
Ivo F. Sbalzarini

Basic Numerical Methods

Lecture Notes

TU Dresden, Faculty of Computer Science
Chair of Scientific Computing for Systems Biology

Prof. Dr. sc. techn. Dipl. Masch.-Ing. ETH Ivo F. Sbalzarini
Center for Systems Biology Dresden, TUD & MPI-CBG

Winter 2021/22



ii



iii

This page is intentionally left blank



iv



Contents

Contents v

Foreword ix

1 Foundations of Numerical Computation 1
1.1 Floating-Point Number Representation . . . . . . . . . . . . . . . 1
1.2 Integer Number Representation . . . . . . . . . . . . . . . . . . . 4
1.3 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Pseudo Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Condition number of a function . . . . . . . . . . . . . . . 9
1.5.3 Condition number of a matrix . . . . . . . . . . . . . . . . 11
1.5.4 Condition number of an algorithm . . . . . . . . . . . . . 14

1.6 Backward Error Analysis . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear System Solvers 17
2.1 Gaussian Elimination – LU Decomposition . . . . . . . . . . . . 17

2.1.1 Pivoting strategies . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Linear Fixed-Point Iterations . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Convergence criteria . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Successive Over-Relaxation (SOR) method . . . . . . . . 26

2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Geometric interpretation . . . . . . . . . . . . . . . . . . . 28
2.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . 31
2.5 Pre-Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Linear Least-Squares Problems 37
3.1 Error Equations and Normal Equations . . . . . . . . . . . . . . 37
3.2 Solution by QR Decomposition . . . . . . . . . . . . . . . . . . . 39
3.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 42

v



vi CONTENTS

3.3.1 Properties of the singular value decomposition . . . . . . 42

3.4 Solution by Singular Value Decomposition . . . . . . . . . . . . . 44

3.5 Nonlinear Least-Squares Problems . . . . . . . . . . . . . . . . . 45

4 Solving Nonlinear Equations 47

4.1 Condition Number of the Problem . . . . . . . . . . . . . . . . . 47

4.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 The fixed-point theorem . . . . . . . . . . . . . . . . . . . 50

4.2.2 Convergence of Newton’s method . . . . . . . . . . . . . . 53

4.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Secant Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Bisection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Nonlinear System Solvers 59

5.1 Newton’s Method in Arbitrary Dimensions . . . . . . . . . . . . 59

5.1.1 Quasi-Newton method . . . . . . . . . . . . . . . . . . . . 61

5.2 Broyden Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Scalar Polynomial Interpolation 65

6.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Existence: The Lagrange Basis . . . . . . . . . . . . . . . . . . . 67

6.3 Barycentric Representation . . . . . . . . . . . . . . . . . . . . . 68

6.4 Aitken-Neville Algorithm . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6.1 Hermite interpolation . . . . . . . . . . . . . . . . . . . . 73

6.6.2 Cubic splines . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Trigonometric Interpolation 79

7.1 The Trigonometric Polynomial . . . . . . . . . . . . . . . . . . . 79

7.2 Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . . . 80

7.3 Efficient Computation of DFT by FFT . . . . . . . . . . . . . . . 84

7.4 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 86

8 Numerical Integration (Quadrature) 89

8.1 Rectangular Method . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Trapezoidal Method . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4 Romberg’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.5 Gauss Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Numerical Differentiation 105

9.1 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2 Romberg Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS vii

10 Initial Value Problems of Ordinary Differential Equations 113
10.1 Numerical Problem Formulation . . . . . . . . . . . . . . . . . . 114
10.2 Explicit One-Step Methods . . . . . . . . . . . . . . . . . . . . . 115

10.2.1 Explicit single-stage one-step methods:
the explicit Euler method . . . . . . . . . . . . . . . . . . 117

10.2.2 Higher-order single-stage one-step methods . . . . . . . . 119
10.2.3 Heun’s multi-stage one-step method . . . . . . . . . . . . 119
10.2.4 Higher-order multi-stage one-step methods:

Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . 121
10.3 Dynamic Step-Size Adaptation in One-Step Methods . . . . . . . 122

10.3.1 Richardson extrapolation . . . . . . . . . . . . . . . . . . 124
10.3.2 Embedded Runge-Kutta methods . . . . . . . . . . . . . . 126
10.3.3 Practical implementation . . . . . . . . . . . . . . . . . . 127

10.4 Implicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.4.1 Implicit single-stage methods: Trapezoidal method . . . . 129
10.4.2 Implicit multi-stage methods: implicit Runge-Kutta . . . 130

10.5 Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.5.1 An explicit multistep method: Adams-Bashforth . . . . . 133
10.5.2 An implicit multistep method: Adams-Moulton . . . . . . 135
10.5.3 Predictor-Corrector method . . . . . . . . . . . . . . . . . 136

10.6 Systems of ODEs and Higher-Order ODEs . . . . . . . . . . . . . 137
10.6.1 Multidimensional systems of ODEs . . . . . . . . . . . . . 137
10.6.2 ODEs of higher order . . . . . . . . . . . . . . . . . . . . 138

10.7 Numerical Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.7.1 Stability of the explicit Euler method for real λ . . . . . . 140
10.7.2 Stability of Heun’s method for real λ . . . . . . . . . . . . 142
10.7.3 Stability of explicit Euler for complex λ . . . . . . . . . . 142
10.7.4 Stability of Heun’s method for complex λ . . . . . . . . . 143
10.7.5 Stability of the implicit trapezoidal method . . . . . . . . 145

10.8 Stiff Initial Value Problems . . . . . . . . . . . . . . . . . . . . . 147
10.9 The Lax Equivalence Theorem . . . . . . . . . . . . . . . . . . . 149

11 Numerical Solution of Partial Differential Equations 151
11.1 Parabolic Problems: The Method of Lines . . . . . . . . . . . . . 155

11.1.1 The explicit Richardson method . . . . . . . . . . . . . . 157
11.1.2 The implicit Crank-Nicolson method . . . . . . . . . . . . 158

11.2 Elliptic Problems: Stencil Methods . . . . . . . . . . . . . . . . . 159
11.3 Hyperbolic Problems: The Method of Characteristics . . . . . . . 164

11.3.1 Numerical approximation . . . . . . . . . . . . . . . . . . 167
11.3.2 Numerical domain of dependence . . . . . . . . . . . . . . 168
11.3.3 Courant-Friedrichs-Lewy condition . . . . . . . . . . . . . 169

Bibliography 171



viii CONTENTS



Foreword

These lecture notes were created for the course “Basic Numerical Methods”,
taught as part of the mandatory electives module “CMS-COR-NUM” in the
Masters Program “Computational Modeling and Simulation” at TU Dresden,
Germany. The notes are based on handwritten notes by Prof. Sbalzarini, which
in turn are adapted from the lecture “Numerische Mathematik” taught by
Prof. K. Nipp at ETH Zürich during winter 1999/2000, which in turn was based
on the German-language textbook “Numerische Mathematik” by H. R. Schwarz,
Teubner Publishing Company, 4. Edition, 1997. Prof. Sbalzarini’s handwrit-
ten notes have been translated to English and typeset in LATEX by Harish Jain
as a paid student teaching assistantship during his first term of studies in the
Masters Program “Computational Modeling and Simulation” at TU Dresden,
Germany, and subsequently edited, extended, and proofread by Prof. Sbalzarini.

Notation

We follow the standard mathematical notation. Vectors are always understood
as column vectors and are typeset with an over-arrow: v⃗. Matrices are typeset
in bold as A and contain elements A = (aij) where the first index (here: i) runs
over rows from top (= row 1) to bottom and the second index (here: j) runs
over columns from left (= column 1) to right. Scalar (inner) products between
two vectors are written as: ⟨p⃗, q⃗⟩ = p⃗Tq⃗ = p⃗ · q⃗. Single vertical bars | · | denote
absolute values or vector norms, whereas double vertical bars ∥·∥ mean matrix
norms or function norms. Open intervals are given by their boundaries a, b as
(a, b), whereas closed intervals are [a, b].

Sections in gray-background boxes are parenthetic remarks that provide
additional background or additional examples that are not part of the pri-
mary lecture contents.

Particularly important key equations are boxed. Historic context for the learn-
ing material is provided by margin notes with portraits and minimal biogra-
phies. The reader will notice the particularly poor diversity and gender balance
amongst the portrayed. It is the more important that many female students and
students from underrepresented backgrounds study the material and change this
in the future by providing the next innovations in numerical methods.

ix



x FOREWORD



Chapter 1

Foundations of Numerical
Computation

The objective of a numerical method is to solve a continuous1 mathematical
problem with the help of a computer. To this end, a numerical algorithm is
created, consisting of a finite sequence of well-defined calculation steps. The
result of such algorithmic computation is always approximate, i.e., the numer-
ical algorithm computes an approximation to the true solution of the original
mathematical problem. The field of numerical mathematics hence contains two
areas of study: A) Theory of Algorithms, B) Approximation Theory. The area
(A) studies how mathematical solutions can be formulated as numerical algo-
rithms, and what complexity (upper or lower bounds) these algorithms must
have. Area (B) studies how computers can approximate results over the set of
real numbers R and how well a given algorithm is able to approximate the exact
solution of a problem.

Example 1.1. Frequently considered mathematical problems and their formu-
lation as numerical problems:

• Linear system of equations Ax⃗ = b⃗ −→ find approximate solution ˆ⃗x ≈ x⃗

• Ordinary differential equation dx⃗
dt = f(x⃗, t), x(0) = x0 −→ find approx-

imate sequence ˆ⃗x(tk) ≈ x⃗(t = tk) for time points tk, k = 0, 1, 2, . . ..

1.1 Floating-Point Number Representation

Only finitely many numbers can be represented on a digital computer. This is
true for both integer numbers, of which a digital computer can only represent a
finite range, and for fractional numbers. Arbitrary real numbers (e.g., irrational

1Discrete mathematical problems can usually directly be implemented on a computer and
require no numerical methods, as computers operate discretely.

1



2 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

numbers) cannot be numerically represented on a computer at all. Therefore,
all known computer architectures approximate real numbers by floating-point
numbers:

x̂ = σ ·M ·BE (1.1)

with:

• σ: the sign of the number (either + or −),

• B: the basis of number representation (an integer constant> 1 ,e.g., B = 2
for binary number representation, B = 10 for decimal representation),

• M : the mantissa, and

• E: the exponent.

In the following, we denote by x̂ the floating-point approximation of a real
number x. The mantissa is composed of l digits according to the convention:

M =

l∑
j=1

m−jB
−j (1.2)

with all digits 0 ≤ m−j ≤ B − 1. By convention, the mantissa is always
normalized so that for any number x̂ ̸= 0, the first digit of the mantissa is
non-zero, i.e., m−1 ̸= 0 if x̂ ̸= 0 (see box below for why this is so).
The exponent is represented by the convention:

E = τ

k∑
j=1

ejB
k−j (1.3)

with sign τ , digits 0 ≤ ej ≤ B − 1, and total length (i.e., number of digits) k.
This defines the representation of floating-point machine numbers.
Often, machine numbers are given by their digits, as:

x̂ = σm−1m−2 . . .m−l (τe1 . . . ek). (1.4)

The digits of the mantissa are indexed with negative indices (from −1 to −l) by
convention, whereas the digits of the exponent are indexed with positive indices.
This on the one hand makes it easier to recognize immediately whether a given
digit is part of the mantissa or the exponent, and it also reminds that the digits
of the mantissa represent the number in units of B−j , see Eq. 1.2.
This floating-point representation of machine numbers is standard today. It
was originally proposed by Leonardo Torres y Quevedo in 1914 for decimal base
B = 10, while Konrad Zuse was the first to use binary floating-point numbers
with B = 2 in 1938. While floating-point representations are nowadays standard
in numerical computing, this was not clear for a long time. Still in 1951, John
von Neumann argued strongly that fixed-point arithmetics should be preferred.
Also standard today in digital computers is the binary representation with base



1.1. FLOATING-POINT NUMBER REPRESENTATION 3

B = 2. But this is only standardized since 1985 as IEEE Standard 754. Most
early computers used decimal arithmetics, including the ENIAC, IBM NORC,
and IBM 1400 series of machines, and the famous IBM S/360 architecture intro-
duced hexadecimal floating-point arithmetics with base B = 16, which is still
optionally available in today’s IBM Mainframes of the z/Architecture line of
products.

Image: researchgate
Leonardo Torres y Quevedo
∗ 28 December 1852

Santa Cruz de Iguña, Spain
† 18 December 1936

Madrid, Spain

Image: Uni Hamburg
Konrad Zuse
∗ 22 June 1910

Berlin, German Empire
† 18 December 1995

Hünfeld, Germany

Example 1.2. Let B = 10, l = 5, and k = 2 (i.e., maximum exponent is 99).
Then, the following are numbers with their associated floating-point representa-
tion:

• x = −14.315 −→ x̂ = −14315(+02),

• x = 0.00937 −→ x̂ = +93700(−02).

Definition 1.1 (Machine numbers). We define M(B, l, k) the set of machine
numbers with base B, mantissa length l, and exponent length k.

We then observe that:

• M is finite.

• M possesses a largest element x̂max = maxM |x̂| and a smallest element
x̂min = minM |x̂| corresponding to the largest and smallest absolute val-
ues of numbers that can be represented. Numbers with absolute value
larger than x̂max cause an arithmetic overflow, numbers with absolute
value smaller than x̂min cause an arithmetic underflow (see Fig. 1.1).

• The numbers in M are not equidistant on the real axis (see Fig. 1.2).

Figure 1.1: Overflow and underflow of machine numbers. 0 is part of the set of
machine number, but the interval (−x̂min,+x̂min) \ 0 cannot be represented; it

is an underflow. The intervals (−∞,−x̂max) and (+x̂max,∞) cannot be
represented either; they are an overflow.

Example 1.3. Assume the machine numbers M(2, 3, 2). Then, the following
is an exhaustive list of all mantissas and exponents that can be represented
(remember the mantissa has to be normalized):

Mantissa Exponent



4 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

= 0/0
= 1/2
= 5/8
= 3/4
= 7/8

±0 0 = ±0
±0 1 = ±1
±1 0 = ±2
±1 1 = ±3

Therefore, this set of machine numbers has the following largest and smallest
members by absolute value: x̂max =

7
8 ·2

3 = 7, x̂min = 1
2 ·2

−3 = 1
16 . Furthermore,

the machine numbers in the range between 1
16 and 7 are not equidistant on the

real axis (see Fig. 1.2).

Figure 1.2: Distribution of machine numbers in M(2, 3, 2)

1.2 Integer Number Representation

Representing (signed) integers is straightforward and follows the representation
of the exponent of a floating-point number, as:

i = σN with N =

r∑
j=1

njB
r−j (1.5)

with digits 0 ≤ nj ≤ B− 1. On a machine with mantissa length l and exponent
length k, a total of r = l+k+1 (i.e., all digits of the mantissa and the exponent,
plus the sign of the exponent) digits are available for representing integers. The
set of machine integers is denoted I(B, r) = I(B, l+ k+1). Integers within this
set are represented exactly.

1.3 Rounding

Since the set of machine numbers is finite, any given real number must be
mapped into this set before it can be represented and used in a computer. This
operation is a reduction map called rounding:

ρ : R→M
x 7→ x̂ = ρ(x). (1.6)

Definition 1.2 (Rounding). Given x ∈ R, x̂ = ρ(x) is the number in M that
is closest to x, i.e., ρ(x) ∈ M such that |x − ρ(x)| is minimal. The unique
operation ρ fulfilling this is called rounding.



1.3. ROUNDING 5

Definition 1.3 (Machine accuracy, machine epsilon). The relative rounding
error is bounded by: ∣∣∣∣x− ρ(x)x

∣∣∣∣ < 1
2B

E−l

BE−1
=

1

2
B1−l =: ε. (1.7)

The number ε is called machine epsilon or machine accuracy.

The numerator of this bound can be understood as follows: The rounding error
comes from neglecting the digits of the mantissa that are not explicitly rep-
resented any more, i.e., m−(l+1)B

−(l+1), m−(l+2)B
−(l+2), m−(l+3)B

−(l+3) . . ..
By definition, we have 0 ≤ m−(l+i) ≤ B − 1, for all i = 1, 2, 3, . . ., so the ne-

glected part of the mantissa is < B−l. Since rounding is either up or down, the
maximum error in the last represented digit of the mantissa is 1

2B
−l.

The denominator is |x| ≥ |m−1||B−1|, i.e., the number to be represented is
certainly larger than or equal to the first digit of the mantissa alone. Because
of the normalization convention of the mantissa, we know that m−1 ≥ 1 and
hence:

1

|x|
≤ |B| = 1

|B−1|
.

Putting these together, and inserting again the exponents, we find for the com-
plete relative error bound:∣∣∣∣x− ρ(x)x

∣∣∣∣ < 1
2B

−lBE

|B−1|BE
=

1

2
B1−l, (1.8)

as stated in the definition.
As a corollary, we have that ∀α ∈ R with 0 ≤ α ≤ ε, we have ρ(1 + α) = 1.
Machine epsilon can hence be understood (and empirically determined!) as the
largest positive number that can be added to 1 so that the result remains 1 in
the machine’s floating-point number representation.

Why is the mantissa normalized?

By convention, as stated above, the mantissa is normalized such that for
any x̂ ̸= 0, m−1 ̸= 0. At first sight, the reasons for this may not be clear, as
it leads to a smaller range of representable numbers [x̂min, x̂max] than what
would be possible with an un-normalized mantissa. There are, however,
two good reasons for normalization:

1. For binary numbers, where B = 2, this allows “gaining” an additional
bit. Whenever a number is non-zero, we know that the first digit of
the mantissa is a 1. Therefore, the first digit of the mantissa does
not need to be stored explicitly. Since one then only has to store
m−2 . . .m−l, this effectively extends the mantissa length by one bit
(see also the IEEE 754 standard below).



6 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

2. The above upper bound on the rounding error would not be possible
for an un-normalized mantissa, where machine epsilon could poten-
tially be much larger. Normalizing the mantissa leads to a theoreti-
cally bounded machine epsilon.

Therefore, by normalizing the mantissa, one gains numerical guarantees
(bounded epsilon) and storage (an additional bit), at the expense of a
smaller representable range of numbers.

Example 1.4. Following are the characteristic figures of the IEEE 32-bit floating-
point number standard (IEEE 754):
B l k x̂min x̂max Emin Emax ε
2 24 8 1.175 · 10−38 3.402 · 1038 −126 127 1

2 · 2
−23 ≈ 6 · 10−8

A few comments, as there are some additional tweaks in the standard that we
have not discussed above:

• The IEEE 754 binary32 standard uses unsigned exponents. Above, we
have used an explicit sign bit in the exponent, followed by k digits. In
the IEEE 754 standard, k = 8 with no sign bit. Instead, the exponents
are represented in a shifted fashion with an offset of 127. To convert the
binary number stored in the exponent to the actual exponent, one has to
subtract 127 from it.

• The smallest exponent allowed is 1, the largest is 254. The exponents 0 and
255 are used to represent special conditions: An exponent of 0 indicates
and underflow (“subnormal number”) and an exponent of 255 an overflow
(“NaN/Inf”). Therefore, we have Emin = −126 and Emax = 127.

• The IEEE 754 standard achieves an effective l = 24 by explicitly storing
only 23 bits of the mantissa by using the normalization trick explained in
the box above. Therefore, we gain an additional bit without having to store
it.

1.4 Pseudo Arithmetic

Since M is finite, it is not closed with respect to the elementary arithmetic
operations +,−,×, /, while the set of real numbers R is closed.

Example 1.5. Assume M(10, 3, 2), then the result 9.22 + 1.22 = 10.44 /∈ M.
Instead, it will be rounded to: +922(+01) + 122(+01) = +104(+02) ∈M.

In order to close the set M, the arithmetic in R is replaced with the following
pseudo-arithmetic in M:

x̂⊕ ŷ = ρ(x̂+ ŷ)

x̂⊖ ŷ = ρ(x̂− ŷ)
x̂⊗ ŷ = ρ(x̂× ŷ)
x̂⊘ ŷ = ρ(x̂/ŷ) (1.9)



1.5. ERROR PROPAGATION 7

with the exception of overflows and underflows, when an error condition is re-
turned instead of the result.
The compute rules in pseudo arithmetics are changed. In, R, addition and
multiplication are associative, distributive, and commutative. In M, they are
only commutative, but not associative and not distributive.

Example 1.6. Associativity of addition in M(10, 3, 1). Let x = 9.22, y = 1.22,
z = 0.242. Their exact sum is x+ y + z = 10.682. In pseudo arithmetics:

x̂⊕ ŷ = ρ(10.44) = 10.4

(x̂⊕ ŷ)⊕ ẑ = ρ(10.4 + 0.242 = 10.642) = 10.6.

However, if we add them in a different order:

ŷ ⊕ ẑ = ρ(1.462) = 1.46

x̂⊕ (ŷ ⊕ ẑ) = ρ(9.22 + 1.46 = 10.68) = 10.7.

The second result is closer to the truth than the first.

The observation from the above example is in fact general. It is always best
in floating-point pseudo-arithmetic to sum numbers from small to large. This
is a simple algorithm to improve the numerical accuracy of computing long
sums. Kahan summation, Neumaier summation, the Shewchuk algorithm, and
Bresenham’s line algorithm are fancier algorithms to reduce the accumulation or
rounding errors in floating-point addition. They are implemented by default in
numerical computing languages, such as the BLAS library, Python, and Julia.

1.5 Error Propagation

Rounding errors from pseudo arithmetics propagate through downstream oper-
ations in an algorithm and may be amplified during further processing. The
goal of error propagation analysis is to see how and to which extent such error
amplification may happen.

Definition 1.4 (Absolute and Relative Error). Let x̂ = ρ(x) be the floating-
point approximation to a true value x. Then, we have:

1. Absolute error: ∆x = x̂− x ,

2. Relative error: δx = ∆x
x for x ̸= 0.

Let’s see how absolute errors are propagated by the four basic arithmetic oper-
ations:

∆(x± y) = (x̂± ŷ)− (x± y) = ∆x±∆y (1.10)

∆(x× y) = x̂ŷ − xy = (x+∆x)(y +∆y)− xy (1.11)

= x∆y + y∆x+∆x∆y ≈ x∆y + y∆x = xy(δx+ δy) (1.12)

∆(x/y) =
x̂

ŷ
− x

y
=
x+∆x

y +∆y
− x

y
≈ . . . ≈ x

y
δx− x

y
δy =

x

y
(δx− δy) (1.13)



8 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

where the approximations are to first order in the absolute error.
Next, consider how relative errors are propagated by the four basic arithmetic
operations:

δ(x± y) = ∆(x± y)
x± y

=
x

x± y
∆x

x
± y

x± y
∆y

y
=

x

x± y
δx± y

x± y
δy (1.14)

δ(x× y) = ∆(xy)

xy
≈ δx+ δy (1.15)

δ(x/y) =
∆(x/y)

x/y
≈ δx− δy (1.16)

where we have used Eqs. 1.10-1.13 in the derivations.
To summarize, absolute errors get added (subtracted) during addition (subtrac-
tion) and relative errors get added (subtracted) during multiplication (division).

1.5.1 Extinction

If |x±y| ≪ |x| or |x±y| ≪ |y|, it is possible that δ(x±y)≫ |δx|+|δy|, as the pre-
factors to the relative error components in Eq. 1.14 are ≫ 1. This phenomenon
of potentially massive error amplification is called numerical extinction.

Example 1.7. To illustrate extinction, consider the following two examples:

1. Assume M(10, 4, ·) and two numbers x = π and y = 22
7 . Then:

x̂⊖ ŷ = 3.142− 3.143 = −1.000 · 10−3.

Only one correct digit of the result remains. All other digits are lost due
to extinction.

2. Assume M(10, 3, ·) and two numbers x = 701 and y = 700. Then:

x2 − y2 = 1401

ρ(x2)⊖ ρ(y2) = 4.91 · 105 − 4.90 · 105 = 1.00 · 103.

Therefore, the absolute error is ∆ = 401 and the relative error δ = 0.3,
which is huge. The result of the calculation is wrong by almost one third
due to extinciton.

A better way to compute the same function is to use the fact that x2−y2 =
(x+ y)(x− y) and compute:

x̂⊕ ŷ = 1.40 · 103

x̂⊖ ŷ = 1.00,

leading to a result of 1400 and hence ∆ = 1 and δ = 10−3, which is a good
approximation given the short mantissa used.



1.5. ERROR PROPAGATION 9

In general, one should always avoid subtracting two almost equally large num-
bers. What “almost equally large” means depends on the absolute magnitude
of the numbers. Since machine numbers are not evenly distributed (see Fig.1.2),
closeness of numbers has to be measured by how many machine numbers lie be-
tween them. Note, however, that subtraction is not the only way for extinction
to occur, and more thorough error propagation analysis is usually required when
developing numerical algorithms. If extinction cannot be avoided, a higher nu-
merical precision (i.e., larger bit width) should be used locally. This is the case
whenever the function to be computed is badly conditioned, as captured by the
concept of condition numbers.

1.5.2 Condition number of a function

The effect of error amplification in a computation is formalized in the concept of
condition numbers. Consider a function H with exact result y = H(x). Assume
that the function can be evaluated exactly, but that the input argument x
contains rounding errors. The absolute error in the function return value then
is:

∆H(x) = H(x̂)−H(x) = H(x+∆x)−H(x) ≈ H ′(x)∆x. (1.17)

Here, we have used the differential quotient H ′(x) = dH
dx ≈

H(x+∆x)−H(x)
∆x to

approximate the derivative. Then, the relative error is:

δH(x) =
∆H(x)

H(x)
≈ xH ′(x)∆x

xH(x)
. (1.18)

Therefore:

|δH(x)| ≈
∣∣∣∣xH ′(x)

H(x)

∣∣∣∣︸ ︷︷ ︸
=:κH(x)

·|δx|. (1.19)

The scalar pre-factor κH(x), for x ̸= 0, is called the condition number of the
function H. It is the amplification factor of the relative error in x through
H. Functions with large condition numbers are called “badly conditioned”
or “ill-conditioned”. Functions with small condition number are called “well
conditioned”.

Ill-conditioned and ill-posed problems

There are two kinds of mathematical problems that are hard or impossible
to solve numerically: ill-posed problems and ill-conditioned problems.
Ill-conditioned problems, as introduced above, are characterized by a large
condition number and hence large amplification of the numerical rounding
errors. For an ill-conditioned problem, there exists no accurate numerical
algorithm. Rounding error amplification and extinction are necessarily a



10 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

problem. Only larger bit widths or different kinds of computer arithmetics
(e.g., arbitrary-precision arithmetics) may help.
Ill-posed problems cannot be solved numerically at all. A problem is called
“ill-posed” if no solution exists, the solution is not unique, or the solution
is unstable. In all of these cases, the problem cannot be computed numeri-
cally. This is obviously the case if no solution exists. But also if the solution
is not unique, it cannot be computed numerically, as you would never know
which one is computed. Finally, solutions are unstable if a small change
to the problem parameters leads to an unbounded change in the solution.
Small changes in problem parameters (e.g., initial conditions) can always
occur from rounding errors. If this has the potential to completely change
the solution, reliable numerical computation is also not possible.
Problems for which a solution exists, is unique, and is stable are called well
posed or well formed. They can be approximated numerically. If in addition
the problem is also well conditioned, then this approximation can be made
accurate (i.e., an accurate numerical approximation algorithm can exist).

Example 1.8. Consider the quadratic equation x2− 2ax+1 = 0 for a > 1. By
the standard formula, it possesses the following two roots:

x1 = a+
√
a2 − 1,

x2 = a−
√
a2 − 1.

Now, define the algorithm that takes as an input the value of a and computes as
an output x2, the smaller of the two roots. The function of the algorithm then
is:

x2 = H(a) = a−
√
a2 − 1

and its condition number is defined as:

κH(a) =

∣∣∣∣aH ′(a)

H(a)

∣∣∣∣ .
We find:

H ′(a) = 1− 2a

2
√
a2 − 1

and therefore

aH ′(a)

H(a)
=

a− a2
√
a2−1

a−
√
a2 − 1

=
−a
(

a√
a2−1

− 1
)

√
a2 − 1

(
a√
a2−1

− 1
) =

−a√
a2 − 1

.

Thus:

κH(a) =

∣∣∣∣ −a√
a2 − 1

∣∣∣∣ .
We observe two cases:



1.5. ERROR PROPAGATION 11

i) for a≫ 1, we have κH ≈ 1 and the problem is well conditioned. But in this
case, H(a) = a−

√
a2 − 1 is a bad algorithm, because

√
a2 − 1 ≈ a, which

leads to extinction (subtraction of two similarly large machine numbers).
However, a well-conditioned problem possesses a good algorithm, which
just needs to be found. In the present case, we can use the formula of
Vieta to find

H(a) =
1

a+
√
a2 − 1

,

which has a small condition number for large a and does not suffer from
extinction. This would thus be a good way of numerically evaluating the
root.

ii) for a ≈ 1, we have κH ≫ 1 and the problem is ill-conditioned. In this case,
there exists no good algorithm. Regardless of how we compute the result,
the error is always going to be amplified by a large condition number. We
could only use higher-precision arithmetics (i.e., more bits).

1.5.3 Condition number of a matrix

An important special case are linear functions, i.e., H is linear and can thus
be written as a matrix multiplication. This allows us to define the concept
of a condition number for matrices, which will be important for determining
the accuracy with which a linear system of equations Ax⃗ = b⃗ with regular
A ∈ Rn×n, b ̸= 0, can be solved for x⃗ = A−1⃗b ̸= 0.

Assume that b has rounding errors, i.e., that instead of b⃗ we have
ˆ⃗
b with small

magnitude of ∆b⃗ =
ˆ⃗
b− b⃗. Further assume that we can solve Aˆ⃗x =

ˆ⃗
b exactly and

that the entries of the matrix A are free of rounding errors. What is then the
connection between δ⃗b and δx⃗ = 1

|x⃗| (
ˆ⃗x− x⃗)? We find:

∆x⃗ = ˆ⃗x− x⃗ = A−1ˆ⃗b−A−1⃗b = A−1(
ˆ⃗
b− b⃗) = A−1∆b⃗ (1.20)

and therefore:

|δx⃗| = |A
−1∆b⃗|
|x⃗|

|⃗b||∆b⃗|
|⃗b||∆b⃗|

=
|

b⃗︷︸︸︷
Ax⃗ |
|x⃗|

|A−1∆b⃗|
|∆b⃗|

|δ⃗b|. (1.21)

Due to the triangular inequality, we have:

|Ax⃗|
|x⃗|
≤ ∥A∥

|A−1∆b⃗|
|∆b⃗|

≤
∥∥A−1

∥∥
and can therefore bound

|δx⃗| ≤ ∥A∥
∥∥A−1

∥∥ · |δ⃗b|.



12 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

The maximum amplification factor of the relative error therefore is:

κA := ∥A∥
∥∥A−1

∥∥ , (1.22)

which is called the condition number of the matrix A. The smallest condition
number any matrix can have is 1, because:

1 = ∥1∥ =
∥∥AA−1

∥∥ ≤ ∥A∥∥∥A−1
∥∥ = κA.

For the case that also the entries of the matrix A contain rounding errors, the

linear system of equations becomes Âˆ⃗x =
ˆ⃗
b, and one can show that:

|δx⃗| ≤ κA
1− κA ∥δA∥

(∥δA∥+ |δ⃗b|) (1.23)

with the above definition of the matrix condition number, κA ∥δA∥ < 1, and
the definition of the relative error δA understood element-wise.
Obviously, the value of the condition number of a matrix depends on the matrix
norm one chooses. A frequent choice is the 2-norm, as revisited in the box below.
Readers familiar with the concept can safely skip the box.

The 2-norm ∥A∥2 of a real n × n matrix A

An induced matrix norm is defined from the corresponding vector norm
by:

∥A∥∗ = sup
x̸=0

{
|Ax⃗|∗
|x⃗|∗

}
. (1.24)

So, specifically, the 2-norm for vectors induces the 2-norm of a real matrix
as:

∥A∥2 = sup
x̸=0

{
|Ax⃗|2
|x⃗|2

}
= sup

|x⃗|2=1

{|Ax⃗|2} . (1.25)

It can thus be understood as the Euclidean length of the longest vector
one can obtain by mapping a unit vector through A. For any real n × n
matrix A, ATA is symmetric. Therefore, an orthogonal matrix T exists,
such that

TT(ATA)T = D = diag(µ1, . . . , µn),

where the µi are the eigenvalues of ATA.
Using the orthogonal transformation x⃗ = Ty⃗, we have:

0 ≤ ∥A∥22 = sup
|x⃗|2=1

{
|Ax⃗|22

}
= sup

|y⃗|2=1

{
|ATy⃗|22

}
,

where in the last step we have used the fact that for any orthogonal trans-
formation |x⃗|2 = |y⃗|2. From the definition of the vector 2-norm |x⃗|22 = x⃗Tx⃗,



1.5. ERROR PROPAGATION 13

we further find:

= sup
|y⃗|2=1

y⃗T TT(ATA)T︸ ︷︷ ︸
D

y⃗

 = sup
|y⃗|2=1

{
n∑
i=1

µiy
2
i

}
= max

i
{µi}.

Therefore, the 2-norm of a matrix is:

∥A∥2 =
√
µmax ; µmax : largest eigenvalue of ATA. (1.26)

Some facts and observations:

• If A is orthogonal, then ∥A∥2 = 1, because ATA = 1.

• If AT = A is symmetric, then ATA = A2 and therefore ∥A∥2 =
|λmax| where λmax is the largest eigenvalue of A.

• If A is regular, then
∥∥A−1

∥∥
2
= 1√

µmin
where µmin is the smallest

eigenvalue of ATA. Note that µmin > 0 always because ATA is
positive definite.

• If AT = A is regular and symmetric, then
∥∥A−1

∥∥
2
= 1

|λmin| where

λmin is the smallest eigenvalue of A.

In the 2-norm, we have:

κA =

√
µmax√
µmin

µ : eigenvalues of ATA (1.27)

and for symmetric A : κA =
|λmax|
|λmin|

λ : eigenvalues of A. (1.28)

If one wants to measure the error in the 2-norm, this can be used as an alter-
native to Eq. 1.22 if appropriate for the purpose (e.g., the size of the matrix).

Example 1.9. We determine the condition numbers of the following matrices
in the 2-norm:

1.

A =

2 1 1
1 2 1
1 1 2


The eigenvalues of A are: (1, 1, 4) and therefore κA = 4. This is a small
condition number and, therefore, solving a linear system of equations with
this matrix is a well-conditioned mathematical problem that can be solved
accurately using numerical methods.

2.

A =

[
168 113
113 76

]



14 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

The eigenvalues of A are: (244.004 . . . ,−0.00409829 . . .) and therefore
κA ≈ 5.95 · 104, which is a large condition number. Solving a linear
system of equations with this matrix will amplify the relative error of the
right-hand side up to 60 000 fold, regardless of which algorithm is used to
actually perform the computations.

The following rule of thumb is useful in practice: On a computer with d-digit
arithmetics (i.e., floating point numbers are represented to d decimal digits
after the dot), the solution of a linear system with condition number κA ≈ 10k

is going to have approximately d− k correct digits.

1.5.4 Condition number of an algorithm

In the ideal case, a function H is encoded in an algorithm f that computes
the exact result f(x) for any input x. In reality, however, the input x̂ is only
approximate as it contains rounding errors, measurement errors, or other input
uncertainties. Also, exact algorithms for many mathematical problems do not
exist (or are not known or are too computationally expensive), so that we have

to use an approximate algorithm f̂ for computing the result f̂(x̂). We then
define the:

input error: x̂− x

total error: f̂(x̂)− f(x) = f̂(x̂)− f(x̂)︸ ︷︷ ︸
algorithm approximation error

+ f(x̂)− f(x)︸ ︷︷ ︸
propagated input error

.

Therefore, the total error is the sum of the algorithmic approximation error
(i.e., the error from using an approximate algorithm) plus the rounding error
propagated by the exact algorithm.

Similar to how the condition number of a function (see Section 1.5.2) tells us
whether a good algorithm for evaluating that function exists, the condition
number of an algorithm should tell us whether a good numerical approximation
algorithm can possibly exist. This can only be the case if the algorithm f itself
is stable with respect to input errors. This is quantified by the sensitivity of the
exact algorithm f :

κ =

∣∣∣∣ relative change in result

relative change in input

∣∣∣∣ = ∣∣∣∣ (f(x̂)− f(x))/f(x)(x̂− x)/x

∣∣∣∣ ≈ ∣∣∣∣xf ′(x)f(x)

∣∣∣∣ , (1.29)

because (relative error) = (absolute error) / (true value). This is the same ex-
pression for the condition number as we found in Eq. 1.19 for functions. Algo-
rithms with small κ are well-conditioned, and good approximations f̂ exist and
can be found. Algorithms with large κ are ill-conditioned. In an ill-conditioned
algorithm, a small error in the input leads to a large error in the result and,
thus, no good approximations f̂ exist.



1.6. BACKWARD ERROR ANALYSIS 15

Figure 1.3: Schematic of the concept of backward error analysis

1.6 Backward Error Analysis

We can now define the concept of forward and backward errors. The error
between the exact solution f(x) and the approximate solution f̂(x) is called the
forward error (see Fig. 1.3). Alternatively, we can ask the question: “how much
would we have to change the input such that the exact algorithm would yield
the same result as the approximate algorithm did for the original input?” That
is, what x̂ do we have to use such that f(x̂) = f̂(x)? The difference between this
so-defined x̂ (which is not a rounding of x) and the original x is the backward
error.

Example 1.10. Consider the example of computing the exponential function
F (x) = ex for an input x. One way of performing the computation is to use the
series expansion

f(x) = ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

There is no algorithm for computing this exactly, as it would require infinitely
many terms to be added. Therefore, we truncate the series at some point, defin-
ing an approximate algorithm, e.g.:

f̂(x) = 1 + x+
x2

2!
+
x3

3!
≈ ex.

The forward error then is: f̂(x)− f(x) = −x
4

4! −
53

5! − . . .. In order to determine
the backward error, we have to ask which x̂ we would have to use such that:

ex̂ = f̂(x).

Solving this for x̂, we find:
x̂ = log(f̂(x))



16 CHAPTER 1. FOUNDATIONS OF NUMERICAL COMPUTATION

and therefore the backward error x̂− x = log(f̂(x))− x.
Evaluating this, e.g., for x = 1, we find:

f(x) = 2.718282 . . .

f̂(x) = 2.6666667 . . .

x̂ = log(2.6666667 . . . ) = 0.980829 . . .

In this case, the forward error therefore is: −0.051615 . . . and the backward
error is: x̂− x = −0.019171 . . . .



Chapter 2

Linear System Solvers

One of the fundamental tasks in numerical computation is to solve a linear
system of n equations

Ax⃗ = b⃗ (2.1)

with a regular (i.e., invertible) matrix A ∈ Rn×n and right-hand side b⃗ ∈ Rn for
the unknown x⃗ ∈ Rn. This can be done using either direct solvers or iterative
solvers. The classic direct solver algorithm is Gaussian elimination.

2.1 Gaussian Elimination – LU Decomposition

Gaussian elimination computes the inverse of a matrix and hence the solution
x⃗ = A−1⃗b of a linear system of equations by subtracting multiples of rows from
the other rows in order to make entries zero. It proceeds by selecting a pivot
element of the matrix and then subtracting multiples of the row in which the
pivot lies from the other rows, so as to make all entries in the column of the pivot
become zero. The right-hand side is irrelevant for this, as Gaussian elimination
only operates on the matrix A.

Image: wikipedia
Johann Carl Friedrich
Gauss
∗ 30 April 1777

Brunswick, Principality of
Brunswick-Wolfenbüttel

† 23 February 1855
Göttingen, Kingdom of
Hanover

Example 2.1. Consider the matrix

A =

 2 −1 −3
6 1 −10
−2 −7 8

 .
We perform Gaussian elimination of A. In the following, the pivots are circled,
whereas the multiples of the pivotal row that are subtracted from the other rows
are written to the left of the matrix (i.e., the first 3 means row2 = row2−3row1,
etc.). All entries that thus became zero are replaced by these factors (boxed
numbers). The three steps of Gaussian elimination for the above matrix then

17



18 CHAPTER 2. LINEAR SYSTEM SOLVERS

are:

3
−1

 2 −1 −3
6 1 −10
−2 −7 8

 −→
−2

 2 −1 −3
3 4 −1
-1 −8 5

 −→
 2 −1 −3

3 4 −1
-1 -2 3

 .
Splitting the result along the diagonal, we can put all entries below the diago-
nal into a matrix L with unit diagonal and all entries above and including the
diagonal into a matrix U, thus:

L =

 1 0 0
3 1 0
−1 −2 1

 ,
U =

2 −1 −3
0 4 −1
0 0 3

 .
Due to its shape, L is called a lower triangular matrix and U an upper triangular
matrix.

In general, we have:

Theorem 2.1. Gaussian elimination on A ∈ Rn×n without row permutations
yields a lower triangular matrix L with ones in the diagonal and an upper tri-
angular matrix U. L and U are regular, and we have A = LU. This is called
the LU-decomposition of the matrix A.

We refer to the literature for proofs of this theorem. Using the LU-decomposition,
the linear system can be reformulated as:

Ax⃗ = b⃗

L Ux⃗︸︷︷︸
c⃗

= b⃗

⇒
{

Lc⃗ = b⃗
Ux⃗ = c⃗ ,

which decomposes the linear system into two new linear systems. These new
systems, however, can be solved straightforwardly due to the triangular shapes
of the matrices L and U. The first system can directly be solved for c⃗ by forward
substitution. Then, the second system is solved for x⃗ by backward substitution.

Example 2.2. Consider again the example from above, now with the right-hand
side

b⃗ =

 4
−1
25

 .



