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Summary

The paper presents LES computations of subcritical flow around circular cylinders at
Re � ���� andRe � ������. For the former the results obtained with the Finite–
Volume code LESOCC employing a structured grid and the Finite–Element code N3S
using unstructured tetrahedra are reported. The results obtained with the two codes are
compared with each other and with results reported in the literature in order to assess
the performance and the potential of the two approaches.

1 Introduction

The flow around bluff bodies is characterized by complex interactions between dif-
ferent phenomena such as boundary layers, separation and reattachment, shear layers,
large two– and/or three–dimensional vortical structures, etc. Such flows are relevant for
many applications in mechanical, chemical and civil engineering, aerodynamics and
other areas. In particular when fluid–structure aerodynamic coupling or aerodynamic
noise production is of concern, the unsteady flow has to be determined with high ac-
curacy. Although models based on the Reynolds Averaged Navier–Stokes equations
(RANS) have been applied successfully in many practical computations, these tend to
fail for flows involving large unsteady vortical structures. Here, the Large Eddy Sim-
ulation (LES) technique clearly has a better potential since no model is required for
the large flow structures that depend on the individual geometry of the problem. Only
the fine–scale turbulence, which has more universal character, needs to be modelled.
A comparison of LES and RANS modelling for a certain test problems has been given
recently in a series of papers [7], [29], [30], [31].

The circular cylinder in uniform cross flow is a classical example for bluff body
flow. Although the geometry is fairly simple the physics are extremely rich and have
been investigated in a large number of papers [42]. Since the flow is very sensitive to
experimental conditions such as aspect ratio, blockage, end conditions, turbulence level



etc., such a compilation also reveals that the experimental information available is often
of limited accuracy (see also the compilation of [11]).

Applying LES to bluff body flows requires calculation of the flow close to the wall. In
cases where the geometry exhibits corners, such as for a square cylinder or a cube, the
separation is fixed and the solution is less sensitive to modelling in the near wall region.
For a round cylinder, in contrast, the separation depends on the details of the attached
boundary layer, be it laminar or turbulent. Another aspect is the use of wall functions.
These have generally been developed for situations with flat boundaries so that their
application to bodies with entirely different shape is a delicate task, in particular when
the separation point is not fixed by the geometry. Attempts are currently being made to
develop better strategies for near wall regions [1], [10]; the issue is however far from
being settled. For the present computations we therefore decided to avoid the need for
wall–function modelling. At the Reynolds numbers considered the boundary layer is
laminar and resolved with the grid employed. The simulations therefore are of mixed
type with high resolution and direct or almost direct simulation close to the wall and
coarse resolution and hence LES in the wake. The results of these computations will be
used in future work as a basis for the development of improved wall functions.

In the present configuration, as for any complex geometry, the mesh is non–uniform
in order to represent the geometry and to achieve sufficient resolution in critical regions.
Since in an LES the inherent filter is generally related to the grid used for the compu-
tation, the effect of an inhomogeneous discretization is of concern. We have therefore
undertaken a set of separate model computations to elucidate this point.

The main part of the paper deals with the calculation of flow around a circular cylin-
der in the subcritical regime. We have employed two entirely different codes for this
task: a structured Finite–Volume code and an unstructured Finite–Element code. The
computational results obtained with each method are interesting on their own but it is
their detailed comparison which is main novelty of the present work.

2 Computational methods

2.1 Structured Finite Volume method

The code LESOCC (LargeEddySimulationOn CurvilinearCoordinates) has been de-
veloped in Karlsruhe by Breuer and Rodi [8], [9]. It employs a Finite Volume (FV)
discretization with a non–staggered arrangement of variables using momentum inter-
polation to avoid velocity–pressure decoupling. Any structured orthogonal or non–
orthogonal grid can be used. Both, convective and diffusive fluxes are discretized by
2nd order central differences. The time scheme consists of an explicit predictor step by
a 3–step Runge–Kutta scheme for the velocities and an implicit corrector step where
a Poisson equation is solved for the pressure correction (SIMPLE). The overall time
scheme is of 2nd order as the pressure is not updated in each of the Runge–Kutta steps
for computational efficiency. Different subgrid–scale models are implemented. One is
the Smagorinsky model with van Driest damping near solid walls. Furthermore, several



variants of the dynamic model with the least–squares approach of Lilly are available.
They differ in the way of averaging in space and/or time and in the way of clipping
negative viscosities. Different wall function models are implemented but have not been
employed in the present computations. The code is highly vectorized and has been val-
idated extensively as described in the references cited.

