

2. Herbstworkshop "Energiespeichersysteme"

Mehrkriteriell optimierende Betriebsführung von Photovoltaik-Batteriespeichersystemen in Industrie und Gewerbe

Dresden, 29. November 2017

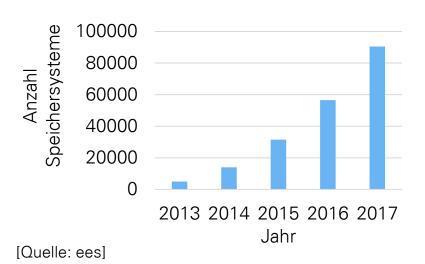
Dipl.-Ing. Michael Böttiger

Professur für Energiespeichersysteme

E-Mail: michael.boettiger@tu-dresden.de

Tel.: +49 351 463-40268

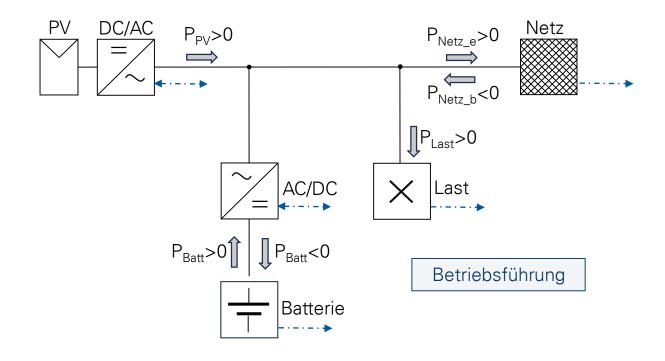
Agenda



- 1) Motivation
- 2) PV-Batteriespeichersystem
- 3) Mehrkriteriell optimierendes Betriebsführungskonzept
- 4) Fallbeispiele
- 5) Zusammenfassung und Ausblick

Тур	Stromverbrauch
Haushalte	132 TVVh
Gewerbe	149 TVVh
Industrie	227 TWh

[Quelle: BMWi - AGEE-Stat]


Тур	Anzahl
Großbetriebe	196.400
Mittelbetriebe	820.800
Kleinbetriebe	1.214.900
Kleinstbetriebe	5.688.400

[Quelle: Statistica]

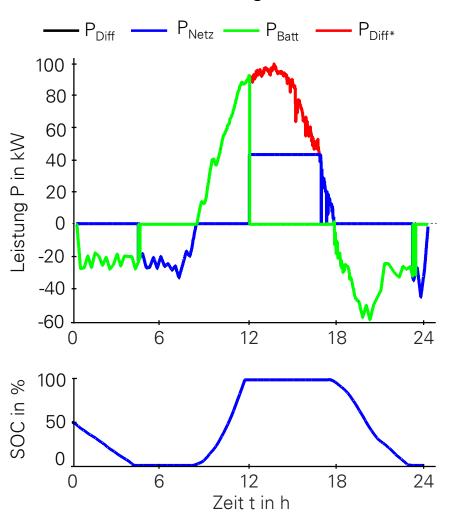
Systemtopologie

$$E_{PV} = \int P_{PV}(t)dt$$

$$E_{Netz_e} = \int P_{Netz_e}(t)dt$$

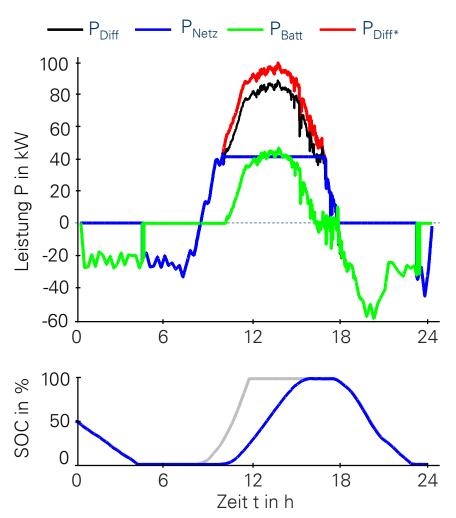
$$E_{Netz_b} = \int |P_{Netz_b}(t)| dt$$

$$E_{Last} = \int P_{Last}(t)dt$$


$$E_{Abregel} = \int \max(P_{Netz_e}(t) - P_{Netz_max}(t), 0) \qquad P_{Diff} = P_{PV} - P_{Last}$$

