

Auswirkungen von Modell- und Prognoseunsicherheiten auf die Leistung der modellprädiktiven Regelung eines PV-Batterie-Wärmepumpe-Wärmespeichersystems

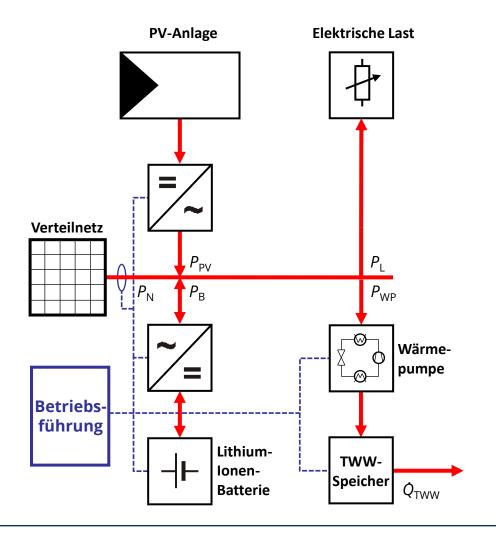
Ronny Gelleschus, Thilo Bocklisch

Professur für Energiespeichersysteme

6. Herbstworkshop "Energiespeichersysteme", Dresden/Online, 30.11.2022

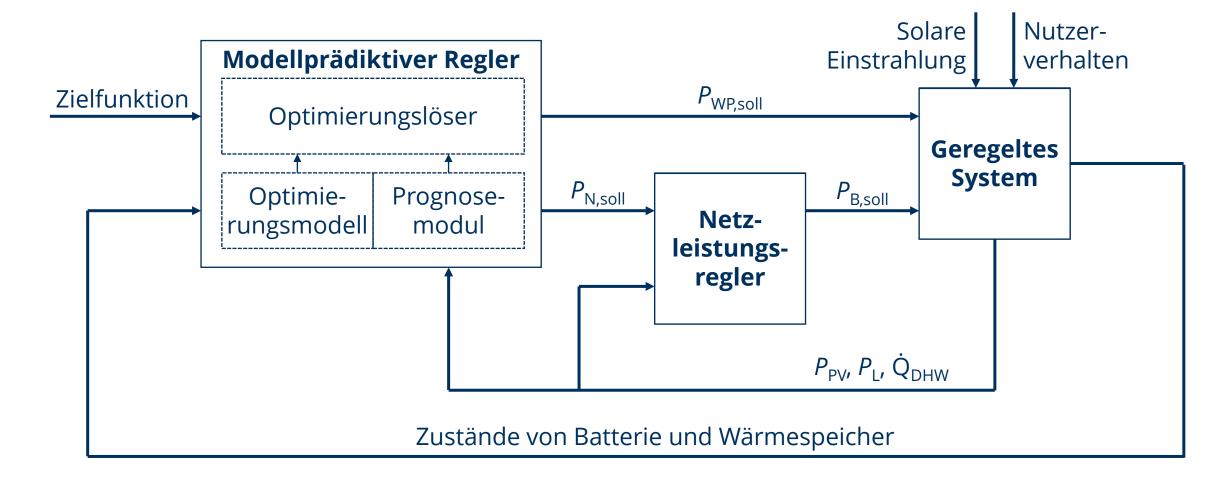
Überblick

- 1. Motivation
- 2. Modellunsicherheiten
- 3. Prognoseunsicherheiten
- 4. Zusammenfassung und Ausblick