2.1. GAUSSIAN ELIMINATION – LU DECOMPOSITION 19

The L-equation reads:  1 0 0
3 1 0
−1 −2 1

c1c2
c3

 =

 4
−1
25

 .
The first row simply says c1 = 4. Using this knowledge in the second row, we
find: 3c1 + c2 = −1 ⇒ 12 + c2 = −1 and thus c2 = −13. And from the third
row we find c3 = 3. The U-equation then reads:2 −1 −3

0 4 −1
0 0 3

x1x2
x3

 =

 4
−13
3

 .
This time we start from the bottom (i.e., backward substitution), where the last
row reads: 3x3 = 3 and thus x3 = 1. The second row says: 4x2 − 1 = −13 ⇒
x2 = −3. And finally, the first row tells us: 2x1 + 3− 3 = 4 ⇒ x1 = 2. So the
solution of this linear system of equations is:

x⃗ =

 2
−3
1

 .
The final algorithm in its simplest form is given in Algorithm 1. The first
step of this algorithms requires O(n3) compute operations, whereas the second
and third steps each require O(n2) operations (up to n operations per row, n
rows). If the same system is to be solved for multiple right-hand sides, the
computational cost for each additional right-hand side is only O(n2), since the
LU-decomposition only needs to be done once and the factors can be stored and
re-used.

Algorithm 1 Direct linear solver without pivoting

1: (L,U) = LU-decomposition of A ▷ O(n3)

2: solve Lc⃗ = b⃗ for c⃗ by forward substitution ▷ O(n2)
3: solve Ux⃗ = c⃗ for x⃗ by backward substitution ▷ O(n2)

2.1.1 Pivoting strategies

In the example above, we have simply chosen the first element along the diagonal
as the first pivot, followed by the second element, third, and so on. This is not
always good, as it may lead to amplification of rounding errors and numerical
extinction (see Sec. 1.5), in particular if a pivot is chosen that is small in com-
parison with the other entries in that column. Such a pivot has to be multiplied
by a large number, thus losing the least-significant digits. Pivoting strategies
aim to select the pivots in a smarter way, such that the process of Gaussian
elimination is numerically more accurate. They are based on re-arranging the



20 CHAPTER 2. LINEAR SYSTEM SOLVERS

rows of A before starting Gaussian elimination. Since the ordering of the equa-
tions in a linear system of equations in inconsequential, rows may be arbitrarily
re-arranged before solving.

Definition 2.1 (Permutation matrix). A n × n matrix P with exactly one 1
in each column and each row, and all other elements equal to 0, is called a
permutation matrix. P is regular, as it can be obtained from the identity matrix
1 by row permutations. Any matrix PA has the same row permutations with
respect to A as P has with respect to 1.

Pivoting strategies amount to first permutating the rows ofA and then perform-
ing LU-decomposition as above, successively selecting pivots down the diagonal.
Therefore, LU = PA.

Theorem 2.2. Gaussian elimination on PA ∈ Rn×n, where P is a permutation
matrix, yields a lower triangular matrix L with ones in the diagonal and an upper
triangular matrix U. L and U are regular, and we have PA = LU.

Due to this theorem, which we do not prove here, we find for the situation with
pivoting:

Ax⃗ = b⃗⇐⇒ PAx⃗ = Pb⃗⇐⇒ LUx⃗ = Pb⃗ =⇒ Lc⃗ = Pb⃗; Ux⃗ = c⃗

and the algorithm is given in Algorithm 2.

Algorithm 2 Direct linear solver with pivoting

1: (L,U) = LU-decomposition of PA with permutation matrix P ▷ O(n3)

2: solve Lc⃗ = Pb⃗ for c⃗ by forward substitution ▷ O(n2)
3: solve Ux⃗ = c⃗ for x⃗ by backward substitution ▷ O(n2)

In practical implementations, it is more memory-efficient to store the permu-
tations in a vector instead of a matrix. Storing the permutation matrix would
require O(n2) memory, whereas storing a permutation vector only requires O(n)
memory. A permutation vector is obtained from the vector v⃗T = [1, 2, 3, . . . , n]
by applying the permutation matrix, thus Pv⃗. This permutation vector can
then directly be used to translate row indices when looping over the rows of
PA.
Now that we know how pivot selection can be implemented by permutations, the
question of course is how to select the pivots, i.e., what permutation P to use.
When calculating the LU-decomposition on a computer with finite-precision
floating-point arithmetic (see Chapter 1), pivot selection plays an important
role in ensuring numerical accuracy of the result. The pivoting strategy used in
Example 2.1 is called diagonal strategy and it simply consists in selecting the
pivots in order along the diagonal of the matrix from top-left to bottom-right.
However, the diagonal strategy without permutation may be arbitrarily bad and
lead to significant extinction if a small pivot is chosen. Conversely, the diagonal
strategy is good if the matrix is diagonally dominant, i.e., if the absolute value



2.2. LINEAR FIXED-POINT ITERATIONS 21

of the diagonal element in each row is equal to or larger than the sum of the
absolute values of all other elements in that row.
This observation inspires another pivoting strategy, the column maximum
strategy, also known as partial pivoting. In this strategy, the rows of the matrix
are rearranged such that the row containing the largest entry (by absolute value)
in the first column is first, and so on. This avoids extinction because the pivot
never needs to be multiplied by a large number. However, it can still lead to
inaccurate results if the equations are badly scaled, i.e., if the absolute values
of the entries within a row range over a wide spectrum. Also, it may not always
be possible to choose the largest remaining pivot, if the corresponding row has
already been used before, leading to sub-optimal pivots.

Image: wikipedia
Volker Strassen
∗ 29 April 1936

Düsseldorf, Germany

Image: ethw wiki
Don Coppersmith
∗ c. 1950, USA

Image: ithistory.org
Shmuel Winograd
∗ 4 January 1936

Tel Aviv, Israel
† 2019, New York, USA

In such situations, the relative column maximum strategy, also called com-
plete pivoting can help. In this strategy, one first scales each equation (i.e., row

of A and corresponding entry in b⃗) such that maxk |aik| = 1, i.e., the largest en-
try of row i has absolute value 1. After this scaling has been applied to all rows,
choose the largest possible pivots, ideally the 1s if possible. The scaling can
efficiently be done by multiplying A from the left with diag(1/maxk |aik| ∀i).
In some cases, e.g., when the goal is to actually invert the matrix A rather than
solve a linear system of equations, LU-decomposition (Gaussian elimination)
can still be done on the original, unscaled matrix. The scaling is then only used
to decide the pivots.

2.2 Linear Fixed-Point Iterations

Direct solvers, like LU-decomposition or Gaussian elimination, can be compu-
tationally expensive. Gaussian elimination needs O(n3) compute operations.
While more efficient direct solvers are known, such as the Strassen algorithm
(O(n2.807355)) or the Coppersmith-Winograd algorithm (O(n2.3728639)), direct
solvers become inefficient and potentially numerically inaccurate for large linear
systems, such as those often encountered when numerically solving partial dif-
ferential equations. In that case, iterative methods may be preferred. They do
not directly compute the solution to machine precision, like direct solvers do,
but iteratively improve an approximation to the solution.
Consider again the problem from Eq. 2.1 for a regular, real n×n matrix A. An
iterative solver computes a solution x⃗∗ that approximates the true and unique
solution x⃗. It does so by starting from an initial guess x⃗0 and iterating

x⃗k+1 = f(x⃗k) , k = 0, 1, 2 . . . (2.2)

The simplest class of iteration functions are linear functions. Then:

f(x⃗) = Tx⃗+ c⃗

for some matrix T ∈ Rn×n and vector c⃗ ∈ Rn. The resulting iteration is:

x⃗k+1 = Tx⃗k + c⃗ , k = 0, 1, 2 . . . (2.3)



22 CHAPTER 2. LINEAR SYSTEM SOLVERS

If {x⃗k} converges, i.e. lim
k→∞

x⃗k = x⃗∗, then obviously:

x⃗∗ = Tx⃗∗ + c⃗ (2.4)

and x⃗∗ is the uniquely determined fixed point of the iteration. Such a fixed
point exists if and only if [1 − T] is regular, because solving Eq. 2.4 for x⃗∗
yields: x⃗∗ = [1 − T]−1c⃗. In order for this fixed point x⃗∗ to be the correct
solution of the linear system of equations in Eq. 2.1, we have to require:

Ax⃗∗ = A[1−T]−1c⃗ = b⃗. (2.5)

Iterations that fulfill this condition are called consistent. Consistency implies
that a fixed point exists, and that this fixed point is the correct solution of
Eq. 2.1, i.e., x⃗∗ = x⃗.

2.2.1 Convergence criteria

A natural question to ask at this point is under which conditions the iteration
in Eq. 2.3 converges to its fixed point if a fixed point exists. In order to analyze
this, consider the absolute error (i.e., distance from the fixed point) at iteration
k, e⃗k := x⃗k − x⃗∗. Subtracting 2.4 from 2.3, we find that

e⃗k+1 = Te⃗k , k = 0, 1, 2 . . . . (2.6)

and therefore, after k iterations, e⃗k = Tke⃗0.

Theorem 2.3. Let [1 − T] be regular. Then, the iteration defined in Eq. 2.3
converges for any start vector x⃗0 if ∥T∥ < 1.

Proof. |e⃗k| = |Tke⃗0| ≤
∥∥Tk

∥∥ · |e⃗0| ≤ ∥T∥k · |e⃗0| =⇒ |e⃗k| → 0 as k → ∞ if
∥T∥ < 1.

It is evident from the proof that convergence is linear with decay factor ∥T∥,
i.e., |e⃗k+1| ≈ ∥T∥ · |e⃗k|. Moreover, it is clear that requiring this condition for
all possible matrix norms is sufficient for convergence, but it is not necessary.
It is only necessary that there exists a norm for which it holds. Therefore, the
question arises, whether there exists a necessary and sufficient condition for a
certain choice of matrix norm that is easy to check numerically.
For this, we consider the following quantity:

Definition 2.2 (Spectral radius). Let λi, i = 1, . . . , n, be the eigenvalues of a
matrix T ∈ Rn×n. Then,

ρ(T) := max
i
|λi|

is called the spectral radius of T.



2.2. LINEAR FIXED-POINT ITERATIONS 23

The spectral radius provides a lower bound on all matrix norms, as stated in
the following theorem.

Theorem 2.4. For any induced matrix norm ∥·∥ and any matrix T ∈ Rn×n, it
is ρ(T) ≤ ∥T∥.

Proof. ρ(T) = |λj | with corresponding eigenvector x⃗j . Then:

∥T∥ = sup
x̸=0

|Tx⃗|
|x⃗|
≥ |Tx⃗j |
|x⃗j |

=
|λj x⃗j |
|x⃗j |

= |λj | = ρ(T),

where we have used the definition of an induced matrix norm from Eq. 1.24 and
the defining property of eigenvectors.

The bound provided by the spectral radius is tight in the sense that for any
matrix T ∈ Rn×n, one can always construct a certain matrix norm whose value
is arbitrarily close to the value of the spectral radius. This is stated in the
following theorem:

Theorem 2.5. For every matrix T ∈ Rn×n and every ϵ > 0, there exists an
induced matrix norm ∥·∥ϵ for which

∥T∥ϵ ≤ ρ(T) + ϵ.

The proof of this theorem is more involved and therefore omitted here. But
letting ϵ → 0, we find that there always exists a matrix norm whose value is
identical with the value of the spectral radius (i.e., is ≤ and at the same time
≥).
This leads to the following result, which is what we were looking for:

Theorem 2.6. If ρ(T) < 1, then there exists an ϵ > 0 and an induced matrix
norm ∥·∥ϵ such that ∥T∥ϵ < 1.

Proof. Choosing ϵ = (1 − ρ(T))/2 > 0 proves the claim due to Theorem 2.5,
where the right-hand side then becomes 1

2 + ρ
2 < 1 if ρ < 1.

The above theorem states that if the spectral radius of a matrix is less than one,
then there always exists a norm whose value is also less than one, and therefore
the linear fixed-point iteration converges. If the spectral radius is larger than
one, no norm less than one exists, because the spectral radius is a lower bound on
all norms, and the linear fixed-point iteration does not converge. Therefore, we
find that the following condition, which is moreover easily checked numerically,
is both necessary and sufficient:

If and only if ρ(T) < 1, then Eq. 2.3 converges for any x⃗0.
If also Eq. 2.5 is fulfilled, convergence is to the correct solution x⃗.



24 CHAPTER 2. LINEAR SYSTEM SOLVERS

The last remaining question is when to stop the iteration. For this, heuristic
termination criteria are used that are usually of the type:

|x⃗k − x⃗k−1| ≤ RTOL|x⃗k|+ATOL. (2.7)

for some user-defined relative tolerance RTOL and absolute tolerance ATOL,
chosen according to how accurate the application at hand requires the results to
be. This stops the iterations as soon as the change in the solution is below toler-
ance. Using both a relative and an absolute tolerance is good practice, because
for solutions of small or large absolute value, one or the other could be more
relevant. However, it is important to keep in mind that while these termination
criteria are necessary indicators of convergence, they are not sufficient.

2.2.2 Jacobi method

Now that we know the basics of iterative methods, we look at a few classical
examples of specific iterations used to solve linear systems of equations. They
are usually based on decomposing the matrix into additive summands, e.g.,:

A = D+ L+U

where here:

• D is a diagonal matrix containing all diagonal entries from A, and zeros
everywhere else.

• L is a lower triangular matrix containing all entries from A below (but
without) the diagonal, and zeros everywhere else.

• U is an upper triangular matrix containing all entries from A above (but
without) the diagonal, and zeros everywhere else.

Clearly then, the problem in Eq. 2.1 can be written as:

Ax⃗ = b

Dx⃗+ (L+U)x⃗ = b⃗

Dx⃗ = −(L+U)︸ ︷︷ ︸
S

x⃗+ b⃗, (2.8)

suggesting the Iteration:

Dx⃗k+1 = Sx⃗k + b⃗. (2.9)

This is the classic Jacobi iteration with S = −L − U. Comparing this to
Eq. 2.3, we can identify the iteration matrix and vector of the Jacobi method
as: TJ = D−1S and c⃗J = D−1⃗b, respectively. If D is regular, then this iteration
is consistent, because Eq. 2.5 becomes:

A[1−TJ ]
−1c⃗J = A[1−D−1S]−1D−1⃗b = Ax⃗ = b⃗,



2.2. LINEAR FIXED-POINT ITERATIONS 25

where in the last step we used that solving Eq. 2.8 for x⃗ yields:

Dx⃗ = Sx⃗+ b⃗

Dx⃗− Sx⃗ = b⃗

[1−D−1S]x⃗ = D−1⃗b

x⃗ = [1−D−1S]−1D−1⃗b.

According to Theorems 2.3 and 2.4, the Jacobi method converges to the correct
solution x⃗ for any start vector x⃗0 if D is regular and

∥∥D−1S
∥∥ < 1, for which it

is necessary and sufficient that ρ(D−1S) < 1 (see Theorem 2.6).
Image: wikipedia
Carl Gustav Jacob Jacobi
∗ 10 December 1804

Potsdam, Prussia
† 18 February 1851

Berlin, Prussia

Definition 2.3 (Diagonally dominant). A matrix A = (aij) is diagonally dom-
inant if and only if

|aii| ≥
n∑
j=1
j ̸=i

|aij |, i = 1, 2, . . . , n

and strictly diagonally dominant if and only if

|aii| >
n∑
j=1
j ̸=i

|aij |, i = 1, 2, . . . , n.

Theorem 2.7. The Jacobi iteration is consistent and converges if A is strictly
diagonally dominant.

Proof. Take ∥T∥∞ = maxi
∑n
j=1 |tij |, the maximum norm of the matrix T, i.e.,

the largest row sum of absolute values. Then:

∥T∥∞ =
∥∥D−1S

∥∥
∞ =⇒ max

i

n∑
j=1

|tij | = max
i

n∑
j=1
j ̸=i

|aij |
|aii|

< 1,

where in the last expression we have used the fact that sii = 0 because S =
−L −U only has zeros on the diagonal. Therefore, ∥T∥∞ < 1, which implies
that ρ(T) < 1, because the spectral radius is a lower bound on all matrix norms,
and the iteration converges.

Note that the condition is sufficient for convergence, but not necessary. Indeed,
the Jacobi method is also found to converge for diagonally dominant matrices
as long as they are irreducible (not discussed here).

2.2.3 Gauss-Seidel method
Image: wikipedia
Philipp Ludwig von Seidel
∗ 24 October 1821

Zweibrücken, Germany
† 13 August 1896

Munich, German Empire

While the Jacobi method is simple and elegant, it typically converges slowly,
i.e. ∥TJ∥ < 1 but close to 1, requiring many iterations to determine a good



26 CHAPTER 2. LINEAR SYSTEM SOLVERS

approximation to the solution. Moreover, convergence is guaranteed (i.e., suffi-
cient condition) only for strictly diagonally dominant matrices, which is a rather
limited set of problems. Several related methods are available to improve conver-
gence and/or enlarge the feasible problem set. the classic Gauss-Seidel method
does so by considering a part of the already calculated new approximation in
each iteration:

Dx⃗k+1 = −Lx⃗k+1 −Ux⃗k + b⃗.

Therefore, the two summands of the Jacobi matrix S are considered separately,
and the new solution x⃗k+1 is used with one of them, whereas the old approxi-
mation x⃗k is used with the other. Solving this for x⃗k+1 yields the iteration:

x⃗k+1 = −(D+ L)−1Ux⃗k + (D+ L)−1⃗b. (2.10)

The iteration matrix of the Gauss-Seidel method therefore is: TGS = −(D +

L)−1U and the iteration vector is: c⃗GS = (D + L)−1⃗b. The Gauss-Seidel
method is consistent and converges for any start vector x⃗0 if D is regular and∥∥(D+ L)−1U

∥∥ < 1. This turns out (not proven here) to be the case whenever
A is:

1. either strictly diagonally dominant,

2. or symmetric and positive definite.

Definition 2.4 (Positive definite). A matrix A ∈ Rn×n is positive definite if
and only if u⃗TAu⃗ > 0 for all u⃗ ∈ Rn \ {0}.

Gauss-Seidel therefore converges for a larger class of matrices than Jacobi. In
addition, the Gauss-Seidel method converges at about twice the speed of the
Jacobi method, as, for a certain important class of matrices,

∥TGS∥ ≈ ∥TJ∥2 .

2.2.4 Successive Over-Relaxation (SOR) method

The Successive Over-Relaxation (SOR) method to iteratively solve linear sys-
tems of equations on a digital computer was independently developed by David
M. Young Jr. and by Stanley P. Frankel, both in 1950. It further improves
convergence speed over the Gauss-Seidel method by weighting between the old
and new Gauss-Seidel vectors:

Dx⃗k+1 = ω(−Lx⃗k+1 −Ux⃗k + b⃗) + (1− ω)Dx⃗k

with weight ω ∈ R+. Solving this for x⃗k+1, one obtains the iteration:

x⃗k+1 = (D+ ωL)−1(−ωU+ (1− ω)D)︸ ︷︷ ︸
TSOR

x⃗k + (D+ ωL)−1ω︸ ︷︷ ︸
c⃗SOR

b⃗. (2.11)



2.3. GRADIENT DESCENT 27

The SOR method is consistent because [1 − TSOR] = (D + ωL)−1(D + ωL +
ωU− (1− ω)D) = (D+ ωL)−1ωA is regular (since A is regular by definition)

and [1−TSOR]
−1c⃗SOR = A−1⃗b, fulfilling Eq. 2.5.

Image: computerhope.com
David M. Young Jr.
∗ 20 October 1923

Quincy, Mass., USA
† 21 December 2008

Austin, Texas, USA

Image: wikipedia
Stanley Phillips Frankel
∗ 1919

Los Angeles, CA, USA
† May 1978

Los Angeles, CA, USA

SOR converges for:

1. all 0 < ω ≤ 1 for A for which the Jacobi method also converges,

2. all 0 < ω < 2 for symmetric and positive definite A.

For ω ≥ 2, the SOR method never converges.
The art in using SOR effectively is to choose good values for the relaxation
parameter ω. A classic good choice is

ω =
2

1 +
√
1− ρ(TJ)2

,

for which the SOR method converges much faster than the Gauss-Seidel method.
For certain matricesA with a special block-diagonal form (so-called T-matrices),
this choice of ω is provably optimal. This is particularly relevant in applications
of numerically solving partial differential equations (see Sec. 11.2).

2.3 Gradient Descent

If the matrixA is symmetric and positive definite, the linear system of equations
can be formulated as an equivalent convex optimization problem, which can
then be solved using gradient descent approaches. The problem in Eq. 2.1 can
equivalently be written as:

Ax⃗+ b⃗ = 0 (2.12)

when replacing b⃗ with −b⃗. For symmetric and positive definite A, we have:

1. all eigenvalues λi > 0, i = 1, 2, 3, . . . , n =⇒ A is regular since det(A) =∏
i λi > 0,

2. ∃T orthogonal, such that TTAT = D = diag(λ1, . . . , λn).

We do not prove these statements here, as they are well-known facts for sym-
metric, positive definite matrices.
Now consider the functional

F (u) :=
1

2
u⃗TAu⃗+ u⃗Tb⃗ (2.13)

with gradient

∇F =


∂F
∂u1

...
∂F
∂un

 = Au⃗+ b⃗ =: r⃗(u⃗). (2.14)

We call r⃗(u⃗) the residual. Now we claim:



28 CHAPTER 2. LINEAR SYSTEM SOLVERS

Theorem 2.8. If and only if x⃗ is a solution of the linear system of equations
Ax⃗+ b⃗ = 0 for symmetric, positive definite A, then x⃗ is also a minimum of the
functional F (u) = 1

2 u⃗
TAu⃗+ u⃗Tb⃗, and vice versa. Hence:

x⃗ = −A−1⃗b = arg min
u⃗∈Rn

F (u⃗).

Proof. We first prove the inverse direction, i.e., that x⃗ being a minimum of F
implies that it solves the linear system. This is easy to see, because if u⃗ = x⃗ is a
minimum of F , then ∇F (x⃗) = Ax⃗+ b⃗ = 0, which solves the linear system. Now
we prove the forward direction, i.e., that if x⃗ solves the linear system then this
implies that it is also a minimum of F . Certainly Ax⃗ + b⃗ = 0 =⇒ ∇F (x⃗) = 0,
implying that x⃗ is an extremal point of F (i.e., a minimum, maximum, or saddle
point). To show that it actually is a minimum, we perturb the point by any
v⃗ ∈ Rn ̸= 0⃗ and observe that:

F (x⃗+ v⃗) =
1

2
(x⃗+ v⃗)TA(x⃗+ v⃗) + (x⃗+ v⃗)Tb⃗

= F (x⃗) +
1

2

 x⃗TA︸︷︷︸
(Ax⃗)T=−b⃗T

v⃗ + v⃗T Ax⃗︸︷︷︸
−b⃗

+v⃗TAv⃗

+ v⃗Tb⃗

= F (x⃗) +
1

2
v⃗TAv⃗︸ ︷︷ ︸
>0

> F (x⃗).

In the second step, we used the fact that A is symmetric, and in the last step we
used the fact that A is positive definite. Sine the value of F is hence increasing
in every direction, x⃗ is a minimum.

The theorem provides us with an alternative way of solving the linear system
in Eq. 2.12, namely by finding the minimum of the functional in Eq. 2.13.
Since the solution of the linear system is unique for regular A, there exists only
one minimum, implying that the functional is convex. Any minimum we find
therefore is the minimum.

2.3.1 Geometric interpretation

The question of course is how the minimum of F can be numerically computed.
For this, it is instructive to look at an example in n = 2 dimensions and to
interpret y = F (u⃗) as a function over the 2D plane. The minimum of the
function is at location x⃗ and has value m := F (x⃗). Applying the transformation
v⃗ := u⃗ − x⃗ and w := y − m shifts the minimum to be located at 0⃗ and have
value 0. For the function value, we find:

w = y −m = F (u⃗)− F (x⃗) = 1

2
u⃗TAu⃗+ u⃗Tb⃗− 1

2
x⃗TAx⃗− x⃗Tb⃗︸︷︷︸

−x⃗TAx⃗

=
1

2
u⃗TAu⃗+ u⃗Tb⃗+

1

2
x⃗TAx⃗.



2.3. GRADIENT DESCENT 29

We also find that:

v⃗TAv⃗ = (u⃗− x⃗)TA(u⃗− x⃗) = u⃗TAu⃗− u⃗TAx⃗︸ ︷︷ ︸
−u⃗Tb⃗

− x⃗TA︸︷︷︸
(Ax⃗)T=−b⃗T

u⃗+ x⃗TAx⃗

= u⃗TAu⃗+ 2u⃗Tb⃗+ x⃗TAx⃗

and therefore:

w =
1

2
v⃗TAv⃗ = G(v⃗).

The shifted function G(v⃗) := F (u⃗− x⃗)−m has the gradient ∇G(v⃗) = Av⃗. This
function in two dimensions, w = G(v1, v2), is drawn in Fig. 2.1 in both side and
top views.

Image: wikipedia
Augustin-Louis Cauchy
∗ 21 August 1789

Paris, France
† 23 May 1857

Sceaux, France

Figure 2.1: Side and top views of w = G(v1, v2) with contour lines.

The contour lines (iso-lines) G(v⃗) = const are ellipses, and the residual r⃗ =
∇G is always perpendicular to these ellipses. The gradient of any function is
everywhere perpendicular to the function’s contour line through that point and
points in the direction of steepest increase of the function value. Since we aim
to minimize G, and the gradient can be computed at every point by a simple
matrix-vector multiplication ∇G(v⃗) = Av⃗, the idea is to iteratively take steps
in direction of the negative gradient in order to approach the minimum of the
function. This method is called gradient descent, and it constitutes a generic
recipe for finding minima in functions.



30 CHAPTER 2. LINEAR SYSTEM SOLVERS

2.3.2 Algorithm

The gradient descent algorithm was suggested by Augustin-Louis Cauch in
1847. It starts from an initial point u⃗0 and looks for the minimum in direc-
tion −∇F (u⃗) = −(Au⃗+ b⃗) (cf. Eq. 2.14). The algorithm is given in Algorithm
3. It requires setting a step size α that governs what fraction of the gradient
magnitude the method walks down in one step. This is a critical parameter. If
it set too large, the minimum can be overshot. If it is set too small, the algo-
rithm converges very slowly. For gradient descent over quadratic forms, such
as Eq. 2.13, the step size α must be chosen such that the (real) eigenvalues of
[1− αA] are in the open interval (−1, 1). Then the algorithm converges.

Algorithm 3 Gradient descent

1: procedure GradientDescent(u⃗0, RTOL, ATOL)
2: ▷ starting value u⃗0, relative and absolute tolerances RTOL, ATOL
3: k = −1
4: repeat
5: k = k + 1
6: u⃗k+1 = u⃗k − α(Au⃗k + b⃗) ▷ step down the gradient
7: until |u⃗k+1 − u⃗k| ≤ |u⃗k+1|RTOL + TOL
8: end procedure

Instead of using a fixed step size α, one can also perform a line search (e.g.,
bisection search) along the negative gradient, which always jumps to the next
point where the direction of the gradient is tangential to a contour ellipse. For
the shifted problem, this point can be computed analytically, as:

[A(v⃗ − αAv⃗)]TAv⃗ = 0

(v⃗ − αAv⃗)TAAv⃗ = 0

(Av⃗)T(Av⃗)− α(Av⃗)TA(Av⃗) = 0

α =
|Av⃗|22

(Av⃗)TA(Av⃗)
=
|Av⃗|22
|Av⃗|2A

, (2.15)

where in the second step we used the fact that A is symmetric. The quantity
|p|2A = ⟨p⃗,Ap⃗⟩ = p⃗TAp⃗ > 0 is the square of the A-norm of a vector p⃗ ∈ Rn for a
positive definite matrix A. This, however, is not useful on the original problem,
since computing v⃗ = u⃗ − x⃗ requires knowing the solution x⃗. A fixed step size,
or line search, are therefore used in practice.
A general disadvantage of gradient descent is that the convergence toward the
minimum is slow if the condition number of A is large. According to Eq. 1.28
for symmetric matrices, the condition number is:

κA =
|λmax|
|λmin|

.

The largest and smallest eigenvalues of A, however, correspond to the lengths
of the longest and shortest half-axes of the ellipsoidal contours of F . Therefore,



2.4. CONJUGATE GRADIENT METHOD 31

a large condition number implies a large aspect ratio for the ellipses (i.e., very
elongated ellipses). You can easily convince yourself with a little drawing that
in this case, taking steps in directions perpendicular to the ellipses takes a very
long time to reach the center.

2.4 Conjugate Gradient Method

The convergence for problems for large κA can be significantly improved by
introducing the concept of conjugate directions.

Definition 2.5 (Conjugate direction). Let F (u⃗) ∈ R be a continuously differ-
entiable function with gradient ∇F = r⃗. Let x⃗1 be the point where the direction
−r⃗(x⃗0) is tangential to a contour of the function. The conjugate direction to
−r⃗(x⃗0) then points from x⃗1 to the origin.

Image: wikipedia
Eduard Stiefel
∗ 21 April 1909

Zürich, Switzerland
† 25 November 1978

Zürich, Switzerland

Image: wikipedia
Magnus Hestenes
∗ 13 February 1906

Bricelyn, Minnesota, USA
† 31 May 1991

Los Angeles, CA, USA

Figure 2.2: v⃗1 is the conjugate direction of −r⃗0.

For the shifted problem G(v⃗), which has the minimum at 0, the conjugate
direction to the gradient points to the minimum in 2D. Looking for the minimum
along this direction is going to solve the problem. This is illustrated in Fig. 2.2,
where r⃗1 = ∇G(v⃗1) = Av⃗1. The tangent to the contour ellipse at v⃗1 is r⃗0 and
therefore

−r⃗0 ⊥ r⃗1 ⇐⇒ −r⃗0Tr⃗1 = 0.

Substituting the expression for r⃗1: −r⃗0TAv⃗1 = 0, which implies that −r⃗0 and
v⃗1 are conjugate directions.
In general, for the functional from Eq. 2.13, two directions p⃗ and q⃗ are conjugate
if

p⃗TAq⃗ = 0.

In 3D (i.e., n = 3), the contours of G(v⃗) are ellipsoids and the conjugate gradient
method consists of the steps:

1. Gradient descent (direction −r⃗0) until the next tangential ellipsoid is
touched in point r⃗1.



32 CHAPTER 2. LINEAR SYSTEM SOLVERS

2. Search for the minimum in the plane spanned by −r⃗0 and r⃗1. This plane
intersects the contour ellipsoid in a concentric ellipse. The minimum in
this plane is located at the center of this ellipse. The direction p⃗2 that is
conjugate to r⃗0 points to the minimum (see Fig. 2.3).

3. Compute r⃗2 = ∇G(v⃗2) and search for the minimum in the plane spanned
by r⃗2 and p⃗2. The point v⃗3 thus found is the origin and hence the minimum
is found.

Figure 2.3: Illustration of one step of the conjugate gradient method in 3D.

Therefore, the conjugate gradient method is guaranteed to find the minimum
in 3D in 3 steps. The conjugate gradient method was developed by Magnus
Hestenes and Eduard Stiefel in 1952 when programming the Zuse Z4 computer
to numerically solve differential equations at ETH Zurich, Switzerland.

Derivation in arbitrary dimensions

The general procedure in n dimensions and for the original, unshifted prob-
lem can be derived analogously. Starting from an initial point u⃗0 with gra-
dient r⃗0 = ∇F (u⃗0), the first descent is along p⃗1 = −r⃗0. We then find the
point where the first contour is tangential to the direction of descent, i.e.,
where F is minimal along the line of descent, as:

u⃗1 = u⃗0 − ρ1r⃗0

r⃗1 = ∇F (u⃗1)

with the distance (i.e., step size)

ρ1 =
−⟨r⃗0, p⃗1⟩
⟨Ap⃗1, p⃗1⟩

.



2.4. CONJUGATE GRADIENT METHOD 33

Note that this is the same expression we also found in Eq. 2.15. The proof
that also in the general, unshifted case, the minimum of F in direction r⃗0
is at u⃗1 is:

Proof.

d

dρ
F (u⃗+ ρp⃗) =

d

dρ

[
1

2
(u⃗+ ρp⃗)TA(u⃗+ ρp⃗) + (u⃗+ ρp⃗)Tb⃗

]

=
d

dρ

1

2

u⃗TAu⃗+ ρp⃗TAu⃗+ ρ u⃗TAp⃗︸ ︷︷ ︸
(u⃗TAp⃗)T=p⃗TATu⃗=p⃗TAu⃗

+ρ2p⃗TAp⃗

+ p⃗Tb⃗

= p⃗TAu⃗+ ρp⃗TAp⃗+ p⃗Tb⃗
!
= 0

=⇒ ρ = − p⃗
TAu⃗+ p⃗Tb⃗

p⃗TAp⃗
= − p⃗

T(Au⃗+ b⃗)

p⃗TAp⃗
= − ⟨p⃗, r⃗⟩
⟨Ap⃗, p⃗⟩

,

where in the second step we have used the fact that for symmetric matrices
A = AT: ⟨Ap⃗, q⃗⟩ = ⟨p⃗,Aq⃗⟩.

Then, the algorithm enters the iteration k = 2, 3, 4, . . . and in each iteration
computes the search plane as:

p⃗k = −r⃗k−1 + ek−1p⃗k−1

and the direction conjugate to p⃗k−1 as:

⟨p⃗k,Ap⃗k−1⟩ = 0.

Substituting the first expression into the second, we can solve for the un-
known ek−1:

⟨p⃗k,Ap⃗k−1⟩ = −⟨r⃗k−1,Ap⃗k−1⟩+ ek−1⟨p⃗k−1,Ap⃗k−1⟩

=⇒ ek−1 =
⟨r⃗k−1,Ap⃗k−1⟩
⟨p⃗k−1,Ap⃗k−1⟩

.

The distance until the minimum in direction p⃗k is found is (see above):

u⃗k = u⃗k−1 + ρkp⃗k

=⇒ ρk = −⟨r⃗k−1, p⃗k⟩
⟨Ap⃗k, p⃗k⟩

.

Finally, we compute the gradient at u⃗k as:

r⃗k = ∇F (u⃗k) = Au⃗k + b⃗



34 CHAPTER 2. LINEAR SYSTEM SOLVERS

and iterate.
It is easily verified that in each of these iterations, we have the orthogonality
relations:

1. ⟨r⃗k, r⃗k−1⟩ = 0,

2. ⟨r⃗k, p⃗k⟩ = 0,

3. ⟨r⃗k, p⃗k−1⟩ = 0.

The geometric interpretation of these is that in each iteration of the al-
gorithm, the plane spanned by r⃗k−1 and p⃗k−1 is tangential to the contour
(i.e., perpendicular to the gradient r⃗k) at u⃗k. Therefore, u⃗k is a minimum
of F in this plane. Also p⃗k lies within this plane, and r⃗k is perpendicular
to r⃗k−1.
From these orthogonality relations, we can simplify some of the above ex-
pressions to:

ρk =
⟨r⃗k−1, r⃗k−1⟩
⟨Ap⃗k, p⃗k⟩

> 0

r⃗k = r⃗k−1 + ρkAp⃗k

ek−1 =
⟨r⃗k−1, r⃗k−1⟩
⟨r⃗k−2, r⃗k−2⟩

> 0.

The general algorithm for conjugate gradient solvers in n dimensions is given in
Algorithm 4, according to the derivation in the box above.

Algorithm 4 Conjugate gradient descent

1: procedure ConjugateGradient(u⃗0) ▷ start point u⃗0
2: r⃗0 = Au⃗0 + b⃗
3: p⃗1 = −r⃗0
4: for k = 1, 2, . . . , n do
5: if k ≥ 2 then
6: ek−1 = ⟨r⃗k−1,r⃗k−1⟩

⟨r⃗k−2,r⃗k−2⟩
7: p⃗k = −r⃗k−1 + ek−1p⃗k−1

8: end if
9: ρk = ⟨r⃗k−1,r⃗k−1⟩

⟨Ap⃗k,p⃗k⟩
10: u⃗k = u⃗k−1 + ρkp⃗k
11: r⃗k = r⃗k−1 + ρkAp⃗k
12: end for
13: end procedure

Each iteration of Algorithm 4 requires one matrix-vector multiplication (O(n2))
to compute Ap⃗k and two scalar products (O(n) each) to compute ⟨r⃗k−1, r⃗k−1⟩
and ⟨Ap⃗k, p⃗k⟩. The algorithm is therefore very efficient.

Theorem 2.9. At each iteration k of Algorithm 4, the p⃗j (0 ≤ j ≤ k) are



2.4. CONJUGATE GRADIENT METHOD 35

pairwise conjugate, and the r⃗k are pairwise orthogonal. Therefore, the conjugate
gradient Algorithm 4 computes the solution to Ax⃗+b⃗ = 0 for symmetric, positive
definite A ∈ Rn×n in at most n iterations.

Proof. The r⃗0, r⃗1, . . . , r⃗n−1 are pairwise orthogonal. Therefore, r⃗n has to be
orthogonal to all of r⃗0, r⃗1, . . . , r⃗n−1, which is only possible in an n-dimensional

space if r⃗n = 0. This means that r⃗n = Au⃗n + b⃗ = 0 and thus u⃗n = x⃗.

This theorem, however, assumes exact arithmetics. Using finite-precision pseudo-
arithmetics, more than n steps may be necessary. This is because rounding
errors lead to the r⃗j not being exactly orthogonal to one another, which means
that the in-plane minima might be missed by a small margin so that more
than n iterations may be necessary in practice. A tolerance-based termination
criterion, like the one in Algorithm 3, is therefore mostly used in practice for
conjugate gradient methods.
A typical use case for conjugate gradient solvers is to solve the sparse, but
large linear systems of equations obtained from spatial discretization of partial
differential equations (PDEs). In this case, one often deliberately performs less
than n steps in order to save time, since only an approximate solution is possible
anyway. For finite-precision pseudo-arithmetics, the conjugate gradient method
converges as:

|u⃗k − x⃗|A ≤ 2αk|u⃗0 − x⃗|A
with linear convergence factor

α =

√
κA − 1
√
κA + 1

.

This means that conjugate gradients do not converge well if the condition num-
ber of the matrixA, κA, is large. Conjugate gradient methods should, therefore,
not be used for solving linear systems that result from discretizing stiff differ-
ential equations (see Sec. 10.8).

Image: wikipedia
Aleksey Krylov
∗ 15 August 1863

Alatyrsky uezd, Simbirsk
Gubernia, Russian Empire

† 26 October 1945
Leningrad, USSR
(now St. Petersburg, Russia)

Image: wikipedia
André-Louis Cholesky
∗ 15 October 1875

Montguyon, France
† 31 August 1918

Bagneux, France

Example 2.3. We illustrate this in an example for two assumed condition
numbers:

• κA = 9 =⇒ α = 1
2 ,

• κA = 100 =⇒ α = 9
11 .

Therefore, already for a moderate condition number of 100, convergence is ex-
tremely slow (but still much better than that of normal gradient descent!). In
practical applications, conditions numbers can be in the tens of thousands, lim-
iting the use of direct conjugate gradient solvers.

While the conjugate gradient method as given in Algorithm 4 requires the matrix
A to be symmetric and positive definite, it is a representative of a larger class
of linear systems solvers, collectively called Krylov subspace methods, where
methods for asymmetric and not positive definite matrices also exist (e.g., BICG
or GMRES). These however, while more general, are typically less numerically
robust than conjugate gradient descent.



36 CHAPTER 2. LINEAR SYSTEM SOLVERS

2.5 Pre-Conditioning

Pre-conditioning methods are available to reduce the condition number of the
matrix before entering the solver. The idea is to multiply the entire system
of equations from the left with a matrix H−1. Let C = CT be a symmetric,
positive definite matrix with Cholesky factors C = HHT (determined using

Cholesky decomposition), then Ax⃗+ b⃗ = 0 is equivalent to

H−1Ax⃗+H−1⃗b = 0,

H−1AH−THT︸ ︷︷ ︸
1

x⃗+H−1⃗b = 0.

This means that we can equivalently solve the system by using:

Ã := H−1AH−T,˜⃗x := HTx⃗,˜⃗
b := H−1⃗b.

We observe that Ã is related to C−1A in the sense that

H−TÃHT = H−TH−1A = (HHT)−1A = C−1A.

Obviously, a small condition number of the transformed problem is obtained by
choosing C = A because then Ã is similar to 1 and therefore κÃ ≈ 1. However,

this is not meaningful, since finding Ã in this case is equivalent to solving the
original problem. Rather, C should be an approximation of A.
One frequent choice is to find H by incomplete Cholesky decomposition of A,
i.e., by not computing an iterative Cholesky decomposition algorithm all the
way to the end. This is particularly beneficial for sparse A, because the fill-in
is limited when stopping the decomposition prematurely, also leading to sparse
pre-conditioners. We then have A ≈ HHT = C. While incomplete Cholesky
decomposition is possible for almost all matrixes (in particular for the so-called
M-matrices), there also exist cases where it is not possible.
The preconditioning can directly be integrated into the conjugate gradient al-
gorithm. In this case the changes are:

1. Compute the incomplete Cholesky decomposition of A once, before start-
ing the first iteration.

2. In each iteration, additionally solve the linear system HHTv⃗k = r⃗k by
efficient forward and backward substitution (O(n)) and use the v⃗k as cor-
rections to the directions u⃗k (see literature for details).



Chapter 3

Linear Least-Squares
Problems

Often in modeling, we face the task of finding values of model parameters such
that the model optimally fits some given data. For this to work, there of course
have to be more data points than model parameters. Let the vector of unknown
model parameters be x⃗ ∈ Rn and the vector of data points or measurements
c⃗ ∈ Rm with m > n. For a linear model, we have that Ax⃗, with rank(A) =
n, should somehow represent c⃗. Every output of a linear model is a linear
combination (i.e., weighted sum) of the model parameters. The weights A are
the model (or model matrix). Obviously, simply setting Ax⃗ = c⃗ cannot be
solved, because there are more equations than unknowns. Instead, we want to
determine the model parameter values x⃗ such that the data c⃗ is approximated
as well as possible for every measurement, in the sense that the fitting error
Ax⃗− c⃗ is minimized in a suitable norm.

