The Immune-Mediated Theory of Metastasis

Thomas Hillen and Adam Rhodes, University of Alberta

Metastasis

• In about 90% of all cancer death metastases are involved.

Metastasis

• In about 90% of all cancer death metastases are involved.

WHY?

• ... do metastasis often go to the bone, lung, and liver?

- ... do metastasis often go to the bone, lung, and liver?
- ... do metastasis lie dormant for a long time, and, for no reason, start growing?

- ... do metastasis often go to the bone, lung, and liver?
- ... do metastasis lie dormant for a long time, and, for no reason, start growing?
- ... do metastasis grow rapidly upon removal of the primary tumor (metastatic blow-up)?

- ... do metastasis often go to the bone, lung, and liver?
- ... do metastasis lie dormant for a long time, and, for no reason, start growing?
- ... do metastasis grow rapidly upon removal of the primary tumor (metastatic blow-up)?
- ... do metastasis occur at sites of injuries ?

- ... do metastasis often go to the bone, lung, and liver?
- ... do metastasis lie dormant for a long time, and, for no reason, start growing?
- ... do metastasis grow rapidly upon removal of the primary tumor (metastatic blow-up)?
- ... do metastasis occur at sites of injuries ?
- ... are metastasis related to chronic inflammations?

- ... do metastasis often go to the bone, lung, and liver?
- ... do metastasis lie dormant for a long time, and, for no reason, start growing?
- ... do metastasis grow rapidly upon removal of the primary tumor (metastatic blow-up)?
- ... do metastasis occur at sites of injuries ?
- ... are metastasis related to chronic inflammations?
- ... do metastasis (sometimes) not react to immuno therapies?

Leili Shahriyari, Asst. Prof., U of Texas.

F1000Research

F1000Research 2016, 5:175 Last updated: 25 DEC 2016

OPINION ARTICLE

A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation [version 1; referees: 3 approved]

Leili Shahriyari

Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA

Evidence of immune pro-tumor effects

Nature. 2005 Dec 8;438(7069):820-7.

VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.

<u>Kaplan RN</u>¹, <u>Riba RD</u>, <u>Zacharoulis S</u>, <u>Bramley AH</u>, <u>Vincent L</u>, <u>Costa C</u>, <u>MacDonald DD</u>, <u>Jin DK</u>, <u>Shido K</u>, <u>Kerns SA</u>, <u>Zhu Z</u>, <u>Hicklin D</u>, <u>Wu Y</u>, <u>Port JL</u>, <u>Altorki N</u>, <u>Port ER</u>, <u>Ruggero D</u>, <u>Shmelkov SV</u>, <u>Jensen KK</u>, <u>Rafii</u> <u>S</u>, <u>Lyden D</u>.

PLOS ONE A Peer-Reviewed, Open Access Journal					
View this Article Submit to PLOS Get E-Mail Alerts Contact Us					
PLoS One. 2015; 10(7): e0132710.	PMCID: PMC4514595				
Published online 2015 Jul 24. doi: 10.1371/journal.pone.0132710	PMID: <u>26207636</u>				
Inflammation Mediated Metastasis: Immune Induced Epithelial-To- Mesenchymal Transition in Inflammatory Breast Cancer Cells					
Evan N. Cohen, ^{1, 5, 6} Hui Gao, ^{1, 5} Simone Anfossi, ^{1, 5, 6} Michal Mego, ⁷ Neelim ⁵ Antonio Giordano, ^{1, 5} Sanda Tin, ^{1, 5, 6} Qiong Wu, ^{1, 5} Raul J. Garza, ^{1, 5} Massi Sendurai A. Mani, ^{3, 6} Denise A. Croix, ⁹ Naoto T. Ueno, ^{2, 5, 6} Wendy A. Woodwar Savitri Krishnamuthy, ^{3, 5} and James M. Beuben ^{1, 5, 6, *}	<u>a G. Reddy</u> , ¹ <u>Bisrat Debeb</u> , ^{4 ,} <u>mo Cristofanilli</u> , ⁸ r <u>d</u> , ^{4 , 5 , 6} <u>Raja Luthra</u> , ¹				

PLoS One

Nat Rev Immunol. 2015 Feb;15(2):73-86. doi: 10.1038/nri3789.