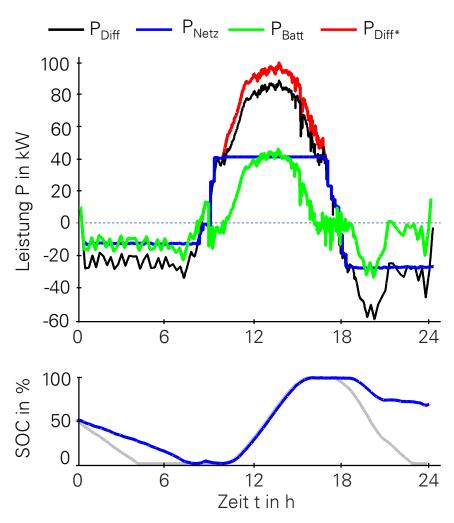
$$P_{Diff} = P_{PV} - P_{Last}$$

Ziele der Betriebsführung - "Prioritätsbasiert"



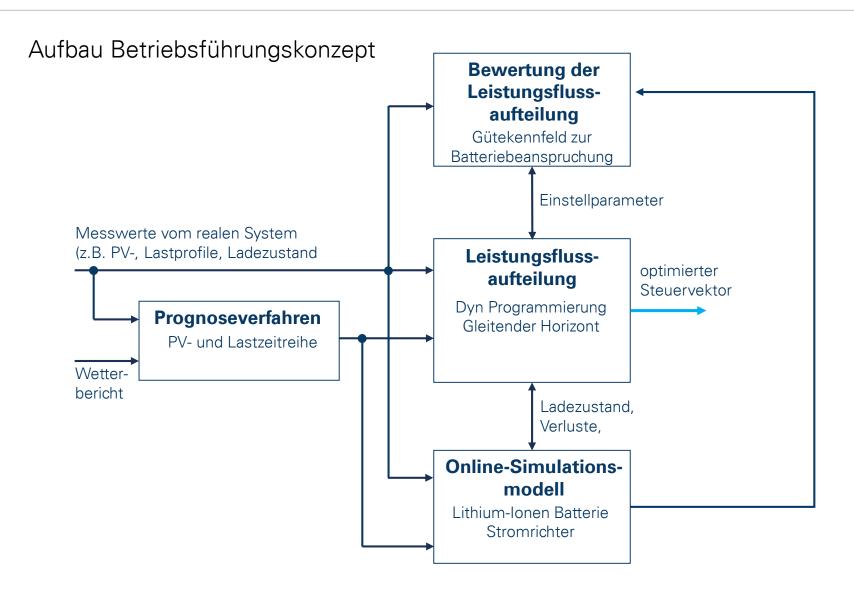
• Maximierung Selbstversorgung

Ziele der Betriebsführung - "Peak-Shaving"



- Maximierung Selbstversorgungsgrad
- Minimierung Abregelverluste

Ziele der Betriebsführung - "Doppel-Peak-Shaving"



- Maximierung Selbstversorgungsgrad
- Minimierung Abregelverluste
- Maximierung Batterienutzung
- Minimierung Netzbezugsleistung

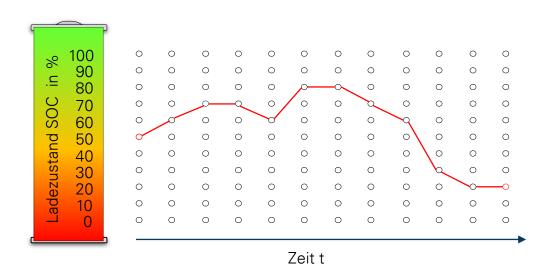
3) Mehrkriteriell optimierendes Betriebsführungskonzept

3) Mehrkriteriell optimierendes Betriebsführungskonzept

Optimale Leistungsflussaufteilung

$$\min J = \sum_{k=1}^{T} \varphi(SOC_k, P_{Batt,k})$$

$$\varphi = C_{E_Netz,bezug} + C_{E_Netz,ein} + C_{P_Netz,ein} + C_{P_Netz,bezug}$$


Lösungsverfahren:

Dynamische Programmierung

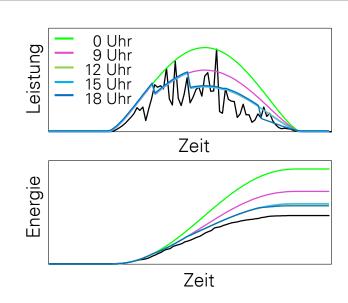
- Kein Solver notwendig
- Keine Einschränkungen bezüglich Randbedingungen
- Näherung in Abhängigkeit der Diskreitisierung

Gleitender Horizont:

- Kompensation Modellfehler
- Kompensation Prognosefehler

3) Mehrkriteriell optimierendes Betriebsführungskonzept

PV - Prognose


- Globalstrahlungsmodell
- Skalierung auf Maximalwert der Wechselrichterleistung, letzten sieben Tage