3.1 Error Equations and Normal Equations

We start by considering a concrete and small example and then generalize to ar-
bitrary n andm from there. For now, consider a problem with n = 2 parameters
and m = 3 data points. We then specifically have:

a11x1 + a12x2 − c1 = r1

a21x1 + a22x2 − c2 = r2

a31x1 + a32x2 − c3 = r3,

where A = (aij) ∈ R3×2, x⃗ = (x1, x2)
T, and c⃗ = (c1, c2, c3)

T. This set of equa-
tions is called the error equations because the values r⃗ = (r1, r2, r3)

T measure
the fitting errors, i.e., the differences between the model output and the data
values. These errors r⃗ are called residuals. If all residuals are zero, then the

37



38 CHAPTER 3. LINEAR LEAST-SQUARES PROBLEMS

model perfectly fits all data points. In vector notation, the error equation is:

x1a⃗
(1) + x2a⃗

(2) − c⃗ = r⃗, (3.1)

where a⃗(1) is the first column vector of A and a⃗(2) the second. The geometric
interpretation is depicted in Fig. 3.1. The two column vectors a⃗(1), a⃗(2) span a
plane α, as any two vectors do if they are not collinear (in which case the model
effectively only has one parameter, which we avoid by requiring rank(A) =
n). The point x1a⃗

(1) + x2a⃗
(2) lies within this plane, as x1, x2 can simply be

understood as the coordinates of this point in the (not necessarily orthogonal)
coordinate system spanned by the axes a⃗(1), a⃗(2). Unless the model is able
to perfectly reproduce all data, the vector c⃗ is not contained in the plane α,
but points out of it. The residual vector is then simply the difference between
the two (see Fig. 3.1 left). The Euclidean length of the residual is minimized
if and only if r⃗ is perpendicular to α. The coordinates (x1, x2) of the point
where the perpendicular r⃗ intersects the plane α are therefore the optimal model
parameters under the 2-norm, i.e., those for which the sum of the squares of the
residuals for the given data is minimal. Hence, the problem of finding the point
(x1, x2) can easily be formulated in the Euclidean 2-norm as the least-squares
problem.

Least-squares problems are classic and were first studied by Carl Friedrich Gauss
in 1795. Since then, they have been one of the workhorses of numerical com-
puting, modeling, engineering, statistics, machine learning, and data science.
In statistics and machine learning, the residual is often called the loss or loss
function, and using the 2-norm is often referred to as using a quadratic loss.

Figure 3.1: The residual r⃗ is minimal if and only if it is perpendicular to the
plane spanned by the column vectors of the model matrix.

From the requirement that the optimal r⃗ is perpendicular to the plane α, and
therefore orthogonal to both a⃗(1) and a⃗(2), we get the following equations:

⟨⃗a(1), r⃗⟩ = 0,

⟨⃗a(2), r⃗⟩ = 0.



3.2. SOLUTION BY QR DECOMPOSITION 39

By substituting the left-hand side of Eq. 3.1, we find:

⟨⃗a(1), x1a⃗(1) + x2a⃗
(2) − c⃗⟩ = 0,

⟨⃗a(2), x1a⃗(1) + x2a⃗
(2) − c⃗⟩ = 0.

Multiplying out the scalar products, this is:

⟨⃗a(1), a⃗(1)⟩x1 + ⟨⃗a(1), a⃗(2)⟩x2 − ⟨⃗a(1), c⃗⟩ = 0,

⟨⃗a(2), a⃗(1)⟩x1 + ⟨⃗a(2), a⃗(2)⟩x2 − ⟨⃗a(2), c⃗⟩ = 0.

This set of equations is called the normal equations, for obvious reasons. Notice
that the system matrix of the normal equations is symmetric, due to the com-
mutative property of the scalar product. While the error equations in Eq. 3.1
are overdetermined and cannot be solved for x⃗, the normal equations are reg-
ular by design (here: 2 linearly independent equations for 2 unknowns, since
rank(A) = 2).
If we determine (x1, x2) such that the normal equations are fulfilled, then |r⃗|2 =√
r21 + r22 + r23 is minimal. Therefore, if |r⃗|2 is minimal, then also |r⃗|22 = r21 +

r22 + r23 is minimal, hence solving the least-squares problem.

Now that we have a good understanding of the problem and its geometric inter-
pretation, we can generalize to arbitrary n,m. Then, the error equation reads:

x1a⃗
(1) + x2a⃗

(2) + · · ·+ xna⃗
(n) − c⃗ = r⃗,

where all vectors a⃗(1), a⃗(2), . . . , a⃗(n), c⃗, and r⃗ are in Rm with m > n. In matrix
notation, this is:

Ax⃗− c⃗ = r⃗, (3.2)

where A ∈ Rm×n. The normal equations then are:

A∗x⃗ = b⃗, (3.3)

with A∗ ∈ Rn×n and b⃗ ∈ Rn as follows:

A∗ = ATA =

⟨⃗a
(1), a⃗(1)⟩ . . . ⟨⃗a(1), a⃗(n)⟩

...
. . .

...
⟨⃗a(n), a⃗(1)⟩ . . . ⟨⃗a(n), a⃗(n)⟩

 , b⃗ = ATc⃗ =

⟨⃗a
(1), c⃗⟩
...

⟨⃗a(n), c⃗⟩

 .
3.2 Solution by QR Decomposition

While the normal equations can in principle be directly solved, the symmetric
coefficient matrix A∗ of the normal equations is unfortunately badly condi-
tioned. This makes solving the normal equations numerically inaccurate, and a
better algorithm is needed. While the normal equations are great for theoretical
considerations, we go back to the error equations for deriving a stable numerical
algorithm.
We start from the fact that the length of any vector remains unchanged upon
multiplication with an orthogonal matrix. An orthogonal matrix is a matrix for
which QQT = 1 = QTQ.



40 CHAPTER 3. LINEAR LEAST-SQUARES PROBLEMS

Proof. |Qv⃗|2 = ⟨Qv⃗,Qv⃗⟩ = (Qv⃗)TQv⃗ = v⃗TQTQv⃗ = v⃗Tv⃗ = ⟨v⃗, v⃗⟩ = |v⃗|2.

Multiplying the error equation with an orthogonal matrix QT ∈ Rm×m from
the left, we obtain the equivalent system:

QTAx⃗−QTc⃗ = QTr⃗ =: s⃗. (3.4)

This system of equations is equivalent to the original error equation in Eq. 3.2
in the sense that |r⃗|2 = |s⃗|2 due to the above-mentioned property of orthogonal
matrices. Therefore, any solution that minimizes |s⃗|2 also minimizes the residual
of the original problem. But which Q to use? The following theorem helps:

Theorem 3.1. If the column vectors a⃗(i) of a real m × n matrix A, m ≥ n,
are linearly independent, then there exists an orthogonal m ×m matrix Q and
a regular n× n upper-triangular matrix R0, such that

A = QR with R =

 R0

−−−
0

 ∈ Rm×n,

where 0 is a (m−n)×n zero matrix. This defines the QR decomposition of A.

Using the matrix Q of the QR decomposition of A, the transformed error equa-
tions become:

Rx⃗− d⃗ = s⃗ with d⃗ := QTc⃗ ,

because QTA = QTQR = R due to the orthogonality of Q. The structure of
this system is depicted in Fig. 3.2.

Figure 3.2: Structure of the transformed error equations after QR
decomposition of A.

According to this structure, the system of equations splits into the two parts:

R0x⃗− d⃗0 = s⃗0

−d⃗1 = s⃗1 . (3.5)

The second equation is independent of x⃗. Therefore, minimizing the residual
is solely achieved by determining x⃗ such that s⃗0 is minimized. The first n × n



3.2. SOLUTION BY QR DECOMPOSITION 41

system is regular (due to theorem 3.1 asserting that R0 is regular) and can
therefore be uniquely solved. Since s⃗1 is independent of x⃗, |s⃗|2 is minimal if

s⃗0 = 0⃗. Therefore, we determine x⃗ such that R0x⃗ = d⃗0, which is easy to
solve by backward substitution, since R0 is an upper-triangular matrix. This
provides a numerically robust and computationally efficient (O(n2)) algorithm
for solving the linear least-squares problem. This way of solving the problem
is numerically much more accurate than solving the normal equations, because
κR0 = κA (since Q is orthogonal), but κATA = κ2A.
The question of how to compute the QR decomposition of the matrix A is not
treated here. There are established standard algorithms for doing this, available
in any scientific computing software package, that can simply be used. Most
implementations of QR decomposition are based on Givens rotations, which is a
numerically robust and stable procedure. We refer to the literature for details.

Image: SIAM
James Wallace Givens Jr.
∗ 14 December 1910

Alberene, Virginia, USA
† 5 March 1993

USA

Algorithm 5 Direct Least-Squares Method

1: procedure LeastSquares(A,⃗c) ▷ model A, data c⃗
2: R = QTA ▷ QR decomposition of A
3: d⃗ = QTc⃗ ▷ Simultaneously constructed
4: Solve R0x⃗ = d⃗0 for x⃗ by backward substitution ▷ see Fig. 3.2
5: end procedure

Note that the matrix Q never needs to be stored, as d⃗0 can be constructed
simultaneously with QR decomposition. Therefore, only the upper-triangular
block R0 of R needs to be stored, resulting in a memory-efficient algorithm. Q
is only explicitly required if the values of the final residuals r⃗ = Qs⃗ (because
s⃗ = QTr⃗) need to be computed.

Image: wikipedia
Jørgen Pedersen Gram
∗ 27 June 1850

Nustrup, Denmark
† 29 April 1916

Copenhagen, Denmark

Image: wikipedia
Erhard Schmidt
∗ 13 January 1876

Tartu, Livonia, Russian
Empire (now: Estonia)

† 6 December 1959
Berlin, Germany

Gram-Schmidt Transformation using QR Decomposition

The Gram-Schmidt process (published by Gram and Schmidt in 1883) is
an algorithm for converting a set of vectors into an orthonormal basis that
spans the same space as the original vectors. It, too, can be efficiently
solved by QR decomposition. In this case, the column vectors

a⃗(1), . . . , a⃗(n)

of a matrix A = (⃗a(1), . . . , a⃗(n)) ∈ Rn×n span the n-dimensional space
Rn, but may not be an orthonormal basis of this space (i.e., they may
have lengths other than 1 and may not be pairwise orthogonal). Using the
Gram-Schmidt process, the vectors a⃗(i), i = 1, . . . , n, can be converted into
an equivalent orthonormal basis, which can for example be used to define
a Cartesian coordinate system. Since the matrix is square in this case, the
QR decomposition

A = QR



42 CHAPTER 3. LINEAR LEAST-SQUARES PROBLEMS

has QTQ = 1n and R is a regular upper-triangular matrix. Then, the
column vectors of Q = (q⃗(1), . . . , q⃗(n)) are an orthonormal basis of Rn, and
any subspace spanned by a partial set of this orthonormal basis is identical
to the subspace spanned by the corresponding partial set of original vec-
tors, i.e., span(q⃗(1), . . . , q⃗(j)) = span(⃗a(1), . . . , a⃗(j)) ∀j = 1, 2, . . . , n. This
provides another example of the usefulness of QR decomposition.

3.3 Singular Value Decomposition

Matrix decompositions are a central concept in numerical computing, as exem-
plified by the LU and QR decompositions so far. Another important decompo-
sition is the singular value decomposition (SVD). SVDs are central to control
theory, signal processing, image processing, machine learning, coding theory,
and many other applications.

Theorem 3.2. Every real m × n matrix A of rank k ≤ n can be decomposed
into an orthogonal m ×m matrix U and an orthogonal n × n matrix V, such
that:

A = USVT

with

S =



 Ŝ

−−−
0

 if m ≥ n

[
Ŝ | 0

]
if m < n ,

where Ŝ is a diagonal matrix of dimension p = min(m,n) with diagonal elements
s1 ≥ s2 ≥ . . . ≥ sk > sk+1 = . . . = sp = 0. The si are called the singular values
of A, the column vectors u⃗(i) of U are the left singular vectors, and the column
vectors v⃗(i) of V are the right singular vectors of A. The s2i are the eigenvalues
of ATA if m ≥ n, or of AAT if m < n. Therefore, they are uniquely determined
and

Av⃗(i) = siu⃗
(i) i = 1, 2, . . . , p

ATu⃗(i) = siv⃗
(i) i = 1, 2, . . . , p .

Computing the singular value decomposition is iterative and infinite. Finite-
precision approximations, however, can be computed in finitely many iterations.

3.3.1 Properties of the singular value decomposition

The singular values and singular vectors provide an analogous concept for rect-
angular matrices as eigenvalues and eigenvectors do for square matrices. The fol-
lowing important properties of the singular value decomposition are frequently
exploited in applications:



3.3. SINGULAR VALUE DECOMPOSITION 43

1. The kernel (also called null space) of the matrix A, ker(A), which is the

space of all vectors mapped to 0⃗ by A, i.e., ker(A) = {⃗b : Ab⃗ = 0⃗}, is
spanned by the columns k + 1 to n of V:

ker(A) = span(v⃗(k+1), . . . , v⃗(n)).

Likewise, the image im(A) is spanned by:

im(A) = span(u⃗(1), . . . , u⃗(k)).

(proofs not given.)

2. ∥A∥2 = s1.

Proof. s21 = µmax(A
TA) = ∥A∥22.

3. for A ∈ Rn×n regular (i.e., k = n): ∥A∥2 ·
∥∥A−1

∥∥
2
= s1

sn
= κA.

4. for A ∈ Rn×n symmetric: si = |λi|, i = 1, 2, . . . , n, i.e., the singular
values of the matrix are equal to the absolut values of the eigenvalues of
the matrix.

Proof. s2i = µi(A
TA) = µi(A

2) = λ2i .

5. A ∈ Rm×n defines a linear map from V n = Rn to V m = Rm: x⃗ 7−→ x⃗′.
Upon the coordinate transforms:

V n : x⃗ = Vy⃗

V m : x⃗′ = Uy⃗′,

the linear map is diagonal in the new coordinates y⃗, y⃗′, because: x⃗′ =
Ax⃗ = USVTx⃗ = Uy⃗′ and since x⃗ = Vy⃗, we have y⃗′ = Sy⃗. This diagonal
map is defined by the singular value matrix S = UTAV = B (see Fig. 3.3).
Therefore, the column vectors v⃗(i) of V and u⃗(i) of U, together with the
singular values si, completely describe the geometry of the linear map A,
in analogy to eigenvalues and eigenvectors for linear maps Rn −→ Rn.

Figure 3.3: Schematic of the relation between a linear map A and its SVD.



44 CHAPTER 3. LINEAR LEAST-SQUARES PROBLEMS

3.4 Solution by Singular Value Decomposition

Singular value decomposition can be used to elegantly and efficiently solve linear
least-squares problems. Consider again the error equation

Ax⃗− c⃗ = r⃗ ,

with A ∈ Rm×n, m > n, and rank(A) = n. Then, perform a singular value
decomposition of A as A = USVT. Using the orthogonal matrices from the
singular value decomposition, we can again, following the same argumentation
as in Section 3.2, apply an orthogonal transformation to the error equations:

UTA︸ ︷︷ ︸
SVT

x⃗−UTc⃗︸︷︷︸
ˆ⃗c

= UTr⃗︸︷︷︸
ˆ⃗r

,

with |ˆ⃗r|2 = |r⃗|2 due to the orthogonality of U. Using the coordinate transform
x⃗ = Vy⃗, the transformed error equation becomes

Sy⃗ − ˆ⃗c = ˆ⃗r .

Due to the structure of S (see Theorem 3.2 for the case where m > n) this can
again, similar to the QR decomposition, be split into two equations:

Ŝy⃗ − ˆ⃗c0 = ˆ⃗r0

−ˆ⃗c1 = ˆ⃗r1 , (3.6)

where Ŝ is a regular (because rank(A) = n) diagonal matrix. Again, like in
the QR decomposition case, the length of the residual |r⃗|2 is minimal when
ˆ⃗r0 = 0⃗, which is possible because the first linear system is regular. Because Ŝ is
a diagonal matrix, we immediately find the solution y⃗ = Ŝ−1ˆ⃗c0 as:

yi =
1

si
⟨u⃗(i), c⃗⟩, i = 1, . . . , n , (3.7)

x⃗ = Vy⃗. (3.8)

This solution to the linear least-squares problem is very elegant and compu-
tationally efficient (O(n2) for the matrix-vector product in Eq. 3.8). It only
requires n scalar divisions, n scalar products, and one matrix-vector multiplica-
tion.
This solution by singular value decomposition also suggests a natural recipe
for how to deal with cases where A does not have full rank. In such cases,
QR decomposition fails. If rank(A) = k < n in SVD, it simply means that
si = 0 for i > k. Then, only those yi =

1
si
⟨u⃗(i), c⃗⟩ with i = 1, . . . , k are defined,

and x⃗ = Vy⃗ is no longer uniquely determined because yk+1, . . . , yn can be
chosen arbitrarily. One possible choice from these infinitely many solutions is
to choose the y⃗ of minimal length, i.e., yk+1 = . . . = yn = 0. Then, because V
is orthogonal, also x⃗ has minimal length minAx⃗−c⃗=r⃗ |x⃗|2, corresponding to an



3.5. NONLINEAR LEAST-SQUARES PROBLEMS 45

ℓ2-regularization of the problem, which is also called Tikhonov regularization in
statistics or ridge regression in machine learning. This is a classic example of
the more general concept of regularization, which makes undetermined problems
solvable by assuming additional constraints on the solution.

Image: wikipedia
Andrey Nikolayevich
Tikhonov
∗ 17 October 1906

Gzhatsk, Russian Empire
† 7 October 1993

Moscow, Russia

3.5 Nonlinear Least-Squares Problems

So far, we have considered least-squares problems for linear models, where ele-
gant and numerically robust algorithms exist. If the model is non-linear, i.e., if
the model output is a nonlinear function f(·) of the model parameters x⃗, then
the error equation reads:

f⃗(x⃗)− c⃗ = r⃗ (3.9)

with fi(x1, . . . , xn)− ci = ri for each i = 1, . . . ,m ≥ n. Again, we want to find
x⃗ ∈ Rn such that |r⃗|2 is minimized. This is the case if the scalar-valued function

S(x⃗) := |r⃗|22 = r⃗Tr⃗ =

m∑
i=1

(fi(x1, . . . , xn)− ci)2 (3.10)

is minimized. A necessary condition for this is that the gradient of S vanishes,
hence defining an extremal point (minimum, maximum, or saddle point) of S.
Therefore, we require that

∂S(x⃗)

∂xj
= 2

m∑
i=1

(fi(x1, . . . , xn)− ci)
∂fi(x1, . . . , xn)

∂xj
= 0 , ∀j = 1, . . . , n.

(3.11)
This defines a system of n non-linear equations for the n unknowns x1, . . . , xn,
analogous to the normal equations of the linear case. While this system can
in principle be solved, practical solutions may be difficult, in particular if the
derivatives of the fi are not known in analytical form.
One approach is the so-called Gauss-Newton method, which is based on expand-
ing the non-linear system in Eq. 3.11 into a Taylor series and solving the linear
system resulting from only using the first two terms of the expansion (i.e., con-
stant and linear). The general topic of numerically approximating the solution
of a non-linear equation is discussed in the next chapter.

Image: wikipedia
Ludwig Otto Hesse
∗ 22 April 1811

Königsberg, Prussian Empire
(now: Kaliningrad, Russia)

† 4 August 1874
Munich, Kingdom Bavaria

Since the solutions of Eq. 3.11 include all extremal points of S, of which there
are potentially many, one also requires a starting value close enough to the global
minimum, and one needs to verify after the fact that the extremal point found
is indeed a minimum (e.g., by computing the Hessian matrix, due to Ludwig
Otto Hesse, around that point).



46 CHAPTER 3. LINEAR LEAST-SQUARES PROBLEMS



Chapter 4

Solving Nonlinear
Equations

Now that we know how to solve linear equations, both regular systems and
least-squares fits, we consider the problem of solving a nonlinear equation, i.e.,
of finding a root x∗ such that y = f(x∗) = 0 for some given nonlinear continuous
function f : R −→ R. We first consider the scalar case and then generalize to
systems of nonlinear equations in the next chapter.

While linear equations can often be solved analytically, and a complete and
closed theory exists for linear systems of equations, this is not the case for non-
linear equations. Only few special cases of nonlinear equations can be solved
analytically (e.g., quadratic and cubic equations). Numerical methods are there-
fore often the only approach to the problem in nonlinear cases. Most of these
numerical methods require the function to be at least once continuously dif-
ferentiable, and convergence proofs often assume that it is twice continuously
differentiable. Some methods, in particular search-based ones, also work for
more general continuous functions.

4.1 Condition Number of the Problem

If the nonlinear equation f(x) = 0 has at least one solution x∗, we can distin-
guish two cases, as illustrated in Fig. 4.1: (a) the function y = f(x) intersects
y = 0 at x∗; (b) the function y = f(x) is tangential to y = 0 at x∗. If none of
the two is the case for any x, then the equation has no solutions at all. Case (a)
is characterized by the derivative of f being f ′(x∗) ̸= 0, whereas for case (b) we
have f ′(x∗) = 0. The two cases have different condition numbers.

Under the additional assumption that f is uniquely invertible in some interval
around a given x∗, we can explicitly compute the condition number for case (a)
by considering

x∗ = f−1(0) =: H(0).

47



48 CHAPTER 4. SOLVING NONLINEAR EQUATIONS

Figure 4.1: The two possibilities for f(x∗) = 0.

For computing the condition number, considering the relative error as we did in
Section 1.5.2 makes no sense, because the value at which we evaluate H is 0, so
the relative error is undefined. We instead consider the absolute error, therefore
looking at the condition number as the amplification factor of the absolute error.
For this, we find:

κH =

∣∣∣∣H ′(0)

H(0)

∣∣∣∣ = ∣∣∣∣ 1

x∗f ′(x∗)

∣∣∣∣ (4.1)

because

d

dz

[
f−1(f(z)) = z

]
=⇒ (f−1)′(f(z))f ′(z) = 1

z=x∗

====⇒ (f−1)′(0) =
1

f ′(x∗)
.

and H(0) = x∗ by construction. Note that the chain rule can be applied here
in the interval around x∗ where f is uniquely invertible, because H is a proper
function there. From this, we see that for |f ′(x∗)| ≪ 1, the problem is ill-
conditioned. In fact, for either f ′(x∗) = 0 or x∗ = 0, the condition number is
infinite and the numerical error may be arbitrarily large.

This can be intuitively understood and is true also for functions that are not
uniquely invertible around x∗. The case (b) where f ′(x∗) = 0 corresponds to
f(x) having a minimum, maximum, or saddle point at the root. This means
that the x-axis is touched rather than intersected. The closer one gets to the
root, the more y = f(x) looks similar to y = 0 and, eventually, there are
infinitely many points where |f(x)| < x̂min and that are therefore numerically
indistinguishable from zero. The actual root cannot be identified among them.
In the worst case, the function f(x) = 0 for some x ∈ [a,∞), and the root could
be anywhere. Therefore, the only upper bound one can give on the absolute
error is ∞, which is accurately reflected in the above condition number. The
case where x∗ = 0 is similar, as one eventually hits |x| < x̂min, again leaving
infinitely many solutions that are numerically indistinguishable.

As pointed out in Example 1.8, it is impossible to find a good numerical al-
gorithm for an ill-conditioned problem. Therefore, we only consider the well-
conditioned case in the following, where accurate algorithms can be derived.
From now on, we thus assume that f ′(x∗) ̸= 0 and x∗ ̸= 0. Note that the latter



4.2. NEWTON’S METHOD 49

assumption is not limiting, as any problem not meeting it can always be shifted
by adding a constant in x such that the assumption is fulfilled.

4.2 Newton’s Method

A classic method for solving nonlinear equations with analytically known deriva-
tives is given by Newton’s method. Let f(x) be (at least once) continuously
differentiable, and let x0 be an initial point “close enough” (we will get back to
what this means) to x∗.

Figure 4.2: Illustration of the first iteration of Newton’s method, advancing
the solution from x0 to x1.

The idea behind Newton’s method is to locally linearize the function f(x), i.e.,
to compute the Taylor expansion (introduced by Brook Taylor in 1715) of f(x)
around the starting point x0 and only keep terms up to and including the linear
order, yielding:

Image: wikipedia
Sir Isaac Newton
∗ 4 January 1643

Woolsthorpe-by-
Colsterworth, England

† 31 March 1727
Kensington
Middlesex, England

Image: wikipedia
Brook Taylor
∗ 18 August 1685

Edmonton, Middlesex
England

† 29 December 1731
London, England

t(x) = f(x0) + f ′(x0)(x− x0). (4.2)

Geometrically, the linear approximation t(x) is the equation of the tangent line
to f(x0), see Fig. 4.2. This scalar linear equation can be solved analytically,
yielding an approximation x1 ≈ x0 where t(x1) = 0:

x1 = x0 −
f(x0)

f ′(x0)
=: F (x0). (4.3)

Iterating this procedure should yield successively better approximations xk to
x∗ by computing:

xk+1 = F (xk) = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . . . (4.4)

Notice that the f ′(x) occurring in the denominator is a direct manifestation of
the ill-conditioned nature of the case where f ′(x∗) = 0, as discussed in Section
4.1. The Newton method diverges and becomes numerically unstable in this



50 CHAPTER 4. SOLVING NONLINEAR EQUATIONS

case. If the values {xk} of the above iteration converge for k → ∞ to a value
x̄, then x̄ is a solution of the fixed-point equation

x̄ = F (x̄)

and, due to Eq. 4.4, we have f(x̄) = 0. Therefore, if a fixed point exists for
this iteration, then this fixed point necessarily is a solution of the nonlinear
equation in question. The iteration is therefore always consistent, and there is
no need for an additional consistency condition like the one from Eq. 2.5 for the
linear case. The iteration defined by Eq. 4.4 is called Newton’s method, named
after Sir Isaac Newton who wrote it down in 1669 in his book “De analysi per
aequationes numero terminorum infinitas” and applied it to finding roots of
polynomials.

4.2.1 The fixed-point theorem

Figure 4.3: Geometric illustration of the solution of the fixed-point equation
x = F (x).

The only question that remains to be addressed is whether (or when) Eq. 4.4
converges to a fixed point, which is then automatically guaranteed to be a
solution of the original equation. If F (x) is continuous in an interval I = [a, b]
and F maps that interval onto itself, i.e. F : I → I, then the solution x̄ = F (x̄)
is given by the point where the line y = x intersects the graph of y = F (x), as
illustrated in Fig. 4.3. The answer under which conditions the iteration defined
in Eq. 4.4 converges to this point is given by the fixed-point theorem:

Theorem 4.1 (Fixed-Point Theorem). If a continuous function F : R → R
satisfies:

i. There exists an interval I = [a, b] ⊂ R that gets mapped onto itself by F ,
i.e., F : I → I and,

ii. F is a contraction on this interval, i.e., |F (x′)−F (x)| ≤ L|x′−x| ∀x′, x ∈ I
with Lipschitz constant 0 < L < 1,

then:



4.2. NEWTON’S METHOD 51

1. the fixed-point equation F (x) = x has a unique solution x̄ ∈ I,

2. the fixed-point iteration xk+1 = F (xk) converges to x̄ for k →∞ starting
from any x0 ∈ I, and

3. |x̄− xk| ≤ Lk−j

1−L |xj+1 − xj | for all 0 ≤ j ≤ k.

This theorem provides a nonlinear generalization of the fixed-point iteration
from the linear case discussed in Section 2.2, where ρ(T) < 1 ensured that the
linear map is a contraction (remember that the spectral radius is the largest
stretching factor applies to any vector by the map). Note that precondition
(ii) is always fulfilled if |F ′(x)| ≤ L < 1 ∀x ∈ I. Indeed, in the scalar case,
the Lipschitz constant L is an upper bound on the absolute value of the first
derivative. This is illustrated in Fig. 4.4. In both panels of the figure, the
function y = F (x) maps the interval [a, b] onto itself, i.e., all y are between
a and b for any x between a and b. However, in the left panel |F ′(x)| < 1
everywhere in [a, b], whereas in the right panel there exist points for which
|F ′(x)| > 1. As is easily visualized geometrically, the left case amounts to the
fixed-point iteration being “attracted” to x̄, whereas in the right case it spirals
away from the solution, as claimed by the theorem.

Image: wikipedia
Rudolf Lipschitz
∗ 4 May 1832

Königsberg, Prussia
(now: Kaliningrad, Russia)

† 7 October 1903
Bonn, German Empire

Figure 4.4: Illustration of the fixed-point theorem. The left panel illustrates
the situation where F (x) is a contraction and the fixed-point iteration

converges, whereas the right panel illustrates the case where both are not the
case.

Proof. We prove points (1) and (2) of the theorem, but omit the proof for point
(3).

1. By assumption, F (x) is Lipschitz continuous (Rudolf Lipschitz) and there-
fore g(x) = F (x)−x is also continuous. The requirement that F maps the
interval [a, b] onto itself implies that F (a) ≥ a and F (b) ≤ b and therefore
g(a) ≥ 0, g(b) ≤ 0.
=⇒ ∃x∗ ∈ [a, b] with g(x∗) = 0, because g is continuous.
=⇒ there exists at least one fixed point.



52 CHAPTER 4. SOLVING NONLINEAR EQUATIONS

We show by contradiction that for L < 1 there is exactly one fixed point.
Assume there is another x∗∗ ̸= x∗ with F (x∗∗) = x∗∗. Then:

0 < |x∗ − x∗∗| = |F (x∗)− F (x∗∗)| ≤ L|x∗ − x∗∗| < |x∗ − x∗∗|,

which is a contradiction, since a number > 0 cannot be strictly smaller
than itself. Therefore, there exists exactly one, unique fixed point.

2. Assume an arbitrary starting point x0 ∈ [a, b]. Then, all xk = F (xk−1)
for k = 1, 2, 3, . . . are also ∈ [a, b], and:

|x∗ − xk| = |F (x∗)− F (xk−1)| ≤ L|x∗ − xk−1| ≤ L2|x∗ − xk−2| ≤ . . .
≤ Lk|x∗ − x0|.

Since L < 1, Lk → 0 for k → ∞. Therefore, xk → x∗ for k → ∞, for all
x0 ∈ [a, b].

From Eq. 4.4, the iteration function for the Newton method is

F (x) = x− f(x)

f ′(x)
.

Note that this is not the only possible fixed-point iteration for solving nonlinear
equations, as illustrated in the following example.

Example 4.1. It is easy to see that the fixed-point iteration F (x) = f(x) + x
also converges to the solution of the equation f(x∗) = 0 if the prerequisites of
the fixed-point theorem are fulfilled, because

f(x∗) = 0 =⇒ f(x∗) + x∗︸ ︷︷ ︸
F (x∗)

= x∗.

The question is under which conditions the prerequisites of Theorem 4.1 are
fulfilled, i.e., when |F ′(x)| < 1 for this iteration function. We find: F ′(x) =
f ′(x) + 1. So, this is only a contraction for f ′(x) ∈ (−2, 0). This iteration thus
only converges for monotonically decreasing f with slope less than 2, which is a
very limited set of functions. Moreover, this iteration converges slowly (linearly
in the Lipschitz constant L, as guaranteed by Theorem 4.1), whereas Newton is
much faster, as we will see below.

Knowing the fixed-point theorem, we can come back to the question of how close
x0 needs to be to x∗ in order for the Newton iteration to converge to x̄ = x∗.
Assuming again that f ′(x∗) ̸= 0 (see Section 4.1), we have:

F ′(x) = 1− f ′(x)

f ′(x)
+

f(x)

f ′(x)2
f ′′(x) =

f(x)

f ′(x)2
f ′′(x).



4.2. NEWTON’S METHOD 53

This means that the prerequisites of Theorem 4.1 are fulfilled for a, b such that
x∗ ∈ [a, b] and |b − a| small enough such that |F ′(x)| < 1 everywhere in [a, b].
Therefore, the more curved the function is (i.e., the larger |f ′′(x)|), the closer
x0 has to be to x∗. For |b−a| → 0, the function is locally flat (i.e., |f ′′(x)| → 0)
so that |F ′(x)| → 0. Therefore, the Newton method always converges for a
close-enough starting point. Moreover, because F ′(x∗) = 0, Newton’s method
converges fast. If F ′(x) = 0 everywhere in [a, b], the iteration converges in one
step. Since F (x) is continuous and F ′(x) < 1, the Newton iteration continually
speeds up as it approaches its fixed point.

4.2.2 Convergence of Newton’s method

How fast does Newton’s method converge precisely? In order to analyze this,
we look at the absolute error ek := xk−x∗ at iteration k. For Newton’s method,
under the assumption that f is (at least) twice continuously differentiable, one
finds (proof not given here):

ek+1 ∝
f ′′(x∗)

2f ′(x∗)
e2k. (4.5)

This means that for f ′(x∗) ̸= 0, Newton converges (at least) quadratically if
f ′′ < 2f ′ (see above “close enough” discussion), i.e., the number of correct digits
doubles in each iteration. This fast convergence means that few iterations of the
method are sufficient in practice to compute the result to machine precision. In
general, we define:

Definition 4.1 (Order of convergence). If ek+1 ∝ Cepk for a constant |C| < 1,
then p is called the order of convergence and C is the convergence factor.

For the general fixed-point iteration, we find:

xk = F (xk−1)

x∗ = F (x∗)

=⇒ |xk − x∗︸ ︷︷ ︸
ek

| = |F (xk−1)− F (x∗)| ≤ L︸︷︷︸
<1

|xk−1 − x∗︸ ︷︷ ︸
ek−1

|,

implying linear convergence (exponent p = 1) with pre-factor 0 < L < 1. There-
fore, while every fixed-point iteration converges at least (note the ≤ above!)
linearly, the specific choice of F (x) in the Newton method is responsible for the
fact that Newton converges faster than any arbitrary fixed-point iteration. In

fact, using Definition 4.1, we find that for the Newton method L = f ′′(x∗)
2f ′(x∗)ek−1,

such that the fast convergence can be explained by the pre-factor depending on
the error, which is a direct consequence of F ′(x∗) = 0 for Newton’s method.

4.2.3 Algorithm

In a practical implementation of Newton’s method, the user needs to specify
the starting point x0 as well as the relative tolerance RTOL and the absolute
tolerance ATOL. Then, the algorithm is given by Algorithm 6.

Image: wikipedia
Gerolamo Cardano
(Hieronymus Cardanus)
∗ 24 September 1501

Pavia (now in Italy)
† 21 September 1576

Rome (now in Italy)



54 CHAPTER 4. SOLVING NONLINEAR EQUATIONS

Algorithm 6 Newton Method

1: procedure NewtonMethod(x0, RTOL, ATOL) ▷ start point, tolerance
2: k = −1
3: repeat
4: k = k + 1
5: xk+1 = xk − f(xk)

f ′(xk)
▷ Eq. 4.4

6: until |xk+1 − xk| ≤ |xk+1|RTOL +ATOL
7: end procedure

A key advantage of the Newton method is its fast convergence. Disadvantages
are that it is a local method (i.e., x0 must be sufficiently close to x∗) and that
the derivative f ′(x) must exist and be analytically known at arbitrary points. In
applications where this is the case, Newton is the best choice known. However,
the second disadvantage is often limiting in practice, since for many numerical
problems, particularly when f is given by data, the derivative may not be known
everywhere.

4.3 Secant Method

The secant method addresses the second disadvantage of Newton’s method, as
it does not require analytically knowing f ′(x) (but it must still exist). It can be
interpreted as a version of Newton’s method that uses a finite difference to nu-
merically approximate f ′(x). However, the secant method was discovered over
3000 years before Newton’s method, in 18th century B.C. Babylon (now: Hillah,
Babil, Iraq). It was first used to solve nonlinear equations by Gerolamo Cardano
in 1545 in his book “Artis Magnae” (source Papakonstantinou, J. (2009), His-
torical development of the secant method and its characterization properties).
The idea behind the secant method is to start from two approximations x0, x1
and iterate toward the solution x∗ where f(x∗) = 0 by locally replacing f(x)
with the secant through (x0, f(x0)) and (x1, f(x1)), instead of the tangent as
in the Newton method. The root of the secant defines the next point x2 of the
iteration (see Fig. 4.5). This method does not require the derivative of f .
The secant is the line defined by the function:

y =
f(x1)− f(x0)

x1 − x0
(x− x1) + f(x1),

which has the unique root

x2 = x1︸︷︷︸
→x∗∈O(1)

− x1 − x0
f(x1)− f(x0)

f(x1)︸ ︷︷ ︸
→0

.

The problem with this formula, however, is that it suffers from increasing numer-
ical extinction the closer xk gets to x

∗. This is because the last factor f(xk)→ 0



4.4. BISECTION METHOD 55

Figure 4.5: Illustration of the first iteration of the secant method.

as xk → x∗. Therefore, the formula subtracts increasingly small numbers from
the first summand xk ∈ O(1) (since by assumption x∗ ̸= 0), losing significant
digits. A numerically better (but algebraically identical) way of computing the
new root is:

x2 =
x0f(x1)− x1f(x0)
f(x1)− f(x0)

, (4.6)

which has a much lower condition number as all terms go to zero together for
xk → x∗. The resulting secant method is given in Algorithm 7.

Algorithm 7 Secant Method

1: procedure SecantMethod(x0, x1, RTOL, ATOL)
2: k = 0
3: repeat
4: k = k + 1
5: xk+1 = xk−1f(xk)−xkf(xk−1)

f(xk)−f(xk−1)
▷ Eq. 4.6

6: until |xk+1 − xk| ≤ |xk+1|RTOL +ATOL
7: end procedure

For x0, x1 close enough to x∗, the secant method converges with convergence
order p ≈ 1.6. The main advantage of the secant method is that it does not
require derivatives of the function f and therefore is computationally cheap and
also applicable to cases where derivatives are not available. The disadvantage
is that it does not converge quite as fast as Newton’s method.

4.4 Bisection Method
Image: wikipedia
Bernardus Placidus Johann
Nepomuk Gonzal Bolzano
∗ 5 October 1781

Prague, Bohemia
† 18 December 1848

Prague, Bohemia
(now: Czech Republic)

The other disadvantage of the Newton method, its locality, is addressed by the
bisection method, also called bisection search. The bisection method was devel-
oped by Bernardus Bolzano in 1817 (source: Edwards, C. H. (1979). Bolzano,
Cauchy, and Continuity. The Historical Development of the Calculus, pp. 308).
The idea behind the bisection method is to iteratively search for a root in the



56 CHAPTER 4. SOLVING NONLINEAR EQUATIONS

entire interval. This removes the requirement for f to be (at least once) dif-
ferentiable, and the problem of choosing suitable starting points does not exist.
However, the bisections method is only guaranteed to exactly hit a root when
used with finite-precision arithmetics. Also, the search interval needs to be
defined beforehand and must contain (at least one) root.

Let f(x) be continuous in the interval I = [a, b] with f(a)f(b) < 0. Then, f(x)
has at least one root (in fact, any odd number of roots) in I (see Fig. 4.6).

Figure 4.6: Illustration of the idea behind the bisection method.

Algorithm 8 Bisection Method

1: procedure BisectionMethod(a, b, ATOL) ▷ Start interval I = [a, b]
2: if f(a)f(b) > 0 then
3: return error
4: end if
5: loop
6: m = 1

2 (a+ b)
7: if |f(m)| < ATOL then
8: return m ▷ m is a root
9: else if f(a)f(m) < 0 then

10: b = m
11: else
12: a = m
13: end if
14: end loop
15: end procedure

The bisection method starts with the entire interval and recursively cuts it in
the middle with the goal of homing in on a root. The algorithm is given in
Algorithm 8.

This results in a sequence of Intervals I > I1 > I2 > . . . , for which we have:

• Length(Ij+1) =
1
2Length(Ij),



4.4. BISECTION METHOD 57

• There is exactly one point that belongs to all intervals, i.e., x∗ ∈ I ∩ I1 ∩
I2 ∩ . . .,

• x∗ is a root of f , i.e., f(x∗) = 0.

Obviously, the bisection method finds one root globally in I. Recursing the
bisection method as a tree finds multiple roots. There is no guarantee, however,
that all roots are found in either case. This is because while f(a)f(b) < 0 is
sufficient for the existence of at least one root, it is not necessary. If f has an
even number of roots in I, then f(a)f(b) > 0. No guarantees can therefore be
given for the bisection method to find all roots.
Studying the convergence of the bisection method is not straightforward, be-
cause it generates a sequence of intervals rather than a sequence of points. One
approach is to define the center point xk of interval Ik as the k-th approximation,
thereby creating a sequence of points for which it can be shown that

|xk − x∗| ≤
1

2k+1
(b− a),

therefore,

ek+1 ∝ qek with |q| < 1

2
.

This means that the bisection method converges linearly with pre-factor at
most 1/2, because the intervals are halved successively. The big advantage over
Newton’s method and over the secant method is that the bisection method
always converges, because it is a global method that requires no “close enough”
starting point.
It is also popular to combine the bisection method with the Newton (if deriva-
tives are available) or the secant (if derivatives are not available) method. The
goal is to benefit from the global nature of bisection and from the faster con-
vergence of Newton or bisection. The idea is to first apply bisection to find
intervals that contain (ideally one) root(s) and then start independent Newton
or secant iterations in each of these intervals. For this combined method, how-
ever, convergence can not be guaranteed, as the preconditions of the fixed-point
theorem need not be fulfilled in all intervals. Also, due to the properties of the
bisection method, there is no guarantee that all roots are found.