Immune cell promotion of metastasis.

<u>Kitamura T¹, Qian BZ¹, Pollard JW².</u>

<u>Nat Rev Immunol.</u> 2015 Feb;15(2):73-86. doi: 10.1038/nri3789.

Immune cell promotion of metastasis.

<u>Kitamura T¹, Qian BZ¹, Pollard JW².</u>

 Immune Regulation of the Metastatic Process: Implications for Therapy. (PMID:27613132 PMCID:PMC5364524)

2019

Oncologist[®] Prediction of Bone Metastasis in Inflammatory Breast Cancer Using a Markov Chain Model

Takeo Fuii,^{a,b,†} Jeremy Mason,^{d,i,†} Angela Chen,^d Peter Kuhn,^{d,f,g,h,i} Wendy A. Woodward,^{b,c} Debu Tripathy,^a Paul K. Newton,^{e,f,h} Naoto T. Ueno^{a,b}

2019

Oncologist[®] Prediction of Bone Metastasis in Inflammatory Breast Cancer

Using a Markov Chain Model

TAKEO FUJII,^{a,b,†} JEREMY MASON,^{d,i,†} ANGELA CHEN,^d PETER KUHN,^{d,f,g,h,i} WENDY A. WOODWARD,^{b,c} DEBU TRIPATHY,^a PAUL K. NEWTON,^{e,f,h} NAOTO T. UENO^{a,b}

Breast Cancer

Macrophages

T lymphocytes

Platelets

Fibroblasts

Good Cop - Bad Cop

Good Cop Bad Cop

Immune Education

All these transitions are gradual

- $\bullet \ \mathsf{M1} \to \mathsf{M2} \to \mathsf{TAM}$
- $\bullet \ \ \text{fibroblasts} \to \mathsf{CAF}$
- Treg over expressions

and are often triggered by the tumor.

Immune Education

All these transitions are gradual

- $\bullet \ \mathsf{M1} \to \mathsf{M2} \to \mathsf{TAM}$
- $\bullet \ \ \text{fibroblasts} \to \mathsf{CAF}$
- Treg over expressions

and are often triggered by the tumor.

YJ Kim, 2019: Tumor associated neutrophils (TAN)

- upregulated by TGF- β
- \bullet down regulated by IFN- β

Immune Education

All these transitions are gradual

- $\bullet \ \mathsf{M1} \to \mathsf{M2} \to \mathsf{TAM}$
- $\bullet \ \ \text{fibroblasts} \to \mathsf{CAF}$
- Treg over expressions

and are often triggered by the tumor.

YJ Kim, 2019: Tumor associated neutrophils (TAN)

- \bullet upregulated by TGF- β
- \bullet down regulated by IFN- β

Shahriyari:

- The cancer actively interferes with the phenotypic make up of the immune response.
- chronic inflammations are a natural breeding ground for cancer metastasis.

Metastasis Modelling

• Stochastic models:

- Liotta 1977: probability to be metastasis free
- Michor 2006: metastatic phenotypes
- Hanin 2016-18: natural history of metastasis
- ► Frei, Hillen, Rhodes, 2019: branching stochastic process with settlement, metastatic reproduction number

Metastasis Modelling

• Stochastic models:

- Liotta 1977: probability to be metastasis free
- Michor 2006: metastatic phenotypes
- ▶ Hanin 2016-18: natural history of metastasis
- ► Frei, Hillen, Rhodes, 2019: branching stochastic process with settlement, metastatic reproduction number
- PDE models:
 - ▶ Iwata 2000, Benzekry 2011-17: PDE model with moving boundaries
 - Hillen 2010, birth-jump processes