2.2 Unstructured Finite Element method

Unstructured grids have the advantage that complex geometries can be meshed easily
and that local, solution–dependent mesh refinement is possible. Very few attempts of
such a discretization in LES have been made [18], [2]. The code N3S was initiallydevel-
oped for the RANS equations, using an upwind scheme and a classical Finite Element
(FE) discretization on tetrahedra (linear for the pressure, quadratic for the velocity [27]).
While applying this code to LES, Rollet–Miet [32] has shown that a centered scheme
is preferable to minimize numerical diffusion since the small time-steps, required for
physical reasons in the LES context, are more stringent than the stability criteria of the
centered scheme. Next, the standard textbook choice of finite elements, that allows far
less degrees of freedom for the pressure than for the velocity, was shown unsuitable for
LES. Indeed in this context, a collocated arrangement is preferable to capture the small
scales of turbulence which exhibit high frequencies in both pressure and velocity. This
N3S-LES code [32] has been used in the present study with the following features:
centered Adams-Bashford discretization for the non-linear term, and Crank-Nicolson
scheme for the diffusion term. Like the velocity, the pressure is discretized by linear
trial functions on the smallest elements. Continuity is obtained by a projection method,
yielding a Poisson equation for the pressure. Pressure oscillations are eliminated by
the Arakawa method. These oscillations, which can be observed when the tetrahedron
elements are obtained from a structured rectangular grid, actually vanish completely
when the mesh is fully unstructured. The N3S-LES code was developed and tested by
P. Rollet-Miet for grid turbulence, channel flow and the flow through a tube bundle (ex-
periment of [36]). This configuration has been found specifically challenging for RANS
models in several ERCOFTAC Workshops [35]. In particular the flow from the axis of
the wake to the impingement on the next downstream cylinder was badly predicted, the
mean flow and especially the Reynolds stresses. Figure 1 shows the good agreement
obtained with N3S-LES and the fairly small influence of the subgrid-scale model.

2.3 Investigation of the influence of the filter size

Most subgrid–scale models rely on ideas and concepts that were developed for isotropic
homogeneous turbulence. Theoretical works supporting the existing subgrid models are
essentially related to analyses performed in terms of energy flux across a spectral cut-off
supposed to be constant [19], [13] and [4].

In the case of an LES on a non–uniform grid, turbulence advected by the mean flow
experiences a change in the filter width. The response of the subgrid model to this
effect has received little attention in the past. It is here addressed using a two-point



Figure 1 Results of tube bundle computations with N3S obtained with the Smagorinsky
model (continuous lines), and the dynamic model (dotted lines). Upper right: geometrical
configuration,x andy coordinate inmm. Others: mean and fluctuating velocities versusx
aty � ����mm. Symbols indicate experimental values of [36].

closure model (Eddy Damped Quasi-Normal Markovian) extended to inhomogeneous
turbulence. The closure model is described in detail in [25]. The main feature of the
model is that, at each point of the Reynolds–averaged flow field, a transport equation
for the turbulent energy spectrum,E�K�x�, is solved. By wave–number integration, the
usual turbulentquantities, such as the kinetic energy, can be deduced. For applications to
the problem of subgrid models, a wave–number cut–off is introduced, and the effect of
small eddies is modeled via a subgrid eddy viscosity. A simple situation is investigated,
namely the flow between two flat plates. The wave–number cut–offKc is supposed
to vary with the streamwise directionKc � Kc�x��. The channel is divided into three
parts. In the first region, (x� � ��	h , in Figure 2, whereh is half the channel width), the
cut–off is uniform and situated at small scales. In the second section (��	h � x� � 
h),
a much smaller value forKc is used (	 times smaller), whereas in the last region,Kc is
set back to its initial value. Consequently, an abrupt increase in the filter width, followed
by an abrupt decrease, are experienced by a fluid particle. The results in Figure 2a show
that the mean flow remains nearly unaffected. In Figure 2b, it can be observed that
the turbulent kinetic energy decreases in the large filter width region, which is simply
related to the fact that there is less energy captured in the resolved field. A more refined
analysis, in terms of spectra, shows that the large scales are left nearly unaltered in this
case.