58 CHAPTER 4. SOLVING NONLINEAR EQUATIONS



Chapter 5

Nonlinear System Solvers

Now that we know how to solve scalar nonlinear equations, we generalize to
the case of systems of nonlinear equations, like the one encountered in Eq. 3.11.
While scalar nonlinear equations can be analytically solved in some special cases
(notably quadratic and cubic equations), analytical solutions of systems of non-
linear equations are almost never possible, not even in the quadratic case. Nu-
merical methods therefore enjoy great importance in this field.
The problem is stated as finding a vector x⃗ ∈ Rn for for which

f⃗(x⃗) = 0⃗ , with f⃗(x⃗) =

f1(x1, . . . , xn)...
fn(x1, . . . , xn)

 . (5.1)

5.1 Newton’s Method in Arbitrary Dimensions

Since a system of n nonlinear equations can be interpreted as a nonlinear equa-
tion in n dimensions (i.e., over n-dimensional vectors), we first generalize New-
ton’s method from 1D (see Sec. 4.2) to nD. For this, we need to find a n-
dimensional generalization of the first derivative of f . For this to exist, we again
assume, like in Sec. 4.2, that the functions fi, i = 1, . . . , n, are differentiable.
Then, we can define the n-dimensional generalization of the first derivative, as:

Definition 5.1 (Jacobian). The Jacobian or Jacobi matrix of f⃗(x⃗) : Rn → Rn
is the matrix of all possible partial derivatives:

∂f⃗

∂x⃗
=


∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 = J(x⃗).

In 1D, the Jacobian corresponds to the first derivative of the function. There,
with f ′(x0) = J(x0), linearizing the function around a given point x0 leads to

59



60 CHAPTER 5. NONLINEAR SYSTEM SOLVERS

(see Eq. 4.2):
f(x) ≈ f(x0) + J(x0)(x− x0),

which is the Taylor expansion of f around x0 keeping only terms up to and
including the linear order. It was the basis of the Newton method that the root
of this linear equation can easily be found as:

x1 = x0 − J−1(x0)f(x0).

By the analogy f ′ ⇐⇒ J, 1
f ′ ⇐⇒ J−1, this is the Newton method.

This immediately suggests a generalization to arbitrary dimensions by defining
the fixed-point iteration

x⃗k+1 = F⃗ (x⃗k), k = 0, 1, 2, . . .

with F⃗ (x⃗) = x⃗− J−1(x⃗)f⃗(x⃗). (5.2)

At the fixed point x⃗∗ = F⃗ (x⃗∗), we have by construction that f⃗(x⃗∗) = 0 if
det(J(x⃗∗)) ̸= 0, i.e., if the Jacobian is regular in therefore its inverse exists.
The question when the iteration defined in Eq. 5.2 converges to this fixed point
can be answered by generalizing Theorem 4.1 to arbitrary dimensions (Stefan
Banach, 1922):

Theorem 5.1 (Banach Fixed-Point Theorem). Let a continuous function F⃗ :
D → D, D ⊂ Rn, be a contraction, i.e., there exist 0 < L < 1 and | · |, so that

∀(x⃗a, x⃗b) ∈ D, |F⃗ (x⃗a)− F⃗ (x⃗b)| ≤ L|x⃗a − x⃗b|. Then:

1. there exists exactly one fixed point x⃗∗ ∈ D with x⃗∗ = F⃗ (x⃗∗),

2. the iteration x⃗k+1 = F⃗ (x⃗k) converges for k →∞ to x⃗∗ ∀x⃗0 ∈ D, and

3. |x⃗∗ − x⃗k| ≤ Lk

1−L |x⃗1 − x⃗0|

|x⃗∗ − x⃗k| ≤ L
1−L |x⃗k − x⃗k−1|.

The overall algorithm for Newton’s method in n dimensions is then given in
Algorithm 9. It requires solving a linear system of equations in each iteration,
typically using LU decomposition because convergence of iterative methods can-
not be guaranteed for arbitrary Jacobians. Therefore, a linear system solver is
a prerequisite as a building block for nonlinear system solvers.
The update step in lines 5 and 6 of Algorithm 9 directly follows from Eq. 5.2
as:

x⃗k+1 = x⃗k − J−1(x⃗k)f⃗(x⃗k)

J(x⃗k)(x⃗k+1 − x⃗k︸ ︷︷ ︸
∆⃗k

) = −f⃗(x⃗k)

=⇒ x⃗k+1 = x⃗k + ∆⃗k.



5.2. BROYDEN METHOD 61

Algorithm 9 n-Dimensional Newton Method

1: procedure Newton-nD(x⃗0, ATOL, RTOL) ▷ Start vector x⃗0
2: k = −1
3: repeat
4: k = k + 1
5: Solve J(x⃗k)∆⃗k = −f⃗(x⃗k) for ∆⃗k

6: x⃗k+1 = x⃗k + ∆⃗k

7: until |∆⃗k| ≤ |x⃗k+1|RTOL +ATOL
8: end procedure

While the Newton method in n dimensions inherits the fast convergence from
its 1D counterpart (it converges quadratically if x⃗0 is close enough to x⃗∗ and J
is regular everywhere along the path), it also has three important drawbacks:
First, finding a starting point x⃗0 that is sufficiently close to the solution is much
harder in n dimensions than it is in 1D. Moreover, the question what “close
enough” means is much more difficult to answer in n dimensions. Second, the
Jacobian J(x⃗k) needs to be completely recomputed in each iteration, requiring
n2 derivatives. Third, the method is computationally expensive requiring O(n3)
operations in each iteration.

Image: wikipedia
Stefan Banach
∗ 30 March 1892

Kraków, Austria-Hungary
(now: Poland)

† 31 August 1945
Lviv, Soviet Union USSR
(now: Ukraine)

5.1.1 Quasi-Newton method

The Quasi-Newton method improves the computational cost by computing the
Jacobian only once, at the beginning of the algorithm, as J = J(x⃗0) and then
never updating it. This requires only one calculation of J and only one LU
decomposition, which can then be re-used in each iteration for different right-
hand sides, thus reducing the computational cost to O(n2) per iteration. The
disadvantage is that the method then only has linear convergence order and is
even more sensitive to finding a “good” choice of x0.

5.2 Broyden Method

The Broyden method (Charles George Broyden, 1965) seeks a middle ground
between completely re-computing the Jacobian in each iteration and never doing
so. The idea is to update the Jacobian from the previous iteration instead of
computing a new one from scratch. The method uses a rank-1 update, meaning
that the Jacobian is updated by one linearly independent vector direction in
each iteration. This yields an approximation of Jk+1 as a modification of Jk.

Image: Documenta Mathematica
Charles George Broyden
∗ 3 February 1933

Essex, UK
† 20 May 2011

Bologna, Italy

Let ∆⃗ again denote the step taken by the method in one iteration, i.e., x⃗k+1 =

x⃗k + ∆⃗k. Then, we find an approximation for the Jacobian Jk+1 = J(x⃗k + ∆⃗k)

by Expanding f⃗ into a Taylor series. For any arbitrary index k, hence omitted,
this yields:

f⃗(x⃗) = f⃗(x⃗+ ∆⃗)− J(x⃗+ ∆⃗)∆⃗ +O(|∆⃗|2)



62 CHAPTER 5. NONLINEAR SYSTEM SOLVERS

and therefore the linear approximation:

J(x⃗+ ∆⃗)∆⃗ ≈ f⃗(x⃗+ ∆⃗)− f⃗(x⃗) ,

leading to a linear system of equations for the linear approximation of the Ja-
cobian J̄ ≈ J(x⃗+ ∆⃗):

J̄∆⃗ = f⃗(x⃗+ ∆⃗)− f⃗(x⃗). (5.3)

However, this system of equations cannot be solved, because there are only n
equations for n2 unknowns (i.e., the n2 entries of J̄).
Therefore, Broyden made the (arbitrary, but reasonable) assumption that J̄ −
J = 0 in directions perpendicular to ∆⃗, i.e., that ∆⃗ is a normal vector onto
the null space of J̄ − J. This assumption is reasonable because in the Newton
method the solution x⃗ only changes in direction ∆⃗, to x⃗ + ∆⃗, making changes
in the Jacobian perpendicular to ∆⃗ less important. Therefore, the Broyden
approximation is to just set them to zero and neglect them. This assumption
then implies that:

(J̄− J)y⃗ = 0⃗ ∀y⃗ with y⃗T∆⃗ = 0. (5.4)

This means:

• y⃗ is a vector in an (n− 1)-dimensional subspace of Rn

• B = J̄ − J has rank 1. This is because y⃗ ∈ ker(B) and therefore
dim(ker(B)) = n − 1. Remember that for any matrix it always holds
that dim(ker(B)) + rank(B) = n.

• because J̄− J has rank 1, it can be written as

J̄− J = u⃗∆⃗T (5.5)

for some u⃗ ∈ Rn.

Outer product

The outer product between two n-vectors forms an n× n matrix

u⃗∆⃗T =

u1∆⃗
T

...

un∆⃗
T

 =

u1∆1 . . . u1∆n

...
...

un∆1 . . . un∆n


of rank 1, because all rows are scalar multiples of ∆⃗T, and thus linearly
dependent, with only one of them linearly independent.

It is trivial to see that the rank-1 ansatz in Eq. 5.5 satisfies Eq. 5.4, because:
(u⃗∆⃗T)y⃗ = u⃗(∆⃗Ty⃗) = 0⃗ for any y⃗ with y⃗T∆⃗ = ∆⃗Ty⃗ = 0. Using this rank-1



5.2. BROYDEN METHOD 63

ansatz, there are only n unknowns left, namely (u1, . . . , un). From Eq. 5.3, we
get:

(J̄− J)∆⃗ = f⃗(x⃗+ ∆⃗)− f⃗(x⃗)− J∆⃗.

In the Newton method, the last term J∆⃗ = −f⃗(x⃗) (see Algorithm 9), and
therefore:

(J̄− J)∆⃗ = f⃗(x⃗+ ∆⃗).

Using the rank-1 ansatz from Eq. 5.5, this is:

u⃗∆⃗T∆⃗ = f⃗(x⃗+ ∆⃗),

which can be solved for

u⃗ =
1

∆⃗T∆⃗
f⃗(x⃗+ ∆⃗).

Note that ∆⃗T∆⃗ is a scalar, so that this expression is easy to compute. Finally,
from Eq. 5.5. we find the update formula

J(x⃗+ ∆⃗) ≈ J̄ = J+ u⃗∆⃗T = J+
1

∆⃗T∆⃗
f⃗(x⃗+ ∆⃗)∆⃗T. (5.6)

Using this formula, the Jacobian can be approximately updated from one itera-
tion to the next without having to recompute it from scratch. This then yields
the Broyden method as given in Algorithm 10.

Algorithm 10 n-Dimensional Broyden Method

1: procedure Broyden(x⃗0, ATOL, RTOL) ▷ Start vector x⃗0
2: x⃗ = x⃗0
3: J = J(x⃗)

4: v⃗ = f⃗(x⃗)
5: repeat
6: Solve J∆⃗ = −v⃗ for ∆⃗
7: x⃗ = x⃗+ ∆⃗
8: v⃗ = f⃗(x⃗)

9: J = J+ 1

∆⃗T∆⃗
v⃗∆⃗T ▷ Eq. 5.6

10: until |∆⃗| ≤ |x⃗|RTOL +ATOL
11: end procedure

The Algorithm requires O(n2) operations in the update step in line 9, but line 6
would still require O(n3) operations if done naively, in which case the full New-
ton method would be preferable. Fortunately, however, the LU decomposition
of J only needs to be done once during initialization and the update can be done
directly on the factors L and U by forward/backward substitution. This then
brings the algorithm overall to O(n2), which is significantly faster than Netwon.
The convergence oder of the Broyden method is between 1 and 2, depending on
the function f⃗(x⃗). The Broyden method can also be easily adapted to the case



64 CHAPTER 5. NONLINEAR SYSTEM SOLVERS

where derivatives of f⃗ are not available. The only place where the derivatives
are required is in the initial computation of the Jacobian in line 3. It turns out
that the method also works when simply initializing J = 1 and then iteratively
adapting from there. This yields a derivative-free method, which, however,
converges slower.
A further optimization of the method is given by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, which uses the Hessian matrix (i.e., the matrix of

second derivatives of f⃗) to accelerate convergence.



Chapter 6

Scalar Polynomial
Interpolation

Very often in computational modeling and simulation, data are given by a finite
set of points in 1D. At these locations, some function value is measured or mod-
eled. The problem then frequently arises to reconstruct a continuous function
that goes through these data points, i.e., to find a function g(x) : R → R such
that g(xi) = fi for a finite set of collocation points xi, i = 0, 1, . . . , n with values
fi = f(xi) given at these points. Situations where problems of this sort arise
are plentiful, from evaluating differential operators in numerical solutions of dif-
ferential equations, to data filtering and extrapolation, to computer graphics,
cryptography, and numerical integration.
Of particular interest is the special case where g(x) is a polynomial. This is
due to the pleasant structure of polynomials, which, for example, easily allows
analytically computing their integrals and derivatives and provides an orthog-
onal basis. Moreover, polynomials are related to arbitrary nonlinear functions
through Taylor series expansion. The interpolant g(x) is then a polynomial of
degree ≤ n, thus:

g(x) = Pn(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an (6.1)

so that Pn(xi) = fi for all i = 0, 1, . . . , n. The problem of finding this polynomial
is called polynomial interpolation. This is illustrated in Fig. 6.1 for the case of
three collocation points and a true underlying function f(x), which is to be
approximated by a polynomial P (x) from the values f0, f1, f2 at the collocation
points x0, x1, x2.

Image: TU Berlin
Alexandre-Théophile
Vandermonde
∗ 28 February 1735

Paris, Kingdom of France
† 1 January 1796

Paris, France

Trivially, the polynomial interpolation problem can be written as a linear system
of equations

Vn+1a⃗ = f⃗

with the vector of unknown coefficients a⃗T = [an, an−1, . . . , a1, a0], the vector

of given values f⃗T = [f0, f1, . . . , fn−1, fn], and the Vandermonde matrix of

65



66 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

Figure 6.1: Illustration of the polynomial interpolation problem.

order n+ 1 of the collocation points:

Vn+1 =


1 x0 x20 . . . xn0
1 x1 x21 . . . xn1
...

...
...

1 xn x2n . . . xnn

 .
Solving this linear system yields the interpolation polynomial. However, this
way of solving the problem has two important drawbacks: (1) it is expensive
(O(n3) for solving the linear system), and (2) it is numerically inaccurate be-
cause the condition number of the Vandermonde matrix tends to be high as it
contains a large spectrum of values (from 1 to xni ).
As we will see below, there are much better algorithms for solving the scalar
polynomial interpolation problem, which do not suffer from error amplifica-
tion and are as efficient as O(n2) or even O(n). The polynomial interpola-
tion problem hence provides an example of a mathematical problem for which
the straightforward numerical approach is not the best. In higher-dimensional
spaces, i.e. when x⃗i ∈ Rm for some m > 1, however, solving the above lin-
ear system is often the only way, and more efficient and robust algorithms
are hard to come by (even though they are actively being researched, e.g.,
https://arxiv.org/abs/1812.04256, https://arxiv.org/abs/1710.10846,
https://arxiv.org/abs/2010.10824).
Before looking into algorithms for scalar polynomial interpolation, however, we
consider uniqueness and existence of the solutions. These considerations will
then naturally lead to the formulation of better algorithms.

6.1 Uniqueness

The solution to the scalar polynomial interpolation problem is unique, i.e., there
is only one such polynomial. To prove this, assume that Pn and Qn are two
solution polynomials, each of degree ≤ n. Because both polynomials solve the
same polynomial interpolation problem, their difference Pn(x)−Qn(x) =: Dn(x)

https://arxiv.org/abs/1812.04256
https://arxiv.org/abs/1710.10846
https://arxiv.org/abs/2010.10824


6.2. EXISTENCE: THE LAGRANGE BASIS 67

has n+ 1 distinct roots. These roots are the collocation points xi, i = 0, 1, . . . , n,
because

Pn(xi) = Qn(xi) = fi =⇒ Dn(xi) = 0, ∀i = 0, 1, . . . , n.

However, since Dn is a polynomial of degree ≤ n, it cannot have n+ 1 distinct
roots. This would contradict the Fundamental Theorem of Algebra, according
to which a polynomial of degree n can have at most n distinct roots. Therefore,
two different solutions cannot co-exist, and we must have Pn = Qn so that the
solution to the polynomial interpolation problem is unique.

6.2 Existence: The Lagrange Basis

Now that we know that the solution is unique, we ask the question whether
it always exists, i.e., whether the polynomial interpolation problem can always
be (uniquely) solved, for any given set of collocation points. For that, it is
instructive to first consider the special case of n = 3 with given collocation
points and function values

(x0, f0), (x1, f1), (x2, f2), (x3, f3).

The idea is to find four polynomials of degree n ≤ 3 such that each of them has
a value of 1 at exactly one collocation point, and 0 at all others. That is, we
would like to find:

Image: wikipedia
Giuseppe Ludovico De la
Grange Tournier
(later: Joseph-Louis
Lagrange)
∗ 25 January 1736

Turin, Piedmont-Sardinia
† 10 April 1813

Paris, France

Image: wikipedia
Edward Waring
∗ c. 1736

Old Heath, England
† 15 August 1798

Plealey, England

l0(x) such that l0(x1) = l0(x2) = l0(x3) = 0 and l0(x0) = 1,

l1(x) such that l1(x0) = l1(x2) = l1(x3) = 0 and l1(x1) = 1,

l2(x) such that l2(x0) = l2(x1) = l2(x3) = 0 and l2(x2) = 1,

l3(x) such that l3(x0) = l3(x1) = l3(x2) = 0 and l3(x3) = 1.

These basis functions are the Lagrange Polynomials of degree 3, named after
Joseph-Louis Lagrange who published them in 1795, although they were ear-
lier discovered by Edward Waring in 1779. If such polynomials exist then, by
definition,

P3(x) = f0l0(x) + f1l1(x) + f2l2(x) + f3l3(x)

solves the interpolation problem because P3(xi) = fi for all i = 0, 1, 2, 3. It
therefore suffices to show that Lagrange polynomials li can always be con-
structed for given data. Take, for example, l0. The ansatz

l0(x) = c0(x− x1)(x− x2)(x− x3)

with c0 ̸= 0 clearly fulfills the first three conditions l0(x1) = l0(x2) = l0(x3) =
0. For disjoint collocation points (i.e., x0 ̸= x1 ̸= x2 ̸= x3), we can always
determine c0 from the remaining condition, namely we find c0 such that l0(x0) =
1, which is the case for

c0 =
1

(x0 − x1)(x0 − x2)(x0 − x3)
.



68 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

Therefore,

l0(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
fulfills all four conditions. Similarly, we find the other Lagrange polynomials:

l1(x) =
(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
,

l2(x) =
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
,

l3(x) =
(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
,

all of which satisfy

li(xj) =

{
0 if i ̸= j

1 if i = j.

In this Lagrange basis, we can immediately write down the solution of the
polynomial interpolation problem in Lagrange form as:

P3(x) = L3(x) = f0l0(x) + f1l1(x) + f2l2(x) + f3l3(x).

Clearly, this construction can be repeated for arbitrary n, where we find:

li(x) =

n∏
j=0
j ̸=i

(x− xj)
(xi − xj)

i = 0, 1, . . . , n

Ln(x) =

n∑
i=0

fili(x), (6.2)

the general Langrange basis and Lagrange form of degree ≤ n. Since these poly-
nomials always exists, the polynomial interpolation problem always possesses a
solution (and the solution is unique, as shown above).

6.3 Barycentric Representation

The solution to the polynomial interpolation problem is unique and, therefore,
there is only one polynomial interpolant. Nevertheless, this one polynomial can
be represented in different ways. The above Lagrange form is one possibility,
for which the construction from the Lagrange basis polynomials is particularly
simple. However, the Lagrange form is costly to evaluate, because for every
query point x, all n products for each of the n Lagrange polynomials in Eq. 6.2
need to be recomputed from scratch, requiring O(n2) operations per query point.
The barycentric form of the same polynomial provides a computationally more
efficient form. The idea is to reduce any evaluation of the interpolant to com-
puting a weighted sum, and to segregate all multiplicative terms into pre-factors



6.3. BARYCENTRIC REPRESENTATION 69

that only depend on the locations of the collocation points xi, but not on the
query point x.

Definition 6.1 (Barycentric weights). For an interpolation problem with col-
location points x0, x1, . . . , xn, the barycentric weights are

λi =
1

n∏
j=0
j ̸=i

(xi − xj)
, i = 0, . . . , n.

The barycentric weights only depend on the locations of the collocation points,
but not on the query point. In order to evaluate the interpolation polynomial
for any given query point x, one then computes:

µi =
λi

x− xi
, i = 0, . . . , n

Pn(x) =

n∑
i=0

µifi

/
n∑
i=0

µi. (6.3)

In this representation, the λi can be precomputed once in the beginning and
reused for each subsequent evaluation of the polynomial. This is beneficial, be-
cause the λi contain all the expensive products. In fact, computing the barycen-
tric weights is O(n2), but only needs to be done once, independent of the query
point. Later evaluation of the polynomial according to Eq. 6.3 only contains the
sums that can be computed in O(n) operations per query point. This renders
each evaluation of Pn(x) cheaper than in the Lagrange form.

Derivation of the barycentric formula

In the Lagrange form, as given in Eq. 6.2, we can factorize the numerator

ℓ̂(x) =

n∏
j=0

(x− xj)

from the denominator

λi =

n∏
j=0
j ̸=i

1

xi − xj
=

1
n∏
j=0
j ̸=i

(xi − xj)
,

which are the Barycentric weights that are independent of the query point
x. Using the definition of µi from Eq. 6.3, the interpolation polynomial



70 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

can hence be written as:

Pn(x) = ℓ̂(x)

n∑
i=0

µifi,

because ℓ̂(x) is independent of i. Since by definition

n∑
i=0

li(x) = 1,

this trivially (i.e., by dividing with 1) yields:

Pn(x) =
ℓ̂(x)

∑n
i=0 µifi∑n

i=0 li(x)
.

This is:

Pn(x) =
ℓ̂(x)

∑n
i=0 µifi

ℓ̂(x)
∑n
i=0 µi

.

After crossing out ℓ̂, we obtain the Barycentric formula as given in Eq. 6.3.

6.4 Aitken-Neville Algorithm

A particularly efficient and numerically accurate method for determining the in-
terpolation polynomial and directly also evaluating it at a given query point x is
the algorithm by Alexander Aitken and Eric Neville (1934). The Aitken-Neville
algorithm (also known as divided difference scheme) determines and evaluates
the polynomial in O(n2) computation steps. We introduce this algorithm here
for the special case n = 3.
In this case, we are given collocation points (xi, fi) for i = 0, 1, 2, 3 and want to
find the value of the interpolant P3(x) for a given x. The computational scheme
for this case is illustrated in Fig. 6.2. It starts in the first column with the four
collocation values f0, f1, f2, f3, which we call P0, P1, P2, P3 (here the subscript
is an index and not the degree of the polynomial; all of these are constants and
hence polynomials of degree 0). From these, the second column computes values
P01, P12, P23 according to the following rules:

P01 = P1 +
x− x1
x0 − x1

(P0 − P1),

P12 = P2 +
x− x2
x1 − x2

(P1 − P2),

P23 = P3 +
x− x3
x2 − x3

(P2 − P3).

In the third column, these values are further combined to:



6.5. APPROXIMATION ERROR 71

Figure 6.2: The Aitken-Neville scheme for n = 3 with one exemplary path
highlighted by arrows.

P012 = P12 +
x− x2
x0 − x2

(P01 − P12),

P123 = P23 +
x− x3
x1 − x3

(P12 − P23),

and, finally, in the last column to:

P (x) = P0123 = P123 +
x− x3
x0 − x3

(P012 − P123).

The Aitken-Neville algorithm does not only produce the final result in O(n2)
steps (n columns with O(n) entries each), but also provides all intermediate re-
sults along the way. Indeed, for any k ≥ i, Pi...k is the value of the interpolation
polynomial through (xi, fi), . . . , (xk, fk), evaluated at x.

Image: wikipedia
Alexander Craig Aitken
∗ 1 April 1895

Dunedin, New Zealand
† 3 November 1967

Edinburgh, Scotland, UK

Image: JSTOR.org
Eric Harold Neville
∗ 1 January 1889

London, England, UK
† 22 August 1961

Reading, England, UK

The generalization of the algorithm to general n should be intuitive from the
example above, and we refer to the literature for actual formulations. The
Aitken-Neville algorithm is a good choice if the polynomial is to be determined
and evaluated at only one query point. If the same polynomial is to be evaluated
at multiple query points, the Barycentric form is preferable.

6.5 Approximation Error

We know that the interpolation polynomial always exists and is unique, and
we have efficient algorithms for computing it. The remaining question is how
accurately Pn(x) approximates the unknown f(x) from which the collocation
data were sampled. Therefore, we are interested in the approximation error
f(x)− Pn(x).
For this, the following theorem from function approximation theory is useful.

Theorem 6.1. Let f(x) : [a, b] → R be a scalar, real-valued function over the
closed interval [a, b] ⊂ R. Assume f(x) is at least (n+ 1) times continuously
differentiable. For the interpolation polynomial Pn(x) of the (n+ 1) collocation
points x0, x1, . . . , xn with a = mini xi and b = maxi xi, and collocation values



72 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

fi = f(xi), we have that for each x ∈ [a, b], there exists ξ ∈ [a, b] such that

f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi) =
f (n+1)(ξ)

(n+ 1)!
l(x), (6.4)

where f (n+1)(ξ) is the (n+ 1)-st derivative of the function f evaluated at posi-
tion ξ.

We omit the proof of this theorem here; it is classic. This theorem tells us
that finding an upper bound on the approximation error of a polynomial inter-
polant requires bounding the absolute value of derivative |f (n+1)| over [a, b]. If
f is continuous, such a bound always exists and can often be found from prior
knowledge.

Example 6.1. Consider linear interpolation as an example, illustrated in Fig. 6.3.
In this case, the interpolation polynomial P1(x) is a linear function, whereas
f(x) could be anything.

Figure 6.3: Approximating a nonlinear function f(x) by a linear interpolation
polynomial P1(x).

In this case, Eq. 6.4 becomes:

f(x)− P1(x) =
f ′′(ξ)

2
(x− x0)(x− x1).

The function l(x) = (x − x0)(x − x1) has its maximum over [a, b] = [x0, x1]
at the center of the interval, thus for x = 1

2 (x0 + x1) the error is largest and
amounts to:

f ′′(ξ)

2

1

2
(x1 − x0)

1

2
(x0 − x1)

and, if we call h = x1 − x0,

f ′′(ξ)

2

h

2

−h
2

= −1

8
h2f ′′(ξ).

If additionally |f ′′(ξ)| ≤M2 for ξ ∈ [x0, x1], then the absolute value of the error
is bounded by

|f(x)− P1(x)| ≤
1

8
h2M2.



6.6. SPLINE INTERPOLATION 73

Indeed it is true in general that polynomial interpolation with Pn(x) of de-
gree ≤ n has an approximation error that scales as O(hn+1) for equidistant
collocation points xi = x0 + ih, i = 1, 2, 3, . . ., with spacing h. The function
l(x) =

∏n
i=0(x − xi) has at least one extremum between any two collocation

points, where it has roots. For large n, however, the amplitude of these extrema
is rapidly increases toward the boundaries of the interval [a, b]. This ringing
phenomenon (also called Runge’s phenomenon) means that increasing the de-
gree of the interpolation polynomial does not necessarily decrease the error, as
the theorem only makes a statement about the scaling of the error.
A common solution to this problem is to interpolate piecewise, as illustrated in
Fig. 6.4 for piecewise linear interpolation. Instead of approximating f(x) by one
polynomial of degree n, we approximate f(x) by multiple polynomials, possibly
of lower degree. This allows reducing h (and hence the approximation error)
without having to increase n, effectively avoiding the ringing phenomenon.

Figure 6.4: Illustration of piecewise linear interpolation.

6.6 Spline Interpolation

The problem with piecewise interpolation is that the interpolant is no longer
continuously differentiable. While this may not be a problem for some applica-
tions (e.g., numerical integration), it is undesirable for others (e.g., numerical
differentiation). In order to obtain a piecewise interpolant that is continuously
differentiable to some order, we need to impose additional smoothness condi-
tions at the transition points. This is the basic idea of Spline interpolation.

6.6.1 Hermite interpolation
Image: wikipedia
Charles Hermite
∗ 24 December 1822

Dieuze, France
† 14 January 1901

Paris, France

The concept of Splines is best understood when starting from the classic formu-
lation of Hermite interpolation (Charles Hermite, 1878). There, we are given n
collocation points, ordered1 such that

x1 < x2 < · · · < xi < xi+1 < · · · < xn.

1Notice that so far the ordering of the collocation points did not matter and could have
been arbitrary. This is no longer the case for Splines.



74 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

(N.B.: the numbering of the collocation points now starts from 1, as is usual
in the Spline literature) Assume that at these points, we known both the value
and the first derivative of an unknown function f(x), hence:

f1 = f(x1), . . . , fi = f(xi), . . . , fn = f(xn),

f ′1 = f ′(x1), . . . , f
′
i = f ′(xi), . . . , f

′
n = f ′(xn).

In each interval [xi, xi+1], we want to determine a polynomial Pi(x) (here the
subscript i is the interval index and not the polynomial degree), so that

Pi(xi) = fi, Pi(xi+1) = fi+1,

P ′
i (xi) = f ′i , P ′

i (xi+1) = f ′i+1. (6.5)

These are four constraints, and therefore the Pi(x) are of degree ≤ 3. Let
hi = xi+1− xi and apply the transformation of variables

t =
x− xi
hi

⇐⇒ x = xi + hit, (6.6)

such that in each interval, t ∈ [0, 1] measures normalized position relative to the
interval. Then, the problem is the same in each interval, and we can solve it for
one representative interval. This defines the scaled polynomials

Qi(t) = Pi(xi + hit) ⇐⇒ Pi(x) = Qi

(
x− xi
hi

)
.

For these scaled polynomials, the conditions from Eq. 6.5 become:

Qi(0) = fi, Qi(1) = fi+1

Q̇i(0) = hif
′
i , Q̇i(1) = hif

′
i+1. (6.7)

where Q̇i =
dQi(t)

dt and thus the additional pre-factors hi come from the inner
derivative (chain rule of differentiation). Solving this linear system of equations
for the unknown coefficients of the cubic polynomialQi(t) = a0t

3+a1t
2+a2t+a3,

one finds:

Qi(t) = fi(1− 3t2+2t3)+ fi+1(3t
2− 2t3)+hif

′
i(t− 2t2+ t3)+hif

′
i+1(−t2+ t3).

(6.8)
Transforming this back by substituting the definition of t from Eq. 6.6 yields
the final Hermite interpolation polynomial

g(x) := Pi(x) for x ∈ [xi, xi+1].

It is a piecewise cubic polynomial that is continuously differentiable everywhere.
Similar to the Aitken-Neville algorithm for global polynomial interpolation, an
efficient algorithm also exists for determining g(x) and directly evaluating it
at a given query point x. It starts by first determining the index i for which
xi ≤ x < xi+1. Then, compute

hi = xi+1− xi, t =
x− xi
hi

.



6.6. SPLINE INTERPOLATION 75

Finally, the result is computed as

g(x) = Qi

(
t =

x− xi
hi

)
= a0 + (b0 + (c0 + d0t)(t− 1))t.

The coefficients a0, b0, c0, d0 are computed according to the scheme shown in
Fig. 6.5.

Figure 6.5: Calculation of the coefficients of a Hermite interpolation
polynomial.

As elegant and efficient as Hermite interpolation is, it suffers from the problem
that the values f ′i are often not available in practice. A way out is to determine
the f ′i from additional conditions, leading to cubic Splines.

6.6.2 Cubic splines

Cubic Splines introduce additional conditions into the Hermite framework in or-
der to do away with the need of having derivative data available. The goal is still
the same: interpolate f(x) by a piecewise cubic polynomial that is continuously
differentiable everywhere.
Instead of imposing known derivative values at the transition points, however,
cubic Splines demand that the second derivatives of the polynomials are con-
tinuous at interior collocation points, thus:

P ′′
i (xi+1)

!
= P ′′

i+1(xi+1), i = 1, . . . , n− 2.

This is trivially the case for the function f(x) itself. Imposing this also for the
interpolant provides n − 2 conditions from which the unknown f ′1, . . . , f

′
n can

be determined using additionally two boundary conditions. Applying again the
Hermite transformation from Eq. 6.6, this condition becomes:

Q̈i(1)

h2i

!
=
Q̈i+1(0)

h2i+1

.

Substituting the second derivative of the expression for Q(t) from Eq. 6.8,
Image: wikipedia
Carl-Wilhelm Reinhold
de Boor
∗ 3 December 1937

Stolp, Germany
(now: S lupsk, Poland)

suitably evaluated at t = 0 or t = 1, this condition reads:

6

h2i
(fi − fi+1) +

2

hi
f ′i +

4

hi
f ′i+1 =

6

h2i+1

(fi+2 − fi+1)−
4

hi+1
f ′i+1 −

2

hi+1
f ′i+2.



76 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION

Listing these conditions for all interior nodes (N.B., the collocation points are
usually called “nodes” in Spline interpolation) leads to the linear system of
equations:

b1 a1 b2
b2 a2 b3

. . . . . . . . .
bn−2 an−2 bn−1



f ′1
f ′2
...
f ′n

 =


d2
d3
...

dn−1

 , (6.9)

with

bi =
1

hi
,

ai =
2

hi
+

2

hi+1
,

ci =
fi+1 − fi

h2i
,

di+1 = 3(ci + ci+1) = 3

(
fi+1 − fi

h2i
+
fi+2 − fi+1

h2i+1

)
.

These are n− 2 equations for n unknowns. We thus need two additional con-
ditions to render the system determined. These are conditions at the boundary
nodes. There are many possible choices, leading to different flavors of cubic
Splines (n-Splines, B-Splines, etc.). A classic choice is de Boor’s “not a knot”
condition (1978):

P1(x) ≡ P2(x),

Pn−2(x) ≡ Pn−1(x), (6.10)

which can be motivated from approximation error considerations. If the poly-
nomials in the first two and last two intervals are identical, then in particular
also their third derivatives at the collocation points are the same:

P1 ≡ P2 =⇒ P ′′′
1 ≡ P ′′′

2 =⇒
...
Q1(1)

h31
=

...
Q2(0)

h32
.

Substituting again the expression for Q(t) from Eq. 6.8, this becomes:

1

h21
f ′1 +

(
1

h21
− 1

h22

)
f ′2 −

1

h22
f ′3 = 2

(
c1
h1
− c2
h2

)
1

h1
f ′1 +

(
1

h1
+

1

h2

)
f ′2 = 2c1 +

h1
h1 + h2

(c1 + c2).

Analogously, the condition obtained from Pn−2 ≡ Pn−1 is:

1

hn−1
f ′n +

(
1

hn−2
+

1

hn−1

)
f ′n−1 = 2cn−1 +

hn−1

hn−1 + hn−2
(cn−1 + cn−2).



6.6. SPLINE INTERPOLATION 77

This provides the remaining two equations for the linear system in Eq. 6.9,
which can then be solved for the unknown f ′1, . . . , f

′
n. This linear system has

tridiagonal structure and is strictly diagonally dominant, as is easily verified.
The system matrix therefore is regular and the f ′1, . . . , f

′
n uniquely determined.

Because of its tridiagonal structure, the system can be efficiently solved, e.g.,
using Gaussian elimination without pivoting (i.e., with direct diagonal strategy).
After the system has been solved, the f ′1, . . . , f

′
n can be used in the standard

Hermite algorithm as given in Fig. 6.5 to determine the final piecewise cubic
interpolant.
While the f ′1, . . . , f

′
n were the exact values of the derivative in the classic Hermite

approach, the values determined by solving the Spline system are approxima-
tions of the derivative of f(x) at the collocation points. For Splines, they are,
in fact, the derivatives of the interpolant instead.
While we have discussed cubic Splines here, as they are directly related to
Hermite interpolation and are the most frequently used in practice, higher-order
Splines can be derived analogously.
Finally, as already outlined, the “not a knot” condition from Eq. 6.10 is not
the only possible choice for closing the system. Other boundary conditions at
the first and last interval can be chosen, leading to different flavors of Splines.
Particularly popular are:

• Natural Splines (n-Splines): P ′′
1 (x1) = 0, P ′′

n−1(xn) = 0.

• Periodic Splines (p-Splines): f1 = fn, f
′
1 = f ′n. In this case there are only

n − 1 unknowns f ′2, . . . , f
′
n such that one additional condition is enough:

P ′′
1 (x1) = P ′′

n−1(xn).

Splines can be efficiently evaluated, for example using the Cox-de Boor algo-
rithm (not covered here), they afford an elegant decomposition in high-dimensional
spaces, and iterative calculations are possible as well. It is therefore no surprise
that Spline interpolation enjoys widespread use, from signal processing to com-
puter graphics (in the form of NURBS and Bézier curves).



78 CHAPTER 6. SCALAR POLYNOMIAL INTERPOLATION



Chapter 7

Trigonometric Interpolation

In cases where the interpolant g(x) : R → R is not a polynomial, other types
of interpolation arise. Indeed, interpolation can be formulated in any function
space given by some basis functions. For polynomial interpolation, as considered
in the previous chapter, the function space in which g(x) lives is the space of
polynomials with degree≤ n, given by the monomial basis (1, x, x2, . . . , xn). An-
other space of common interest is the space of harmonic functions with angular
frequency≤ n, which, in 1D, is spanned by the basis (1, sinx, cosx, sin 2x, cos 2x,
. . . , sinnx, cosnx). In this case, g(x) is 2π-periodic, so we also have to require
that the collocation data come from a 2π-periodic function, i.e.,

f(x+ 2π) = f(x) ∀x.

Further, we assume that the N collocation points are regularly spaced

xk =
2πk

N
∈ [0, 2π), k = 0, . . . , N − 1

with collocation values at these points given by

fk = f(xk), k = 0, . . . , N − 1.

This leads to trigonometric interpolation, which is connected to polynomial
interpolation through the trigonometric polynomial. Note that we index the
collocation points by k now in order to make explicit that they are evenly
spaced, whereas in the previous chapter they were index by i and could be
arbitrarily spaced.

7.1 The Trigonometric Polynomial

Note that due to the periodicity, f0 = fN . According to the Nyquist-Shannon
sampling theorem, harmonic functions with angular frequency up to n ≤ N/2

79



80 CHAPTER 7. TRIGONOMETRIC INTERPOLATION

can be represented with theseN collocation points. Therefore, we can determine
the interpolant:

gn(x) =
a0
2

+

N
2 −1∑
j=1

(aj cos(jx) + bj sin(jx)) +
1

2
aN

2
cos

(
N

2
x

)
, (7.1)

so that gn(xk) = fk for all k = 0, . . . , N − 1. It will become clear later on, why
the term of orderN/2 only contains a cosine, and no sine. For now, the argument
shall suffice that the number of unknown coefficients of the above trigonometric
polynomial is N , which is all we can determine from the N collocation points.

7.2 Discrete Fourier Transform (DFT)

The trigonometric polynomial in Eq. 7.1 has N unknown coefficients

(a0; a1, b1, . . . aN
2 −1, bN

2 −1; aN
2
),

which can be uniquely determined from the N collocation points. The solution
of this trigonometric interpolation problem is called Discrete Fourier Transform
(Jean-Baptiste Joseph Fourier, 1822). An efficient algorithm for computing it
can be derived from the infinite Fourier series of the unknown function f from
which the data have been sampled, which is defined as:

f(x) =

∞∑
j=−∞

cje
ijx , cj ∈ C, (7.2)

where the coefficients are complex numbers and the Euler notation is used for
compactness: eijx = cos(jx) + i sin(jx). According to standard Fourier theory,
the Fourier coefficients of f are determined by:

cj =
1

2π

∫ 2π

0

f(x)e−ijx dx. (7.3)

This continuous integral can be approximated in the discrete case. A standard
method for integral approximation is illustrated in Fig. 7.1. If the integral over
a continuous function F (x) is interpreted as the area under the graph of this
function, then the integration interval [a, b] can be split into many smaller sub-
intervals, each of width h = (b− a)/N , and the area under the curve in one of
these sub-intervals [a+kh, a+(k+1)h] can be approximated by the area of the
shaded rectangle as:

h

2
(F (a+ kh) + F (a+ (k + 1)h)) .

Summing over all sub-intervals l = 0, 1, . . . , N then yields:∫ b

a

F (x) dx ≈ h

2
(F (a) + F (b)) + h

N−1∑
k=1

F (a+ kh).



7.2. DISCRETE FOURIER TRANSFORM (DFT) 81

Figure 7.1: Approximation of an integral by trapezoidal blocks.

Applying this to Eq. 7.3 with F (x) = 1
2πf(x)e

−ijx and collocation points xk =
2πk
N , we find:

cj ≈ c̃j =
h

4π
(f(0) + f(2π)) +

h

2π

N−1∑
k=1

f

(
2πk

N

)
e−ij

2πk
N

=
1

N

N−1∑
k=0

f

(
2πk

N

)
e−ij

2πk
N , j = 0, 1, . . . , N − 1 (7.4)

because f(0) = f(2π) due to the 2π-periodicity of the function and h = 2π/N .
Image: wikipedia
Jean-Baptiste Joseph
Fourier
∗ 21 March 1768

Auxerre, Kingdom of France
† 16 May 1830

Paris, Kingdom of France

This can be written more compactly by defining the following vectors in CN :

f⃗N :=

 f0
...

fN−1

 , ⃗̃cN :=

 c̃0
...

c̃N−1

 .
Then, Eq. 7.4 reads:

⃗̃cN =
1

N
Wf⃗N , (7.5)

where the matrix W has entries (w)jk = wjk = e−ij
2πk
N for j, k = 0, . . . , N − 1

with w := e−i
2π
N , the N -th complex root of unity. In the usual notational

convention where the first subscript of a matrix denotes the row index and the
second subscript the column index, this is:

W =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) . . . w(N−1)2

 .