1. Motivation

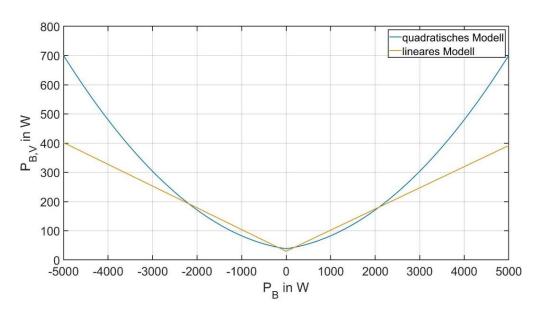
1. Motivation

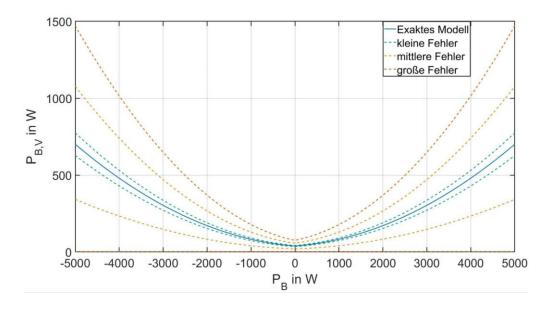
PV-Batterie-Wärmepumpen-Wärmespeicher-System


Systembestandteil	estandteil Parameter	
Elektrische Last	4 MWh	
PV-Anlage	5.7 kW / 5 MWh	
Netzbezug	0.30 € kWh	
Netzeinspeisung	0.10 € / max. 2.85 kW	
Trinkwarmwasserlast (TWW)	43.8 m ³ / 2.24 MWh	
Wärmepumpe/Wärmespeicher	850 W elektrische Leistung / 300 l	
Lithium-Ionen Batteriesystem	5 kW / 5 kWh	

1. Motivation

Multi-Use-Betriebsführung mit modellprädiktiver Regelung





Forschungsfragen und Simulationssetup

Modellstruktur

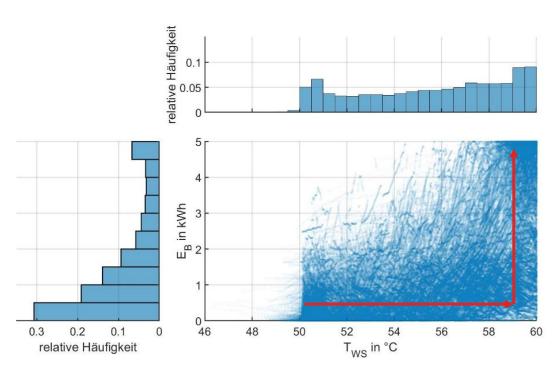
Modellparameter

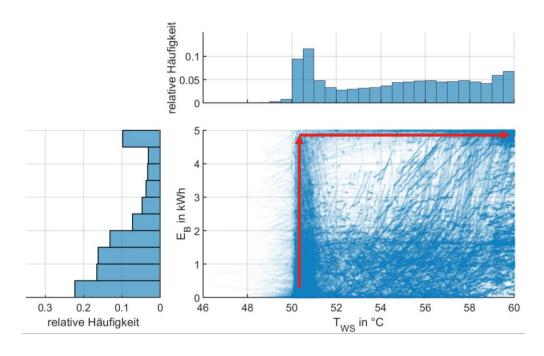
- → Beeinflusst die Struktur des Optimierungsmodells die Performance der Betriebsführung?
- → Wenn dem so ist, wie sehr und warum?

- → Beeinflussen die Parameter des Optimierungsmodells die Performance der Betriebsführung?
- → Wenn dem so ist, wie sehr und warum?

Ergebnisse: Modellstruktur

Bewertungskriterium	Definition	MILP	MIQCP
Betriebskosten, $k_{ m BK}$	$k_{\text{BK}} = \int_t c_{\text{N,B}} P_{\text{N,B}}(t) - c_{\text{N,E}} P_{\text{N,E}}(t) dt$	475.12 €	472.33 €
Selbstversorgungsgrad, $k_{ m SV}$	$k_{\text{SV}} = \frac{\int_{t} P_{\text{L}}(t) + P_{\text{WP}}(t) - P_{\text{N,B}}(t) dt}{\int_{t} P_{\text{L}}(t) + P_{\text{WP}}(t) dt}$	53.86 %	53.99 %
Eigenverbrauchsgrad, $k_{ m EV}$	$k_{\text{EV}} = \frac{\int_{t} P_{\text{PV}}(t) - P_{\text{PV,A}}(t) - P_{\text{N,E}}(t) dt}{\int_{t} P_{\text{PV}}(t) - P_{\text{PV,A}}(t) dt}$	61.83 %	61.69 %
PV-Abregelung, $k_{\mathrm{PV,A}}$	$k_{\text{PV,A}} = \frac{\int_t P_{\text{PV,A}}(t) dt}{\int_t P_{\text{PV}}(t) - P_{\text{PV,A}}(t) dt}$	$1.23 \cdot 10^{-4}$	$1.20 \cdot 10^{-4}$
Anteil des TWW, das bei unter 50 °C gezapft wurde, k_{TWW}	$k_{\text{TWW}} = \frac{\int_{t} \dot{Q}_{\text{TWW}}(t) _{T_{\text{TWW}}(t) < 50 ^{\circ}\text{C}} dt}{\int_{t} \dot{Q}_{\text{TWW}}(t) dt}$	14.57 %	6.71 %

