameters
on the measurement uncertainty. This has been discussed
exemplarily for LDV velocity measurements and for position
measurements with a special laser Doppler distance sensor.
Consequently, the derived analytical CRLB enables us to
reveal specific measuring features and arising capabilities of
different laser Doppler sensors on rough moving surfaces.
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Appendix A. CRLB for Doppler frequency
estimation from a single burst signal

A.1. CRLB derivation

For deriving the CRLB, we start with the general signal model
(see equation (4)) including the low-frequency part. Replacing
A by Â/γ , it can be rewritten as

m̃s[k] = Â e− 2f 2
D

(k/fs−t0)2

w2 [α + cos(2πfD(k/fs − t0))],

k = 0, . . . , N0 − 1, (A.1)

with α = 1/γ . This signal model has to be inserted into the
general approach described in subsection 3.1 together with the
vector of unknown parameters �as = (fD, Â, w, t0)

T . Taking
into account the joint probability density function given in
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equation (12), the log-likelihood function results into

ln p(�x, �as) = − 1

2σ 2
n

N0−1∑
k=0

(x[k] − m̃s[k])2 − N0

2
ln
(
2πσ 2

n

)
.

(A.2)

Inserting this function into equation (14), the following
relation is obtained for the elements of the Fisher information
matrix [2, 17, 18]:

Ihj = −E

{
∂2 ln p(�x, �as)

∂ah∂aj

}
= 1

σ 2
n

N0−1∑
k=0

(
∂m̃s[k]

∂ah

∂m̃s[k]

∂aj

)
,

h, j ∈ {1, 2, 3, 4}. (A.3)

The partial derivatives of the signal model represented by
equation (A.1) with respect to the unknown parameters
contained in �as are

∂m̃s[k]

∂fD

= −Â e− 2f 2
D

(k/fs−t0)2

w2

[
4fD(k/fs − t0)

2

w2
(α + cos β)

+ 2π(k/fs − t0) sin β

]
(A.4)

∂m̃s[k]

∂Â
= e− 2f 2

D
(k/fs−t0)2

w2 [α + cos β] (A.5)

∂m̃s[k]

∂w
= Âe− 2f 2

D
(k/fs−t0)2

w2 [α + cos β]
4f 2

D(k/fs − t0)
2

w3
(A.6)

∂m̃s[k]

∂t0
= Â e− 2f 2

D
(k/fs−t0)2

w2

[
4f 2

D(k/fs − t0)

w2
(α + cos β)

+ 2πfD sin β

]
(A.7)

using the abbreviation β = 2πfD(k/fs − t0). The next step is
to insert these derivatives into equation (A.3) to calculate the
elements of the Fisher information matrix. The arising sums
can be transformed to integrals according to
N0−1∑
k=0

g(k/fs − t0) = fs

N0−1∑
k=0

g(k/fs − t0)
1

fs

≈ fs

∫ Tb

0
g(t − t0) dt ≈ fs

∫ Tb/2

−Tb/2
g(t) dt

(A.8)

assuming that the sampling rate fs is large compared to the
Doppler frequency fD and that t0 ≈ Tb/2 with Tb = N0/fs (cf
section 2.2, in particular equation (8) and figure 3). Hence,
integrals of the form∫ Tb/2

−Tb/2
e− 4f 2

D
t2

w2 tn[K + cos(q2πfDt)] dt ≈ K

∫ Tb/2

−Tb/2
e− 4f 2

D
t2

w2 tn dt

with n ∈ {0, 1, 2, 3, 4}, q ∈ {1, 2}, K � 0.5

(A.9)

are obtained, in which the products of the harmonic function
and the exponential function can be neglected since the
harmonic function oscillates faster than the decay of the
exponential function due to w 	 1. Note that 2w =
Nfringes denotes the number of interference fringes within the

measurement volume which is usually in the range of 10–
50. Since η = Tb/Tw (see below) does not approach zero

in our case, also the integrals
∫ Tb/2
−Tb/2 e− 4f 2

D
t2

w2 tn sin(q2πfDt)dt ,
n ∈ {1, 3} and q ∈ {1, 2}, can be neglected compared to the
other terms in the residual expressions. The solutions of the
remaining integrals can be found in common formularies. As
a result, we obtain the following Fisher information matrix:

I ≈
√

πfsκ

2σ 2
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3Â2w

8f 3
D

[
c3 +

2π2w2

3κ
c2

]
− Âw

4f 2
D

c2

− Âw

4f 2
D

c2
w

2fD

c1

−3Â2

8f 2
D

c3
Â

4fD

c2

0 0

−3Â2

8f 2
D

c3 0

Â

4fD

c2 0

3Â2

8wfD

c3 0

0
Â2fD

w

[
c2 +

2π2w2

κ
c1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.10)

with

κ = κ(α) = 2α2 + 1 (A.11)

c1 = c1(η) = erf(2η) (A.12)

c2 = c2(η) = erf(2η) − 4η√
π

e−4η2
(A.13)

c3 = c3(η) = erf(2η) − e−4η2

(
4η√
π

+
32η3

3
√

π

)
(A.14)