82 CHAPTER 7. TRIGONOMETRIC INTERPOLATION

The mapping f⃗N ∈ CN 7→ 1
NWf⃗N ∈ CN is called Discrete Fourier Transform

(i.e., discrete Fourier analysis) and it requires O(N2) operations to be computed,
because that is the number of elements in W.

Since W−1 = 1
NW, where W is the element-wise complex conjugate of W

(which is in this case identical to the conjugate transpose WH because W is a
symmetric matrix), the inverse discrete Fourier transform (i.e., discrete Fourier
synthesis) is simply:

f⃗N = W⃗̃cN (7.6)

and can also be computed in O(N2) operations.

Since the sequence of fk is periodic, i.e. fk±N = fk, the sequence of c̃k is also
periodic, i.e. c̃k±N = c̃k, because

e−ij
2π
N (k±N) = e−ij

2πk
N e±ij2π︸ ︷︷ ︸

=1

= e−ij
2πk
N . (7.7)

The fact that the Fourier coefficients are periodic is only true for the DFT, but
not for the continuous Fourier transform. It is the reason for aliasing phenomena
in digital electronics and digital signal processing, as “out of range” frequencies
get mirrored/shadowed into the signal.

The inverse discrete Fourier transform can be used to find the interpolant in
Eq. 7.1. Indeed, from Eq. 7.6 we have that:

fk = f(xk) = f

(
2πk

N

)
=

N−1∑
j=0

c̃je
ij 2kπ

N

=

N
2 −1∑
j=0

c̃je
ij 2πk

N +

N−1∑
j=N

2 +1

c̃je
ij 2πk

N + c̃N
2
eikπ︸︷︷︸

cos(kπ)

, (7.8)

where we simply wrote the matrix-vector product in sum notation and then split
the sum into three parts: one up to N/2−1, one for N/2, and one from N/2+1
onward, in order to match the index range of the trigonometric polynomial we
seek to determine. Now we perform the index transformation j = l + N , such
that l = −1 for j = N − 1 and l = −N/2 + 1 for j = N/2 + 1. The second
partial sum then becomes:

N−1∑
j=N

2 +1

c̃je
ij 2πk

N =

−1∑
l=−N

2 +1

c̃le
il 2πk

N .

Notice that due to Eq. 7.7 and the periodicity of f , the expression for the
summand did not change. Renaming l = j, we can therefore concatenate this
sum with the first partial sum from Eq. 7.8, as they sum over the identical



7.2. DISCRETE FOURIER TRANSFORM (DFT) 83

summands, leading to:

fk =

N
2 −1∑

j=−N
2 +1

c̃je
ijxk + c̃N

2
cos

(
N

2
xk

)
.

This function has the same form as the interpolant in Eq. 7.1 and fulfills the
interpolation property by construction. Therefore, setting

gn(x) =

N
2 −1∑

j=−N
2 +1

c̃je
ijx + c̃N

2
cos

(
N

2
x

)
(7.9)

trivially fulfills g(xk) = f(xk) for all k = 0, 1, . . . , N−1. Indeed, this is identical
to Eq. 7.1, because

c̃je
ijx + c̃−je

−ijx = (c̃j + c̃−j)︸ ︷︷ ︸
aj

cos(jx) + (ic̃j − ic̃−j)︸ ︷︷ ︸
bj

sin(jx) (7.10)

for j = 0, 1, . . . , N2 − 1, since cos(−jx) = cos(jx) and sin(−jx) = − sin(jx).
Therefore,

gn(x) =
a0
2

+

N
2 −1∑
j=1

(aj cos(jx) + bj sin(jx)) +
1

2
aN

2
cos

(
N

2
x

)
.

The first term, a0/2, follows from the fact that cos(0) = 1 and c̃0 + c̃−0 = 2c0.
For real-valued f , the coefficients aj and bj are also real, because according to
Eq. 7.4, c̃j = c̃−j and thus:

aj = c̃j + c̃−j = ℜ(c̃j) + iℑ(c̃j) + ℜ(c̃j)− iℑ(c̃j) = 2ℜ(c̃j),
bj = ic̃j − ic̃−j = iℜ(c̃j)−ℑ(c̃j)− iℜ(c̃j)−ℑ(c̃j) = −2ℑ(c̃j).

The discrete Fourier transform from Eq. 7.5 can be used to directly compute the
coefficients of the trigonometric interpolation polynomial for given data (xk, fk),
k = 0, . . . , N − 1 in O(N2) operations. This is the same computational cost as
polynomial interpolation (see previous chapter), which is not surprising because
both are interpolation problems, albeit in different basis functions.
An important result, which we give here without proof, states that the trigono-
metric interpolation polynomial gn(x) above is the optimal approximation of
the function f(x) in the sense that:

gn(x) = arg min
g′n(x)

∥g′n(x)− f(x)∥2

with the 2π-periodic function 2-norm defined as:

∥gn(x)− f(x)∥2 :=

[∫ 2π

0

(gn(x)− f(x))2 dx
] 1

2

.



84 CHAPTER 7. TRIGONOMETRIC INTERPOLATION

This means that the trigonometric interpolation polynomial approximates the
Fourier Series for |j| < N

2 in the least-squares sense. It is the polynomial for
which the sum of the squared errors everywhere is minimal (and is zero at the
collocation points).

7.3 Efficient Computation of DFT by FFT

As we have just seen, the discrete Fourier transform (DFT) can be used to com-
pute a trigonometric polynomial to interpolate an unknown function f from
a finite set of evenly spaced discrete samples (xk, fk). This has a multitude
of important applications, ranging from signal filtering (e.g., edge detectors in
computer vision) over data compression methods (e.g., JPEG’92) to numerical
solvers for partial differential equations (e.g., spectral methods). It is there-
fore not surprising that a lot of research has gone into finding efficient ways of
computing DFTs. Directly evaluating the matrix-vector products in Eqs. 7.5
and 7.6 requires a computational effort of O(N2) complex multiplications, which
can become prohibitive for large N . This is the generic computational cost of
any interpolation problem. For the special case of evenly spaced trigonomet-
ric interpolation, however, the computational cost can be further reduced by
exploiting the special structure of the matrix W.

Prominently, this reduction of the computational cost works best if the number
of collocation points is a power of 2, i.e., N = 2m for some m ∈ Z+, leading
to the Fast Fourier Transform (FFT) algorithm. The FFT was already used
by Carl Friedrich Gauss in unpublished work in 1805 to interpolate the orbit of
asteroids Pallas and Juno from observations. It was published in 1965 by James
Cooley and John Tukey, who are credited for the invention of the modern FFT.
The FFT is on the Millennial “Computing in Science and Engineering” (Jack
Dongarra, 2000) list of the 10 most important and influential algorithms of
all times (along with: Newton method, LU/QR decomposition, Singular Value
Decomposition, Metropolis-Hastings algorithm, QuickSort, PageRank, Krylov
subspace iteration, simplex algorithm, Kalman filter).

The idea of FFT is to recursively decompose the DFT computation into smaller
problems, so that in the end the complete problem can be solved in only
O(N log2N). Indeed, the computation of the Fourier coefficients according to
Eq. 7.5

⃗̃cN =
1

N
Wf⃗N

can be split into two parts: one for all coefficients with even index, and one for
all coefficients with odd index. For the even coefficients, we find:

Nc̃2k =

N−1∑
j=0

w2kjfj =

n−1∑
j=0

w2kjfj +

2n−1∑
j=n

w2kjfj (7.11)

with n = N
2 . For the second partial sum on the right-hand side, we apply the



7.3. EFFICIENT COMPUTATION OF DFT BY FFT 85

index transformation j = j′ + n, leading to:

2n−1∑
j=n

w2kjfj =

n−1∑
j′=0

w2k(j′+n)fj′+n =

n−1∑
j′=0

w2kj′fj′+n.

In the second step, we have used the periodicity property of the roots of unity

Image: IEEE
James William Cooley
∗ 18 September 1926

New York, NY, USA
† 29 June 2016

Huntington Beach, CA, USA

Image: wikipedia
John Tukey
∗ 16 June 1915

New Bedford, MA, USA
† 26 July 2000

New Brunswick, NJ, USA

w2k(j′+n) = w2kj′w2kn = w2kj′ · 1 (see also Eq. 7.7). Therefore, the first and
second sum in Eq. 7.11 are over the same range and can be combined to:

2nc̃2k =

n−1∑
j=0

(w2)kj(fj + fj+n). (7.12)

Note that fj+n ̸= fj because n = N/2 is only half the period of the function.
Comparing Eq. 7.12 above with Eq. 7.5, we see that Eq. 7.12 is also a DFT, but
one of size n = N

2 on the data points (fj + fj+n). For the odd coefficients, a
similar derivation (omitted here) yields:

2nc̃2k−1 =

n−1∑
j=0

(w2)kj(fj − fj+n)wj , (7.13)

which is a DFT of size n = N
2 on the data points (fj − fj+n)wj .

Computing the Fourier coefficients via Eqs. 7.12 and 7.13 instead of Eq. 7.5
yields the same result in O(2 · N2/4) = O(N2/2), i.e., in half the operations.

This can now be iterated. The vectors ⃗̃c2k and ⃗̃c2k−1 can again be split into odd
and even parts each, leading to four DFTs of size N/4 that compute the result
in a quarter of the time.

For N = 2m, i.e., if the number of collocation points is a power of two, this
binary decomposition can be iterated m = log2(N) times. Then, instead of
computing one DFT of size N , we compute N DFTs of size 1. Computing a
DFT of size 1 requires µ(1) = 0 complex multiplications, where µ(n) denotes
the number of complex multiplications required for a DFT of size n. In each
step of the recursive decomposition, we require n = N

2 complex multiplications
to compute the ·wj terms in the odd coefficients (see Eq. 7.13). Moreover, the
problem of size 2n is computed by solving two problems of size n. Therefore,
µ(2n) = 2µ(n) + n. For N = 2m, this yields

µ(N) = nm = n log2(N) =
N

2
log2(N) ∈ O(N log2N)

as the number of complex multiplications required by the FFT algorithm. Al-
ready for small N , this is much less than the direct O(N2) algorithm requires,
therefore enabling very efficient trigonometric interpolation. Note, however,
that this classical formulation of the FFT is only possible if the collocation
points are evenly spaced and their number is a power of two.



86 CHAPTER 7. TRIGONOMETRIC INTERPOLATION

7.4 Practical Considerations

When using FFT implementations in practice, a couple of things need to be
kept in mind. The first is that the normalization of the problem can be done in
different ways. Here, we have defined:

⃗̃cN =
1

N
Wf⃗N

f⃗N = W⃗̃cN ,

that is, we chose to normalize the forward transform (the Fourier analysis) by
multiplying with 1

N . Alternatively, of course, it is also possible to compute
unnormalized Fourier coefficients γ and normalize the inverse transform as:

γ⃗N = N⃗̃cN = Wf⃗N

f⃗N =
1

N
Wγ⃗N .

This second way is, for example, how MATLAB does it. Therefore, the MAT-
LAB function fft([f]) does not compute the Fourier coefficients c̃j , but their
unnormalized versions γj = Nc̃j . Likewise, one has to be careful to use unnor-
malized coefficients as an input to the MATLAB function ifft(), as otherwise
wrong function values are synthesized.
A third choice is to equally distribute the normalization to both the forward
and backward transform, thus

β⃗N = =
1√
N

Wf⃗N

f⃗N =
1√
N

Wβ⃗N .

This is often seen in theoretical works because with this choice the DFT fulfills
the mathematical properties of a unitary transformation.
Another practical choice is whether the Fourier coefficients are indexed−N2 , . . . ,

N
2

or 0, . . . , N − 1. Both choices are found in practice, with computer codes hav-
ing an obvious tendency to use the latter, whereas Eq. 7.9 used the former.
The non-negative formulation is obtained from the symmetric one by setting
N
2 + 1, . . . , N − 1 = −N2 , . . . ,−1, as illustrated in Fig. 7.2.
An important property of Fourier coefficients, which forms the basis of applica-
tions such as data compression, is that for smooth periodic functions f , only few
Fourier coefficients are significantly bigger than zero. Therefore, data can be
represented in a more compact form by computing the DFT and only storing the
M < N largest coefficients. When reconstructing the data from this compressed
form, the missing coefficients are simply set to 0 in the inverse transform, using

c̃0, c̃1, . . .︸ ︷︷ ︸
M
2

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−M

, . . . , c̃M︸ ︷︷ ︸
M
2



7.4. PRACTICAL CONSIDERATIONS 87

Figure 7.2: Two common indexing schemes used for Fourier coefficients:
symmetric (left panel) and non-negative (right panel).

in the 0, . . . , N − 1 indexing scheme (flipped in the other indexing scheme). A
similar construction can also be used to approximately evaluate the trigonomet-
ric polynomial at intermediate positions x ̸= xk.



88 CHAPTER 7. TRIGONOMETRIC INTERPOLATION



Chapter 8

Numerical Integration
(Quadrature)

An important application of numerical methods is to approximate the value of
an integral that cannot be solved analytically, or where the integrand is not
given in closed form. The mathematical problem is to find the value

I =

∫ b

a

f(x) dx (8.1)

for a function f(x) : [a, b] → R. The basic idea of numerical integration is to
approximate the integral by approximating the area under the graph of y = f(x)
between a and b. This idea goes back to Ancient Greece when Pythagoras and
Hippocrates were concerned with finding a square that has the same area as
a given circle, a problem known as the “quadrature of the circle”. Because
this can be computed as the integral (albeit the Ancient Greeks did not know
calculus, they had a notion of geometric area) over a half-circle, the historic
name for numerical integration is “quadrature”.

Image: wikipedia
Pythagoras of Samos
∗ ca. 570 B.C.

Samos, Ancient Greece
† ca. 495 B.C.

Croton, Ancient Greece
(now: Crotone, Italy)

Image: wikipedia
Hippocrates of Kos
∗ ca. 460 B.C.

Kos, Ancient Greece
† ca. 370 B.C.

Larissa, Ancient Greece

We again only consider the scalar case. The numerical problem is to compute
an approximation Ĩ ≈ I if the function f is either computable, i.e., can be
evaluated for any given x (but need not be known in closed form), or its value
is given at fixed collocation points xi as fi.
Unlike many of the problems considered so far, integration does not require f(x)
to be smooth. Indeed, the integral in Eq. 8.1 may exist and be well-defined even
if f(x) has discontinuities or singularities. For the numerical treatment of the
problem, however, we still need to require that f(x) is continuous. This can
always be guaranteed by splitting an integral over a discontinuous function into
multiple sub-integrals over continuous functions. For example, if the integrand
f(x) has a singularity or discontinuity at x = s, the problem can be decomposed
as: ∫ b

a

f(x) dx =

∫ s−

a

f(x) dx+

∫ b

s+
f(x) dx,

89



90 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

where s− = s − ϵ and s+ = s + ϵ for some numerically negligible ϵ. The
individual sub-integrals over continuous functions can then be approximated
separately and the results added.

8.1 Rectangular Method

The simplest quadrature method approximates the area under the graph of
y = f(x) by a sum of rectangular boxes, as already realized by Pythagoras and
illustrated in Fig. 8.1 for the case where all rectangles have the same width h.
Then, the area of the k-th rectangle is given by

f(a+ kh)h

for k = 0, 1, 2, . . . , N − 1. Alternatively, one can also index the rectangles from
1 to N and use the value of the function at the right border of each rectangle to
compute its area. The method is the same. Summing over all rectangles then
approximates the integral as:

I ≈ Ĩ = B(h) = f(a)h+ f(a+ h)h+ f(a+ 2h)h+ . . .+ f(b− h)h

Ĩ = B(h) =

N−1∑
k=0

f(a+ kh)h = h

N−1∑
k=0

f(a+ kh). (8.2)

The value B(h) is called the rectangular approximation (B for “block” or “box”)
of the integral with resolution h.

Figure 8.1: Approximating the area under the graph of y = f(x) by a sum of
rectangles of width h.

Considering again Fig. 8.1, we realize that another interpretation is that the rect-
angular method replaces the function f(x) over the interval [a, b] with a piece-
wise constant approximation of which the integral can trivially be computed.
A piecewise constant approximation is identical to a polynomial interpolation



8.2. TRAPEZOIDAL METHOD 91

with polynomial degree n = 0, i.e., with constants. This immediately suggests
more accurate approximations of the integral could be obtained by replacing
f(x) with its interpolation polynomial of higher degree. For polynomials, inte-
grals can always be computed analytically, such that any such approximation
would provide a viable algorithm. Therefore, numerical integration can be inter-
preted as an application of polynomial interpolation, followed by the analytical
evaluation of the integral over the polynomial. This is also the reason why for
the numerical treatment of the problem, it is convenient to require f(x) to be
continuous, so that polynomial approximation has a bounded error (see Section
6.5).

8.2 Trapezoidal Method

The next higher polynomial degree, n = 1, leads to a piecewise linear approxi-
mation of the integrand f(x). This is illustrated in Fig. 8.2 for the case when
f(x) is approximated by a single linear function connecting the points (a, f(a))
and (b, f(b)) by a straight line. The integral over the linear approximation can
then be analytically computed as the area under the line:

I ≈ Ĩ = T :=
b− a
2

(f(a) + f(b)).

This method is called trapezoidal method because the area under the graph
of f(x) is approximated by the area of the trapezoid Ĩ. It is a variant of
midpoint quadrature. It was probably already discovered in ancient Babylon
around 50 B.C. by an unspecified scientist who used it for integrating the velocity
of the planet Jupiter (source: Mathieu Ossendrijver, Science 351(6272): 482–
484, 2016).

Figure 8.2: Illustration of quadrature where f is approximated by a linear
function.

It is intuitive that the approximation quality improves if this strategy is applied
piecewise to a finer subdivision of the interval [a, b]. Assume that the domain
of integration is subdivided into N equally sized sub-intervals of width

h =
b− a
N

,



92 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

leading to collocation points

xk = a+ kh, fk = f(xk), k = 0, 1, . . . , N,

as illustrated in Fig. 8.3. Clearly then, a = x0 and b = xn.

Figure 8.3: Subdivision of the domain of integration into N sub-intervals.

Summing the areas of the trapezoids in all sub-intervals, the trapezoidal approx-
imation of the integral becomes:

T (h) =
h

2
(f0 + f1) +

h

2
(f1 + f2) + . . .+

h

2
(fN−1 + fN ),

which can be simplified to:

Ĩ = T (h) := h

[
1

2
f0 + f1 + f2 + · · ·+ fN−2 + fN−1 +

1

2
fN

]
. (8.3)

Because this approximation is computed by replacing f(x) with its linear inter-
polation polynomial, the error is bounded by:

|I − T (h)| ≤ M

8
(b− a)h2

if |f ′′(x)| ≤ M for all x ∈ [a, b]. This directly follows from the error bound for
polynomial approximation as given in Section 6.5. The polynomial approxima-
tion error bounds the error in the heights of the bars. The additional factor
(b − a) accounts for the cumulative width of the bars, yielding an error bound
for the area.
In practice, M is usually not known and this formula is therefore not very
useful to determine the h needed to achieve a desired approximation accuracy.
A practical algorithm can be constructed by recursive interval refinement. For
example, by successively halving the interval length,

h0 = b− a, h1 =
h0
2
, h2 =

h1
2
, . . . ,



8.2. TRAPEZOIDAL METHOD 93

we can compute gradually better approximations

T0 = T (h0), T1 = T (h1), T2 = T (h2), . . .

This can be done without evaluating the function f more than once at any given
location, by computing iteratively:

s0 :=
1

2
(f(a) + f(b)) T0 = h0s0

s1 = s0 + f(a+ h1) T1 = h1s1

s2 = s1 + f(a+ h2) + f(a+ 3h2) T2 = h2s2

s3 = s2 + f(a+ h3) + f(a+ 3h3) + f(a+ 5h3) + f(a+ 7h3) T3 = h3s3

...
...

We can terminate this sequence as soon as the approximation does not signifi-
cantly (as given by some tolerance) change any more. This provides a practical
way of computing the trapezoidal approximation to a desired accuracy without
priorly needing to know the h required to do so, and it computationally costs
only marginally (for the intermediate multiplications with hi) more than a di-
rect evaluation of the trapezoidal sum from Eq. 8.3 for that h. The resulting
algorithm for general N is given in Algorithm 11.

Algorithm 11 Trapezoidal Quadrature

1: procedure Trapezoidal(a, b, RTOL, ATOL) ▷ Domain interval [a, b]
2: h0 = b− a
3: s0 = 1

2 (f(a) + f(b))
4: T0 = h0s0
5: N0 = 0
6: i = −1
7: repeat
8: i = i+ 1
9: hi+1 = hi

2

10: si+1 = si +
∑Ni

j=0 f(a+ (2j + 1)hi+1)
11: Ti+1 = hi+1si+1

12: Ni+1 = 2Ni + 1
13: until |Ti+1 − Ti| ≤ |Ti+1|RTOL +ATOL
14: end procedure

The main disadvantage of the trapezoidal method is its slow convergence, i.e.,
the large number of iterations of the algorithm (equivalently: the small h) re-
quired to achieve high accuracy.



94 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

8.3 Simpson’s Rule

Further increasing the polynomial degree to n > 1 leads to quadrature schemes
of successively higher orders of convergence. Since interpolation is done piece-
wise (like Hermite interpolation) with sub-interval widths scaling inversely pro-
portional with polynomial degree, the ringing artifact discussed in Section 6.5
is not an issue.

The next-higher order scheme is obtained when approximating f(x) with its
quadratic interpolation polynomial P2(x). Determining P2(x) requires three
collocation points, as illustrated in Fig. 8.4. The easiest is to place the additional
collocation point c at the center of the integration interval, thus c = 1

2 (a+ b).

Figure 8.4: Using three collocation points to approximate f(x) by an
interpolation polynomial of degree 2.

Because P2(x) solves the polynomial interpolation problem for f(x), we have:

P2(a) = f(a), P2(b) = f(b), P2(c) = f(c).

The integral over the interpolation polynomial can then be computed as:

S :=

∫ b

a

P2(x) dx = h

∫ 1

−1

P2(a+ h(t+ 1))︸ ︷︷ ︸
Q2(t)

dt,

with h = b−a
2 , x = a + h(t + 1), and therefore dx = hdt. This transformation

of variables rescales the domain of integration to [−1, 1], regardless of the orig-
inal domain of the integral. To determine this integral, we thus need to find
the rescaled polynomial Q2(t), which can be done by solving the three-point
interpolation problem. Therefore, Q2(t) is a polynomial of degree ≤ 2,

Q2(t) = αt2 + βt+ γ,



8.3. SIMPSON’S RULE 95

satisfying

Q2(−1) = P2(a) = f(a) = α− β + γ,

Q2(0) = P2(c) = f(c) = γ,

Q2(1) = P2(b) = f(b) = α+ β + γ.

Solving this linear system of equations analytically, we find

α =
f(b)− 2f(c) + f(a)

2
, β =

f(b)− f(a)
2

, γ = f(c).

Now we can solve the integral:∫ 1

−1

Q2(t) dt = α

∫ 1

−1

t2 dt+ β

∫ 1

−1

tdt+ γ

∫ 1

−1

dt =
2

3
α+ 2γ

=
1

3
f(b)− 2

3
f(c) +

1

3
f(a) + 2f(c),

leading to the result

S =
h

3
(f(a) + 4f(c) + f(b)). (8.4)

Image: JSTOR.org
Thomas Simpson
∗ 20 August 1710

Sutton Cheney, England
† 14 May 1761

Market Bosworth, England

Image: wikipedia
Johannes Kepler
∗ 27 December 1571

Weil der Stadt, Holy Roman
Empire (now: Germany)

† 15 November 1630
Regensburg, Holy Roman
Empire (now: Germany)

Like before, we can improve the approximation by not only subdividing the
integration domain into two sub-intervals, but into 2N . We write 2N instead
of N in order to highlight that the number of sub-intervals for the Simpson
method always has to be even. Then,

h =
b− a
2N

and the collocation points are

xk = a+ kh, fk = f(xk), k = 0, 1, . . . , 2N.

The Simpson approximation for equidistant1 collocation points then is:

S(h) =
h

3
(f0 + 4f1 + f2) +

h

3
(f2 + 4f3 + f4) + · · ·+

h

3
(f2N−2 + 4f2N−1 + f2N ),

which simplifies to:

Ĩ = S(h) :=
h

3
(f0+4f1+2f2+4f3+2f4+ · · ·+2f2N−2+4f2N−1+f2N ).

(8.5)

1There is also a version of Simpson’s rule that uses sub-intervals of different length, con-
centrating on areas where the integrand varies more quickly (adaptive Simpson rule) and a
version for completely irregular collocation points.



96 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

For the Simpson method, the approximation error is

|I − S(h)| ≤ M

180
(b− a)h4

if |f (4)(x)| ≤M for x ∈ [a, b]. Therefore, Simpson’s method is of convergence or-
der 4, whereas the trapezoidal method is of order 2 and the rectangular method
of order 1. Simpson’s method gains an additional order over the order 3 that
is guaranteed by the use of quadratic interpolation, because the collocation
points are symmetric in the interval. This is not a contradiction, because the
polynomial approximation error is an upper bound and special cases (like here
symmetric point distributions) can be below.
In practice, the h required to achieve a certain desired accuracy is again not
priorly known, but successively refined values can be computed by iteratively
halving the sub-intervals until the change falls below a given tolerance. The al-
gorithm is based on the observation that the trapezoidal values and the Simpson
values are related through:

Si =
4Ti − Ti−1

3
, i = 1, 2, 3, . . . (8.6)

Therefore, Algorithm 11 can be used to compute the sequence of trapezoidal
approximations T0, T1, T2, . . . from which the Simpson approximations are com-
puted using the above formula. The resulting Simpson algorithm is given in
Algorithm 12. It is generally attributed to Thomas Simpson (not to be confused
with the arctic explorer and convicted murderer by the same name), although
the algorithm was already described and used by Johannes Kepler 100 years
before Simpson, which is why it is also sometimes called Kepler’s Rule in the
literature (in German: “Kepler’sche Fassregel”).

8.4 Romberg’s Method

As we have seen in the previous section, the Simpson values can be expressed
as linear combinations of trapezoidal values. This suggests that using some
other linear combination of Simpson values might yield an even higher-order
quadrature. This is indeed the case, as was realized by Werner Romberg in 1955,
who applied Richardson extrapolation (Lewis Fry Richardson, 1911) recursively
to trapezoidal values in order to systematically derive higher-order quadrature
formulas.
The Romberg method is based on the observation that the trapezoidal values
can be expanded into a series

T (h) = I + c1h
2 + c2h

4 + c3h
6 + . . . , (8.7)

where I is the exact value of the integral. Due to the symmetric distribution
of collocation points, all odd orders vanish. Accounting for terms up to and
including order h2n, the approximation error is of order h2n+2, provided that



8.4. ROMBERG’S METHOD 97

Algorithm 12 Simpson Quadrature

1: procedure Simpson(a, b, RTOL, ATOL) ▷ Domain interval [a, b]
2: h0 = b− a
3: h1 = h0/2
4: s0 = 1

2 (f(a) + f(b))
5: s1 = s0 + f(a+ h1)
6: T1 = h1s1
7: S1 = 1

3 (4T1 − h0s0)
8: N1 = 1
9: i = 0

10: repeat
11: i = i+ 1
12: hi+1 = hi

2

13: si+1 = si +
∑Ni

j=0 f(a+ (2j + 1)hi+1)
14: Ti+1 = hi+1si+1

15: Si+1 = 1
3 (4Ti+1 − Ti)

16: Ni+1 = 2Ni + 1
17: until |Si+1 − Si| ≤ |Si+1|RTOL +ATOL
18: end procedure

f is sufficiently smooth, i.e., sufficiently many times continuously differentiable
everywhere, such that a finite upper bound on |f (2n+2)| exists.
The idea of Richardson extrapolation is to exploit the existence of Eq. 8.7 to
eliminate (unknown) error terms and thus construct higher-order schemes by
forming linear combinations of series expansions for different values of h.
For example, consider the expansions from Eq. 8.7 for h and h/2:

Image: wikipedia
Werner Romberg
∗ 16 May 1909

Berlin, German Empire
† 5 February 2003

Heidelberg, Germany

Image: wikipedia
Lewis Fry Richardson
∗ 11 October 1881

Newcastle upon Tyne, UK
† 30 September 1953

Kilmun, Scotland, UK

T (h) = I + c1h
2 + c2h

4 + c3h
6 + . . . ,

T

(
h

2

)
= I +

1

4
c1h

2 +
1

16
c2h

4 +
1

64
c3h

6 + . . . .

Multiplying the second equation by 4 and subtracting the first equation from it
yields:

4T

(
h

2

)
− T (h) = 3I − 3

4
c2h

4 − 15

16
c3h

6 − . . .

and thus:
4T (h2 )− T (h)

3
= I − 1

4
c2h

4 +O(h6), (8.8)

which according to Eq. 8.6 is the Simpson value for resolution h/2:

S

(
h

2

)
=

4T
(
h
2

)
− T (h)
3

=
T
(
h
2

)
− 4−1T (h)

1− 4−1
. (8.9)

The second way of writing the linear combination will become clear when we
look at the next-higher order.



98 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

From Eq. 8.8 it is clear that the Simpson values have the asymptotic series
expansion (confirming their fourth-order convergence):

S

(
h

2

)
= I − 1

4
c2h

4 − 5

16
c3h

6 + . . .

The next Richardson extrapolation step thus aims to eliminate the term of order
h4 by forming a suitable linear combination of:

S

(
h

2

)
= I − 1

4
c2h

4 − . . .

S

(
h

4

)
= I − 1

64
c2h

4 − . . .

Multiplying the second equation by 16 and subtracting the first from it elimi-
nates the fourth-order term and yields:

16S

(
h

4

)
− S

(
h

2

)
= 15I +O(h6)

and thus:

16S
(
h
4

)
− S

(
h
2

)
15

=
S
(
h
4

)
− 4−2S

(
h
2

)
1− 4−2

= I +O(h6), (8.10)

which is a sixth-order accurate quadrature formula. Comparing the expressions
in Eqs. 8.9 and 8.10 immediately suggests a regularity.

Figure 8.5: Illustration of the sequence of calculations in the Romberg method.

Indeed, the scheme can be continued as illustrated in Fig. 8.5. It starts by
computing the sequence of successively halved interval sizes

h0 = b− a, h1 =
h0
2
, h2 =

h1
2
, . . . ,



8.5. GAUSS QUADRATURE 99

each giving rise to a row in the scheme of Fig. 8.5. For each row, we then
compute the corresponding trapezoidal value using Algorithm 11. This defines
the first column of the scheme with values

Ri,0 = Ti, i = 0, 1, 2, . . . (8.11)

According to the regularity suggested by the above two steps of Richardson
extrapolation, the subsequent columns of the scheme are then computed as:

Ri,k =
Ri,k−1 − 4−kRi−1,k−1

1− 4−k
, k = 1, 2, . . . , i. (8.12)

This is the Romberg method for computing successively higher-order approxima-
tions to the integral value. If all coefficients in the series expansion of Eq. 8.7
ck ̸= 0, then each column of this scheme converges to the correct value I faster
(i.e., at higher convergence rate) than all previous columns. Furthermore, the
sequence of values along each diagonal (from top-left to bottom-right) converges
faster than the sequence of values along any column (not proven here).
The calculation is terminated as soon as |Ri,i−Ri−1,i−1| ≤ |Ri,i|RTOL+ATOL,

which is the usual stopping condition. Then Ĩ = Ri,i is an approximation of I
to accuracy O(h2i+2).
However, one has to be careful not to proceed too far in the Romberg scheme,
i.e., not to use tolerances that are too small. This is because for large i, it
may happen that the approximations get worse again, which could prevent the
algorithm from ever reaching the tolerance. The reason for this can be either
that f is not sufficiently many times continuously differentiable (in which case
the terms in the Taylor expansion for Richardson extrapolation don’t exist) or
that the degree of the interpolation polynomial becomes too high with respect
to the interval size hi (note that here the two are decoupled), leading to the
ringing phenomenon discussed in Section 6.5. In practice, the Romberg scheme
is usually limited to imax ≈ 6 in order to prevent these problems.
The Romberg schemes also only work for equidistant collocation points. Fi-
nally, while the Romberg scheme is easy to implement, it is computationally
not particularly efficient, because many evaluations of the function f are re-
quired to compute the trapezoidal values to start the scheme, and a small h
may be required to resolve strongly varying functions.

8.5 Gauss Quadrature

The Romberg scheme and its computational inefficiency raises the question what
the optimal quadrature formula would be, i.e., the formula that achieves the
highest possible accuracy with a given number of collocation points or, equiva-
lently, that needs the smallest number of collocation points to achieve a given
accuracy. It is intuitive that placing the collocation points at regular distances
may not always be the best. If the integrand varies little in some areas of the



100 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

integration domain, but strongly in others, one may better place collocation
points more densely in areas of strong variation. Using the same overall number
of collocation points N , the accuracy could then be higher than in equidistant
methods. This is the idea behind adaptive quadrature methods, of which there
exist many, including the adaptive Simpson rule. Therefore, using the addi-
tional degree of freedom of how to place the collocation points can improve the
accuracy of quadrature.
To address the question how accurate any adaptive quadrature can be at best,
Carl Friedrich Gauss realized that any quadrature formula is a weighted sum of
the N collocation values and can hence be written in general as:

QN =

N∑
j=1

wjfj (8.13)

with ordered collocation points

a = x1 < x2 < · · · < xN = b,

collocation values
f1 = f(x1), . . . , fN = f(xN ),

and quadrature weights
w1, w2, . . . , wN .

So far, we considered fixed, equidistant xj = xk = a+kh, k = 0, . . . , N −1, and
have determined the weights wj such that QN ≈ I to some order of accuracy.
This gave rise to the Romberg family of methods with the trapezoidal and
Simpson methods as its first two members. Now, we want to consider the case
where both the xj and the wj can be freely chosen in order to achieve higher
orders of accuracy with the same number of collocation points. This allows for
collocations points to be arbitrarily spaced, which is why we index them by j
now in order to differentiate from the evenly spaced xk of above.
We start by noting that any problem as defined in Eq. 8.1 and be formulated
as an integral over the inverval [−1, 1], hence

I =

∫ b

a

g(t) dt =

∫ 1

−1

f(x) dx

by the change of variables

t =
b− a
2

x+
a+ b

2
, x =

2

b− a
t− a+ b

b− a
,

as

I =

∫ 1

−1

g

(
b− a
2

x+
a+ b

2

)
b− a
2︸ ︷︷ ︸

f(x)

dx.

Therefore, for simplicity of notation, we restrict the discussion to integrals on
the interval [−1, 1] without loss of generality.
Before considering the question of what the optimal quadrature formula is, we
need to sharpen a bit the concept of how we quantify accuracy of quadrature.



8.5. GAUSS QUADRATURE 101

Accuracy of quadrature schemes

There are two ways of defining the accuracy of a quadrature scheme: (1) by
the asymptotic decay of the truncation error, or (2) by the complexity of
functions that are still exactly integrated. So far, in the Romberg view, we
have considered the asymptotic decay of the truncation error from the series
expansion of the quadrature values. This has led to statements like, e.g. for
the trapezoidal method, “the quadrature error decreases as O(h2) for h→
0.” While this tells us how the error scales with h, and that it eventually
converges for sufficiently small h, it makes no statement about the accuracy
for any given finite h. Therefore, Gauss introduced an alternative way of
defining accuracy of quadrature as the largest degree of a polynomial that
is still integrated exactly. We therefore define:

Definition 8.1 (Degree of accuracy). The degree of accuracy m of a
quadrature scheme QN is the largest degree of a polynomial p(x) for which

the integral I =
∫ 1

−1
p(x) dx is computed exactly, i.e., |QN − I| = 0 for all

p(x) with deg p(x) ≤ m.

The scaling of the error with h is referred to as the order of accuracy. The
degree of accuracy and the order of accuracy are not the same.

For quadrature methods from the Romberg family, i.e., methods based on re-
placing the integrand with its interpolation polynomial, the order of accuracy
is always one more than the degree of accuracy. Moreover, the degree of accu-
racy m of a Romberg method is related to the degree n of the approximating
interpolation polynomial. Consider the following two examples:

Example 8.1. The trapezoidal method with h = 2 on the interval [−1, 1] is
given by:

T (h = 2) = Q2 = f(−1) + f(1).

Now, consider as integrand a polynomial of degree n = 1:

f(x) = p1(x) = a0x+ a1

with its exact integral: ∫ 1

−1

p1(x) dx = 2a1.

For the trapezoidal approximation, we find:

T (2) = Q2 = p1(−1) + p1(1) = −a0 + a1 + a0 + a1 = 2a1,

which is exact, as expected from the fact that a linear function has f ′′ = 0 and
hence the error of the trapezoidal method vanishes. Since this is not the case for
any more for n = 2, the degree of accuracy of the trapezoidal method is m = 1.
The degree of the approximating interpolation polynomial is n = 1 = m.



102 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)

Example 8.2. For Simpson’s method on the interval [−1, 1], we have:

S(h = 1) = Q3 =
1

3
(f(−1) + 4f(0) + f(1)).

Consider as integrand a cubic polynomial

f(x) = p3(x) = a0x
3 + a1x

2 + a2x+ a3

with exact integral: ∫ 1

−1

p3(x) dx =
2

3
a1 + 2a3.

For the Simpson approximation, we find:

p3(−1) = −a0 + a1 − a2 + a3

p3(0) = a3

p3(1) = a0 + a1 + a2 + a3

=⇒ S(1) = Q3 =
1

3
(2a1 + 6a3),

which is exact, as expected from the error bound of Simpson’s method when
f (4) = 0. Therefore, Simpson’s method integrates polynomials of degree n = 3
exactly. Since this is not the case any more for n = 4, the Simpson method has
a degree of accuracy of m = 3. The degree of the approximating interpolation
polynomial is n = 2 = m− 1.

The following interesting facts have been proven (elsewhere):

• Romberg methods based on an interpolation polynomial of even degree
n have a degree of accuracy of m = n + 1. Romberg methods based on
an interpolation polynomial of odd degree n have a degree of accuracy of
m = n.

• The degree of accuracy of any quadrature scheme with N collocation
points is at most m ≤ 2N − 1.

• There exists exactly one quadrature scheme with N collocation points
xj ∈ [−1, 1] that reaches the maximum degree of accuracy m = 2N − 1.

These facts are interesting because they tell us that: (1) one can do better
than the Romberg methods, since 2N − 1 > N + 1 for all N > 2, and (2) there
exists one unique quadrature formula that achieves the maximum degree of
accuracy. This quadrature method of optimal degree of accuracy is called Gauss
quadrature. We describe it here without deriving or proving it. In N -point
Gauss quadrature, the collocation points xj are given by the roots of the N -th
Legendre polynomial LN (x), and the quadrature weights wj are given by:



8.5. GAUSS QUADRATURE 103

wj =

∫ 1

−1

N∏
k=1
k ̸=j

(
x− xk
xj − xk

)2
dx > 0, j = 1, 2, . . . , N. (8.14)

The Legendre polynomials can be computed from the recursion:

L0(x) = 1, (8.15)

L1(x) = x, (8.16)

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k + 1
Lk−1(x), k ≥ 2. (8.17)

Image: wikipedia
Adrien-Marie Legendre
∗ 18 September 1752

Paris, Kingdom of France
† 9 January 1833

Paris, France

The roots of these polynomials are known analytically up to k ≤ 5 and have been
computed numerically for higher degrees. The values can be found tabulated.
All non-zero roots of Legendre polynomials are pairwise symmetric around x =
0. The quadrature weights for both roots of a symmetric pair are identical.
Therefore, it is in practice enough to store the non-negative xj and compute
their weights wj from Eq. 8.14. The symmetric negative ones can be mirrored
at runtime. Because Gauss quadrature normalizes everything into the standard
interval [−1, 1], the (xj , wj) are always the same, regardless of the integral to be
approximated. They can therefore be pre-computed and stored in tables once
and for all, rendering Gauss quadrature computationally very efficient and fast.
While Gauss quadrature is much more accurate than Romberg schemes, it re-
quires that the integrand f(x) can be evaluated at arbitrary locations. This
may not be the case in applications where f(x) is only given at discrete data
points. Clearly, interpolating from these points to the Gauss points xj would
again amount to Romberg quadrature and would therefore be meaningless. In
such cases, the classic Romberg schemes are preferred.
Interestingly, while Gauss quadrature is the scheme of maximum degree of ac-
curacy, its order of accuracy is not known. An error estimation is therefore not
available. If this is required, Romberg methods are again the way to go.
Romberg and Gauss methods are related in the sense that the Gauss quadrature
formula with N collocation points xj corresponds to the integral from −1 to
1 over the Legendre interpolation polynomial LN−1(x) approximated on the
collocation points (xj , f(xj)). Because Legendre polynomials do not suffer from
ringing artifacts, however, the maximum degree N is no longer limited, and
Gauss quadrature also works for large N without problems.



104 CHAPTER 8. NUMERICAL INTEGRATION (QUADRATURE)



Chapter 9

Numerical Differentiation

Now that we know how to numerically approximate integrals, we consider the
opposite operation, namely the numerical approximation of derivatives. This
is a central topic in many applications of numerical computing, as it allows
computing numerical solutions to differential equations, giving rise to the entire
sub-field of numerical analysis.

Given a function f(x) : R → R, which is sufficiently many times continuously
differentiable, the goal is to approximate f (ν)(z), the ν-th (ν > 0) derivative of
f evaluated at a given location z. This is a well-defined real number that can
be numerically computed.