When the flow re–enters the fine–resolution domain, the turbulent kinetic energy is
overestimated. The explanation is that, the cut–off being suddenly shifted to a higher
wave–number, it takes some time before the spectrum recovers an equilibrium state.
During this time, the dissipation is underestimated, inducing the overestimation of the



turbulent kinetic energy. Further investigations are necessary before definite conclu-
sions can be reached: a more realistic geometry and more progressive variations in the
filter width should be introduced. However, the present results already provide an op-
timistic information concerning LES of wakes, the worse situation being encountered
when the eddies are advected from a coarse mesh region to a more refined zone, which
is not the case in the flow around a cylinder where turbulence is essentially generated
on a fine mesh and then advected to a coarser mesh region.

U�

q���

�c

x � ��� x � ���

� � � �Kc � ����� Kc � ���� Kc � �����

Figure 2 Channel flow with spatially varying filter (sharp spectral cut-offKc�x��, only
the upper half of the domain is shown.

3 Results for the circular cylinder

3.1 Various flow regimes and choice of Reynolds number

The large amount of literature on the flow around circular cylinders is reviewed in detail
in the recent book of Zdravkovich [42]. Different regimes are observed depending on
the Reynolds numberRe � Du��� whereD is the cylinder diameter,u� the free
stream velocity and� the kinematic viscosity. The two Reynolds numbers selected for
the computations below both belong to the subcritical regime (Re � �	�� ������).
In this regime the boundary layer on the cylinder wall extending from stagnation point
to separation point is laminar while the transition to turbulence occurs after a transition
lengthLt in the shear layer which forms behind the separation point. Further down-
stream these vortices roll up to form the larger, alternating von Karman vortices. This
alternate shedding causes the boundary layer and the stagnation point to oscillate ac-
cordingly [26].



The subcritical regime can further be divided into a lower (up toRe � �	��),
an intermediate (Re � �	�� � �����), and an upper subcritical regime (above
Re � �����). In the intermediate regime the shear layer persists for a while after
separation before it becomes unstable due to Kelvin–Helmholtz type vortices and span-
wise instability. With increasing Reynolds number the transition lengthL t decreases
from ��	D to ���D, i.e. it takes place immediately after separation, while the formation
length changes from��	D to about�D [42]. The three–dimensional structure of the
near wake has been visualized in e.g. [39] and investigated in [14], [15] by measure-
ment of the streamwise vorticity component. Computations of the correlation lengths
of this quantity forRe � 	��� in spanwise and cross–stream direction yield mini-
mum values of�z � ��		D and�y � ���D close to the separation point, respectively,
both increasing in streamwise direction [14]. The ratio�z��y corresponds to the one
observed for mixing layers [15] suggesting that the mechanisms involved are similar.

In the upper subcritical regime the time–averaged flow changes only little withRe.
As in the intermediate regime the flow exhibits considerable three–dimensionality .
Variations of the flow also occur from cycle to cycle, so that e.g. the Strouhal number
may temporarily differ from the mean by as much as��� with drag and lift varying
accordingly. Detailed phase–averaged measurements of the near wake atRe � ������
have been published in [11].

The Reynolds numbersRe � ���� andRe � ������ have been selected for the
LES computations below for the following reasons. The lower one was studied in some
detail by LES performed at the CTR, Stanford, [3], [21], [22]. It allows a comparison
with these results and also with the experiments in [24]. Breuer [6] also investigated this
flow in independent computations with LESOCC focussing particularly on the influence
of the convection scheme and the subgrid–scale model. The higher Reynolds number
was chosen because only for this value detailed phase–resolved experimental data are
available for comparisons [11]. Up to now no successfull LES has been published for
this case. Such higher Reynolds numbers are more relevant for applications since they
are frequently encountered in chemical, mechanical, and nuclear engineering [42].