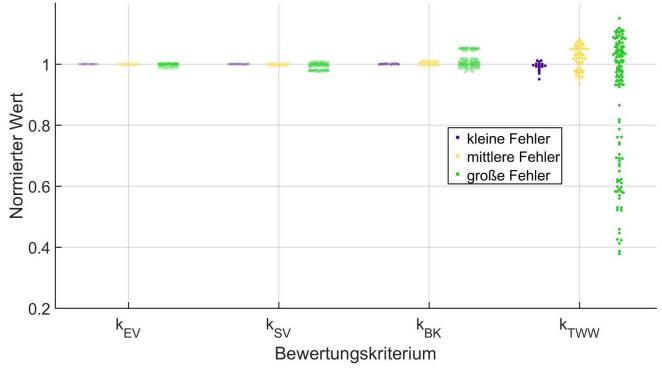



Ergebnisse: Modellstruktur

Verteilungen der Systemzustände

Quadratisches Optimierungsmodell

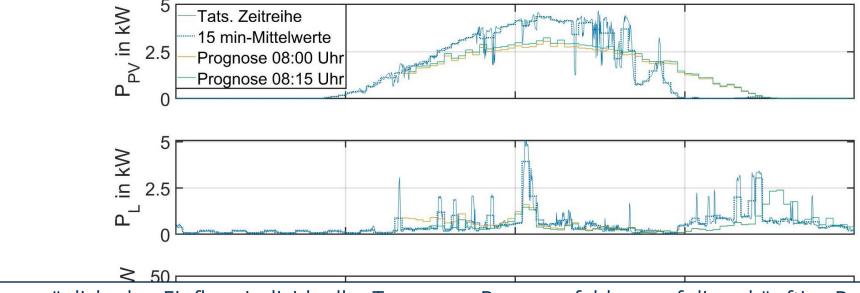
Lineares Optimierungsmodell


→ inadäquate Modellstruktur kann die Priorität des Ladens von einem Speicher zum anderen verschieben

Ergebnisse: Modellparameter

Relative Änderung der Bewertungskriterien infolge von Parametervariation am Optimierungsmodell

- → realistische (geringe) Fehler haben vernachlässigbaren Einfluss
- → große Parameterfehler können ebenfalls Verschiebung der Ladepriorität hervorrufen



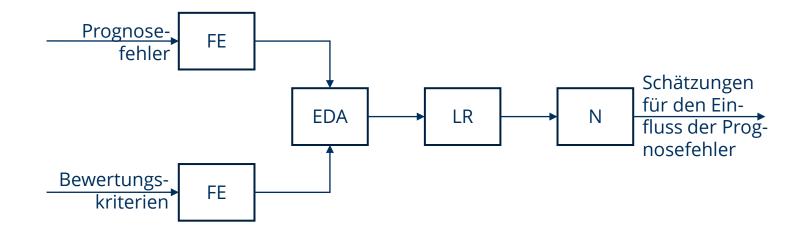
Forschungsfrage

Gemessene und prognostizierte Zeitreihen der PV-, elektrischen Last- und Trinkwarmwasser-Leistung

- → Ist es möglich, den Einfluss individueller Typen von Prognosefehlern auf die zukünftige Performance der Betriebsführung zu quantifizieren?
- → Welche Fehler haben den größten Einfluss?
- → Wie sicher können wir uns dessen sein?