Numerical differentiation is required whenever (i) f(x) is only known at discrete
collocation points or given as a data table, (ii) f(x) is not available in closed or
symbolic form but can be evaluated for any x, (iii) analytically computing the
derivative would be too complicated, or (iv) differential operators in differential
equations are to be discretized.

Numerical differentiation is tricky. While replacing the function f(x) with its
interpolation polynomial p(x) was a good strategy for quadrature, it does not
provide a viable approach to differentiation. Indeed, a small |p(x)− f(x)| does
not imply small |p′(x) − f ′(x)|. This is illustrated in Fig. 9.1, where a wavy
function f(x) is well approximated (in value) by a polynomial p(x). Clearly, the
areas under the two curves are also almost the same, making p(x) a good choice
for integration. The slopes of f(x) and p(x) at any location z, however, can
be very different. Therefore, simply using the derivative of the interpolation
polynomial p(x) as an approximation of the derivative of f(x) is not a good
idea.

Numerical differentiation therefore is fundamentally different from numerical
integration, and it is tricky because it amplifies noise. If the data points though
which f(x) is given are noisy, the approximation of the derivative is even more
noisy. Due to its practical importance, however, numerical differentiation has
attracted a lot of attention and there exists a wealth of different approaches,
including:

105



106 CHAPTER 9. NUMERICAL DIFFERENTIATION

Figure 9.1: A function f(x) is well approximated by its interpolation
polynomial p(x), but its derivative is not.

1. Spectral methods that use discrete Fourier transforms to approximate
derivatives, because derivatives in real space amount to multiplications
with the wave number in Fourier space. Since this can use the high fre-
quencies, too, and Fourier interpolation is optimal in the least-squares
sense (see Chapter 7), the problem in Fig. 9.1 does not occur. In fact, when
using all frequencies up to the Nyquist limit of the discretization, spectral
methods are exact to machine precision. They are, however, computation-
ally more costly (N logN) than the methods below and more difficult to
efficiently implement on parallel computer architectures.

2. Galerkin methods that approximate derivatives in the weak sense by find-
ing the coefficients of an expansion into a finite series of basis functions.

3. Collocation methods that compute derivative approximations by forming
linear combinations of function values at given collocation points.

4. Automatic Differentiation (AD) methods that generate code to numeri-
cally evaluate the symbolic derivative.

Examples of (1) include spectral solvers and Ewald methods. Examples of (2)
include finite-element methods, (weak) particle methods (e.g., particle strength
exchange (PSE), reproducing kernel particle methods (RKPM)), and partition-
of-unity methods. Examples of (3) include finite-difference methods, finite-
volume methods, and (strong) particle methods (e.g., smoothed particle hydro-
dynamics (SPH), moving least squares (MLS), discretization-corrected particle
strength exchange (DC-PSE)). Here, we only consider the most basic class of
finite-difference methods, as its derivation and analysis are easily accessible and
allow introducing the basic concepts without much notational overhead. How-
ever, we keep in mind that this is only the tip of the iceberg, and more elaborate
finite-difference methods (e.g., less sensitive to noise or with solution-adaptive
stencils) as well as a wealth of fundamentally different approaches also exist.

9.1 Finite Differences

Finite differences as approximations of derivatives go back to Sir Isaac Netwon,
who used limits over divided differences (also called difference quotients) to



9.1. FINITE DIFFERENCES 107

derive calculus. The basic tool for deriving any finite-difference method is the
Taylor expansion (Brook Taylor, 1715) of f(z) around a slightly shifted location
z + h, h > 0:

f(z+h) = f(z)+
h

1!
f ′(z)+

h2

2!
f ′′(z)+· · ·+hk

k!
f (k)(z)+

hk+1

(k + 1)!
f (k+1)(ξ+) (9.1)

for k = 1, 2, 3, . . . and an unknown ξ+ ∈ (z, z + h) in the remainder term.
Notice that the Taylor expansion contains all derivatives of f at the desired
location z. The trick now is to form a linear combination of multiple such
Taylor expansions for different shifted locations in order to isolate the term
that contains the desired derivative.
For example, we can also shift by h in the negative direction and find:

f(z − h) = f(z)− h

1!
f ′(z) +

h2

2!
f ′′(z)− . . . (9.2)

Subtracting this series from the previous one, we get:

f(z + h)− f(z − h) = 2hf ′(x) + 2c1h
3 +2c2h

5 + · · ·+2cm−1h
2m−1 +2hRm(h),

(9.3)
with

ck =
1

(2k + 1)!
f (2k+1)(z), k = 1, 2, . . . ,m− 1

and the remainder term

Rm(h) =
h2m+1

(2m+ 1)!
f (2m+1)(ξ)

for some unknown ξ. The defines the symmetric finite difference for the first
derivative with resolution h, also sometimes called central finite difference or
centered finite difference:

∆
(1)
h (z) =

f(z + h)− f(z − h)
2h

(9.4)

for which Eq. 9.3 becomes:

∆
(1)
h (z) = f ′(z) + c1h

2 + c2h
4 + · · ·+ cm−1h

2m−2 +Rm(h)

form = 2, 3, 4, . . . . The finite difference in Eq. 9.4 thus has an approximation er-
ror of order O(h2), i.e., it is asymptotically second-order accurate. Notationally,
we denote finite differences by a capital Greek letter Delta (for “difference”),
superscripted with the derivative it approximates and subscripted with the res-
olution parameter.
Clearly, the above central finite difference is not the only possibility of isolating
the first derivative in the Taylor expansion. From Eq. 9.1, we can also see that

f(z + h)− f(z)
h

= f ′(z) +
1

2
hf ′′(z) +O(h2)



108 CHAPTER 9. NUMERICAL DIFFERENTIATION

or from Eq. 9.2 that:

f(z)− f(z − h)
h

= f ′(z)−O(h).

These are the forward and backward finite differences for the first derivative,
respectively. As we can see from their expansions, they are approximations
with an error of order O(h), thus only first-order accurate.
In the same way, we can also see that the linear combination of Taylor expansions

f(z + h)− 2f(z) + f(z − h) = h2f ′′(z) + c̃1h
4 + c̃2h

6 + . . .

defines the symmetric finite difference for the second derivative with resolution
h, as:

∆
(2)
h (z) =

f(z + h)− 2f(z) + f(z − h)
h2

(9.5)

for which

∆
(2)
h (z) = f ′′(z) + c̃1h

2 + c̃2h
4 + · · ·+ c̃m−1h

2m−2 +O(h2m).

Therefore, this finite difference is again a second-order accurate approximation.
Equivalently, we can rewrite this as:

∆
(2)
h (z) =

f(z + 2h)− 2f(z) + f(z − 2h)

(2h)2

using a shift of 2h. Then, the denominator is the square of the denominator of
Eq. 9.4, which allows us to see a regularity.
Indeed, a general symmetric finite difference approximation for the ν-th deriva-
tive is:

∆
(ν)
h (z) =

1

(2h)ν

ν∑
j=0

(−1)jajf(z + bjh)

aj =

(
ν

j

)
bj = ν − 2j. (9.6)

The absolute values of the stencil weights aj are given by the binomial coeffi-
cients and can hence be determined as the ν-th row of the Pascal triangle (Blaise
Pascal, Traité du triangle arithmétique, 1654), calling the tip of the triangle the
0-th row (see Fig. 9.2).
From the general formula in Eq. 9.6, we can for example directly find:

∆
(3)
h (z) =

1

(2h)3
[f(z + 3h)− 3f(z + h) + 3f(z − h)− f(z − 3h)],



9.1. FINITE DIFFERENCES 109

Figure 9.2: The absolute values of the stencil weights for second-order
symmetric finite differences are given by the rows of the Pascal triangle.

∆
(4)
h (z) =

1

(2h)4
[f(z + 4h)− 4f(z + 2h) + 6f(z)− 4f(z − 2h) + f(z − 4h)].

For all symmetric finite differences from this family, we have

∆
(ν)
h (z) = f (ν)(z) + c

(ν)
1 h2 + c

(ν)
2 h4 + . . . .

Therefore, they are all second-order accurate.
Image: wikipedia
Blaise Pascal
∗ 19 June 1623

Clermont-Ferrand,
Kingdom of France

† 19 August 1662
Paris, Kingdom of France

While this way of computing finite differences for higher derivatives is simple
and intuitive, it is numerically problematic because for small h the resulting
formulae are prone to numerical extinction. Consider for example a case where
f (4)(z) ≈ 1. The above symmetric finite difference for h = 10−3 then yields:

1 ≈ ∆
(4)
h (z) =

1012

16
[f(z + 4h) + 6f(z) + f(z − 4h)︸ ︷︷ ︸

≈8f(z)

− (4f(z + 2h) + 4f(z − 2h))︸ ︷︷ ︸
≈8f(z)

],

which can only be if the expression contained in the square brackets is O(10−12),
which is very small. Thus, we subtract two numbers of about equal magnitude,
losing all digits down to machine epsilon before multiplying this almost empty
bit string by a large number (1012). While using a larger h reduces the nu-
merical extinction, it increases the approximation error of the finite difference
– quadratically! This means that when choosing h there is a trade-off between
the approximation error and the numerical rounding error. One can show that
for first-order forward finite differences, the optimal h is:

hopt ≈

√
2 · 10−n |f(z)|

|f ′′(z)|
(9.7)

for n-digit floating-point arithmetics (for MATLAB: n = 16). For this choice
of h, the approximation error is about equal to the rounding error. Smaller
h decrease the overall accuracy due to larger rounding errors, while larger h
decrease the accuracy due to larger approximation errors.



110 CHAPTER 9. NUMERICAL DIFFERENTIATION

9.2 Romberg Scheme

The trade-off between approximation error and rounding error can be relaxed
using the principle of “extrapolation toward zero”. Because the approximation
error terms are known from the Taylor expansion, one can design an extrapo-
lation scheme that successively reduces them. This reduces the absolute value
of the approximation error, but not its asymptotic scaling with h, which allows
us to choose larger h for the same error, thereby avoiding numerical extinction
problems.

Figure 9.3: Illustration of the Romberg scheme

This is achieved by the Romberg scheme, due to Werner Romberg, as illustrated
in Fig. 9.3. In this scheme, each column corresponds to a certain approximation
order, whereas each row corresponds to a certain choice of h. The first column
is given by the symmetric finite differences according to Eq. 9.6, thus:

Rs,0 = ∆
(ν)
hs

(9.8)

for increasingly finer resolutions

hs = qsh, 0 < q < 1, s = 0, 1, 2 . . . . (9.9)

The subsequent columns are then computed by:

Rs,t = Rs,t−1 +
1

(1/q2)t − 1
(Rs,t−1 −Rs−1,t−1) (9.10)

for

t = 1, 2, 3, . . . , s, s = 1, 2, 3 . . . .

Interestingly, it turns out that the intuitive refinement factor q = 1
2 leads to

numerical extinction across the columns (i.e., when computing the Rs,t for larger
s and t) and is therefore a bad choice. A good choice turns out to be q = 1√

2
.



9.2. ROMBERG SCHEME 111

Still, the first column is eventually going to suffer from the extinction problems
of Eq. 9.6, which is why h should not be too small in practice. Typically, the
Romberg scheme is therefore limited to s ≲ 6. It is also numerically better to
start the computation of the scheme from the “bottom”, i.e., from the highest-
resolution level, and to successively increase h from there (remember: sum
numbers from small to large, see Example 1.6).
A frequent choice in practice is h0 = 0.11 and q = 1√

2
or q = 2

3 , and to stop the

scheme as soon as |Rs,s − Rs−1,s−1| ≤ ATOL + |Rs,s|RTOL or when s = smax.
The tolerance has to be chosen larger for higher derivatives, as they cannot be
computed as accurately as lower derivatives, because of noise amplification.

Image: University of St. Andrews
William George Horner
∗ 9 June 1786

Bristol, UK
† 22 September 1837

Bath, UKAutomatic Differentiation (AD)

A special case is when f(x) is given by a computer program or subroutine
that is available in source code. This program reads z as an input and
returns f(z). The idea of automatic differentiation (AD) is to automatically
(i.e., by the compiler) change or rewrite the program such that is computes
f (ν)(z) for any given input z. AD is an active field of research and has been
rather successful recently with the advent of machine learning and artificial
intelligence. It is frequently used to compute gradients of deep neural nets
during training.

Example 9.1. As an example, consider the Horner Scheme (attributed to
William George Horner, who published it in 1819, albeit the method was
already used by Joseph-Louis Lagrange and can be traced back many hun-
dreds of years to Chinese—Qin Jiushao 600 yeas earlier—and Persian—
Sharaf al-Din al-Tusi 700 years earlier—mathematicians) for efficient eval-
uation of a polynomial. The input to the scheme is a vector of coefficients
a⃗ = (a0, . . . , am) of a polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m,

as well as the location z at which the polynomial is to be evaluated. The
Horner scheme evaluates the polynomial as:

p(z) = (. . . ((amz + am−1)z + am−2)z + · · ·+ a1)z + a0.

This can be implemented in MATLAB, for example, as the black code that
follows:

function horner(a,z)

f1 = 0;

f = 0;

m = length(a) - 1;

for j = m:-1:0;



112 CHAPTER 9. NUMERICAL DIFFERENTIATION

f1 = f1*z + f;

f = f*z + a(j+1);

end

return f1;

return f;

If one now also wants to compute the first derivative p′(z), the compiler
can automatically insert the statements printed in red, which compute the
first derivative alongside.

The general concept in AD is to write the formal derivative of each state-
ment containing f before that statement.



Chapter 10

Initial Value Problems of
Ordinary Differential
Equations

Ordinary differential equations (ODEs), i.e., equations relating a function to its
derivatives in one variable, are a common mathematical tool to model systems
with continuous dynamics. They occur in a multitude of applications from
many-body mechanics to chemistry to electronics engineering and population
genetics. The simplest case are linear ODEs of first order, such as the one in
the following example.

Example 10.1. Radioactive decay is a physical process characterized by uni-
formly random spontaneous events (more precisely: by a Bernoulli process). Let
m(t) be the mass of radioactive material at time t. Further let λ be the decay
rate, i.e., the fraction of mass that decays per unit time on average. Then, the
time evolution of m(t) is given by the following ODE:

dm

dt
= −λm(t).

This linear ODE of first order can be solved analytically by

m(t) = Ce−λt,

which is the general solution for any C ∈ R. From this infinite number of general
solutions, the well-defined particular solution is selected by the initial condition
m(t = t0) = m0. Then, m(t) = m0e

−λ(t−t0).
Image: wikipedia
Jacob Bernoulli
∗ 6 January 1655

Basel, Switzerland
† 16 August 1705

Basel, Switzerland

In general, the solution of an ODE ẋ := dx
dt = f(t, x) for some given right-hand

side f(t, x) is a function x(t) : R→ R, such that ẋ(t) = f(t, x(t)).
As we have also seen in the example above, ODEs have (infinitely) many so-
lutions, typically parameterized by an integration constant. To determine one

113



114CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

particular solution, an initial condition for x(t = t0) is required. While the
analytical solution of an ODE can be general, a numerical solution necessarily
needs to be particular in order for the problem to be well-posed. Therefore,
numerically solving an ODE is called an initial value problem (IVP).

Definition 10.1 (Initial value problem). Given t0 and x0, solving ẋ = f(t, x)
such that ẋ(t) = f(t, x(t)) and x(t = t0) = x0 is called an initial value problem
(IVP).

If f(t, x) is Lipschitz-continuous (see Section 4.2.1), the initial value problem
has a unique solution.

Example 10.2. Consider the right-hand side f(t, x) = x2

t and t0 = 1, x0 = 1.
The associated initial value problem is:

ẋ =
x2

t
, x(1) = 1,

which possesses the unique solution x(t) = 1
1−ln t . This is an example of a

nonlinear IVP that can still be solved analytically.

10.1 Numerical Problem Formulation

In cases where the IVP cannot be solved analytically, for example for general
nonlinear right-hand sides f , we aim to determine a numerical approximation
to the solution. Given an IVP

ẋ = f(t, x(t)), x(t0) = x0, (10.1)

and some final time tF , the goal is to compute an approximation to x(tF ), see
illustration in Fig. 10.1. This is a well-posed numerical problem. Since tF can
be chosen arbitrarily, computing this problem allows approximating the solution
of the IVP at any time point of interest.

Figure 10.1: Illustration of the numerical initial value problem.

Since t (henceforth called “time” although it could represent any other quantity)
is a continuous variable, we need to discretize it in order to enable a computa-
tional treatment. This is generally done by subdividing the interval [t0, tF ] by



10.2. EXPLICIT ONE-STEP METHODS 115

a finite number of collocation points t0 < t1 < · · · < tn = tF . Then, we can
successively compute the approximations x(t1), x(t2), . . . , x(tn). The original
global problem is hence broken down into a series of local problems, which is
why this procedure is also referred to as time stepping. Time stepping algo-
rithms are classified into one-step methods (which are further sub-classified into
single-stage and multi-stage methods), multistep methods, and implicit methods.
These classes of methods differ with respect to their numerical properties, ac-
curacy, and computational cost. The field of time stepping algorithms is still
an active area of research with new ideas and approaches regularly invented.

10.2 Explicit One-Step Methods

Explicit one-step methods compute an approximation to the solution at the next
time step from only the solution at the current time step. They require one step
to compute the next, hence the name “one-step methods”. Their derivation is
generally based on the Taylor expansion

x(t+h) = x(t)+
h

1!

dx

dt
(t)+

h2

2!

d2x

dt2
(t)+· · ·+h

p

p!

dpx

dtp
(t)+

hp+1

(p+ 1)!

dp+1x

dtp+1
(ξ) (10.2)

for some ξ ∈ (t, t+h). For sufficiently small |h|, terms up to and including order
p approximate x(t+ h) with error O(hp+1).
One-step methods are explicit if the solution x at a later time t + h is approx-
imated using only the already known solution at time t and the right-hand
side function f . The approximation is hence computable as an explicit for-
mula, which is defined by a propagator function F (t, x, h) such that x(t+ h) ≈
F (t, x(t), h). This can then be applied over the time steps

t0 < t1 < · · · < tn = tF

to compute a sequence of numbers

x̃1, x̃2, . . . , x̃n

that are approximations to the true solutions

x̃1 ≈ x1 = x(t1), x̃2 ≈ x2 = x(t2), . . . , x̃n ≈ xn = x(tn)

of the IVP in Eq. 10.1 at these time points. The solution x̃0 = x0 at time t0
does not need to be computed, as it is given by the initial condition. The time
steps taken are

h0 = t1 − t0, h1 = t2 − t1, . . . , hn−1 = tn − tn−1.

The iteration proceeds by:

x̃j+1 = x̃(tj + hj) = F (tj , x̃j , hj), j = 0, 1, 2, . . . , n− 1.



116CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

In practice, the time points are often chosen equidistant for simplicity, as:

h =
tF − t0
n

, tj = t0 + jh,

but this is not necessary.
One-step explicit time stepping incurs two approximation errors:

x(tj + hj) ≈ F (tj , x(tj), hj) ≈ F (tj , x̃j , hj) = x̃j+1.

The first error is due to approximating x(tj + hj) by F (tj , x(tj), hj), i.e., by
its truncated Taylor series. This error is called the local discretization error of
the time stepping algorithm and, as seen above, it is of order O(hp+1) indepen-
dently for each step. The second error is due to approximating F (tj , x(tj), hj)
by F (tj , x̃j , hj), i.e., due to using the previous numerical approximation x̃j in
the propagator function and not the (unknown) true solution. This error is
called the global discretization error of the time stepping algorithm, because it
accumulates over time steps. Formally, we define:

Definition 10.2 (Local discretization error). The error of an explicit time-
stepping method in a single step j is called the local discretization error dj.

Therefore, the local error measures the deviation between the exact solution
x(tj + hj) and the numerical solution starting from the exact solution at the
previous time point, i.e., dj = x(tj + hj) − F (tj , x(tj), hj). Equivalently, the
local error is the difference between the numerical solution x̃j+1 and the exact
solution z(tj + hj) starting from the previous numerical solution as its initial
condition z(tj) = x̃j . Both constructions fulfill the above definition and can
be used interchangeably. While the exact value of dj may differ in the two
constructions, the convergence behavior is the same since it is independent of
x.

Definition 10.3 (Global discretization error). The difference Dj := x(tj)− x̃j
is called the global discretization error of an explicit time-stepping method at
time tj.

The global error measures the absolute deviation between the numerical solution
and the exact solution through (t0, x0) at any given time.
Since the total number of time steps required to reach the final time tF is
O(1/h), the global error at time tF is of order O(hp+1/h) = O(hp). This proves
the following theorem:

Theorem 10.1. Any explicit one-step method to numerically solve an IVP
with local discretization error dj ∈ O(hp+1) has global discretization error Dj ∈
O(hp), i.e., the global order of convergence is one less than the local order of
convergence.

Finally, we define:

Definition 10.4 (Consistency). A numerical method for IVPs is called consis-
tent if and only if it has a positive non-zero global order of convergence.

For consistent methods, the numerical solution x̃n converges to the exact solu-
tion x(tn) when hj → 0 ∀j if the method is stable (cf. Section 10.9).



10.2. EXPLICIT ONE-STEP METHODS 117

10.2.1 Explicit single-stage one-step methods:
the explicit Euler method

A single-stage method only requires evaluating the right-hand side f at one lo-
cation (t∗, x∗) in each time step. The simplest of such algorithms approximates
x(t + h) by x(t) + hẋ(t), i.e., by using the Taylor series up to and including
terms of order p = 1. Because ẋ(t) = f(t, x(t)) from the problem definition
in Eq. 10.1, this yields the propagator function F (t, x, h) = x + hf(t, x). The
value F (t, x(t), h) approximates the true solution x(t+h) with local error O(h2),
and the value F (t, x̃j , h) does the same with global error O(h). Therefore, the
method is consistent. This is the famous explicit Euler scheme for numerically
solving an IVP, which Leonhard Euler published in 1768 in his book Institu-
tionum calculi integralis:

x̃j+1 = F (tj , x̃j , hj) = x̃j+hjf(tj , x̃j), j = 0, 1, 2, . . . , n−1. (10.3)

Image: wikimedia
Leonhard Euler
∗ 15 April 1707

Basel, Switzerland
† 18 September 1783

St.Petersburg, Russia

Figure 10.2: An ODE defines a slope at each point in the (t, x)-plane.

Figure 10.3: Any solution x(t) is tangential to the director field
(t, x) 7→ f(t, x) = tanα everywhere, i.e., for all (t, x).

The explicit Euler method can be interpreted geometrically, which leads to
a better understanding of its functioning and suggests how to construct more
accurate, higher-order schemes. The right-hand side f of Eq. 10.1 defines at each



118CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

point P in the (t, x)-plane a slope ẋ = f(t, x) = tanα, as illustrated in Fig. 10.2.
Applying this over the entire plane defines a director field (an undirected vector
field). The general solution of the ODE are all curves that are tangential to this
director field at every point, as illustrated in Fig. 10.3. There are infinitely many
curves x(t) that fulfill this. The initial condition in Eq. 10.1 serves to select one
of them as the particular solution of the IVP, namely the director field line
that starts at point (t0, x0). This also illustrates why the initial condition is
required to render the problem well posed, and why the solution is unique for
Lipschitz-continuous f , where director field lines cannot cross nor jump.

Figure 10.4: Illustration of two explicit Euler steps, P0 → P1 and P1 → P2.

The explicit Euler method can now be understood as making steps along straight
line segments in the direction given by the director field. Starting from the initial
point P0 = (t0, x0), a step of length h and slope f(t0, x0) is taken in order to
reach point P1 = (t1, x̃1). From there, another step of length h and slope
f(t1, x̃1) is taken to reach point P2 = (t2, x̃2), and so on. This is illustrated in
Fig. 10.4 and defines a piecewise linear polynomial.

Figure 10.5: Local and global errors in the explicit Euler method. The dashed
line is the exact solution x̄(t) starting from the previous numerical solutions as

initial condition.

As illustrated in Fig. 10.5, this polynomial may increasingly deviate from the
exact solution x(t) as more steps are taken. In each step, a local error of size
dj = x(tj+1)− F (tj , x(tj), hj) ∈ O(h2) is made, which is the same order as the



10.2. EXPLICIT ONE-STEP METHODS 119

deviation between the numerical solution and the analytical solution through
the previous point (dashed line in the figure). Overall, until final time tF , the
accumulated global error is Dj = x̃(tF )− x(tF ) ∈ O(h).

10.2.2 Higher-order single-stage one-step methods

Clearly, the construction of the explicit Euler scheme can be extended to higher
orders of convergence by truncating the Taylor series from Eq. 10.2 at p >
1. For example, truncating after p = 2, we would approximate x(t + h) by

x(t) + hẋ(t) + h2

2 ẍ(t). We know from the problem formulation in Eq. 10.1 that

ẋ(t) = f(t, x(t)),

but what is ẍ(t)? Applying the chain rule of differentiation to the above expres-
sion, we find:

ẍ(t) =
df

dt
(t, x(t)) +

df

dx
(t, x(t))ẋ(t)

and thus:

ẍ(t) =
df

dt
(t, x(t)) +

df

dx
(t, x(t))f(t, x(t)).

Defining the propagator function

F (t, x, h) = x+ hf(t, x) +
h2

2

[
df

dt
(t, x(t)) +

df

dx
(t, x(t))f(t, x(t))

]
,

we see that F (t, x, h) approximates x(t+ h) with a local discretization error of
order O(h3). The usual iteration x̃j+1 = F (tj , x̃j , hj) for j = 0, 1, 2, . . . then
has a global discretization error of order O(h2), and the method is consistent.
A clear disadvantage of this method is that the partial derivatives of f with
respect to both t and x must be known analytically. While this may be the
case in some applications where the right-hand side f is given analytically, it
may be limiting. Pursuing this route further, schemes of even higher order can
be derived. For example, a scheme of global order p would be obtained by
approximating x(t+h) by x(t)+hẋ(t)+ · · ·+ hp

p! x
(p)(t). For p > 2, however, an

increasingly large number of partial derivatives and mixed partial derivatives of
f must be analytically know. This route is therefore not practical in general,
while it may have valuable applications in specific cases.

10.2.3 Heun’s multi-stage one-step method

Analytical partial derivatives of the right-hand side can be avoided by numer-
ically approximating them as nested finite differences of sufficiently high order
of convergence. This leads to multi-stage methods where the right-hand side f
is evaluated at multiple points in each time step. Each such point is called a
stage of the method. This classic idea by Karl Heun (1886) leads to higher-order
one-step schemes that do not require analytical derivatives to be available.

Image: wikipedia
Karl Heun
∗ 3 April 1859

Wiesbaden, Duchy of Nassau
† 10 January 1929

Karlsruhe, Weimar Republic

The classic Heun method uses the propagator function:



120CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

F (t, x, h) = x+
h

2
[f(t, x) + f(t+ h, x+ hf(t, x))] (10.4)

and the usual one-step iteration

x̃j+1 = F (tj , x̃j , hj), j = 0, 1, . . . , n− 1.

This propagator is computable if and only if the right-hand side f of Eq. 10.1
can be evaluated at arbitrary points (t∗, x∗). We do not require analytical
derivatives, but a computable function, which is a weaker requirement. In each
step of the Heun method, two evaluations of the right-hand side are required:
f(t, x) and f(t+ h, x+ hf(t, x)). It is therefore a two-stage method.
We claim that the Heun method has a global order of convergence of 2, i.e., that
the above propagator function exactly reproduces terms up to and including
order p = 2 in the Taylor series of Eq. 10.2. To prove this, we expand

f(t+ δ, x+∆) = f(t, x) + ft(t, x)δ + fx(t, x)∆ +O(δ2) +O(δ∆) +O(∆2),

where subscripts mean partial derivatives with respect to the subscripted vari-
able. Therefore:

f(t+ h, x+ hf(t, x)) = f(t, x) + ft(t, x)h+ fx(t, x)hf(t, x) +O(h2),

and

h

2
[f(t+ h, x+ hf(t, x))] =

h

2
f(t, x) +

h2

2
[ft(t, x) + fx(t, x)f(t, x)] +O(h3).

Substituting into the expression for the Heun propagator function from Eq. 10.4,
we find:

F (t, x, h) = x(t) + h f(t, x)︸ ︷︷ ︸
ẋ(t)

+ [ft(t, x) + fx(t, x)f(t, x)]︸ ︷︷ ︸
ẍ(t)

h2

2
+O(h3).

Therefore, indeed, the Heun method has local error order 3 and global error
order 2, rendering it more accurate than the Euler method at the price of re-
quiring twice the number of function evaluations. This is beneficial in many
applications because we pay an additive price (one additional function evalu-
ation in each time step) for a multiplicative gain (error order goes from h to
h2).
From Eq. 10.4, we see that Heun’s method also has a nice geometric interpre-
tation: Instead of simply following the tangent of x(t) at tj , it uses two slopes,
f(t, x) and f(t + h, x + hf(t, x)), and averages them. The first is the tangent
at the current time point, as in the explicit Euler method. The second is the
tangent at the point one would land at when doing an Euler step (notice that
the shift in the function arguments of f exactly corresponds to one Euler step
into the future). These two slopes are then averaged in order to form a more
accurate prediction of the new time point.



10.2. EXPLICIT ONE-STEP METHODS 121

10.2.4 Higher-order multi-stage one-step methods:
Runge-Kutta methods

Image: wikidata
Carl David Tolmé Runge
∗ 30 August 1856

Bremen, State of Bremen
(now: Germany)

† 3 January 1927
Göttingen, Weimar Republic
(now: Germany)

Image: wikipedia
Wilhelm Martin Kutta
∗ 3 November 1867

Pitschen, Prussia
(now: Byczyna, Poland)

† 25 December 1944
Fürstenfeldbruck, Germany

The idea behind the Heun method, namely to average the slopes of x(t) at
suitably shifted locations in order to form a more accurate prediction, can be
generalized from averaging two slopes to averaging more than two slopes. This
gives rise to the large family of Runge-Kutta methods, due to Carl Runge and
Wilhelm Kutta who proposed these methods in the year 1900. All Runge-Kutta
methods substitute partial derivatives by nested function evaluations (amount-
ing to embedded finite differences) at suitably shifted locations in order to re-
produce the Taylor expansion from Eq. 10.2 to some order p.
In general, the s stages of a Runge-Kutta method are given by s shifted eval-
uations of the right-hand side, i.e., the slopes of x(t) at s different locations
in space-time. These are then averaged with suitable weights. The propagator
function therefore is a linear combination of shifted function evaluations, hence
in the most general explicit case:

ki = f

t+ cih, x+ h

i−1∑
j=1

aijkj

 , i = 1, . . . , s (10.5)

F (t, x, h) = x+ h

s∑
i=1

biki. (10.6)

In order to define such a scheme, one must specify the recursive1 spatial shift
matrix A = (aij), the temporal shift vector c⃗ = (ci), and the averaging weights

vector b⃗ = (bi).

Example 10.3. Defining the s = 4 recursive stages

k1 = f(t, x),

k2 = f(t+
h

2
, x+

h

2
k1),

k3 = f(t+
h

2
, x+

h

2
k2),

k4 = f(t+ h, x+ hk3),

and the propagator function

F (t, x, h) = x+
h

6
[k1 + 2k2 + 2k3 + k4]

yields a Runge-Kutta scheme with a global order of convergence of 4. It has the
following shifts and weights:

Image: wikipedia
John C. Butcher
∗ 31 March 1933

Auckland, New Zealand

1The spatial shifts are recursive because the shift for stage i depends on the values of the
previous stages j = 1, . . . , i− 1.



122CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

A =


0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0

 , c⃗T =

[
0,

1

2
,
1

2
, 1

]
, b⃗T =

[
1

6
,
1

3
,
1

3
,
1

6

]
.

This scheme is frequently used in computational mechanics and is usually re-
ferred to by the abbreviation “RK4”.

When defining a Runge-Kutta method, it is custom to arrange the matrixA and
the two vectors b⃗ and c⃗ in a Butcher tableau (John C. Butcher, 1975), as shown in
Fig. 10.6 for explicit Runge-Kutta methods. In an explicit Runge-Kutta method,
the matrix A is lower triangular, so each stage can be evaluated using only the
previous stages. Also, it has been shown that explicit Runge-Kutta methods are
only consistent (i.e., have global order of convergence > 0) if

∑s
i=1 bi = 1 and

ci =
∑i−1
j=1 aij (verify that these hold for Example 10.3). These are necessary

conditions, but they are not sufficient. Another interesting fact is that for global
convergence orders p > 4 there exists no Runge-Kutta method with s ≤ p
stages. Runge-Kutta methods with s = p stages are called optimal. Therefore,
RK4 is the optimal Runge-Kutta method of highest possible convergence order,
justifying its general importance. Explicit Runge-Kutta methods with p > s do
not exist.

Figure 10.6: Butcher tableau for an explicit Runge-Kutta method.

Example 10.4. The explicit Euler method is a Runge-Kutta method of global
order p = 1 with s = 1 stage, thus Euler=RK1. The Heun method is a Runge-
Kutta method with p = s = 2, thus Heun=RK2. The RK4 method from example
10.3 has p = s = 4. All are optimal, and their Butcher tableaus are given in
Fig. 10.7.

10.3 Dynamic Step-Size Adaptation in One-Step
Methods

The time-step size in explicit methods needs to be chosen small enough to
resolve variations in the solution x(t). This is intuitive from Fig. 10.5 where



10.3. DYNAMIC STEP-SIZE ADAPTATION IN ONE-STEP METHODS123

Figure 10.7: Butcher tableaus for the explicit Euler, Heun, and RK4 methods.

taking one large step instead of j small ones would miss the inflection point and
lead to a completely wrong prediction. This requirement of well-sampling the
solution also follows from the Nyquist-Shannon sampling theorem. In practice,
this means that the time-step size must be limited by the fastest dynamics to
be resolved. When using the same time-step size throughout a simulation, this
may be wasteful, as the fastest transients anywhere in the simulation govern
the time-step size everywhere. In regions where the solution varies more slowly,
which by definition is almost everywhere else, larger steps could in principle be
taken, requiring less computational time.
The goal of dynamic step-size adaptation is to automatically adjust the time-
step size in an explicit one-step IVP method, such that at every step of the
algorithm the largest possible step size is used for maximum computational
efficiency. This means that the time-step size is no longer a constant h, but
depends on the step j = 0, 1, 2, . . . , n − 1. Ideally, one chooses at each step j
a step size hj that is just small enough for the local error of the IVP solver to
remain below a certain, given tolerance TOL, hence:

|dj(tj , x̃j , hj)| = |x(tj + hj)− F (tj , x(tj), hj)| ≤ TOL. (10.7)

The problem is that the function dj(tj , x̃j , hj) is not known, but only its asymp-
totic scaling for h→ 0, i.e., the order of convergence of the local error is known.
Therefore, dynamic step-size adaptation always hinges on finding an estimator
ℓ̂(tj , x̃j , hj) for the magnitude of the local discretization error. A popular idea
for constructing such an estimator is to perform each time step twice, with two
different methods, as:



124CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

1. calculate x̃j+1 = F (tj , x̃j , hj) with a first method F ,

2. calculate ˆ̃xj+1 = F̂ (tj , x̃j , hj) with a reference method F̂ , and

3. set ℓ̂(tj , x̃j , hj) := F̂ (tj , x̃j , hj)− F (tj , x̃j , hj).

Theorem 10.2 (Convergence of the error estimator). When using an explicit
one-step method F of global convergence order p, and an explicit one-step ref-
erence method F̂ of global convergence order p̂ ≥ p, then the error estimator
ℓ̂(tj , x̃j , hj) := F̂ (tj , x̃j , hj)− F (tj , x̃j , hj) has an error of at most O(hp+1

j ).

Proof. We start by adding and subtracting the locally exact solution zj+1 to
the error estimator:

ℓ̂(tj , x̃j , hj) = F̂ (tj , x̃j , hj)− F (tj , x̃j , hj)− zj+1 + zj+1,

where zj+1 = z(tj + hj) is the exact solution with initial condition z(tj) = x̃j ,
i.e., starting from the current numerical solution. Then,

zj+1 − F (tj , x̃j , hj)− (zj+1 − F̂ (tj , x̃j , hj)) = dj(tj , x̃j , hj)− d̂j(tj , x̃j , hj)

is the difference between the unknown local errors of the two schemes. By the
assumption on the global convergence orders of the two schemes, this difference
is asymptotically:

O(hp+1
j )−O(hp̂+1

j ) ≤ O(hp+1
j )

because p̂ ≥ p by assumption.

The question that remains to be answered is how to choose the reference method
F̂ . There are two classic ways: Richardson extrapolation and embedded Runge-
Kutta methods.

10.3.1 Richardson extrapolation

Richardson extrapolation is a classical principle in numerical computing, and we
have already used it in Section 8.4 to derive higher-order quadrature schemes.
For the sake of example, and without loss of generality, we consider the case p =
1 with F the propagator of the explicit Euler method. We choose the reference
scheme F̂ that consists of taking two half-steps with the original scheme F . In
the example of the Euler method, we therefore simply perform two explicit Euler
steps of length ĥj = hj/2 each, thus p̂ = p. Then, we have for the reference
method:

ˆ̃xj+1 = x̃j +
hj
2
f(tj , x̃j) +

hj
2
f

(
tj +

hj
2
, x̃j +

hj
2
f(tj , x̃j)

)
= x̃j + hjf(tj , x̃j) +

h2j
4
[ft(. . . ) + fx(. . . )f(. . . )] +O(h3j ), (10.8)



10.3. DYNAMIC STEP-SIZE ADAPTATION IN ONE-STEP METHODS125

because the second step can be Taylor-expanded as:

f

(
tj +

hj
2
, x̃j +

hj
2
f(tj , x̃j)

)
=

f(tj , x̃j) +
hj
2
ft(tj , x̃j) +

hj
2
fx(tj , x̃j)f(tj , x̃j) +O(h2j ),

just as we did in Section 10.2.3 when deriving the Heun method. Subscripts to
functions again indicate partial derivatives of the function with respect to the
subscripted variable.
Let again z(t) for t ≥ tj be the locally exact solution to the IVP with initial
condition z(tj) = x̃j . Its Taylor expansion for one time step is:

z(tj + hj) = x̃j + hjf(tj , x̃j) +
h2j
2
ztt(tj) +O(h3j ). (10.9)

Therefore, we find for the local error of the scheme F :

z(tj + hj)− x̃j+1 =
h2j
2
ztt(tj) +O(h3j ). (10.10)

In order to derive the local error of the scheme F̂ , we first notice that the term
within the angle brackets in Eq. 10.8 is equal to ztt(tj). This is because from
the definition zt(t) = f(t, z), the chain rule of differentiation gives: ztt(t) =
ft(t, z) + fz(t, z)f(t, z). Subtracting then Eq. 10.8 from 10.9, we find the local
error of the scheme F̂ :

z(tj + hj)− ˆ̃xj+1 =
h2j
4
ztt(tj) +O(h3j ). (10.11)

Now comes the Richardson extrapolation step: adding or subtracting multiples
of the two Taylor expansions in Eqs. 10.10 and 10.11 from one another in order
to cancel the leading-order error term. In this case, we compute 2·Eq. 10.11 −
Eq. 10.10, and find:

z(tj + hj)− 2ˆ̃xj+1 + x̃j+1 = O(h3j )

z(tj + hj)− ˆ̃xj+1 = ˆ̃xj+1 − x̃j+1 +O(h3j )

d̂j(tj , ˆ̃xj , hj) = ℓ̂(tj , x̃j , hj) +O(h3j ).

Therefore, ℓ̂ = F̂ − F provides an estimator for the local error d̂j at ˆ̃xj+1 with

accuracy of order O(h3j ). Also, 2ℓ̂(tj , x̃j , hj) provides an estimator for the local

error dj at x̃j+1 with accuracy of order O(h3j ), because dj(x̃j) = 2d̂j(ˆ̃xj) since

hj = 2ĥj .
Although we have used the Euler method as an example here, Richardson ex-
trapolation is generally applicable to explicit one-step methods. In general, one
finds for an explicit one-step method of global convergence order p:

z(tj + hj)− ˆ̃xj+1 =
ˆ̃xj+1 − x̃j+1

2p − 1
+O(hp+2

j ), (10.12)



126CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

when using the same scheme as a reference scheme with ĥj = hj/2 for all j.
Comparing this with Theorem 10.2, we see that the accuracy of a Richard-
son error estimator with ĥj = hj/2 for all j is one order better than what is
guaranteed in the general case.

10.3.2 Embedded Runge-Kutta methods

Another way of constructing a local error estimator is to consider two solution
approximations (x̃j+1, ˆ̃xj+1) computed using two members of the Runge-Kutta
family of methods with identical step sizes hj and identical function evaluations,
but with different global convergence orders p and p̂ > p. Typically, one chooses
p̂ = p+ 1.
Since the function evaluations in both Runge-Kutta methods are the same (for
computational efficiency), the coefficients aij and ci in the Butcher tableaus of
the two schemes are identical. The only difference is in the weights bi, with
the bi of the original scheme and the b̂i of the reference scheme being different.
The resulting joint Butcher tableau of such an embedded explicit Runge-Kutta
method is illustrated in Fig. 10.8.

Figure 10.8: Joint Butcher tableau of an embedded explicit Runge-Kutta
method.