3.2 Boundary conditions and mesh

The coordinate system is oriented such thatx designates the streamwise,y the nor-
mal, andz the spanwise coordinate, respectively. All lengths are normalized with the
cylinder diameterD, whereas velocities are nondimensionalized with the freestream
velocity. Angles are counted from the upstream average stagnation point.

For the structured grid used by LESOCC we employed a circular computational do-
main with radius�	. It allows to use an O-mesh, depicted in Figure 3, which is advan-
tageous due to its constant quality all along the cylinder wall. (Previous RANS com-
putations in [5] have shown that with an H-mesh inadequate resolution close to the
stagnation point considerably affected the result.) The points are clustered in the wake
and near the wall using geometric stretching [8], [6]. A laminar inflow condition was
employed forx � �, i.e. u � �, v � w � �. The outflow boundary condition was a
convective one. In spanwise direction we used periodic conditions with period length
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Figure 3 Grid for computations atRe � ���� in thex � y-plane, identical zoom near
the cylinder. Left: structured FV grid for LESOCC, right: unstructrued FE grid for N3S.

�, the same as in [3]. A no–slip condition was applied at the cylinder wall. The mesh
consists ofNi � ��� points in radial,Nj � ��� in circumferential, andNk � �� or
Nk � �
 in spanwise direction, respectively, yielding a total of

�
�� and�����


points. (The effective number of unknowns is smaller as in directions of periodicity�
points are employed to implement this condition.) Three computations employing the
Smagorinsky model were performed atRe � ����: LRUN1:Nk � ��,Cs � �, i.e. no
SGS–model, LRUN2:Nk � ��,Cs � ���, LRUN3:Nk � �
,Cs � ���.

The grid for the N3S computations was constructed after the first results with LESOCC
had been obtained which allowed to benefit from the available information. The compu-
tational domain was chosen to be a rectangular box withx � ��	� �	�� y � ��	� 	�� z �
��� ��. This implies a blockage ratio of��� which is higher than for the circular domain
but still comparable to most of the experiments [42]. The unstructured grid employs
thetraedral elements and was set up in a zonal way. A two–dimensional grid compris-
ing an annulus of thickness��� (��� ��� equidistant points) and a V–shaped domain
of unstructured triangles covering the wake was constructed. This grid was repeated
in �� parallel planes in spanwise direction and completed to yield a tetrahedral mesh.
The remaining space was filled with a fully 3d Voronoï triangulation so that the final
grid contains�
��
� points. As for the structured code, the inflow condition was lam-
inar, the outflow condition was a convective one, and periodicity was imposed in the
spanwise direction. A slip condition was used on the lateral boundaries. For the wall
boundary condition the wall function approach of Werner and Wengle [40] was used.
However, the mesh is sufficiently fine so that this condition is actually applied in the
viscous sublayer. Since in this region a linear velocity distribution is assumed the wall
function becomes effectively a no–slip condition. The same subgrid–scale model was
employed as with the structured code, namely the Smagorinsky model withCs � ���.

A zoom of both grids in the vicinity of the cylinder is shown in Figure 3.
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Figure 4 Axial component of the vorticity vector forRe � ����. Left: LRUN2,
�tframe � ���	, right: NRUN1,�tframe � 
. Bottom window: Time record of drag
coefficientCD (top) and lift coefficientCL (bottom), in LRUN2 over�� shedding cycles.



�

�

Figure 5 Instantaneous pressure surfaces atp � ����� andp � ���	
, respectively.
The latter represents two rolls inside the former (arrows), the remaining plot corresponds
to the higher value.

3.3 Instantaneous flow field

This section and 3.4–3.6 are concerned with the results forRe � ����. We compare
the solutions obtained with the structured and unstructured method and results reported
in the literature.

