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Outline

• The changing role of peak power and its solutions in the energy 
transition

• Energy system resilience

• Effect of weather

• Measures to mitigate peak conditions and peak power demand



Approaching carbon neutrality through breakthroughs

Solar and wind 70% of world electricity by 2050

Source: Net Zero by 2050. International Energy Agency, May 2021

Source: IRENA, 2021
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Power sector development in the EU
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Ref. Energy 239 (2022) 12190
https://doi.org/10.1016/j.energy.2021.121908



6. Herbstworkshop Energiespeichersysteme 30.11.2022 
Peter Lund

Electricity generation (TWh)
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Impact of variable renewables on power profiles
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Residual load 
(= Initial load – wind/solar power)

Initial load

• Increasing variability
• More zero and negative loads
• Less influence on peak demand

• Next step of analysis: 
– power duration curve analysis to 

determine the relative changes in 
optimal power plant mix to meet the 
residual loads

– power duration curve analysis follows 
the marginal cost principle (power 
market) 

Residual load

Residual loadResidual load
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Determining the optimum power mix

Peakpower

Load duration curve + cost curves of power plants (Capex+Opex ✕ time) à optimum power mix

Cost curve
s for 

power plants

Base power

Load
duration
curve

Cyclic power
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Changing residual load affects optimum power mix

Residual
loads

Initial
load

Inc
rea

sin
g

wind
(or PV)

Increasing variable renewable electricity shifts the residual demand towards peak power

Peak 
power



Shift towards more flexible power supply
• 4 cases: Italy/PV, Saudi-Arabia/PV, Finland/Wind, Nordic/Wind
• Sizing : PV=yearly load + 0-10 Wh/Wp storage; S.U.=self-use limit
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Base Cyclic Peak

• Increasing solar and wind shifts 
the optimal power mix of the 
residual load towards cyclic& 
peak power plants = more 
flexibility

• Base power plants become 
unprofitable

• Fuel-based or fuelless solutions?



Changing ’typology’ in energy systems
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Fuel-based centralized 
electricity systems

Integration

Weather-dependent, data-based 
decentralized electricity system

Power 
plant

End-users

Trans-
m

ission

Fuel

Sector-coupling
Energy storage
DS flexibility/DSM
Digitalisation
Prosumers, etc.

Power 
plant

End-users

Trans-
m

ission

Virtual inertia
Coordination of flex.
Data, forecasting

Weat-
her

Up/down reserves
Battery storage
Hydogen/E-Fuels
Etc.
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Change of energy technology architecture
Future decarbonized energy system
• Strong electrification of end-use energy
• Much renewable energy (up to 100%)
• Integration elements, e.g. PtX, storage
• Conversion of final energy

Present energy system
• Fuel-based energy system
• Conversion of primary energy
• Energy networks of final energy forms



Increasing importance of energy system resilience
• Resilience describes the ability 

to survive and quickly recover 
from extreme and unexpected 
disruptions

• Energy security is defined as 
“uninterrupted availability of 
energy sources at an 
affordable price”

• Commonly used concepts for 
energy system resilience 
include reliability, robustness, 
risk, stability, survivability, 
flexibility, agility, fault 
tolerance, and vulnerability
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Renewable and Sustainable Energy Reviews 150 (2021) 111476
Energy system resilience – A review

Resilience curve showing the system performance in time 
during the disruption event



Framework for impact assessment of resilience
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Disruption in electric system

Linking socio-economic aspects to power system disruption models 

Renewable and Sustainable Energy Reviews 150 (2021) 111476
Energy system resilience – A review

Threats to energy systems

Energy 222 (2021) 119928

Linking disruptions with socio-economic aspects



Example of extreme weather impact on power 
system disruption
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Linking socio-economic aspects to power system disruption models 

Energy 222 (2021) 119928

Shares of the served
and unserved load

Strong windstorm 
January 2017 in Finland



Example of socio-economic 
consequences from power 

system disruption 
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Linking socio-economic aspects to power system disruption models 

Energy 222 (2021) 119928

Geographical and sectoral
distribution of lost load and disrupted
shares of socio-economic values