η = Tb

Tw

= fDTb

2w
. (A.15)

The parameter η defines the ratio between the signal duration
Tb and the 1/e2 width of the Gaussian burst envelope Tw =
2wt = 2w/fD . If the signal duration is large compared to
the burst width (Tb 	 Tw), η becomes 	 1 resulting in
c1 ≈ c2 ≈ c3 ≈ 1. Finally, the CRLB for the Doppler
frequency estimation from a single burst signal is determined
by calculating the first diagonal element of the inverse I−1 of
the Fisher information matrix (cf equation (15)) resulting in

var(f̂D) � CRLBs(f̂D) = [I−1]11 = 8σ 2
n f 3

D√
ππ2fsÂ2w3c2(η)

= 64σ 2
n√

ππ2fsÂ2T 3
wc2(η)

(A.16)

taking into account the relation Tw = 2w
fD

.
Up to now, we considered the general signal model

including the low-frequency part according to equation (A.1).
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Neglecting this low-frequency part means setting α = 0.
The only impact of this definition on the above equations
is that κ(α = 0) = 1. However, this does not change
the result of equation (A.16) since the parameter κ is not
contained in this equation but canceled out in the calculations
before. Hence, the result of equation (A.16) is valid for the
signal model from equation (5) too. Consequently, the low-
frequency part of the burst signal does not influence the CRLB
of the Doppler frequency estimation and can be neglected
accordingly. Therefore, we can define α = 0 in the following
as well as for our considerations throughout this paper.

As a last step, equation (A.16) should be rewritten by
means of the SNR, which is very convenient for comparisons
with experimental results (cf section 4). The SNR is defined
by

SNRs = Ps

σ 2
n

(A.17)

as the ratio between the average signal power Ps and the noise
power σ 2

n . The average power of the Doppler burst signal Ps

can be calculated using equation (5) (or equation (A.1) with
α = 0) as

Ps = 1

Tb

∫ Tb/2

−Tb/2
ms(t)

2dt = Â2

Tb

∫ Tb/2

−Tb/2
e− 4f 2

D
t2

w2 cos2(2πfDt) dt

=
√

πÂ2w

4TbfD

{
erf

(
TbfD

w

)

+
1

2
e−π2w2

[
erf

(
TbfD

w
+ jπw

)
+ erf

(
TbfD

w
− jπw

)]
︸ ︷︷ ︸


 erf(TbfD/w)

}

≈
√

πÂ2

8η
erf (2η) (A.18)

with TbfD

w
= 2η. The last term can be neglected since

usually η > 0.1 and w 	 1. Inserting equations (A.18)
and (A.17) into equation (A.16) and using the relation η =
Tb

Tw
= N0

fsTw
with Tb = N0

fs
, we obtain

var(f̂D) � CRLBs(f̂D) = 8 erf(2η)

π2fs η T 3
wSNRs c2(η)

= 8 c(η)

π2N0T 2
wSNRs

(A.19)

with the parameter

c(η) = erf(2η)

c2(η)
= erf(2η)

erf(2η) − 4η√
π

e−4η2
. (A.20)

A.2. Effect of reducing number of unknown parameters

Because of its importance, the influence of choosing the
unknown parameters is briefly discussed in the following.
In the previous subsection, all four unknown parameters
�as = (fD, Â, w, t0)

T were taken into account.

If we assume instead that e.g. the half-width w of
the Gaussian signal envelope is known corresponding to
�as = (fD, Â, t0)

T , the 3rd line and the 3rd row of the
Fisher information matrix in equation (A.10) drop out. As
a result, the first diagonal element of the inverse matrix
becomes

[I−1]11 = 16σ 2
n f 3

Dc1√
πfsÂ2wκ(α)

[
3c1c3 − c2

2 + 2π2w2

κ(α)
c1c2

]
≈ 16σ 2

n f 3
Dc1√

πfsÂ2wκ(α)
[

2π2w2

κ(α)
c1c2

] = 8σ 2
n f 3

D√
ππ2fsÂ2w3c2

.

(A.21)

Despite that the final result equals equation (A.16), the
approximation in the second line of equation (A.21) is
only valid for γ 	 0, i.e. γ � 0.5, because only then
is the expression 2π2w2

3κ(α)
	 1 due to w 	 1 and, consequently,

the first two summands in the square bracket expression in the
denominator can be neglected because of 3c1c3 − c2

2 < 3c1c2

since c1 > c2 > c3. Thus, only if the modulation depth
γ of the burst signal is high enough, are both results equal
and the knowledge of the Gaussian envelope width w does
not influence the CRLB for the Doppler frequency estimation.
Otherwise, the result would differ from equation (A.16) and, in
particular, the low-frequency signal part could not be neglected
for the CRLB calculation since κ(α) would not cancel out
from equation (A.21). Similar behavior emerges if the burst
amplitude Â is assumed to be a known parameter. However,
since all four parameters �as = (fD, Â, w, t0)

T are usually
not known in practice, it is important to consider all of them
as unknown in order to obtain correct and universally valid
results.