Metastasis Modelling

• Stochastic models:

- Liotta 1977: probability to be metastasis free
- Michor 2006: metastatic phenotypes
- ▶ Hanin 2016-18: natural history of metastasis
- ► Frei, Hillen, Rhodes, 2019: branching stochastic process with settlement, metastatic reproduction number
- PDE models:
 - ▶ Iwata 2000, Benzekry 2011-17: PDE model with moving boundaries
 - Hillen 2010, birth-jump processes
- Metastasis models including the immune system
 - Kuznetsov: basic model for tumor-immune interaction
 - Eikenberry 2009, PDE model with immune response
 - Enderling et al: dormancy, blow-up, abscopal effects
 - A. Friedman 2006-, Wilkie, Hahnfeldt 2017, Eftimie 2011-18, inclusion of pro-tumor effects of the immune system.
 - ▶ Rhodes, Hillen 2019 and 2020: Immune-mediated theory of metastasis.

Theories for metastatic blow-up

- Theory 1: Resource monopolization
- Theory 2: Immune surveillance
- Theory 3: Local promotion, global inhibition
- Theory 4: Immune-mediated theory of metastasis

Theories for metastatic blow-up

- Theory 1: Resource monopolization
- Theory 2: Immune surveillance
- Theory 3: Local promotion, global inhibition
- Theory 4: Immune-mediated theory of metastasis

effect	Theory 1		3	4
metastatic dormancy	\checkmark	\checkmark	\checkmark	\checkmark
metastatic blow-up	\checkmark	\checkmark	\checkmark	\checkmark
mets at injuries				\checkmark
mets at chronic inflammations				\checkmark
immuno therapies				\checkmark

The Model

Analysis in three stages:

- Stage 1: Full model (8 ODEs):
 - detailed inclusion of immune dynamics, recruitment and immune education
 - metastatic dormancy, blow-up, injuries, immune therapies

Analysis in three stages:

- Stage 1: Full model (8 ODEs):
 - detailed inclusion of immune dynamics, recruitment and immune education
 - metastatic dormancy, blow-up, injuries, immune therapies
- Stage 2: Reduced model (3 ODEs):
 - focus on metastatic site
 - metastatic dormancy, blow-up
 - parameter fitting and sensitivity analysis
 - full bifurcation analysis

Analysis in three stages:

- Stage 1: Full model (8 ODEs):
 - detailed inclusion of immune dynamics, recruitment and immune education
 - metastatic dormancy, blow-up, injuries, immune therapies
- Stage 2: Reduced model (3 ODEs):
 - focus on metastatic site
 - metastatic dormancy, blow-up
 - parameter fitting and sensitivity analysis
 - full bifurcation analysis
- Stage 3: Minimal model (1 ODE):
 - singular perturbation reduction onto a slow manifold
 - systematic study of metastatic blow-up
 - risk assessment of biopsies
 - Immune cells as diagnostic tool for treatment response

Variables

- i = 1, 2, primary and secondary tumor sites
- $u_i(t)$: tumor cell density
- $v_i(t)$: necrotic cell density
- *x_i(t)*: cytotoxic immune cells (CT immune)
- $y_i(t)$: tumor educated, pro-tumor immune cells (TE immune).

