Einfluss des Matrizenwerkstoffes auf die Reibungsverhältnisse beim uniaxialen Pressen

U. Klemm, D. Sobek, B. Schöne

Technische Universität Dresden, Institut für Werkstoffwissenschaft

A. Kayser, S. Kloos

Wacker Ceramics, Kempten

Ziel der Untersuchungen

Verifizierung empirischer Beobachtungen zum Einfluss des Matrizenwerkstoffes auf das Verdichtungsverhalten keramischer Materialien

Messung eines Systems pressspezifischer Parameter bei der Verdichtung von SiC- und Al_2O_3 - Granulaten in Stahl- und Hartmetallmatrizen

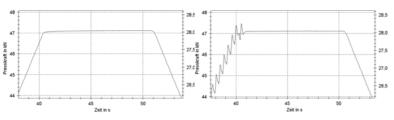
Ableitung optimaler Kombinationen von Matrizenwerkstoff und zu verdichtendem Pulver bzw. Granulat

Matrizenwerkstoffe

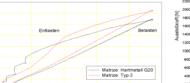
Material	Legierungsbestandteile [%]							
ivialeriai	С	Cr	V	Мо	W	Co	WC	
CPM-Stahl Typ 1	2,45	5,25	9,75	1,30	-	-	-	
CPM-Stahl Typ 2	3,40	4,00	9,50	5,00	10,00	9,00	-	
CPM-Stahl Typ 3	2,90	8,00	9,80	1,50	-	-	-	
Hartmetall G20	-	-	-	-	-	11,00	89,00	

Untersuchte Granulate

Kommerzielles SiC-Granulat mit optimiertem Binde- bzw. Gleitmittel

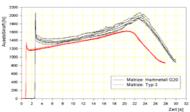

 $Al_2O_{3^-}$ Laborgranulat mit identischen Gehalten an Binde- und Gleitmittel sowie Weichmacheranteil (CT 3000, d_{50} = 0,37 $\mu m;$ TM DAR, d_{50} = 0,20 $\mu m)$

Messergebnisse SiC

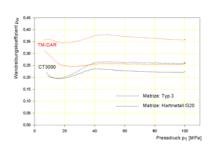

Matrize	F ₂ / F ₁ [%]	μ_{W}	F _A [kN]	ρ [g/cm³]	σ _{DD} [N/mm²]
Typ 3	76,5	0,171	1,36	1,85	0,67
Hartmetall G20	68,2	0,240	2,08	1,86	0,69

Matrizenwerkstoff Typ 3

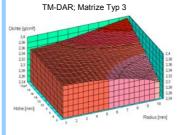
Matrizenwerkstoff Hartmetall G20

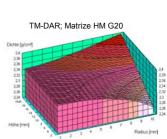


Homogener Verdichtungsverlauf


Be- und Entlastungskurven

Pressgeräuche, Verschleißintensive stick-slip-Mechanismen


Ausstoßkurven (zeitversetzt)


Messergebnisse Al₂O₃

Granulat	Matrize	F1 / F2 [%]	τ _{max} [N/mm²]	μw	A ₄ / A ₂ [%]
CT 3000	Hartmetall G20	59	16	0,261	40
	Тур 3	64	14	0,225	38
TM DAR	Hartmetall G20	45	25	0,365	58
	Typ 3	55	19	0,284	47

Dichteverteilung

Schlussfolgerungen

Die Art des Matrizenwerkstoffes hat signifikant Einfluss auf das Verdichtungsergebnis beim uniaxialen Pressen.

Davon sind weniger makroskopische Eigenschaften wie Dichte und Festigkeit betroffen. Auswirkungen resultieren insbesondere hinsichtlich aller die Dichteverteilung beeinflussenden Parameter.

Für die untersuchten keramischen Granulate ergibt sich die eindeutige Aussage, dass für das uniaxiale Pressen der Stahlmatrize der Vorzug gegenüber der eingesetzten Hartmetallmatrize zu geben ist. Im System pressspezifischer Parameter wurden höhere Kraftdurchgangsquotienten, geringere Wandreibungskoeffizienten und Ausstoßkräfte, günstigere Verteilungen der Anteile der Pressenergien und der elastischen Relaxation sowie gleichmäßigere Druckspannungsverteilungen bei gleichzeitiger Senkung der fehlerrelevanten Scherspannungen erhalten.

Mit sinkender Primärteilchengröße der Pulver verstärken sich die Tendenzen. Aus sehr feinen Pulvern hergestellte Granulate sollten zweckmäßig in Stahlmatrizen gepresst werden.

F₂/F₁: Kraftdurchgangsquotient

 $\begin{array}{ll} \mu_W\colon & \text{Wandreibungskoeffizient} \\ F_A\colon & \text{Ausstoßkraft} \end{array}$

ρ: Dichte

 σ_{DD} : Diametraldruckfestigkeit τ_{max} : max. Scherspannung

A₄: Verlustarbeit durch ReibungA₂: Gesamtarbeit