Zeit in h

Vergleich zum Einfluss der Modellstruktur


Bewertungskriterium	MILP, ideale Prognosen	MIQCP, ideale Prognosen	MILP, reale Prognosen
Betriebskosten, $k_{ m BK}$	475.12 €	472.33 €	547.82 €
Selbstversorgungsgrad, $k_{ m SV}$	53.86 %	53.99 %	47.63 %
Eigenverbrauchsgrad, $k_{ m EV}$	61.83 %	61.69 %	58.24 %
PV-Abregelung, $k_{\mathrm{PV,A}}$	$1.23 \cdot 10^{-4}$	$1.20 \cdot 10^{-4}$	$14,39 \cdot 10^{-4}$
Anteil des TWW, das bei unter 50 °C gezapft wurde, k_{TWW}	14.57 %	6.71 %	32.83 %

3. Prognoseunsicherheiten Vorgehen

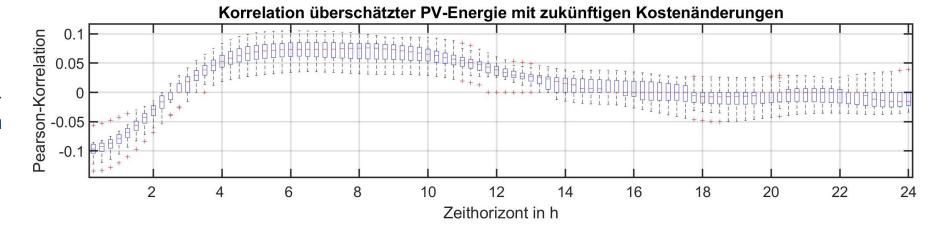
- Reduktion der Dimensionalität
- → Feature Engineering (FE)
- Identifikation möglicher Zusammenhänge
- → Explorative Datenanalyse (EDA)
- Quantifizieren der Zusammenhänge
- → Lineare Regression (LR)
- → Normierung (N)
- Durchführung für 20 verschiedene Haushalte

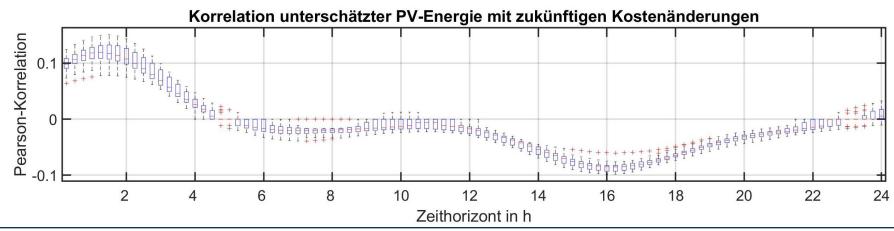
Feature Engineering

Bewertungskriterien

- Berechnung für jeden Zeitschritt, in dem eine Prognose und Optimierung durchgeführt wurde
- 2. Berechnung der Differenz zwischen realer und idealer Simulation
- 3. Berechnung der Änderung über 2 h
- Vorzeichendefinition bei 2. und 3. so, dass negative Werte eine Verschlechterung sind

Prognosefehler

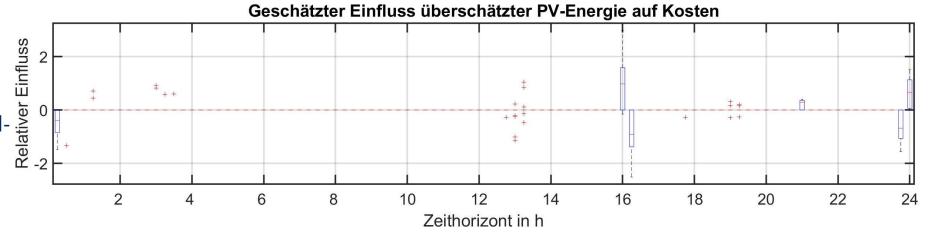

- 1. Definition von "Features"
- Leistung im nächsten Zeitschritt
- Energieinhalt
- Leistung der geschätzten Maxima
- Leistung am tatsächlichen Maximum
- Zeitpunkt des Auftretens des Maximums
- 2. Aufteilung in Überschätzung und Unterschätzung