We then have the two Runge-Kutta methods

x̃j+1 = x̃j + h

s∑
i=1

biki,

ˆ̃xj+1 = x̃j + h

s∑
i=1

b̂iki,

with identical stages ki, but different global convergence orders p and p̂, respec-
tively. The number of stages needs to be at least s ≥ max(p, p̂) so different linear
combinations can yield approximations of different orders. Optimal embedded
Runge-Kutta method with respect to p are therefore not possible. In embedded



10.3. DYNAMIC STEP-SIZE ADAPTATION IN ONE-STEP METHODS127

Runge-Kutta methods, ˆ̃xj+1 − x̃j+1 ∈ O(hp+1), which is the lower bound from
Theorem 10.2. Therefore, in this case, the bound is tight (not proven here), and
the accuracy of the error estimator in an embedded Runge-Kutta method is
therefore worse than when using Richardson extrapolation. However, Richard-
son extrapolation requires additional function evaluations and therefore doubles
the computational cost of the simulation, whereas embedded Runge-Kutta has
almost no added cost (only a second weighted average). Richardson extrapola-
tion is therefore only worth it if the time required for the additional function
evaluations is amortized by the runtime gain due to better adaptive time step-
ping. Otherwise, one typically chooses an embedded Runge-Kutta method.
There are infinitely many possibilities for embedded Runge-Kutta methods. One
of the most frequently used flavors in practice is the method DOPRI5, due to
J. R. Dormand and P. J. Prince (1980), which achieves p = 4 and p̂ = 5
using s = 7 Runge-Kutta stages. Other famous examples of embedded Runge-
Kutta methods include the original Fehlberg method (Erwin Fehlberg, 1969),
which first introduced the idea of embedded error estimators, and the Cash-Karp
method (Jeff Cash and Alan Karp, 1990).

10.3.3 Practical implementation

Using any of the above methods, we can determine the optimal size of the next
time step from the user-provided tolerance TOL. Given a time-stepping method
F of global convergence order p, and a reference method F̂ of global order p̂ ≥ p,
we have the local error estimator

ℓ̂(tj , x̃j , hj) = F̂ (tj , x̃j , hj)− F (tj , x̃j , hj) ∈ O(hp+1
j ),

as guaranteed by Theorem 10.2. This implies that

|ℓ̂| ∼= Chp+1
j =⇒ C ∼=

|ℓ̂|
hp+1
j

,

where the symbol ∼= means “asymptotically equal to”. The result of step-size
adaptation should be that

Chp+1
opt
∼= TOL.

Solving this for the optimal time-step size hopt using the above estimate of the
pre-factor C yields:

hopt ∼=
(
TOL

C

) 1
p+1

= hj

(
TOL

|ℓ̂|

) 1
p+1

. (10.13)

When using Richardson extrapolation, the exponent p + 1 can alternatively
be replaced by p + 2 to get sharper adaptation, as the accuracy of the error
estimation in this case exceeds the lower bound guaranteed by Theorem 10.2.



128CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

This formula is used in Algorithm 13, along with the two approximations of the
result after the current time step (ˆ̃xj+1, x̃j+1), in order to decide whether the
step is accepted or has to be repeated, and what the new step size should be.

Algorithm 13 Dynamic step-size adaptation for one-step methods

1: procedure AdaptStep(ˆ̃xj+1, x̃j+1, TOL, Fs, p) ▷ Convergence order p

2: ℓ̂ = ˆ̃xj+1 − x̃j+1

3: if |ℓ̂| > TOL then
4: reject x̃j+1

5: reduce step size hj ← hj(TOL/|ℓ̂|)1/(p+1) · Fs ▷ safety factor Fs
6: return (j, hj) ▷ repeat step j with hj
7: else if |ℓ̂| ≤ TOL then
8: accept x̃j+1

9: propose size for next step hj+1 ← hj(TOL/|ℓ̂|)1/(p+1) · Fs
10: return (j + 1, hj+1) ▷ proceed to next time step
11: end if
12: end procedure

This algorithm is called at the end of each simulation time step, i.e., after the
step has been computed with both the method F and the reference method F̂
to compute x̃j+1 and ˆ̃xj+1, respectively. If returns the index of the next time
step to be computed, along with the corresponding step size. If the current
step meets the tolerance TOL, then the time step index is advanced by 1 and
the size of the next step is tentatively increased. Otherwise, the step index
is not advanced and the calling procedure repeats step j with a reduced step
size. The safety/fudge factor Fs is usually chosen around 0.8 and prevents over-
adaptation, which otherwise could lead to unwanted oscillations in hj . With
Fs < 1, Algorithm 13 is guaranteed to converge, but may require arbitrarily
many re-evaluations of any given time step if the solution suddenly becomes
infinitely steep. Most software implementations therefore also include an upper
limit for the number of retries, or equivalently a lower limit for hj , hmin, beyond
which an error is raised and the adaptation terminated.

10.4 Implicit Methods

Implicit methods compute an approximation to the solution at the next time
step using knowledge of the solution at both the current and the next step.
Because they require information about the future in order to approximate
the future, they are not explicitly computable. Instead, implicit methods lead
to implicit equations that need to be numerically solved for the value of the
solution at the next time step. While explicit methods are derived from a
numerical approximation of the time derivative, implicit methods are derived
from numerical quadrature schemes. Because of this, implicit methods are also



10.4. IMPLICIT METHODS 129

sometimes referred to as time-integration methods, or time integrators, instead
of as time-stepping methods.

10.4.1 Implicit single-stage methods: Trapezoidal method

As a first example of an implicit time-integration method, we consider the trape-
zoidal method, which is derived from the quadrature scheme of the same name,
as introduced in Section 8.2. We again consider the IVP

ẋ(t) = f(t, x(t)), x(t0) = x0

at discrete time points t0 < t1 < t2 < · · · < tn = tF . Instead of numerically
approximating the derivative ẋ, however, we integrate both sides of the equation
from time t0 until time t1, yielding:

x(t1)− x(t0) =
∫ t1

t0

f(t, x(t)) dt. (10.14)

This integral equation is equivalent to the original IVP over the interval [t0, t1].
Using quadrature, we can approximate the integral on the right-hand side. Here,
we use the trapezoidal method from Section 8.2 and get:∫ t1

t0

f(t, x(t)) dt ≈ t1 − t0
2

[f(t0, x(t0)) + f(t1, x(t1))].

Clearly, we can not only do this for the first time step, but for every time step
j of size hj = tj+1 − tj . Using the above trapezoidal quadrature approximation
in Eq. 10.14 and solving for the value at the new time point, x̃j+1 ≈ x(tj+1),
results in the trapezoidal method:

x̃j+1 = x̃j +
hj
2
[f(tj , x̃j) + f(tj+1, x̃j+1)], j = 0, 1, . . . , n− 1. (10.15)

This is an implicit equation for x̃j+1, since both the left and the right-hand side
depend on the unknown x̃j+1. The propagator function hence depends on the
new time point:

x̃j+1 = F (tj , x̃j , tj+1, x̃j+1, hj)

and cannot be explicitly evaluated, which is the hallmark of implicit methods.
This implicit equation needs to be solved in each time step. If f(t, x) is ana-
lytically known, it might be possible to solve the implicit equation analytically
and thus obtain a closed-form propagator. For general f(t, x), however, the
equation usually needs to be solved numerically in each time step, e.g., using
Newton methods or fixed-point iteration (provided that |F ′| < 1) as introduced
in Chapter 4. The starting value for the nonlinear solver is usually generated
by performing one step of an explicit one-step method, e.g., explicit Euler:

x̃
(0)
j+1 = x̃j + hjf(tj , x̃j).



130CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Using this starting value for the example of the Trapezoidal method from
Eq. 10.15, the nonlinear system solver then iterates

x̃
(k+1)
j+1 = x̃j +

hj
2
[f(tj , x̃j) + f(tj+1, x̃

(k)
j+1)], k = 0, 1, 2, . . .

until convergence, yielding x̃j+1 for the next time step. Convergence in guaran-
teed if hj is small enough and f is Lipschitz-continuous (cf. Section 4.2.1). In
the important special case of a linear function f(t, x), the implicit equation is
solved in each time step using a linear system solver, as introduced in Chapter
2.

The trapezoidal method of time integration is consistent with global order of
convergence 2. While implicit methods incur a higher implementation com-
plexity than their explicit counterparts, they are numerically superior, e.g., in
terms of stability, as we will see in Section 10.7 below. Due to their favorable
numerical properties, they may be computationally more efficient than explicit
methods, as the overhead of solving the implicit equation may be amortized by,
e.g., the ability to take larger time steps.

10.4.2 Implicit multi-stage methods: implicit Runge-Kutta

An important class of implicit time-integration methods in practical applications
are implicit Runge-Kutta methods. Just like their explicit counterparts, implicit
Runge-Kutta methods can be described by a Butcher tableau, as shown in
Fig. 10.9, with two coefficient vectors b⃗, c⃗ ∈ Rs and a matrix A ∈ Rs×s for a
scheme with s stages.

Figure 10.9: Butcher tableau for a general Runge-Kutta method with b⃗, c⃗ ∈ Rs
and A ∈ Rs×s.



10.4. IMPLICIT METHODS 131

In an explicit Runge-Kutta method, the matrix A is lower-triangular, i.e. aij =
0 ∀i ≤ j (see Section 10.2.4), since entries on and above the diagonal correspond
to function evaluations shifted into the future. In an implicit Runge-Kutta
method, the matrix A may therefore be fully populated and the scheme reads:

ki = f

t+ cih, x+ h

s∑
j=1

aijkj

 , i = 1, . . . , s (10.16)

F (t, x, h) = x̄ = x+ h

s∑
i=1

biki . (10.17)

Example 10.5. The simplest example of an implicit Runge-Kutta method is
the scheme with s = p = 1, whose Butcher tableau is shown in Fig. 10.10. Just
like in the explicit case, this first member of the Runge-Kutta family is the Euler
scheme, now implicit Euler, defined by:

x̄ = x+ h f(t+ h, x̄)︸ ︷︷ ︸
k1

.

Figure 10.10: Butcher tableau of the implicit Euler method.

Example 10.6. Also the Trapezoidal method, as derived from quadrature in
Section 10.4.1, is a member of the Runge-Kutta family with the Butcher tableau
shown in Fig. 10.11. This scheme reads

x̄ = x+
h

2
[f(t, x)︸ ︷︷ ︸

k1

+ f(t+ h, x̄)︸ ︷︷ ︸
k2

]

and has s = p = 2.

Examples 10.5 and 10.6 show the first two members of this family of methods,
which are the implicit Euler and the Trapezoidal method. Both are optimal
Runge-Kutta methods, as they have p = s, i.e., their orders of convergence
are equal to their numbers of stages. However, implicit Euler is not the only
implicit Runge-Kutta scheme with s = 1. Single-stage Runge-Kutta methods
can be written as a parametric family with meta-parameter ϑ ∈ [0, 1] and a
Butcher tableau as shown in Fig. 10.12.



132CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Figure 10.11: Butcher tableau of the Trapezoidal method.

Figure 10.12: Butcher tableau of the parametric ϑ-method.

The resulting single-stage Runge-Kutta scheme is called the ϑ-method :

k1 = f(t+ ϑh, x+ hϑk1), 0 ≤ ϑ ≤ 1,

x̄ = x+ hk1.

The ϑ-method includes the following special cases:

• for ϑ = 0: explicit Euler

• for ϑ = 1: implicit Euler

• for ϑ = 1
2 : implicit rectangular method

x̄ = x+ hf

(
t+

h

2
,
x+ x̄

2

)
,

obtained by using rectangular quadrature (see Section 8.1) in the deriva-
tion from Section 10.4.1.

All of these methods are optimal with s = p = 1, except for the implicit rect-
angular method, which has p = 2, but s = 1. Therefore, this is an example of
a Runge-Kutta method with p > s, which is only possible in implicit methods.
Explicit methods can reach at most p = s (see Section 10.2.4). This is another
example of how implicit methods can be numerically superior to explicit ones.
In the rectangular method, the price paid for solving the implicit equation in
each time step is rewarded by one additional order of convergence.

10.5 Multistep Methods

So far, all explicit and implicit methods we considered were one-step methods,
for which a single propagator function F can be written. One-step methods



10.5. MULTISTEP METHODS 133

go from the present time step to the next without considering the past. Mul-
tistep methods, in contrast, also use past time points x̃j−r+1, x̃j−r+2, . . . , x̃j−1

together with the present time point x̃j to determine the next time point x̃j+1.
Such a method, using the present point plus r − 1 past points, is called an r-step
method. It is illustrated in Fig. 10.13. Intuitively, this uses more information
about the past evolution of the solution, which should lead to a better, more
accurate prediction of the next time point.

Figure 10.13: Illustration of an r-step method using the present plus r − 1
past time points in order to compute the next point j + 1.

While explicit one-step methods are usually derived from a numerical approx-
imation of the time derivative, and implicit one-step methods from numerical
quadrature, multistep methods are derived from polynomial interpolation.

Image: wikipedia
John Couch Adams
∗ 5 June 1819

Laneast, UK
† 21 January 1892

Cambridge, UK

Image: Oxford University
Francis Bashforth
∗ 8 January 1819

Thurnscoe, UK
† 12 February 1912

Woodhall Spa, UK

10.5.1 An explicit multistep method: Adams-Bashforth

A classic explicit multistep method is the 3-step Adams-Bashforth method, in-
vented by John Couch Adams, but published as part of a fluid dynamics appli-
cation by Francis Bashforth (1883). For simplicity, we derive it for equidistant
time steps tj = t0 + jh. Similar to Section 10.4.1, we start by integrating the
IVP

ẋ(t) = f(t, x(t)), x(t0) = x0

over one time step from tj to tj+1, yielding:

x(tj+1)︸ ︷︷ ︸
xj+1

−x(tj)︸ ︷︷ ︸
xj

=

∫ tj+1

tj

f(t, x(t)) dt.

In this integral, we perform a change of variables from time t to normalized time
s, as t = tj + sh (cf. Section 6.6.1). With the resulting dt = hds, this gives:

xj+1 − xj = h

∫ 1

0

f(tj + sh, x(tj + sh))︸ ︷︷ ︸
=:F (s)

ds. (10.18)



134CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

The function F (s) in the integrand, evaluated at the present (j) and two past
(j − 1, j − 2) time points, as illustrated in Fig. 10.14, corresponds to:

F (0) = f(tj , xj) = fj ,

F (−1) = f(tj−1, xj−1) = fj−1,

F (−2) = f(tj−2, xj−2) = fj−2.

Figure 10.14: Illustration of the Adams-Bashforth method using three time
points (s = 0,−1,−2) to predict the next time point s = 1).

This defines three points in the s–y plane: Q−2 : (s = −2, y = F (−2)),
Q−1 : (s = −1, y = F (−1)), Q0 : (s = 0, y = F (0)). The idea is now to
use the interpolation polynomial P2(s) through Q−2, Q−1, Q0 to approximate
the function F (s) for s ∈ [0, 1]. Note that the problems mentioned in the intro-
duction to Chapter 9 do not occur here, since we are not using an interpolation
polynomial to approximate a derivative, but to approximate the integral on the
right-hand side of Eq. 10.18. Indeed, the shaded area under the curve s 7→ F (s)
in Fig. 10.14) is the time-step increment. The interpolation polynomial can
very well be used to approximate this area. Using Lagrange interpolation (see
Section 6.2), we find:

P2(s) = fj
(s+ 1)(s+ 2)

2
− fj−1s(s+ 2) + fj−2

s(s+ 1)

2
.

The integral on the right-hand side of Eq. 10.18 is then approximated by ana-
lytically integrating the interpolation polynomial, as:∫ 1

0

F (s) ds ≈
∫ 1

0

P2(s) ds =
23

12
fj −

16

12
fj−1 +

5

12
fj−2.

Substituting this in Eq. 10.18 yields the 3-step Adam-Bashforth method:

x̃j+1 = x̃j +
h

12
[23f(tj , x̃j)− 16f(tj−1, x̃j−1) + 5f(tj−2, x̃j−2)] ,

j = 2, 3, 4, . . . . (10.19)



10.5. MULTISTEP METHODS 135

This is an explicit (the right-hand side only uses the present and past time
points of the solution), linear (the right-hand side is a linear combination of
function evaluations), 3-step method. It is consistent with global error order
p = 3 and local discretization error of O(h4). The third-order convergence is
a direct consequence of the fact that the point-wise approximation error of an
interpolation polynomial of degree q is of order p = q + 1 (see Theorem 6.1).
Therefore, the local error per time step is bounded by this, times h.
As is obvious from Eq. 10.19, multistep methods are not self-initializing. In
order to perform the first step of an r-step scheme, x0, x1, . . . , xr−1 need to be
known, and the initial condition of the IVP is not sufficient to get the method
initialized. The usual remedy is to first use a one-step scheme to compute the
r − 1 initial steps, before switching to the r-step scheme. Of course, the initial
one-step scheme must be of equal or higher order of convergence as the multistep
scheme used thereafter in order to maintain solution quality.
An important benefit of multistep methods is their high computational effi-
ciency. They achieve high convergence orders using few evaluations of the
right-hand-side function. In the Adams-Bashforth scheme, for example, only
one function evaluation is required at each time step, F (0), in order to achieve
global convergence order 3. The past time points needed by the formula are
simply read from memory. An explicit one-step method would require at least
3 function evaluations to achieve the same order of convergence.
The main drawback of multistep methods is that dynamic step-size adaptation
is virtually impossible without sacrificing computational efficiency2.

10.5.2 An implicit multistep method: Adams-Moulton

Multistep methods become implicit if the future time point is included in the
polynomial interpolation. A classic example is the Adams-Moulton method,
developed by John Couch Adams. The name of Forst Ray Moulton became
later associated with the method because he realized its use in the Predictor-
Corrector scheme (see below). The Adams-Moulton method is based on the
Adams-Bashforth method, but additionally uses the point Q1 : (s = 1, y =
F (1)) (see Fig. 10.14). Now using 4 points, we can determine the interpolation
polynomial of degree 3, P3(s) and follow the same derivation to find the Adams-
Moulton scheme:

Image: Physics Today
Forest Ray Moulton
∗ 29 April 1872

Le Roy, MI, USA
† 7 December 1952

Wilmette, IL, USA
x̃j+1 = x̃j +

h

24
[9f(tj+1, x̃j+1) + 19f(tj , x̃j)− 5f(tj−1, x̃j−1)

+ f(tj−2, x̃j−2)], j = 2, 3, . . . . (10.20)

This is also a 3-step method, despite the fact that the prediction is based on
4 points. The naming of multistep methods is only based on how many points
of the present and past they use. But Adams-Moulton is an implicit 3-step
method, as it also uses a future point. Adams-Moulton therefore is an implicit,

2Think about why this might be the case.



136CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

linear, 3-step method. It is consistent with global convergence order p = 4, since
it is based on an interpolation polynomial of degree 3, and local error of O(h5).
Like Adams-Bashforth, also Adams-Moulton is not self-initializing and an initial
one-step method needs to be used to get it started. The implicit equation of
Adams-Moulton can be solved well using fixed-point iteration with the value of

the present time step as a starting point, i.e., x̃
(0)
j+1 = x̃j . If f is linear, a linear

system solver can be used.

10.5.3 Predictor-Corrector method

A neat trick, realized by Forest Ray Moulton in 1926, is to use the explicit
Adams-Bashforth method to predict the next time point and then use the
Adams-Bashforth prediction ˆ̃xj+1 to evaluate the right-hand side of Eq. 10.20
and determine the final, corrected value of x̃j+1:

ˆ̃xj+1 = x̃j +
h

12
[23f(tj , x̃j)− 16f(tj−1, x̃j−1) + 5f(tj−2, x̃j−2)] ,

x̃j+1 = x̃j +
h

24
[9f(tj+1, ˆ̃xj+1) + 19f(tj , x̃j)− 5f(tj−1, x̃j−1)

+ f(tj−2, x̃j−2)].

This is called the Predictor-Corrector method. It can be interpreted as us-
ing Adams-Bashforth to predict the starting value for the implicit solver of
Adams Moulton (cf. Section 10.4.1), but perform only one fixed-point itera-
tion instead of solving the implicit problem until convergence. This yields an
overall explicit method with global order p = 4, which is the same conver-
gence order as the implicit Adams-Moulton method. The absolute magnitude
of the error and the numerical stability, however, are not as good as those of
Adams-Moulton, because the implicit problem is not solved to convergence.
The predictor-corrector method requires two function evaluations per time step
(f(tj , x̃j) and f(tj+1, ˆ̃xj+1)). It is therefore one of the most efficient (in terms
of convergence order per function evaluation) explicit methods, making it a
popular choice in practical applications.

Was this all there is?

Of course, the IVP solvers we discussed here are just examples and barely
scratch the surface of the field. Time stepping and time integration are
active areas of research, and a rich landscape of methods exists. We gave
the general principles and classification of methods, so that other schemes
should fall into place. All methods are based on one of the three principles
discussed here: numerical approximation of the time derivative, numeri-
cal integration of the IVP, or numerical interpolation of the solution. For
example, using Chebyshev interpolation instead of Lagrange interpolation
when deriving a multistep scheme gives rise to the family of Chebyshev



10.6. SYSTEMS OF ODES AND HIGHER-ORDER ODES 137

integrators with their famous stability properties. Using trigonometric in-
terpolation leads to time-harmonic methods.
In addition, special energy-preserving time-reversible integrators are avail-
able for equilibrium simulations. These are called symplectic integrators
and they are important in applications of discrete particle methods, includ-
ing molecular dynamics simulations and celestial or many-body mechanics.
Famous examples of symplectic time integrators include the Størmer-Verlet
method, the velocity-Verlet method, and Ruth’s third- and fourth-order
methods.
For stiff systems (see Section 10.8), robust time integration is a field of
active and ongoing research. Methods include the Rosenbrock methods,
Patankar schemes, and exponential integrators.
In addition to the rich landscape of time stepping methods, meta-methods
also exist, which can be used in conjunction with any method from a cer-
tain family. This for example includes the super-time-stepping methods of
Alexiades [Comm. Numer. Meth. Eng. 12(1), 1996], which can be used
with any explicit one-step scheme in order to enable time-step sizes that
are larger than what the scheme could normally tolerate. An elegant trick
worth reading up on!

10.6 Systems of ODEs and Higher-Order ODEs

So far, we have considered the problem of numerically solving a scalar IVP
with a single, first-order Ordinary Differential Equation (ODE). However, all
methods we have presented so far generalize to systems of multiple ODEs and
to ODEs of higher order, as we describe below.

10.6.1 Multidimensional systems of ODEs

An IVP that consists of multiple ODEs can be written in vector form as:

˙⃗x(t) = f⃗(t, x⃗(t)), x⃗(t = t0) = x⃗0

with solution:

x⃗(t) =

x1(t)...
xn(t)

 ∈ Rn

and n right-hand-side functions

f⃗(t, x⃗) =

f1(t, x1, . . . , xn)...
fn(t, x1, . . . , xn)

 .
All numerical methods for solving IVPs apply component-wise.



138CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Example 10.7. Solving a system of ODEs using the implicit Euler method, we
have the scheme

˜⃗x(j+1) = ˜⃗x(j) + hf⃗(t+ h, ˜⃗x(j+1)).

Applied separately to each component of a system of n = 2 ODEs, this is:

x̃
(j+1)
1 = x̃

(j)
1 + hf1(t+ h, x̃

(j+1)
1 , x̃

(j+1)
2 ),

x̃
(j+1)
2 = x̃

(j)
2 + hf2(t+ h, x̃

(j+1)
1 , x̃

(j+1)
2 ),

where time step indices are denoted as superscripts in parentheses in order to
distinguish them from the vector components given as subscripts.

Also Runge-Kutta schemes generalize component-wise with f⃗ , x⃗, and all k⃗i
becoming n-vectors. The Butcher tableau remains exactly the same with the
same number of entries as in the scalar case.

10.6.2 ODEs of higher order

The second generalization is to ODEs of higher order, i.e., to ODEs where
the left-hand side is not a first derivative, but a second, third, or higher-order
derivative. Such higher-order ODEs can always be written as systems of first-
order ODEs by introducing auxiliary variables for the higher derivatives. This
is illustrated in the following example.

Example 10.8. Consider the third-order ODE

...
x (t) = g(t, x, ẋ, ẍ)

with some right-hand side g. If we define the new variables x1 = x, x2 =
ẋ, x3 = ẍ, this becomes:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = g(t, x1, x2, x3).

This is a system of n = 3 first-order ODEs, which can be numerically solved
component-wise as presented above.

Since this can be done for arbitrary orders, and also for systems of higher-order
ODEs, it is sufficient to be able to solve scalar first-order ODEs. Numerical
methods, and their software implementations, therefore focus on the first-order
scalar case without loss of generality.

Example 10.9. As a practical example, consider the equation of motion of
a pendulum with mass m = 1, length l = 1, and gravitational acceleration
magnitude g = 1.The dynamics of the deflection angle x of the pendulum from
the axis of gravity is governed by the second-order ODE

ẍ+ sin(x) = 0.



10.7. NUMERICAL STABILITY 139

Using x1 = x and x2 = ẋ, this reduces to a system of two first-order ODEs:

ẋ1 = x2,

ẋ2 = − sin(x1),

which can be solved numerically component-wise. In this example, a symplectic
time integrator would be a good choice for physical correctness of the numerical
result, because the pendulum as modeled here is frictionless and energy should
hence be conserved exactly.

10.7 Numerical Stability

So far, we have mainly discussed the accuracy of time-stepping and time-
integration schemes, that is, their local and global errors and how these errors
converge with decreasing time-step size. There is, however, another very im-
portant property that we are going to consider now: numerical stability. In
practice, the requirement of numerical stability can limit the time-step size one
is allowed to use for a certain scheme, and it may even limit the choice of scheme
for a given problem.
Numerical stability is defined as follows:

Definition 10.5 (Numerical stability). If the true solution x(t) of an IVP is
bounded for t −→ ∞, i.e., ∃ a constant C such that |x(t)| < C ∀t, then a
numerical solution x̃(tj) is stable if and only if it is also bounded for j −→ ∞.
For a given IVP ẋ = f(t, x), x(t0) = x0, a numerical method is called stable if
and only if it produces stable numerical solutions for any right-hand side f .

Image: wikipedia
Peter David Lax
∗ 1 May 1926

Budapest, Hungary

Image: alchetron
Germund Dahlquist
∗ 16 January 1925

Uppsala, Sweden
† 8 February 2005

Stockholm, Sweden

Clearly, numerical stability is an elementary requirement for the numerical so-
lution to make any sense. If time steps are chosen too big, it is possible for
the numerical solution to diverge to infinity even if the true solution remains
bounded. As a simple example, consider a sine wave. Clearly, it is bounded by
| sin t| ≤ 1 for all t. If we compute a numerical solution using the explicit Euler
scheme, and we use a time step that is identical to the period of the sine wave,
i.e., h = 2π, then the numerical solution will always go up in every time step.
This is because the sampling with resolution h = 2π always hits the ascending
flank of the wave. The numerical solution is therefore not bounded and will di-
verge to infinity for t→∞. The sine wave is therefore an example of a function
for which the explicit Euler scheme is not stable for h = 2π.
It is of practical importance to know beforehand whether a given scheme is going
to be stable for a given IVP and time-step size. This is determined by stability
analysis of the numerical scheme, as we introduce below. Since in order to be
called stable, a numerical method needs to be stable for any right-hand side f ,
we would have to check and prove stability for all possible right-hand sides f ,
which is clearly infeasible. Luckily, the following theorem holds:

Theorem 10.3 (Lax-Dahlquist Theorem). If a numerical IVP solver with given
time-step size h produces stable solutions according to Definition 10.5 for the



140CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

linear problem ẋ(t) = λx(t) for some set of constants λ ∈ Λ, then it also produces
stable solutions for any nonlinear problem ẋ(t) = f(t, x(t)), as long as ∂f/∂x ∈
Λ and f is smooth enough. The set Λ is called the stability region of the method.

This theorem follows from the Hartman-Grobman theorem, and it states that
“linear stability implies nonlinear stability”. The converse, however, is not
true. A method can be stable for a nonlinear right-hand side f even if it is
unstable for the corresponding linearized function. The theorem thus states a
sufficient condition for nonlinear stability, but not a necessary one. But this is
good enough for us, because it means that we only need to carry out stability
analysis for the linear problem

ẋ = λx(t), x(0) = x0. (10.21)

If a method produces stable solutions for this problem, we know that it also pro-
duces stable solutions for any right-hand side with the same slope and sufficient
smoothness.
The above linear, first-order IVP can be solved analytically. Its solution is:

x(t) = x0e
λt.

This is bounded over t ∈ [0,∞) for λ < 0, as then in fact x(t) → 0 for t → ∞.
Hence, we define:

Definition 10.6 (Linear stability). A numerical method is called linearly stable
if and only if the numerical solution x̃j → 0 for j →∞ on the IVP ẋ = λx(t),
x(0) = x0, with λ < 0.

Proving stability for linear f with negative λ is therefore sufficient. In general,
the constant λ can be a complex number. For simplicity, however, we first con-
sider the case of real λ. For systems of linear ODEs, λ is the largest eigenvalue
of the system matrix.

10.7.1 Stability of the explicit Euler method for real λ

We start with a simple example that illustrates the general procedure of linear
stability analysis. Consider the explicit Euler method from Section 10.2.1 with
fixed time-step size h:

x̃j+1 = x̃j + hf(tj , x̃j).

When applied to the linear problem from Definition 10.6, this becomes:

x̃j+1 = x̃j + hλx̃j

x̃j+1 = x̃j(1 + hλ).

This means that for the linear problem, the explicit Euler scheme simply consists
of multiplying the solution at each time step with a constant d = 1 + hλ. In
order for the solution to go to zero for j →∞, we obviously require that |d| < 1,
so that at each time step the solution is multiplied with a number less than one



10.7. NUMERICAL STABILITY 141

in magnitude. Otherwise, the solution x̃j+1 = dx̃j would blow up to infinity for
j →∞. Therefore, we find the condition

|1 + hλ| < 1

as a necessary and sufficient condition for linear stability of the explicit Euler
method. Depending on the sign of d, there are two cases:

• If d > 0: 1 + hλ < 1

hλ < 0

h > 0

because λ < 0.

• If d < 0: −1− hλ < 1

−hλ < 2

−h > 2

λ

h <
2

|λ|
.

These are two conditions on the time-step size h. The first condition requires
that we move forward in time, i.e., h > 0. This is obviously required for sta-
bility, because the solution of the linear problem grows to infinity when moving
backward in time for t→ −∞. The second condition requires that the time-step
size is less than a positive constant 2/|λ|. This also makes sense in light of the
Nyquist-Shannon sampling theorem, because it states that we need to resolve
every slope λ with at least 2 time points. Therefore, the stability region of the
explicit Euler method is 0 < h < 2

|λ| . For time steps in this range, the explicit

Euler method is stable for any IVP.

This is the general procedure of linear stability analysis. In order to extend this
to more complicated time-stepping schemes, it is convenient to define hλ = µ
and an amplification factor:

Definition 10.7 (Amplification factor). The factor d(µ) by which the numerical
solution of a linear IVP gets multiplied in each time step of a numerical method,
x̃j+1 = d(µ)x̃j = dj+1x0, j = 0, 1, 2, . . ., is called the amplification factor of the
numerical method.

The amplification factor for the explicit Euler method therefore is: d(µ) = 1+µ.
Note that this is the series expansion of the true solution of the linear IVP over

one time step, eµ = 1+µ+ µ2

2! +
µ3

3! + . . . , up to order O(µ2), which is the local
error of the Euler method.



142CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

10.7.2 Stability of Heun’s method for real λ

We analyze the stability of Heun’s method from Section 10.2.3,

x̃0 = x0, x̃j+1 = x̃j +
h

2
[f(tj , x̃j) + f(tj+1, x̃j + hf(tj , x̃j))],

which for the linear IVP becomes:

x̃j+1 = x̃j +
h

2
[λx̃j + λ(x̃j + hλx̃j)]

= x̃j

[
1 + hλ+

(hλ)2

2

]
.

Therefore, with µ = hλ, the amplification factor of Heun’s method is:

d(µ) = 1 + µ+
µ2

2
.

Again, this is the series expansion of the true solution over one time step up
to order O(µ3), which is the local error of Heun’s method. Indeed, the Heun
method approximates the solution at the discrete time t = jh

x0e
λt = x0e

λjh = x0(e
λh)j

by the discrete approximation

x0(d(λh))
j = x0

(
1 + µ+

µ2

2

)j
= x0

(
eλh +O(µ3)

)j
.

This discrete solution asymptotically decreases to zero if and only if |d(µ)| < 1
for λ < 0. The set of µ for which this is the case defines the stability region of
Heun’s method:

B = {µ : |d(µ)| < 1}.

We find the stability region by plotting the function d(µ), as shown in Fig. 10.15
We observe that the function d(µ) is always positive and has a value < 1 for
−2 < µ < 0, which implies 0 < h < 2

|λ| . The corresponding real stability region
is:

BHeun = (−2, 0).

For real λ, the Heun method therefore has the same stability properties as the
explicit Euler method, but it is one order more accurate.

10.7.3 Stability of explicit Euler for complex λ

The linear IVP in Eq. 10.21 makes no assumptions about the constant λ. It can
also be a complex number, λ ∈ C. In this case, the amplification factor becomes
a stability function R(µ) ∈ C and we define in accordance with Theorem 10.3:



10.7. NUMERICAL STABILITY 143

Figure 10.15: Plot of the amplification factor of Heun’s method as a function
of µ = hλ ∈ R.

Definition 10.8 (Stability region). The stability region of a numerical IVP
solver is the set A = {µ ∈ C : |R(µ)| < 1} ⊂ C, where the magnitude of the
stability function over the complex plane is less than 1.

Again, we first illustrate the idea for the simplest case, the explicit Euler method,
where we have, from above, the stability function:

R(µ) = 1 + µ,

but now for complex µ = u+ iv. For stability, we require:

|R(µ)| < 1

|R(µ)|2 < 1

RR̄ < 1

(1 + u+ iv)(1 + u− iv) = 1 + u− iv + u+ u2 − iuv + iv + iuv + v2 < 1

1 + 2u+ u2 + v2 < 1

(u+ 1)2 + v2 < 1,

which defines the interior of a circle in the complex plane, with center (−1, 0)
and radius 1. This open disk is the stability region A of the explicit Euler
method.

10.7.4 Stability of Heun’s method for complex λ

For Heun’s method in the complex plane, we have:

R(µ) = 1 + µ+
µ2

2
.



144CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

We now want to determine the boundary ∂A of the stability region

∂A = {µ ∈ C : |R(µ)| = 1}.

From the real case, we know that the points −2 + 0i and 0 + 0i are on ∂A. We
thus try the following ansatz for an egg-shaped outline (see Fig. 10.16) in polar
complex coordinates (r, φ):

µ = −1 + reiφ,

µ2 = 1− 2reiφ + r2e2iφ,

for which the stability function becomes:

R(µ) = 1 + µ+
µ2

2
= reiφ +

1

2
− reiφ +

r2

2
e2iφ

=
1

2
(1 + r2e2iφ).

For the boundary ∂A, we have

1
!
= |R(µ)|2 = RR̄ =

1

4
(1 + 2r2 cos(2φ) + r4),

which is a quadratic equation for r2 with solution:

r2 = − cos(2φ) +
√

cos2(2φ) + 3.

Only the positive solution makes sense, as polar radii cannot be negative. This
defines the egg-shaped stability region shown in Fig. 10.16. For φ = 0, π we
have r = 1, and for φ = π

2 ,
3π
2 we have r = 4

√
3.

Figure 10.16: Stability region of Heun’s method in the complex plane.



10.7. NUMERICAL STABILITY 145

10.7.5 Stability of the implicit trapezoidal method

Next, we analyze the stability of an implicit method, the trapezoidal method
from Section 10.4.1:

x̃0 = x0, x̃j+1 = x̃j +
h

2
[f(tj , x̃j) + f(tj+1, x̃j+1)],

which for the linear IVP with f(t, x) = λx becomes:

x̃j+1 = x̃j +
h

2
[λx̃j + λx̃j+1] =

hλ

2
x̃j+1 +

(
1 +

hλ

2

)
x̃j(

1− hλ

2

)
x̃j+1 =

(
1 +

hλ

2

)
x̃j

x̃j+1 =
1 + hλ

2

1− hλ
2

x̃j , j = 0, 1, 2, . . .

Therefore, the amplification factor of the implicit trapezoidal method is:

d(µ) =
1 + µ

2

1− µ
2

,

which is identical with the series expansion of the exact solution over one time
step, eµ, up to an error of order O(µ3), which is the local error of the trapezoidal
method. To see this, note that

1

1− µ
2

= 1 +
µ

2
+
µ2

4
+ . . .

and therefore:

d(µ) =
(
1 +

µ

2

)(
1 +

µ

2
+
µ2

4
+ . . .

)
= 1 + µ+

µ2

2
+ · · · = eµ +O(µ3).

For µ ∈ R, the function d(µ) is a hyperbola, as plotted in Fig. 10.17. Its absolute
value is below one in the stability region BTrapez = (−∞, 0). This means that
for λ < 0, the time step h can be arbitrarily large > 0.

For complex µ ∈ C, the stability function of the implicit trapezoidal method is:

R(µ) =
2 + µ

2− µ
,

which is identical to the amplification factor in the real case. The boundary of



146CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Figure 10.17: Plot of the amplification factor of the implicit trapezoidal
method as a function of µ = hλ ∈ R.

the stability region is ∂A = {µ : RR̄ = 1}. Let µ = u+ iv, then:

RR̄ =
(2 + u+ iv)(2 + u− iv)
(2− u− iv)(2− u+ iv)

=
(2 + u)2 + v2

(2− u)2 + v2
!
= 1

(2 + u)2 = (2− u)2

4u = −4u
8u = 0

u = 0.

Therefore, ∂A is the imaginary axis. The stability region A is the entire half-
plane to the left of the imaginary axis:

A = {µ ∈ C : Re(µ) < 0}.

This means that for any λ with Re(λ) < 0, for which the true solution is
bounded, the numerical solution is stable for arbitrary time-step sizes h > 0.
Methods that have this property are called A-stable (for: “absolutely stable”).
They are stable for any time step, on any IVP.

Definition 10.9 (A-stable). A numerical IVP solver is called A-stable if and
only if it is numerically stable for any time-step size h > 0.

This is the optimal stability an IVP solver can achieve and illustrates another
important numerical advantage of implicit methods over explicit methods. In-
deed, all implicit methods are A-stable.



10.8. STIFF INITIAL VALUE PROBLEMS 147

Have you noticed it?

In each of the above stability analyses, we have observed that the amplifi-
cation factor of a numerical method approximates the true solution of the
IVP over one time step with the same order of accuracy as the local error
of the scheme itself. Indeed, it is generally true for any explicit or implicit
method from the Runge-Kutta family with global order of convergence p
that

R(µ) = 1 + µ+
µ2

2!
+ · · ·+ µp

p!
+O(µp+1)

so that
R(µ)− eµ = O(µp+1) = O(hp+1).

This makes is very easy to write down the formula for the amplification fac-
tor of any explicit Runge-Kutta method. For implicit Runge-Kutta meth-
ods, R(µ) is not a polynomial, but a rational function. This is the source
of the absolute stability property of implicit schemes.

10.8 Stiff Initial Value Problems

As numerical stability limits the time-step size of explicit methods by the local
slope of the right-hand side, λ, problems that incur a wide range of λ values with
greatly differing magnitudes are particularly difficult to solve. Such problems
are called stiff. For systems of ODEs, the same is true when λ is defined as the
largest eigenvalue of the system matrix of the linear(ized) ODEs.

Example 10.10. As an illustrative example, consider the second-order IVP

ẍ+ 101ẋ+ 100x = 0, x(0) = 0, ẋ(0) = 0.99.

This is equivalent to the system of first-order ODEs

ẋ1 = x2,

ẋ2 = −100x1 − 101x2.

The system matrix of this linear problem ˙⃗x = Ax⃗ is A =

[
0 1
−100 −101

]
, and

it has the eigenvalues λ1 = −1 and λ2 = −100. The analytical solution of this
problem therefore is x(t) = 0.01e−t − 0.01e−100t, which is plotted in Fig. 10.18.
The solution consists of a boundary layer where the fast exponential dominates,
and an outer layer where the slow exponential dominates.
To numerically approximate this solution, the time-step size must be small
enough to properly resolve the initial, fast dynamics. This small time step must
be used even in the slower tail, so dynamic step-size adaptation does not help.
To see this, consider a time point outside the boundary layer, say t = 0.2, where



148CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Figure 10.18: Analytical solution of the stiff problem in Example 10.10.

the fast exponential plays almost no role any more:

t = 0.2 : e−100t = e−20 ≈ 2 · 10−9.

Starting from here and taking time steps j = 0, 1, 2, . . . of size h, we have:

x(0.2 + jh) = 0.01e−0.2(e−h)j − 0.01e−20(e−100h)j .

Using a numerical scheme with amplification factor d, this becomes:

x̃(0.2 + jh) = 0.01e−0.2(d(−h))j − 0.01e−20(d(−100h))j

for µ = hλ of the two eigenvalues λ1 = −1 and λ2 = −100. For a time-step
size of h = 0.05, we find for example:

dHeun(−h) ≈ 0.95, dTrapez(−h) ≈ 0.95

dHeun(−100h) ≈ 8.5, dTrapez(−100h) ≈ −0.43.

This means that even outside of the boundary layer, Heun’s method is unstable
for this step size, because −100h = −5 is outside the stability region of the Heun
method. This is despite the fact that the fast exponential plays almost no role
any more (but is still there!) outside the boundary layer. Dynamically adaptive
step sizes would therefore not help. The implicit trapezoidal method, however,
is stable, as the amplification factors associated with both eigenvalues are below
one in absolute value.

Definition 10.10 (Stiff IVP). A linear system of ordinary differential equations
˙⃗x = Ax⃗ + b⃗ with A ∈ Rn×n is stiff if and only if the eigenvalues of A have
strongly different negative real parts. For nonlinear IVPs, A is the Jacobian of
the linearized right-hand side.