In order to give an impression of the computed time–dependent solution of the LES
with both methods, Figure 4 displays the axial component of the instantaneous vor-
ticity vector in a cut normal to the cylinder axis at similar time intervals. Due to the
highly three–dimensional and irregular flow which will be further highlighted below it
is of course impossible to obtain virtually corresponding plots. Even from one period
to another the solution is different in the same computation.We note that the computed
solution corresponds very well to the physical description of the flow given above. In
particular, the shear layers forming after separation can be discerned as well as their
breaking up into smaller vortices. The larger von Karman vortices are also visible. In
the figure, one of them travels to the lower right corner while a second one forms on the
upper side. It is also obvious that, due to different grid scales in the two computations,
the granularity of the solution is higher in the FV computation than for the FE solution.
The large vortices, however, are similar.

The bottom frame of Figure 4 contains a plot of drag and lift coefficient obtained
with the structured code. The oscillations are quite regular with respect to their pe-
riod. The magnitude of the oscillations reflects the spanwise correlation and depends
on the length of the cylinder (see [41] for a study at somewhat higherRe.) The mod-
ulation of the amplitude, on the other hand, is no deficiency of the computation but is
observed similarly in experiments [38] [42]. This irregularity is due to in the irregular
three–dimensional break up of the vortices. This is highlighted in Figure 5 displaying
two instantaneous iso–pressure surfaces in the FV computation. The figure shows par-
ticularly well the instability of the shear layer in spanwise direction resulting from the
mechanism of secondary vortices proposed in [39].
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Figure 6 Average stream lines of LRUN3 (left) and NRUN1 (right).

The considerable three–dimensionality of the wake flow is further reflected by the
spanwise velocity component (not shown here). In the center plane (y � �) its extrema
exceed
�� of the free stream velocity.

3.4 Mean flow and global quantities

After a suitable start–up phase, the flow field has been averaged with respect to the
spanwise coordinate and in time (�� cycles for NRUN1 and
� cycles for LRUN3).
The resulting quantities are denoted by brackets. Streamlines of the two–dimensional
average flow are presented in Figure 6. Apart from the large recirculation zone behind
the cylinder, two small secondary recirculation zones are obtained with LRUN3. These
have been obtained in [3] as well and are reported in [37] to exist atRe � 	���. In the
results of NRUN1 the secondary recirculation zones appear to be more pronounced.

Figure 7a displays the mean streamwise velocity along the centerline. Comparing
the curves for NRUN1 and LRUN3 reveals that the former is not very smooth in the
far wake which is a consequence of the coarse grid employed in this region as well as
the shorter averaging time. The recirculation length is underpredicted in NRUN1. The
curve of LRUN3 agrees fairly well with the experiment [20] in the recirculation zone
and with the data of [24] in the wake (the data of [20] seem to be questionable around
x � �). The other parts of Figure 7 contain lateral profiles atx � ��	�, i.e. close to
the end of the mean flow separation point in Figure 6. The result of LRUN3 matches
the streamwise velocity of the experiment while NRUN3 yields a positive value of the
mean velocity, a consequence of the shorter recirculation length. It should be noted
that aty � �	, the border of the computational domain in NRUN1,� �u �� ����
while in LRUN3 � �u �� ���� and is decreasing further in the outward direction.
This amount of acceleration due to blockage seems acceptable. Figure 7c also displays
profiles of� �v � atx � ��	�. The extrema appear at the edges of the mean recirculation
bubble and are larger in the present computations than measured in the experiment. Note
however that the experimental data exhibit uncertainty monitored by the unsymmetry
of the measurements [3].

Figure 7 also compares the present results to those of [3] obtained with a staggered
discretization of���� ���� �
 cells. We have included the curves obtained with the
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Figure 7 Averaged velocity compo-
nents: comparison of the results of both
methods, comparison to the LES of [3]
and experiments [20], [24].
a) Centerline streamwise velocity,
b) streamwise velocity atx = 1.54,
c) normal velocity atx = 1.54.

Smargorinsky model (Cs � ����	) as well as those computed with the dynamic model
since the latter were the most satisfactory in that reference. The mean recirculation
length is predicted considerably higher in these computations than in the present ones
which agree fairly well with the experimental data. The more reliable of the two� �v �
profiles is very close to the present results.