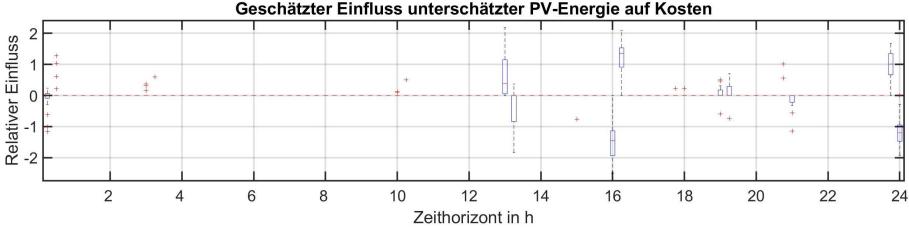


Korrelation zwischen Prognosefehlern und Kostenerhöhungen

 Berechnung Korrelation zwischen vorangegangenen Prognosefehlern und späteren Erhöhungen der Kostendifferenz für alle 20 Haushalte

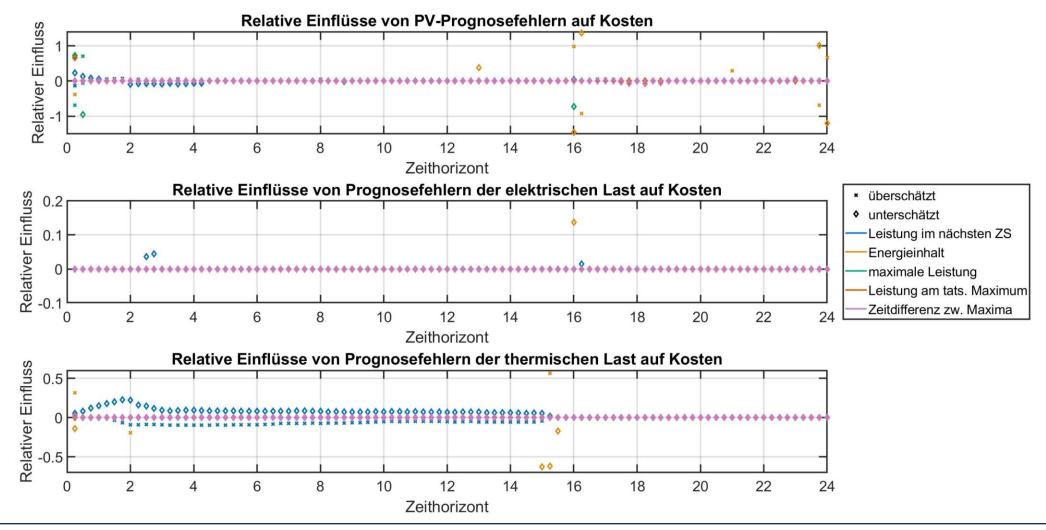
 Problem: Autokorrelation der Prognosefehler




Schätzung der Einflüsse von Prognosefehlern auf Kosten

lineare Regression

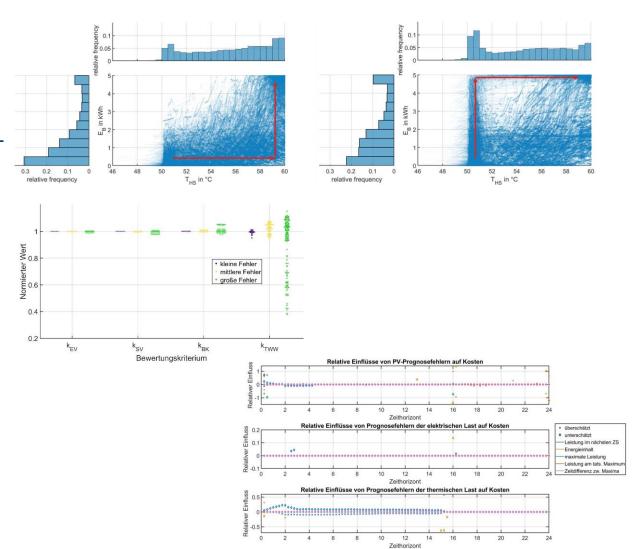
 Problem: unterschiedliche Einheiten und Größenordnungen