Stage 1: The Full Model

$$\begin{aligned} \frac{du_1}{dt} &= \underbrace{\gamma_1(y_1)g_1(u_1)u_1}_{\text{growth}} - \underbrace{\sigma_1(x_1, y_1)u_1}_{\text{death}} - \underbrace{s_1u_1}_{\text{shedding}} \\ \frac{dv_1}{dt} &= \underbrace{\theta_1\sigma_1(x_1, y_1)u_1}_{\text{dying cells}} - \underbrace{\mu_1v_1}_{\text{lysis}} \\ \frac{dx_1}{dt} &= \underbrace{\alpha_1}_{\text{natural influx}} + \underbrace{\lambda_1(u_1, v_1)x_1}_{\text{growth}} - \underbrace{\rho_1u_1x_1}_{\text{interaction with tumor natural death rate}} - \underbrace{ed_1(u_1)x_1}_{\text{tumor education}} \\ \frac{dy_1}{dt} &= \underbrace{ed_1(u_1)x_1}_{\text{tumor education}} - \underbrace{\tau_1y_1}_{\text{death}} + \underbrace{s_1(v_2, y_2)u_2}_{\text{death}} + \underbrace{est(v_2, y_2, x_2)s_1mu_1}_{\text{establishment}} \\ \frac{dv_2}{dt} &= \underbrace{\theta_2\sigma_2(x_2, y_2)u_2}_{\text{dying cells}} - \underbrace{\mu_2v_2}_{\text{lysis}} \\ \frac{dx_2}{dt} &= \underbrace{\alpha_2}_{\text{natural influx}} + \underbrace{\lambda_2(u_2, v_2)x_2}_{\text{growth}} - \underbrace{\rho_2u_2x_2}_{\text{interaction with tumor natural death rate}} - \underbrace{ed_2(u_2)x_2}_{\text{tumor education}} \\ \frac{dy_2}{dt} &= \underbrace{\theta_2\sigma_2(u_2)x_2}_{\text{natural influx}} - \underbrace{\tau_2y_2}_{\text{growth}} + \underbrace{\rho_2u_2x_2}_{\text{interaction with tumor natural death rate}} \\ \frac{dy_2}{dt} &= \underbrace{ed_2(u_2)x_2}_{\text{natural influx}} - \underbrace{\tau_2y_2}_{\text{growth}} + \underbrace{\rho_2u_2x_2}_{\text{interaction with tumor natural death rate}} \\ \frac{dy_2}{dt} &= \underbrace{ed_2(u_2)x_2}_{\text{natural influx}} - \underbrace{\tau_2y_2}_{\text{growth}} + \underbrace{\rho_2(u_2)y_2}_{\text{interaction with tumor natural death rate}} \\ \frac{dy_2}{dt} &= \underbrace{ed_2(u_2)x_2}_{\text{tumor education}} \\ - \underbrace{\tau_2y_2}_{\text{death}} + \underbrace{\rho_2(u_2)y_2}_{\text{tumor education}} \end{aligned}$$

- Total of **70** parameters involved (including functional coefficients)
- Found \approx 40 estimates from the literature.
- \bullet Leaves us with ≈ 30 unknowns, which are mostly threshold values in the functional coefficients.
- Consequently, we derive theoretical results and make (arbitrary) choices, and explore.

Steady States: Disease-Free

Steady States: Metastatic Only

Steady States: Full Disease

Result 1: Early Seeding

Kaplan et al., Nature 2005, A: Data, B: ODE model.

Result 2: Primary Resection

- Early resection leads to slow decline in the secondary (green curves)
- Late resection leads to quick-growth in the secondary site (red curves, metastatic blow-up).

Result 3: Primary Resection and increased Immune Response

Result 4: Immuno-Therapy

- The effect of immuno-therapies is less than expected.
- The wrong dosage can increase tumor growth (dose is increasing from blue to red).
- Immune education can turn good cops into bad cops.

Result 5: Site of Injury

Result 5: Time to reach 1/2 K at injury site

Stage 2: Reduced Model

- Primary reaches steady state before dynamics *really* start at secondary site.
- Treat primary as a source term.

Stage 2: Reduced Model

- Primary reaches steady state before dynamics *really* start at secondary site.
- Treat primary as a source term.

Model for three quantities:

- *u*: tumor cell density,
- x: CT immune cells,
- y: TE immune cells

Stage 2: Reduced Model

- Primary reaches steady state before dynamics really start at secondary site.
- Treat primary as a source term.