Nation-wide socio-economic values
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Heat and power:
CHP 98%
District heating 92%
Energy networks: Power, gas, 
heat, cold
Shares of power outside the city

Share of fossil-fuel:
Heating 89%
Power 65%
Transport 91%

Deep decarbonization of urban energy systems 
- Case Helsinki (60 oN)

Targeting carbon neutrality by 2035 : 80% emission reductions + 20% carbon sinks
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Addressing new type of challenges
New demands
Cooling 
Electrical vehicles
Power-to-Gas

New system elements
Wind power, solar
CHPgas (old)
Waste heat flows
Heat pumps
Storage (El/Th/Gas)
PtH, PtH2/Gas, VtG

Energy control
Curtailment
Power limitations
Temp. matching
CHP modes

Traditional scheme
• Heat demand covered by CHP 

(coal+gas) + peak boilers
• Surplus of electricity (winter)
• Surplus of heat (summer)

Resilience& Reliability
Windstills during cold
HP ouput loss in winter
RES stochastics (‘noice’)
CHP modes

Future scheme
Changing load/matching profiles
Full electrification= 2x present el
Need of back-up? (grid, sto, fuel)
Interaction with grids (exp/imp)

Present energy demand Future energy demand

Present heat supply Future heat supply
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Effect of weather variation on the no/low-carbon 
electricity-based energy system
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Remaining:
CHP (gas) 60%✕1217 MW 
(tot)
Th storage 5 GWh
Heat pumps 100 MW

New clean technology:
Wind 1200 MW
PV 400 MW
Heat pump (70% of peak)
Boiler 1000 MW
Elec. sto 500 MWh
Heat sto +45 GWh
10% of EVs with V2G
P2H (RES>EL load),P2G

Cold versus Mild:
RES -11%
CHP – 1%
Imports +187%
Exports -20% 
Peak +70%

Mild 2020

Cold 1987
Heat/electricity :

7 658 GWh/4 943 GWh

Heat/electricity:
6 354 GWh/5 070 GWh
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Energy balance of no/low-carbon electricity-based 
energy system in extreme weather (case Helsinki)

Mild 2020 Cold 1987

101%
/
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Power profiles of no/low-carbon electricity-based 
energy system in extreme weather (case Helsinki)

Cold 1987Mild 2020



Effects of weather uncertainity on heat demand
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Weather: Cold Norm Mild

Year 1987 2016 2020

Avg. ambient T 3.4 oC 6.6 oC 8.7 oC

Yearly DH (heat) +19% +-0% - 4%

Peak demand +20% +-0% -29%

Case 
Helsinki

Cold MildNormal



         

        

         
 

Effect of demand-side efficiency on heat demand for
deep-decarbonization (case Helsinki)
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Cold

Normal

Mild

REF 2C+40% EFF
2C = indoor temperature +22 oC à +20 oC
EFF% = % efficiency improvements in building stock

Comparison of each case against ’Normal’
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Summary of selected effects on peak conditions in 
a no/low-carbon electricity-based energy system

’peak’ 
ca 700 
GWh

’peak’ ca
580 GWh
for 1000 hrs

-27%/
-25%

Peak energy/Peak 
power : -10%/-22%

+15%/+33%

-42%/
-32%

Importance of efficiency 
measures  

A ‘disruption’ in the middle 
of the coldest period

Effect of ‘smart’ 
technologies
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Takeaways
Peak conditions
• Share of peak load/power will increase in 

the optimal mix of power plants to meet 
the residual load (=more flexibility)

• In deep-decarbonized energy systems, 
peak load is 5-10 % of the total load, but 
80-90 % of imported electricity or back-
up fuel

• Weather causes uncertainty in peak 
power level

• Energy system resilience also linked to 
the peak conditions and power

Peak power solutions (and 
reserves) 
• Energy efficiency measures help to 

decrease power, energy, fuels, 
uncertainty in peak conditions

• “Smart solutions” required to fully 
cover the peak demand and 
compensate for the uncertainty

• Sustainable fuel-based peak-power 
production (e.g. multi-fuel engine-
CHP) could be useful