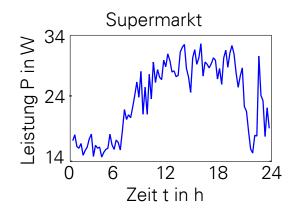

<u>Adaption</u>

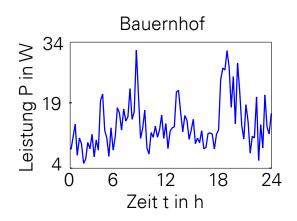
- Berechnung 1h Mittelwert Prognose und Realdaten
- Skalierung Initialprognose auf Verhältnis der Mittelwerte

Last - Prognose

- Clusterbasiertes Verfahren
- Bestimmung prototypischer Klassen
- Verwendung letzter identischer Wochentag bis 8Uhr
- Identifikation Prototyp nach auf Basis RMS-Fehler ab 8Uhr

Zeit




4) Fallbeispiele

Datenbasis

Kenngröße	Supermarkt	Bauernhof	Präzisionstechnik	
E _{PV} in MWh	207	104	1020	
E _{Last} in MWh	207	104	1020	
E _{Batt} in kWh	200	100	1000	
P _{max} in kW	43	43	237	
Arbeitspreis in €/kWh	0,15	0,15	0,10	
Leistungspreis in €/kW	120	120	100	
Einspeisevergütung in €/kWh	0,10	0,10	0,08	

4) Fallbeispiele

Bewertungskriterien

Bewertungskriterium	Gleichung
Selbstversorgungsgrad k _{SVG} in %	$k_{SVG} = 100\% \cdot \frac{E_{Last} - E_{Netz_e}}{E_{Last}}$
Eigenverbrauchsquote k _{EVQ} in %	$k_{EVQ} = 100\% \cdot rac{E_{PV} - E_{Abregel} - E_{Netz_e}}{E_{PV}}$
Abregelverluste k _{ARV} in %	$k_{ARV} = 100\% \cdot rac{E_{Abregel}}{E_{PV}}$
Max. Netzbezugsleistung P _{Netz,max} in kW	$P_{Netz,max} = \left \min(P_{Netz_b}) \right $
Stromkosten k _{el} in €	$k_{el} = E_{Netz_b} \cdot K_{AP} + P_{Netz,max} \cdot K_{LP} + E_{Netz_e} \cdot K_{FIT}$
Batterievollzyklen k _{Batt_fc}	$k_{Batt_fc} = \frac{\int P_{Batt} dt}{2 \cdot E_{Batt}}$

4) Fallbeispiele

Jahressimulation

Supermarkt	k _{svg} in %	k _{EVQ} in %	k _{ARV} in %	P _{Netz,max} in kW	k _{Batt_fc}	k _{el} in €
Ohne Batterie	42,0	41,7	26,6	43	0	16467
Prioritätsbasiert	63,7	63,2	19,6	43	220	12888
Doppel-Peak-Shaving - ideal	63,6	63,1	10,5	26	336	9139
Doppel-Peak-Shaving - real	60,5	60,0	15,4	31	306	10804

Bauernhof	k _{svg} in %	k _{EVQ} in %	k _{ARV} in %	P _{Netz,max} in kW	k _{Batt_fc}	k _{el} in €
Ohne Batterie	39,3	38,9	12,1	43	0	9492
Prioritätsbasiert	62,1	61,5	10,3	43	239	8108
Doppel-Peak-Shaving - ideal	61,9	61,3	1,9	17	343	4120
Doppel-Peak-Shaving - real	59,2	58,6	5,0	25	359	5556

Präzisionstechnik	k _{SVG} in %	k _{EVQ} in %	k _{ARV} in %	P _{Netz,max} in kW	k _{Batt_fc}	k _{el} in €
Ohne Batterie	33,1	33,2	45,2	237	0	74262
Prioritätsbasiert	51,2	51,3	35,0	237	183	62602
Doppel-Peak-Shaving - ideal	50,7	50,8	26,3	184	301	50074
Doppel-Peak-Shaving - real	47,4	47,5	30,5	230	214	58851

5) Zusammenfassung und Ausblick

Zusammenfassung

- Anwendungsmöglichkeiten für Speicher in Industrie und Gewerbe
- Vorstellung mehrkriteriell optimierendes Betriebsführungskonzept
- Technische Analyse anhand unterschiedlicher Fallbeispiele

	Verbesserung P _{Netz,max} in %	SVG in %
Supermarkt	28 (40)	60,5 (63,7)
Bauernhof	41 (60)	59,2 (62,1)
Präzisionstechnik	3 (22)	47,4 (51,2)

Ausblick

- Langzeitoptimierung, optimale Batteriebeanspruchung
- Demonstration am Experimentiersystem der Professur

Vielen Dank für Ihre Aufmerksamkeit

Dipl.-Ing. Michael Böttiger

Professur für Energiespeichersysteme

E-Mail: michael.boettiger@tu-dresden.de

Tel.: +49 351 463-40268