Model for three quantities:

- u: tumor cell density,
- x: CT immune cells,
- y: TE immune cells

Multiscale analysis

• slow tumor dynamics:

$$\dot{u} = f(u, x, y)$$

• fast immune response

$$egin{array}{rcl} arepsilon\dot{x} &= g_1(u,x,y)\ arepsilon\dot{y} &= g_2(u,x,y) \end{array}$$

Multiscale analysis

- $\dot{u} = f(u, x, y)$ slow tumor dynamics:

• fast immune response

$$egin{array}{rcl} arepsilon\dot{x} &= g_1(u,x,y) \ arepsilon\dot{y} &= g_2(u,x,y) \end{array}$$

For $\varepsilon \rightarrow 0$ use geometric singular perturbation theory

• The dynamics $\dot{u} = f(u, x, y)$ lifes on the slow manifold

$$M := \{(u, x, y) : g_1(u, x, y) = 0, g_2(u, x, y) = 0\}.$$

Slow manifold

Result 6: Primary resection

Result 7: Systematic study of metastatic blow-up

	primary	inflammation	increased	metastatic	metasatic
	removal		education	dormancy	blow-up
case 1	100%				
case 2	100%	yes		\checkmark	
case 3	100%	yes	yes	\checkmark	\checkmark
case 4	small %	yes			(√)

Biopsies

Biopsies

Breast Cancer Res Treat. 2013 June ; 139(2): 391-401. doi:10.1007/s10549-013-2575-1.

Acute Inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis

Julia Hobson¹, Phani Gummadidala¹, Brian Silverstrim¹, Dore Grier¹, Janice Bunn², Ted James³, and Mercedes Rincon^{1.*}

5/23/2019

Mayo Researchers Find Cancer Biopsies Do Not Promote Cancer Spread - Mayo Clinic News Network

By Kevin Punsky

Mayo Researchers Find Cancer Biopsies Do Not Promote Cancer Spread

JACKSONVILLE, Fla. — A study of more than 2,000 patients by researchers at Mayo Clinic's campus in Jacksonville, Florida, has dispelled the myth that cancer biopsies cause cancer to spread. In the Jan. 9 online issue of Gut, they show that patients who received a biopsy had a better outcome and longer survival than patients who did not have a biopsy.

Result 8: Biopsies

Result 9: Immune response as diagnostic tool

Model for case 4 (resection, inflammation and increased education).

Conclusions 1

- The pro-tumor effects of the immune system are well established and more evidence is gained every day.
- The exact process how tumors influence the immune cells and change their phenotype is largely unknown and more research is needed.

Conclusion 2

• The inclusion of tumor education into a mathematical model can explain

- Immetastatic dormancy
- e metastatic blow-up upon resection of the primary
- Intersection of injuries
- e metastasis to sites of chronic inflammations
- Metastasis in bone, lung, and liver
- **o** reduced response to immuno-therapies

Conclusion 2

• The inclusion of tumor education into a mathematical model can explain

- 0 metastatic dormancy
- e metastatic blow-up upon resection of the primary
- Intersection of injuries of injuries
- etastasis to sites of chronic inflammations
- Metastasis in bone, lung, and liver
- **o** reduced response to immuno-therapies
- It would not have been possible to generate these insights without mathematical modelling.

- It is likely that pro-tumor immune effects are different from cancer to cancer and from patient to patient. This is not a one-fits-all approach.
- Patient-specific treatment design will not only require a genetic fingerprint of the cancer but also a genetic and phenotypic characterization of the immune system.
- This is a worthwhile idea for future research.

Thank You!

Adam Rhodes:

- A. Rhodes, T. Hillen. A Mathematical Model for the Immune-Mediated Theory of Metastasis. J. Theoretical Biology, Vol 482, 2019.
- A. Rhodes, T. Hillen. The Immune-Mediated Theory of Metastasis Can Explain Metastatic Dormancy and Blow-Up, to appear 2020, bioRxiv.