- Lösung: Normierung mittels
- Teilen durch mittleren Kostenanstieg
- Multiplikation mit mittlerem Prognosefehlerfeature

Zusammengefasste Einflüsse von Prognosefehlern auf Kosten

4. Zusammenfassung und Ausblick

4. Zusammenfassung und Ausblick

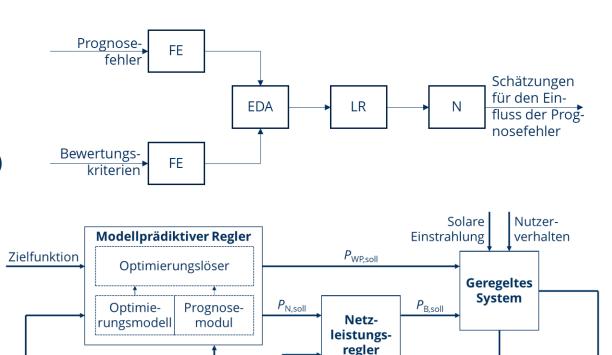

Zusammenfassung

Modellunsicherheiten

- Große Modellfehler können das optimierende Betriebsführungsverfahren dazu bringen, die Ladepriorität zwischen den Speichern zu verschieben.
- Kleine Modellfehler hatten keinen nennenswerten Einfluss auf die Performance des Systems.

Prognoseunsicherheiten

- Verkettung von Feature engineering, EDA und Regression, um Prognosefehler mit größtem Einfluss auf Performance des Systems zu identifizieren
- Modellqualität verbesserungswürdig, daher Robustheit der Ergebnisse fragwürdig



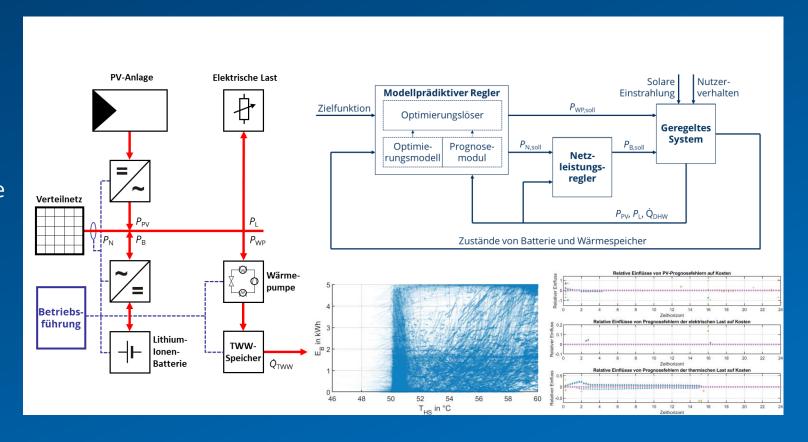
4. Zusammenfassung und Ausblick Ausblick

Weitere Forschung zum Einfluss von Prognoseunsicherheiten

- Anwendung der Methodik auf restliche Bewertungskriterien
- Vergleich mit abgewandelten Methodiken (Variablentransformationen, logistische Regression)
- Analyse einer breiteren Palette von Multi-Use-Kombinationen
- Verbesserungen der Betriebsführung
- Entwicklung eines statistischen Modells für die Prognoseunsicherheiten
- Nutzung der Informationen über die Unsicherheiten in der Optimierung

Zustände von Batterie und Wärmespeicher

 P_{PV} , P_L , \dot{Q}_{DHW}


Vielen Dank!

Dipl.-Ing. Ronny Gelleschus
(Hauptautor)
ronny.gelleschus@tu-dresden.de
+49 351 463 40332

Prof. Dr.-Ing. Thilo Bocklisch thilo.bocklisch@tu-dresden.de +49 351 463 40270