For systems of nonlinear ordinary differential equations, the qualitative behavior
of the solution is described locally by the eigenvalues of the Jacobi matrix (see
Definition 5.1) of the linearized system. This extends the definition of stiffness
to nonlinear problems.
Using explicit methods for stiff problems requires extremely small time steps.
This eventually means that h may drop below machine epsilon, in which case



10.9. THE LAX EQUIVALENCE THEOREM 149

the simulation does not advance at all and the problem becomes numerically un-
solvable with explicit methods. Special “stiff explicit integrators” are available
to address this problem, for example Rosenbrock schemes (Howard Rosenbrock,
1963) or exponential integrators. The safest solution for stiff problems, however,
is to use implicit methods, as they are A-stable.

10.9 The Lax Equivalence Theorem
Image: wikipedia
Howard Harry Rosenbrock
∗ 16 December 1920

Ilford, UK
† 21 October 2010

London, UK

Now that we are acquainted with the notions of stability, consistency, and con-
vergence of numerical IVP solvers, we can state one of the fundamental theorems
of numerical computation, the Lax Equivalence Theorem due to Peter David
Lax and Robert D. Richtmyer, who published it in 1956.

Theorem 10.4 (Lax Equivalence Theorem). A consistent numerical approxi-
mation to a well-posed IVP is convergent if and only if it is stable.

Image: AIP.org
Robert Davis Richtmyer
∗ 10 October 1910

Ithaca, NY, USA
† 24 September 2003

Gardner, CO, USA

Consistency states that the numerical operators, i.e., the numerically approxi-
mated derivatives or integrals, correspond to the original continuous operators
up to some truncation error. However, it does not imply that the numerical
solution computed by any algorithm using these operators converges to the true
solution of the IVP. For this to happen, the algorithm also needs to be stable.
Only the combination of consistency and stability guarantees convergence, and
is also necessary for it. This means that any statement about error orders is
only valid if the method is stable. Then, the methods are asymptotically exact
for h→ 0.



150CHAPTER 10. INITIAL VALUE PROBLEMS OF ORDINARYDIFFERENTIAL EQUATIONS



Chapter 11

Numerical Solution of
Partial Differential
Equations

Numerically solving partial differential equations (PDEs) is probably the most
important application of numerical methods in practice and is the crown jewel
of scientific computing. It relates to the field of numerical analysis, which is
vast in and of itself. We can only scratch the surface here, and there are many
lectures and books that continue the topic. The goal here is to provide examples
and intuition rather than a concise treatise on the subject.

A PDE is an equation for an unknown function in multiple variables. This func-
tion is then to be determined by solving the PDE subject to certain boundary
and/or initial conditions. Formally, we define:

Definition 11.1 (Partial Differential Equation). A partial differential equation
(PDE) is an equation that relates partial derivatives of an unknown function
u : Ω→ Rn in multiple variables, i.e., Ω ⊂ Rd with d > 1.

Broadly, numerical methods for PDEs fall into three categories:

1. Collocation methods are based on sampling the unknown function u at
a finite number of discrete points (called collocation points) and approxi-
mating partial derivatives using the methods from the previous chapters.
A famous example are finite-difference methods.

2. Galerkin methods are based on expanding the unknown function in terms
of the basis functions ζ of a function space u(·) =

∑
i wiζi(·) and numer-

ically solving for the known coefficients wi of this expansion, i.e., for the
“coordinates” of the solution in this function space. A famous example
are finite-element methods.

Image: wikipedia
Boris Grigoryevich Galerkin
∗ 4 March 1871

Polotsk, Russian Empire
† 12 July 1945

Moscow, USSR

151



152CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

3. Spectral methods are based on frequency-space transformations, followed
by numerical solution of the equation in the transformed space and back-
transformation of the solution. A famous example are Fourier and Laplace
transformation methods.

Each of these categories of methods has many members and comes with its own
advantages and disadvantages. Galerkin methods, for example, often solve the
weak form of the PDE, which copes well with discontinuities in the solution, but
may find spurious solutions. Spectral methods are often accurate to machine
precision with exponentially fast convergence, but they are computationally
costly and do not parallelize well. Collocation methods are easy to implement
and parallelize, but often have inferior stability and accuracy. As always, there
is no free lunch.
Here, we only consider methods of collocation type. Rather than delving into a
general theory of collocation methods for arbitrary PDEs, however, we illustrate
the main concepts in three examples that we use as model problems:

Example 11.1. The 2D Poisson equation.

Figure 11.1: Domain and boundary for the 2D Poisson problem.

Given are:

• a domain G ⊂ R2 with boundary Γ, see Fig. 11.1,

• a sufficiently smooth continuous function f(x, y) : G → R, (x, y) ∈ G 7→
f(x, y),

• a function φ(x, y) : Γ→ R, (x, y) ∈ Γ 7→ φ(x, y).

We want to find a continuous function u(x, y) such that:

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= f(x, y) in G, (11.1)

u(x, y) = φ(x, y) on Γ. (11.2)

This is the Poisson equation with Dirichlet boundary conditions. Because solving
this equation is a problem with only boundary conditions, this type of problem
is called a boundary value problem (BVP).



153

Example 11.2. The 1D heat equation.

Image: wikipedia
Siméon Denis Poisson
∗ 21 June 1781

Pithiviers, Kingdom France
† 25 April 1840

Sceaux, July Monarchy

Figure 11.2: The unit interval for the 1D heat equation.

Given are:

• the one-dimensional interval (0, 1) as shown in Fig. 11.2,

• a sufficiently smooth continuous function f(x) for x ∈ (0, 1),

• two functions α(t) and β(t) for t ≥ 0.

We want to find a continuous function u(t, x) such that:

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
, (11.3)

u(0, x) = f(x), x ∈ (0, 1), (11.4)

u(t, 0) = α(t), t ≥ 0, (11.5)

u(t, 1) = β(t), t ≥ 0. (11.6)

This is the heat (or diffusion) equation with boundary and initial conditions.
Because solving this equation is a problem with both boundary and initial condi-
tions, this type of problem is called an initial boundary value problem (IBVP).

Example 11.3. The 1D wave equation.
Given are:

• the set of real numbers x ∈ R as domain,

• two functions φ(x), ψ(x) for x ∈ R.

We want to find a continuous function u(t, x) such that:

∂2u(t, x)

∂t2
= c2

∂2u(t, x)

∂x2
, (11.7)

u(0, x) = φ(x), (11.8)

∂u(0, x)

∂t
= ψ(x), (11.9)

for some constant c ̸= 0 and t ≥ 0. This is the wave equation with initial
conditions for u and for its first derivative. Because solving this equation is
a problem with only initial conditions, this type of problem is called an initial
value problem (IVP) of a partial differential equation.



154CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDEs

Partial differential equations can be classified into families in two ways: (1)
according to their form and (2) according to their solvability. Classification
according to form includes:

• Order: The order of a PDE is defined by the highest occurring
derivative in the equation. PDEs of order >4 hardly occur in prac-
tice. The most important (physical) PDEs are second order. There
are, therefore, special sub-classes defined for second-order PDEs (see
below).

• Linearity: PDEs that only contain linear combinations of the un-
known function and its derivatives are called linear. Nonlinear PDEs
also contain nonlinear combinations (e.g., products) of the unknown
function or its derivatives. In the class of nonlinear PDEs, we further
distinguish PDEs that are linear in the highest occurring derivative
as quasi-linear PDEs. Nonlinear PDEs are a difficult topic, since no
closed theory exists for this class of equations. They are notoriously
difficult to solve and numerical simulations frequently suffer from in-
stabilities and ill-posedness.

• Homogeneity: PDEs where all terms, i.e. summands, contain the
unknown function or one of its derivatives are called homogeneous.
A PDE is inhomogeneous if at least one term is independent of the
unknown function and its derivatives.

• Coefficients: PDEs where all pre-factors of the unknown function
and its derivatives in all terms are independent of the independent
variables (e.g., space or time) are called PDEs with constant coeffi-
cients. If any coefficient explicitly depends on an independent vari-
able, the PDE has varying coefficients.

Depending on order, linearity, homogeneity, and coefficients of a PDE, one
can know which numerical solver to choose and how many side conditions,
i.e., boundary and initial conditions, are required. All of the above clas-
sifications are easy to determine and to check by inspecting the equation.
Classification according to solvability (due to Jacques Hadamard) is not
obvious, but very useful if known. It classifies PDEs according to:

1. Solution existence: PDEs for which a solution exists. Solution
existence is mostly proven by showing that the assumption that no
solution exists leads to a contradiction.



11.1. PARABOLIC PROBLEMS: THE METHOD OF LINES 155

2. Solution uniqueness: PDEs that have only one, unique solution.
If a solution is found, then one knows that it is the only possible
solution.

3. Solution stability: A solution is stable if and only if small pertur-
bations in the initial and/or boundary conditions of the PDE only
lead to small (i.e., bounded proportional to the magnitude of the
perturbation) variations in the solution.

Proving any of these points for a given PDE is usually a lot of work, but
for many well-known PDEs, the results are known. PDEs that do not
fulfill all three of the above conditions are called ill-posed and are hard or
impossible to solve numerically. PDEs that fulfill all three conditions are
called well-posed.

Image: wikipedia
Jacques Hadamard
∗ 8 December 1865

Versailles, France
† 17 October 1963

Paris, France

All of Examples 11.1–11.3 are linear PDEs of second order with constant coeffi-
cients. The Poisson equation is inhomogeneous, the other two are homogeneous.
Linear second-order PDEs with constant coefficients constitute the most com-
mon class of PDEs in practical applications from physics and engineering. Any
linear PDE of second order with constant coefficients in two variables can be
written in the following general form:

A
∂2u(x, y)

∂x2
+ 2B

∂2u(x, y)

∂x∂y
+ C

∂2u(x, y)

∂y2
+D

∂u(x, y)

∂x
+ E

∂u(x, y)

∂y
+

Fu(x, y) = f(x, y),

with coefficients (A,B,C) ̸= (0, 0, 0). Based on this generic form, such equations
are classified by computing the number ∆ := AC −B2, and defining three sub-
classes of linear second-order PDEs:

1. ∆ > 0: elliptic PDE (e.g., Poisson equation),

2. ∆ = 0: parabolic PDE (e.g., heat equation),

3. ∆ < 0: hyperbolic PDE (e.g., wave equation).

Depending on the sub-class, different numbers of side conditions (i.e., initial and
boundary conditions) are required to render the problem well-posed. Elliptic
equations require boundary conditions, parabolic equations require boundary
and initial conditions, and hyperbolic equations require two initial conditions.
In addition, the type of methods appropriate for numerically solving an equation
depends on the sub-class. In the following, we give examples of such methods
for each sub-class for the model problems defined above.

11.1 Parabolic Problems: The Method of Lines

We first consider the numerical solution of parabolic PDEs using the 1D heat
equation from Example 11.2 as a model problem with specific boundary con-
ditions u(t, 0) = u(t, 1) = 0, t ≥ 0. The method of lines is frequently used to



156CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

discretize parabolic PDEs. It is based on first discretizing the space coordinate
x and then use numerical methods for initial-value problems of ordinary differ-
ential equations (see Chapter 10) to solve over time at each spatial discretization
point.

In our model problem, we therefore start by discretizing ∂2u
∂x2 . We choose a

symmetric finite difference of second order to do so, hence:

∂2u(t, x)

∂x2
=
u(t, x+ h)− 2u(t, x) + u(t, x− h)

h2
+O(h2)

on a regular grid with discretization points xl = lh, l = 0, 1, 2, . . . , N . At each
of these spatial points, we then have an ODE over time, which can be visualized
as a line at location xl over all t ≥ 0, as shown in Fig. 11.3, hence the name of
the method.

Figure 11.3: Illustration of the method of lines, obtained by a
semi-discretization of the PDE in space followed by solving N initial-value

problems over time along the lines (xl, t ≥ 0).

Along each line, we have ul(t) := u(t, xl). Therefore, we have N unknown
functions in one variable (here: t) governed by the following ODEs:

u0(t) = 0, uN (t) = 0 from the boundary conditions

dul(t)

dt
=
ul+1(t)− 2ul(t) + ul−1(t)

h2
, l = 1, . . . , N − 1

ul(0) = f(xl) from the initial condition in Eq. 11.4.

Using the short-hand notation u̇l =
dul(t)
dt , this can be written in matrix-vector

notation as:
u̇1
u̇2
u̇3
...

u̇N−1

 =
1

h2


−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
...

...
...

. . .
. . .

1 −2


︸ ︷︷ ︸

Â


u1
u2
u3
...

uN−1

 ,



11.1. PARABOLIC PROBLEMS: THE METHOD OF LINES 157

which makes use of the fact that u0 = uN = 0. In general, there can also be
non-zero entries for the boundary conditions on the right-hand side. In any
case, this defines a system of linear ordinary differential equations

˙⃗u = Au⃗ with A =
1

h2
Â ∈ R(N−1)×(N−1)

a tri-diagonal matrix, and initial condition

u⃗(0) = f⃗ =

 f(x1)
...

f(xN−1)

 .
We can numerically solve these ODEs using any of the methods from Chapter
10.
Analyzing this system of linear ODEs, we find that it becomes increasingly stiff
for N ≫ 1 (cf. also section 10.8). Indeed, Â has eigenvalues

λ̂l = −4 sin2
(
lπ

2N

)
and, therefore, A has eigenvalues

λl = −
4

h2
sin2

(
lπ

2N

)
, l = 1, . . . , N − 1. (11.10)

For N = 1
h ≫ 1, we find for the largest and smallest eigenvalues:

l = 1 : sin
( π

2N

)
≈ π

2N
=⇒ λ1 ≈ −π2 ∈ O(1),

l = N − 1 : sin

(
(N − 1)π

2N

)
≈ 1 =⇒ λN−1 ≈

−4
h2
∈ O(h−2).

Therefore, for h ≪ 1 (i.e., N ≫ 1), λN−1 is much larger than λ1 and in fact
the stiffness grows quadratically with N . This stiffness also becomes obvious by
writing the system of ODEs in diagonalized form as ˙⃗vl = λlv⃗l, where v⃗l is the
eigenvector corresponding to the eigenvalue λl.

11.1.1 The explicit Richardson method

As a first example, we use the explicit Euler method along the lines, hence
discretizing time as tj = jh̄ for j = 0, 1, 2, . . . with time-step size h̄. This yields:

u⃗(tj+1) ≈ u⃗(tj) + h̄Au⃗(tj).

For the numerical approximation of the solution ˜⃗uj ≈ u⃗(tj), we then find:

˜⃗uj+1 = (1N−1 + h̄A)˜⃗uj =

[
1N−1 +

h̄

h2
Â

]
˜⃗uj , j = 0, 1, 2, . . . (11.11)



158CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

This solver, obtained by applying explicit Euler time-stepping in a method of
lines, is called Richardson Method for parabolic PDEs (Lewis Fry Richardson,
1910). Here, 1N−1 is the identity matrix of size N − 1. the above formula is
second-order accurate in space with h and first-order accurate in time with h̄.
The method amounts to a single matrix-vector multiplication per time step with
a computational cost of O(N2) per time step. Since the matrix A is typically
very large, schemes of order higher than 2 in time are rarely used.
In order to analyze the numerical stability of the Richardson method, we start
from the stability region of the explicit Euler method for real eigenvalues, as
all λl are real numbers in this example (see above). This stability region is:
h̄λl ∈ (−2, 0) (see Sec. 10.7.1). Using Eq. 11.10, this produces the following
condition for the time step size h̄:

−4h̄

h2
sin2

(
lπ

2N

)
∈ (−2, 0)

and therefore:

0 <
h̄

h2
<

1

2 sin2
(
lπ
2N

)
for l = 1, . . . , N − 1, where the sine is never equal to 0, nor 1. Because
sin2

(
lπ
2N

)
∈ (0, 1), stability is guaranteed for arbitrary N as long as

0 < h̄ ≤ 1

2
h2. (11.12)

This implies very small time steps h̄ > 0 for any discretization with high spatial
resolution 0 < h ≪ 1. In fact, the time step size has to shrink proportional to
the square of the spatial resolution. This is a direct result of the stiffness of the
equation system and often motivates the use of implicit methods in practice.

11.1.2 The implicit Crank-Nicolson method

A popular choice of an implicit time-integration method for the IVPs arising in
method of lines is the implicit trapezoidal method from Section 10.4.1. In the
present example, this means approximating the integrals∫ tj+1

tj

˙⃗u(t) dt =

∫ tj+1

tj

Au⃗(t) dt

using trapezoidal quadrature with spacing h̄ in time, leading to:

u⃗(tj+1)− u⃗(tj) ≈
h̄

2
[Au⃗(tj) +Au⃗(tj+1)].

In this case, because it is a linear problem, we can separate the two time points
as: (

1− h̄

2
A

)
˜⃗uj+1 =

(
1+

h̄

2
A

)
˜⃗uj ,



11.2. ELLIPTIC PROBLEMS: STENCIL METHODS 159

producing the final scheme:

˜⃗uj+1 =

[
1− h̄

2h2
Â

]−1 [
1+

h̄

2h2
Â

]
˜⃗uj , j = 0, 1, 2, . . . (11.13)

This is the Crank-Nicolsonmethod for parabolic PDEs, named after John Crank
and Phyllis Nicolson who developed and published it in 1947. It uses an implicit
time-integration method, which means that a linear system of equations needs to

be solved at each time step, inverting the matrix
[
1− h̄

2h2 Â
]
. Since this matrix

is the same for all j, this can efficiently be done by performing LU-decomposition
of Â once, and then simply using forward and backward substitution in each
time step. The method then also has a computational cost of O(N2) per time
step, plus an O(N3) initialization effort. It therefore has practically the same
computational cost as the Richardson method.

Image: wikipedia
John Crank
∗ 6 February 1916

Hindley, Lancashire, UK
† 3 October 2006

United Kingdom

Image: wikipidia
Phyllis Nicolson
∗ 21 September 1917

Macclesfield, Cheshire, UK
† 6 October 1968

Sheffield, Yorkshire, UK

Since the trapezoidal method is A-stable (see Sec. 10.7.5), the Crank-Nicolson
method does not impose any limit on the time step size h̄ > 0. This is its
main advantage over the Richardson method. Also, Crank-Nicolson is 2nd-order
accurate in both space and time.

11.2 Elliptic Problems: Stencil Methods

Image: wikipedia
René Descartes
∗ 31 March 1596

La Haye en Touraine, France
† 11 February 1650

Stockholm, Swedish Empire

As a model problem for the elliptic case, we consider the 2D Poisson equation
from Example 11.1, using the unit square as domain G, i.e., 0 ≤ x ≤ 1; 0 ≤
y ≤ 1. In a uniform stencil method, the domain is discretized in all independent
variables (here: x, y) using a regular Cartesian (named after René Descartes,
who published this coordinate system in 1637) lattice with spacing h = 1/N , as
illustrated in Fig. 11.4.

Figure 11.4: The 2D unit square discretized by a regular Cartesian lattice of
spacing h.



160CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

This lattice has nodes (xi, yj) = (ih, jh) for i, j = 0, 1, . . . , N . At the boundary
nodes of this lattice, i.e., for i = 0, i = N , j = 0, or j = N , the solution
is known from the boundary condition φ(xi, yj). At the interior points, we
compute a numerical approximation to the solution u(xi, yj) ≈ ũ(xi, yj) = ũij .
In the present example, we choose second-order symmetric finite differences to
approximate the derivatives in the PDE (see also Chapter 9), hence:

∂2u(x, y)

∂x2
≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
,

∂2u(x, y)

∂y2
≈ u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
.

Summing these two, and evaluating only at interior grid points (xi, yj), yields:[
∂2u

∂x2
+
∂2u

∂y2

]
x=xi,y=yi

≈

1

h2
[ũi+1,j + ũi−1,j + ũi,j+1 + ũi,j−1 − 4ũi,j ], i, j = 1, 2, . . . , N − 1.

For the numerical approximation ũij = ũ(xi, yj). Using the notation fij =
f(xi, yj), this yields the following discretized form for Eq. 11.1:

1

h2
[ũi+1,j + ũi−1,j + ũi,j+1 + ũi,j−1 − 4ũij ] = fij , i, j = 1, 2, . . . , N − 1.

(11.14)

This is called a stencil method, as the left-hand side of the discretized equation
can be seen as a stencil that iterates over the mesh from Fig. 11.4. The particular
stencil in this example is visualized in Fig. 11.5. In general, stencil operators are
linear combinations of grid point values in a certain, local neighborhood called
the stencil support.

Figure 11.5: The stencil operator corresponding to Eq. 11.14.

At the boundaries, we directly use the given boundary condition φij = φ(xi, yj),



11.2. ELLIPTIC PROBLEMS: STENCIL METHODS 161

leading, e.g., for i = 0 to the discretized equation (see Fig. 11.6, left):

1

h2
[ũ2,j + ũ1,j+1 + ũ1,j−1 − 4ũ1,j ] = f1,j −

1

h2
φ0,j ,

with analogous expressions also at the other three boundaries. It is a convention
that all known quantities are taken to the right-hand side of the discretized
equation. For corners, e.g. i = 0, j = N (see Fig. 11.6, right), we find:

1

h2
[ũ2,N−1 + ũ1,N−2 − 4ũ1,N−1] = f1,N−1 −

1

h2
[φ0,N−1 + φ1,N ],

again with analogous expressions also for the other three corners.

Figure 11.6: Examples of stencils at a boundary (left) and in a corner (right)
of the domain.

Analyzing the order of convergence of the stencil

The order of convergence of the above stencil for the Laplace operator is
2. This can easily be seen from the Taylor expansion of u:

u(x± h, y) = (1± hD1 +
h2

2
D2

1 ±
h3

6
D3

1 + . . . )u(x, y),

u(x, y ± h) = (1± hD2 +
h2

2
D2

2 ±
h3

6
D3

2 + . . . )u(x, y),

where we use the short-hand notation for the differential operators

D1 =
∂

∂x
, D2

1 =
∂2

∂x2
, . . . D2 =

∂

∂y
, D2

2 =
∂2

∂y2
, . . .

Substituting these Taylor expansions into the stencil, we find:

1

h2
[u(xi + h, yj) + u(xi − h, yj) + u(xi, yj + h) + u(xi, yj − h)− 4u(xi, yj)] =

(D2
1 +D2

2)u(xi, yj)︸ ︷︷ ︸
∆u(xi,yj)

+
h2

12
(D4

1 +D4
2)u(xi, yj) +

h4

60
(D6

1 +D6
2)u(xi, yj) + . . .



162CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

Because ∆u(xi, yj) = fi,j due to the governing equation, we find that

1

h2
[u(xi + h, yj) + u(xi − h, yj) + u(xi, yj + h) + u(xi, yj − h)− 4u(xi, yj)]− fi,j =

h2

12
(D4

1 +D4
2)u(xi, yj) +

h4

60
(D6

1 +D6
2)u(xi, yj) + · · · ≈ 0.

Therefore, the approximation error is O(h2) overall, as claimed. The recipe
we followed here is generally applicable to convergence analysis of all stencil
methods: substituting the appropriately shifted Taylor expansions of the
exact solution into the stencil yields the discretization error.
Note that this procedure directly yields the global convergence order. Con-
sider for example the explicit Euler method in space:

1

h
(x̃j+1 − x̃j)− fj = 0.

Substituting the Taylor expansion of the exact solution yields:

1

h
[(��xj +�

�hfj +
h2

2
ẍ(tj) + . . . )−��xj ]− ��fj ∈ O(h),

which is the global error order of the Euler method.

Numerically approximating the 2D Poisson equation on the unit square using
the above stencils results in a system of (N − 1)2 linear equations, one for each
interior mesh node. This system of equations can be very large in practice.
Already using only 1000 mesh cells in each direction leads to a system of 106

equations. Efficient linear system solvers (see Chapter 2) are therefore key to
using stencil methods.

For illustration purposes, we explicitly construct the resulting system of linear
equations for the small case N = 4 with f ≡ −1 and φ ≡ 0. This yields a
Cartesian mesh of 5× 5 nodes and a system of (N − 1)2 = 9 linear equations.

For simplicity of notation, we renumber the unknown interior points using linear
indices as:

ũ1 = ũ1,1 ũ2 = ũ2,1 ũ3 = ũ3,1

ũ4 = ũ1,2 ũ5 = ũ2,2 ũ6 = ũ3,2

ũ7 = ũ1,3 ũ8 = ũ2,3 ũ9 = ũ3,3.

This numbering of the mesh nodes is illustrated in Fig. 11.7. Further, we mul-
tiply Eq. 11.14 with h2 = 1

16 . This leads to the following system of equations
for the unknown interior points:



11.2. ELLIPTIC PROBLEMS: STENCIL METHODS 163

Figure 11.7: Linear indexing of the interior mesh nodes.



−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4





ũ1
ũ2
ũ3
ũ4
ũ5
ũ6
ũ7
ũ8
ũ9


=



− 1
16
− 1

16
− 1

16
− 1

16
− 1

16
− 1

16
− 1

16
− 1

16
− 1

16


.

Because in this example φ = 0, there are no right-hand-side terms for the
boundary nodes. For non-zero boundary conditions, the right-hand-side vector
would contain additional contributions from the boundary conditions according
to Fig. 11.6. As is typical of stencil methods, the matrix of the resulting system
of linear equations is sparse, but does not have a simple, e.g., tri-diagonal struc-
ture, like it had for the method of lines. Since the matrix can also be very large,
iterative linear system solvers are a good choice for stencil methods. In particu-
lar, there is a whole class of iterative linear system solvers that are designed to
work well with sparse matrices. Famous examples of such sparse linear system
solvers include Krylov subspace methods, the Lanczos algorithm, and Multigrid
Methods. In fact, the conjugate gradient method discussed in Section 2.4 is a
Krylov subspace method. For symmetric, positive definite matrices, it hence
is a good choice to be used in stencil codes. For asymmetric or not positive
definite matrices, GMRES is a famous Krylov subspace method often used in
stencil methods. In any case, since the matrix is of size (N −1)2× (N −1)2, the
computational cost is O(N2) per time step, because only a constant number of
entries in each row are non-zero.



164CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

11.3 Hyperbolic Problems: The Method of Char-
acteristics

As a model problem for hyperbolic PDEs, we consider the 1D wave equation
from Example 11.3. A wave is characterized by a function moving at constant
speed c, called the phase velocity of the wave. The lines/rays along which the
wave propagates are called the characteristics of the wave equation. They are
given by the equations:

ξ = x+ ct, η = x− ct

=⇒ x =
ξ + η

2
, t =

ξ − η
2c

.

The method of characteristics is based on writing the governing equation in
these new coordinates, i.e., looking at how the function u changes along a char-
acteristic. This is somewhat similar to the method of lines for parabolic PDEs,
but the lines are particularly selected to be the characteristics. Every hyper-
bolic PDE possesses characteristics, not only the wave equation, rendering this
a general numerical method for hyperbolic PDEs.
In the present example, substituting the above coordinate transform into the
governing equation, we find:

u(t, x) = u

(
ξ − η
2c

,
ξ + η

2

)
=: ū(ξ, η)

ux = ūξ
∂ξ

∂x
+ ūη

∂η

∂x
= ūξ + ūη

ut = ūξ
∂ξ

∂t
+ ūη

∂η

∂t
= cūξ − cūη

uxx = (ūξ + ūη)ξ + (ūξ + ūη)η = ūξξ + 2ūξη + ūηη

utt = c(cūξ − cūη)ξ − c(cūξ − cūη)η = c2(ūξξ − 2ūξη + ūηη).

Therefore, Eq. 11.7 in the new coordinates reads:

4c2ūξη = 0 =⇒ ūξη = 0,

since c2 > 0. Therefore, any function of the form

ū(ξ, η) = P (ξ) +Q(η)

is a solution to the equation, because its mixed derivative in (ξ, η) vanishes. In
the original coordinates, this means that any function u(t, x) = P (x + ct) +
Q(x− ct) is a solution of the wave Eq. 11.7 for arbitrary P (·) and Q(·). Along
the lines x± ct = const in the (x, t)-plane, P (x+ ct) or Q(x− ct) are constant,
respectively. This means that P describes a function that travels left in space
with constant speed c, whereas the function Q travels to the right with the same
speed. This is illustrated in Fig. 11.8 for some example Q(·). As can be seen, the
value of Q (and also of P in the opposite direction of travel) is constant along



11.3. HYPERBOLIC PROBLEMS: THEMETHODOF CHARACTERISTICS165

Figure 11.8: Illustration of a function Q(x) traveling forward in time and right
in space with constant speed c.

the characteristics x − ct = const. This is actually the general definition of
characteristics as lines along with the solution of a hyperbolic PDE is constant.
They are the key to solving hyperbolic PDEs.

The initial conditions of the problem in Example 11.3 are then used to determine
P and Q. For t = 0, we have ξ = x and η = x. Therefore:

u(0, x) = ū(x, x) = P (x) +Q(x)
!
= φ(x)

ut(0, x) = c[ūξ(x, x)− ūη(x, x)]

= c[P ′(x)−Q′(x)]
!
= ψ(x),

where the prime means a derivative with respect to the only argument. Inte-
grating both sides of the second equation

∫ x
0
dx, we find:

P (x)−Q(x) =
1

c

∫ x

0

ψ(s) ds+ P (0)−Q(0)︸ ︷︷ ︸
=:k

.

Together with the first equation, P (x) + Q(x)
!
= φ(x), we thus obtain two

equations for the two unknowns P and Q. Solving this system of two equations
for P and Q yields:

P (x) =
1

2
φ(x) +

1

2c

∫ x

0

ψ(s) ds+
k

2

Q(x) =
1

2
φ(x)− 1

2c

∫ x

0

ψ(s) ds− k

2
.



166CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

Therefore, we find the final analytical solution of Eqs. 11.7–11.9 as:

u(t, x) =
1

2
[φ(x+ ct) + φ(x− ct)] + 1

2c

∫ x+ct

x−ct
ψ(s) ds. (11.15)

The above solution is exact and unique. The 1D wave equation therefore is an
example of a PDE that can analytically be solved for arbitrary initial conditions,
using the method of characteristics. However, the integral in Eq. 11.15 may
not have a closed-form solution in general. There are therefore two ways to
numerically approximate the solution of the wave equation: (1) Numerically
evaluate the analytical solution in Eq. 11.15, using quadrature (see Chapter 8)
to approximate the integral. If this is done along characteristics, i.e., along
propagation rays of the wave, then the method is called ray tracing, which is
frequently used in computer graphics to numerically approximate the rendering
equations, or in radiative energy/heat transfer simulations. (2) Numerically
approximate the derivatives in the original problem of Eq. 11.7.

An important observation we gain from the above exact solution is that only
the initial conditions in a certain spatial interval influence the solution at a
given point. To see this, consider Fig. 11.9. Through every point (x∗, t∗) in the
solution space, there are exactly two characteristics: x−ct = x1 and x+ct = x2,
which intersect the x-axis in two points, x1 = x∗ − ct∗ and x2 = x∗ + ct∗.
The interval [x1, x2] for t = 0 is called the analytical domain of dependence
(or: analytical region of influence) for the solution at (x∗, t∗). Only the initial
conditions φ(x), ψ(x) for x ∈ [x1, x2] influence the solution at (x∗, t∗). This
concept exists for every hyperbolic PDE.

Figure 11.9: Illustration of the analytical domain of dependence of a
hyperbolic PDE.



11.3. HYPERBOLIC PROBLEMS: THEMETHODOF CHARACTERISTICS167

11.3.1 Numerical approximation

We do not discuss ray-tracing methods here, as they are an entirely different
class of algorithms usually treated in computer graphics courses. Instead, we
illustrate possibility (2) above in the example of the 1D wave equation. Using
second-order central finite differences (see Chapter 9) to approximate the second
derivatives in Eq. 11.7 in both space and time, we get:

1

h̄2
(ũk+1
j − 2ũkj + ũk−1

j ) =
c2

h2
(ũkj+1 − 2ũkj + ũkj−1),

where subscripts denote space points xj = jh with resolution ∆x = h and
superscripts denote time steps tk = kh̄ of size ∆t = h̄. The corresponding
stencil is visualized in Fig. 11.10.

Figure 11.10: Visualization of the finite-difference stencil for the wave
equation.

This stencil allows computing the circled value at time tk+1 from the known
values at two previous times tk and tk−1 with a local discretization error O(h̄2)+
O(h2). Defining the constant

λ :=
ch̄

h
and solving for the value at the new time point, we find:

ũk+1
j = 2(1− λ2)ũkj + λ2(ũkj+1 + ũkj−1)− ũk−1

j , k = 1, 2, 3, . . .

(11.16)

In order to start the algorithm, we need to know ũ0j and ũ
1
j for all j. The former

is trivially obtained from the initial condition:

ũ0j = φ(xj), j ∈ Z.

The latter can be approximated to second order from the Taylor series

ũ1j = ũ(h̄, xj) = ũ(0, xj)︸ ︷︷ ︸
ũ0
j=φ(xj)

+ ũt(0, xj)︸ ︷︷ ︸
ψ(xj)

h̄+ ũtt(0, xj)
h̄2

2
+ . . .

as:
ũ1j = ũ0j + h̄ψ(xj), j ∈ Z.



168CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

The algorithm then proceeds row-wise, building up the solution space by iter-
ating over all x for each t.
For finite domains, e.g., 0 ≤ x ≤ L, boundary conditions for u(t, 0) and u(t, L)
are required in addition. Frequently used boundary conditions for waves are
absorbing boundaries, where uboundary = 0, and reflective boundaries, where
∂u
∂x

∣∣
boundary

= 0. In the former case, the wave is absorbed at the boundary, in

the latter case it is reflected with a phase shift of π. In a bounded domain, we
can introduce the finite vector

˜⃗uk = (ũk1 , . . . , ũ
k
N−1)

T ∈ RN−1.

The iteration in Eq. 11.16 can then be written as:

˜⃗uk+1 = 2˜⃗uk − λ2A˜⃗uk − ˜⃗uk−1, k = 1, 2, 3, . . . (11.17)

with the tri-diagonal matrix

A =


2 −1 0 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1 . . .
...

...
...

. . .
. . .

−1 2

 ∈ R(N−1)×(N−1)

and initial conditions

˜⃗u0 = (φ(x1), . . . , φ(xN−1))
T

˜⃗u1 + ˜⃗u0 + h̄(ψ(x1), . . . , ψ(xN−1))
T.

Evolving this iteration in time requires a matrix-vector multiplication in each
time step and therefore has a computational cost of O(N2) per time step.

11.3.2 Numerical domain of dependence

Using the above scheme to numerically approximate the solution at point (x∗j , t
∗
k)

requires three points from the row below: (x∗j−1, t
∗
k−1), (x

∗
j , t

∗
k−1), (x

∗
j+1, t

∗
k−1).

Computing these three points in turn requires five points at t∗k−2, and so on. In
the end, all mesh nodes in a pyramid shown in Fig. 11.11 are required in order
to compute the numerical approximation to the solution at (x∗j , t

∗
k). At t = 0,

it includes the initial conditions for x ∈
[
x∗j − (h/h̄)t∗k, x

∗
j + (h/h̄)t∗k

]
. This

interval is called the numerical domain of dependence (or: numerical region of
influence) of the method.
In order for the method to be consistent, the numerical domain of depen-
dence must include (i.e., be a superset of) the analytical domain of
dependence. This means that the characteristics through (x∗j , t

∗
k) must be

entirely contained in the mesh pyramid used to compute the numerical approx-
imation at (x∗j , t

∗
k). This is a necessary condition for a numerical solution of a

hyperbolic PDE to be consistent.



11.3. HYPERBOLIC PROBLEMS: THEMETHODOF CHARACTERISTICS169

Figure 11.11: Illustration of the numerical domain of dependence of a
hyperbolic PDE.

In order to see this, assume that this condition is not fulfilled. Then, there
exists a part of the initial condition that is within the analytical domain of
dependence, but outside the numerical domain of dependence. Changing the
initial condition in that region changes the analytical solution at (x∗j , t

∗
k), but

not the numerical solution. The numerical method is then not able to ever
converge to the correct solution, even if it is stable, which implies (by the Lax
Equivalence Theorem) that it is inconsistent.

Image: geni.com
Richard Courant
∗ 8 January 1888

Lublinitz, German Empire
(now: Lubliniec, Poland)

† 27 January 1972
New Rochelle, NY, USA

Image: wikipidia
Kurt Otto Friedrichs
∗ 28 September 1901

Kiel, German Empire
† 31 December 1982

New Rochelle, NY, USA

Image: wikipidia
Hans Lewy
∗ 20 October 1904

Breslau, German Empire
(now: Wroc law, Poland)

† 23 August 1988
Berkeley, CA, USA

In the present example of the 1D wave equation, the condition that the numerical
domain of dependence must include the analytical domain of dependence is not
only necessary, but also sufficient for convergence. In general, for arbitrary
hyperbolic PDEs, it is only necessary, and stability may not be implied (cf. the
Lax Equivalence Theorem in Section 10.9).

11.3.3 Courant-Friedrichs-Lewy condition

The above condition that the numerical domain of dependence must include the
analytical domain of dependence can be formally stated as:

h̄

h
≤ 1

c
,

which means that the slope of the characteristics must be larger than the slope of
the boundaries of the numerical domain of dependence. Using the above-defined
constant

λ :=
ch̄

h
,

this implies:
λ ≤ 1.

The constant λ is called the Courant number, and the condition λ ≤ 1 is
known as the Courant-Friedrichs-Lewy condition (CFL condition) of this prob-
lem, named after Richard Courant, Kurt Friedrichs, and Hans Lewy, who de-
scribed it for the first time in 1928. Every hyperbolic PDE has a CFL condition



170CHAPTER 11. NUMERICAL SOLUTIONOF PARTIAL DIFFERENTIAL EQUATIONS

of this sort, which must be fulfilled in order for a numerical method to be con-
verge.
While we naturally found the CFL condition here in the example of the 1D
wave equation, it also exist for other PDEs with hyperbolic parts, e.g., in fluid
mechanics whenever there is an advection term with a certain velocity c.
In d-dimensional spaces, the Courant numbers add, hence:

λ = h̄

(
d∑
i=1

ci
hi

)
,

where ci is the velocity component in coordinate direction i, and hi the spatial
grid resolution in coordinate direction i.
In general, the CFL condition reads:

λ ≤ C

for some constant C that depends on the numerical method used and on the
PDE considered. For the central 2nd-order finite differences used in the above
example, C = 1. More robust numerical methods can have C > 1, hence
allowing larger time steps. For reasons of computational efficiency, one can
tune the time and space resolution of a simulation to get as close as possible to
the CFL limit. This is the most efficient simulation possible without becoming
inconsistent.



Bibliography

171


	Contents
	Foreword
	Foundations of Numerical Computation
	Floating-Point Number Representation
	Integer Number Representation
	Rounding
	Pseudo Arithmetic
	Error Propagation
	Extinction
	Condition number of a function
	Condition number of a matrix
	Condition number of an algorithm

	Backward Error Analysis

	Linear System Solvers
	Gaussian Elimination – LU Decomposition
	Pivoting strategies

	Linear Fixed-Point Iterations
	Convergence criteria
	Jacobi method
	Gauss-Seidel method
	Successive Over-Relaxation (SOR) method

	Gradient Descent
	Geometric interpretation
	Algorithm

	Conjugate Gradient Method
	Pre-Conditioning

	Linear Least-Squares Problems
	Error Equations and Normal Equations
	Solution by QR Decomposition
	Singular Value Decomposition
	Properties of the singular value decomposition

	Solution by Singular Value Decomposition
	Nonlinear Least-Squares Problems

	Solving Nonlinear Equations
	Condition Number of the Problem
	Newton's Method
	The fixed-point theorem
	Convergence of Newton's method
	Algorithm

	Secant Method
	Bisection Method

	Nonlinear System Solvers
	Newton's Method in Arbitrary Dimensions
	Quasi-Newton method

	Broyden Method

	Scalar Polynomial Interpolation
	Uniqueness
	Existence: The Lagrange Basis
	Barycentric Representation
	Aitken-Neville Algorithm
	Approximation Error
	Spline Interpolation
	Hermite interpolation
	Cubic splines


	Trigonometric Interpolation
	The Trigonometric Polynomial
	Discrete Fourier Transform (DFT)
	Efficient Computation of DFT by FFT
	Practical Considerations

	Numerical Integration (Quadrature)
	Rectangular Method
	Trapezoidal Method
	Simpson's Rule
	Romberg's Method
	Gauss Quadrature

	Numerical Differentiation
	Finite Differences
	Romberg Scheme

	Initial Value Problems of Ordinary Differential Equations
	Numerical Problem Formulation
	Explicit One-Step Methods
	Explicit single-stage one-step methods:  the explicit Euler method
	Higher-order single-stage one-step methods
	Heun's multi-stage one-step method
	Higher-order multi-stage one-step methods:  Runge-Kutta methods

	Dynamic Step-Size Adaptation in One-Step Methods
	Richardson extrapolation
	Embedded Runge-Kutta methods
	Practical implementation

	Implicit Methods
	Implicit single-stage methods: Trapezoidal method
	Implicit multi-stage methods: implicit Runge-Kutta

	Multistep Methods
	An explicit multistep method: Adams-Bashforth
	An implicit multistep method: Adams-Moulton
	Predictor-Corrector method

	Systems of ODEs and Higher-Order ODEs
	Multidimensional systems of ODEs
	ODEs of higher order

	Numerical Stability
	Stability of the explicit Euler method for real bold0mu mumu *
	Stability of Heun's method for real bold0mu mumu *
	Stability of explicit Euler for complex bold0mu mumu *
	Stability of Heun's method for complex bold0mu mumu *
	Stability of the implicit trapezoidal method

	Stiff Initial Value Problems
	The Lax Equivalence Theorem

	Numerical Solution of Partial Differential Equations
	Parabolic Problems: The Method of Lines
	The explicit Richardson method
	The implicit Crank-Nicolson method

	Elliptic Problems: Stencil Methods
	Hyperbolic Problems: The Method of Characteristics
	Numerical approximation
	Numerical domain of dependence
	Courant-Friedrichs-Lewy condition


	Bibliography

