

Fast Charging of Lithium-ion Batteries with Monitoring and Controlling the Internal Physical States

7th Energy Storage Systems Workshop

1/23/2024 Dr.-Ing. Weihan Li

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Super fast-charging station for highways

Fast charging station for passenger cars – 300 kW charging for 15 to 20 min

Picture: DesignWerk

Fast charging station for trucks – 1 MW charging for about 45 min

2 1/23/2024 | Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Charging of Lithium-Ion Batteries is limited by the negative Electrode Potential

3 1/23/2024 | Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Why Lithium Plating happens

Depending on local anode potential

moderate temperature or low current rate

low temperature or high current rate

→ Cells behave very differently

Ageing caused by Plating of a Kokam 40 Ah Cell at different Temperatures and Current Rates

Lithium Plating: Caused by excessive Currents at a given Temperature

Non-linear function depending on

- Battery type
- Ageing
- State of charge

Solution approach

- Model for the prediction of plating
- Model implementation and reduction
- Online state estimation
- Parameter identification
- Controlling charging current

Physical-chemical battery model

- Bottom-up approach
 □ Physical processes → Cell voltage
- States and parameters have physical meaning
- Plating predictable via internal states
 Plating Overpotential η_{plating} < 0 V

F. Ringbeck, Dissertation, ISEA, RWTH Aachen 2021

State-of-the-art experimental parameter measurements

Li W, et al., Energy Storage Materials, 2021 (44): 557-570.

State-of-the-art experimental parameter measurements

CARL Center for Ageing, Reliability and Lifetime Prediction of Electronic Systems

Sensitivity Analysis of Electrochemical Battery Models

Luder D, et al., Advanced Battery Power Conference, Münster, Germany, 2022

Multi-chemistry parameter sensitivity analysis

- Perform Sensitivity Analysis
- Observe influence of
 battery chemistries,
 - high power / high energy batteries
 on battery voltage, capacity,
 overpotential, impedance
- Investigate cathode / anode limitations
- Comparing NCA and LFP as cathode material:
 - LFP: capacity dependent parameters have smaller influence on cell voltage due to flat OCV

12 1/23/2024 | Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Metaheuristic algorithms

- Global optimization problem
 - □ Genetic algorithm
 - Particle swarm optimization algorithm
 - Cuckoo search algorithm (CSA)

Multi-objective multi-step data-driven identification

Multi-objective identification

□ Minimization of the voltage errors between simulation and measurement

□ Minimization of the relative capacity errors between the electrodes

Li W, et al., Energy Storage Materials, 2022 (44): 557-570.

Center for Ageing, Reliabilit and Lifetime Prediction of Electrochemical and Power

lectronic Systems

Multi-objective multi-step data-driven identification

Multi-objective identification

□ Minimization of the voltage errors between simulation and measurement

- □ Minimization of the relative capacity errors between the electrodes
- Multi-step identification considering sensitivity difference
 - □ High-sensitivity parameters unchanged in the second step
- Machine learning-inspired identification process
 - Data grouping and training to overcome overfitting

Li W, et al., Energy Storage Materials, 2022 (44): 557-570.

Results: Experimental validation

Li W, et al., Energy Storage Materials, **2022** (44): 557-570.

Results: Experimental vs. Data-driven

CARRL Center for Ageing, Reliability and Lifetime Prediction of Electronic Prediction of Electronic Systems

Experiment: Samsung 35e (NCA / Graphite + Si)

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Results

- Capacity fade
 - $\Box \text{ SOH}_{\mathcal{C}} = \frac{C_{N,t}}{C_N}$
 - Capacity fade can be accurately estimated

Volume fraction of the solid active material ϵ_s^- decrease more rapidly than ϵ_s^+ during aging

Results

Degradation modes

The degradation modes of the battery can be accurately estimated
 LAMNE and LLI play a major role in the aging process of batteries

Chen J, et al., 2023, in preparation

20 1/23/2024 | Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Fast Charging Trade-off

Trade-off between fast charging and ageing

Lithium plating

Charging Protocols

- Passive Methods
 - Predefined current and voltage levels
 - Does not account for battery state

- Equivalent Circuit Models
 - Modelling of electrical characteristics
 - Does not model side reactions

- Electrochemical Models
 - Modelling of internal cell state
 - High complexity needing model simplifications

Machine learning-based fast charging

Z. Wei, W. Li, D. U. Sauer et al., 2023, Energy Storage Materials 56 62-75

CARL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Offline Learning Environment

Testing Procedure - Experimental Setup

Scenario

- □ Charge from 10% SOC to 80% SOC
- □ Temperature 0 °C
- □ Active Cooling with Aluminium Cooling Plates
- □ Charging Time ~ 54 minutes

Benchmarks

- Constant Current Constant Voltage (CCCV)
- Multistage Constant Current (MCC)

Benchmarks of model-based control with self-learning of model parameters

Benchmarks

CCCV @ 0.787 C
MCC @ 1.25, 1.05, 0.85, 0.5 C

Capacity / Internal Resistance / Loss mechanisms

Benchmarks of model-based control with self-learning of model parameters

Benchmarks
 CCCV @ 0.787 C
 MCC @ 1.25, 1.05, 0.85, 0.5 C

Capacity / Internal Resistance / Loss mechanisms

Benchmarks of model-based control with self-learning of model parameters

Benchmarks
 CCCV @ 0.787 C
 MCC @ 1.25, 1.05, 0.85, 0.5 C

Capacity / Internal Resistance / Loss mechanisms

mical and Powe

Fast charging is the most critical operation phase for the lifetime of batteries.

- Proper control of charging protocol is essential.
- Model-controlled charging can bring the shortest charging times without accelerated ageing.
- Machine-learning algorithms help to identify and to adapt the model parameters throughout the lifetime.
- Very good results for lifetime extension have been achieved.

Thank you for your attention

Contact

Dr.-Ing. Weihan Li Tel. :+49 241 80 49415 weihan.li@isea.rwth-aachen.de

Chair for Electrochemical Energy Conversion and Storage Systems Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer RWTH Aachen University

Campus-Boulevard 89 52074 Aachen GERMANY

www.isea.rwth-aachen.de

We thank

Federal Ministry of Education and Research

Center for Ageing, Reliabil

mical and Power