A.3. Comparison of our results with previous work

In [18], the following CRLB for the velocity estimation from
a single burst signal (particle number Np = 1) has been
analytically derived for the special case when the burst duration
Tb is large compared to the Gaussian envelope temporal width
Tw (Tb 	 Tw) (see [18], table D.6):

var(v̂x) � CRLBs,Fischer(v̂x) = 2d2v2

π2w2
xN0SNRs

. (A.22)

Unlike the original formula in [18], the term (2 + γ 2)/γ 2 was
set to 1 here since the SNR was defined in a different way
in [18] including the low-frequency signal part. Taking into
account var(fD) = var(vx)/d

2 and v
wx

= fDd

wd
= fD

w
= 2

Tw
,

equation (A.22) turns into

var(f̂D) � CRLBs,Fischer(f̂D) = 8

π2N0T 2
wSNRs

, (A.23)

which is in perfect agreement with the result from
equation (A.19), because c(η) = 1 for Tb 	 Tw or η 	 1.

A further comparison will be drawn with the CRLB for
the Doppler frequency estimation calculated by Besson et al
[15], who neglected the low-frequency signal part from the
beginning and who considered w to be a known parameter.

13
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With f̃D = fD/fs , the dimensionless formula (cf [15],
equation (29))

CRLBs,Besson(
ˆ̃fD) ≈ 8σ 2

n f̃ 3
Dα3

B√
πÂ2

(
α2

B + π2
) (A.24)

is derived. Inserting αB = 1/w into this equation and
non-dimensionalizing it using f̃D = fD/fs and the relation
CRLBs,Besson(

ˆ̃fD) = CRLBs,Besson(f̂D)
/
f 2

s , we obtain

CRLBs,Besson(f̂D) ≈ 8σ 2
n f 3

D√
π
(

1
w2 + π2

)
Â2fsw3

≈ 8σ 2
n f 3

D√
ππ2Â2fsw3

, (A.25)

where the term 1/w2 can be neglected due to w 	 1. This
result is consistent with equation (A.16) because Besson et
al assumed Tb → ∞ and, in this case, c2 = 1. However, in
contrast to equation (A.16), the calculations of Besson et al are
not universally valid, but they imply a high modulation depth
of the burst signal (see the previous subsection) and Tb 	 Tw

additionally.
Finally, we compare our results with the calculations

of Sobolev et al [17] since they took into account also
a finite signal duration Tb, even if their signal model
comprising two harmonic signals with π/2 phase shift and
stochastically independent noises is questionable and not
correct in general. They derived the following CRLB in terms
of the angular Doppler frequency ωD (cf [17], equations (31)
and (32)):

CRLBs,Sobolev(ω̂D) = σ 2
n f 2

s αS

Â2(N0 − 1)3
≈ σ 2

n f 2
s αS

Â2N3
0

, (A.26)

with

αS = 8η̃3

√
π

2 erf(η̃)(1 + 3ξ 2) − η̃e−η̃2
(1 + ξ 2(3 + 2η̃2))

= 128η3

√
π
[
erf(2η)(1 + 3ξ 2) − 4η√

π
e−4η2

(1 + ξ 2(3 + 8η2))
]

≈ 128η3

√
π
[
erf(2η) − 4η√

π
e−4η2

] , (A.27)

with η̃ = 2η. The approximation of equation (A.27) is
permitted since ξ 2 = 1

2π2w2 
 1 because of w 	 1. With

CRLBs,Sobolev(f̂D) = CRLBs,Sobolev(ω̂D)/(4π2) and fsη

N0
=

η

Tb
= 1

Tw
, the result of Sobolev et al can be transformed into

CRLBs,Sobolev(f̂D) ≈ 32σ 2
n√

ππ2Â2fsT 3
wc2(η)

, (A.28)

which equals the result from equation (A.16) except for a factor
of 2. This is caused by the fact that Sobolev et al assumed two
harmonic signals with stochastically independent noises which
is not valid in general, e.g. for quadrature signals and noises
due to photodetection that are not stochastically independent.
By considering only one signal instead as done for deriving
equation (A.16), the Fisher information halves and, thus, the
corresponding CRLB doubles.

In conclusion, our results are consistent with the results
of previous works. However, the derivation described in

appendix A.1 provides a more general and universally valid
way of calculating the CRLB of the Doppler frequency
estimation from a single burst signal.
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