Table 1 supplements the above comparisons with more quantitative data: the Strouhal
number agrees very well with the experimental results. However, in the regime consid-
ered here this quantity is relatively insensitive to the details of the calculation. A similar
observation has been made for the square cylinder [31]. The drag coefficient is slightly
overpredicted in the results of LESOCC. This is related to a somewhat higher separation
angle (but still� � ���) and a lower base pressure. The former also yields a shorter
recirculation length. These observations illustrate the interaction between the upstream
boundary layer and its separation with the downstream recirculation zone. With the N3S
code, the drag coefficient is overpredicted significantly more.

3.5 Influence of subgrid–scale model and spanwise discretization

Figure 9 compares the three runs with LESOCC listed in Table 1. With respect to the
case LRUN2 the influence of the subgrid–scale model can be assessed by comparing to
LRUN1, whereas the influence of the spanwise discretization is revealed by compari-
son to LRUN3. These results have been obtained in parallel to [6] to which the reader
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Table 1 Global quantities for cylinder flow comptations atRe � ����, comparision
of the present results to LES of Beaudan, Moin [3] as well as to the experiments:St=
Strouhal number,CD= drag coefficient,Cbp= back pressure coefficient,�= separation
angle in degrees,Lr= length of recirculation zone.

N3S LESOCC BM [3] Experiment
NRUN1 LRUN1 LRUN2 LRUN3 n.m. Smag.

St ����� ����� ����� ����� ����� ����� ����	� ����	 [12]

CD ���	 ���
 ���
 ���
 ���� ���� ���
� ���	 [23]

Cbp ���	� ����	 ����� ����� ���
� ���
� ������ ���	 [23]

� ���� 
��� 

�� 

�� 
	�� 
��
 
	� � [37]

Lr ��
� ���� ���� ���� ��	� ��
� ��������[12], ����[20]

is refered for further discussion, in particular concerning the effect of different convec-
tion schemes. Figure 9a shows the turbulent kinetic energy. It rises steeply behind the
cylinder and attains its maximum near the end of the main recirculation zone. The small
difference between the computations with and without subgrid–scale model reflects the
amount of energy contained in the subgrid–scales. Due to the typical decay of the spec-
tral energy this portion is naturally limited since the large, energy–containing vortices
are resolved. On the other hand, inspection of Table 1 indeed shows that the solution
changes only little between LRUN1 and LRUN2.

The same holds for the Reynolds stress components shown in Figure 9b and 9c. Note
that the streamwise gradient ofk is fairly high. Since its principal contribution is the
Reynolds stress� �v��v� �, the profiles of this quantity atx � ��	� are very sensitive
to streamwise dislocations in the flow field. An increase in spanwise resolution im-
proves the result concerning the global quantities in Table 1. It yields slightly increased



Reynolds stresses which is simply due to a shift of the cut–off scale to higher wave
numbers in spanwise direction. It is interesting to note, however, that closely behind the
cylinder the turbulent kinetic energy decreases further.

We conclude that the results in this section show that the subgrid–scale model and
the spanwise discretization are of similar importance in for the present computation.
This is in accordance with [3] [6] and [22]. It led to the implementation of a Fourier
discretization for thez-direction in the last reference.
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Figure 9 Results for different parame-
ters in the structured FV code (cf. Table 1).
a) Total resolved turbulent kinetic energyk
on the centerline. b) Profiles of the resolved
streamwise Reynolds stress� �u��u� � atx
= 1.54 compared to experimental values of
[20]. c) Analogeous profiles of� �v��v� �
atx = 1.54.

3.6 Comparison of resolution and computational effort

The resolution of the laminar boundary layer along the upstream cylinder wall requires
a fine mesh in radial direction. This also limits the azimuthal mesh size for numerical
reasons. On the rear side a small radial mesh size is less important. The wake can be
discretized with an increasingly coarser mesh towards the outflow boundary. The em-
ployed structured grid employed in LESOCC meets the above resolution requirements.
The radial cell size near the cylinder wall is�r� � �����	 yieldingmaxfy�� g � �.
Radial profiles of the absolute value of the velocity vector in Figure 8 illustrate the
boundary layer resolution.

With an unstructured grid the discretization can be adapted better to the flow consid-
ered. In the present case a grid with about
�	 times fewer points than the structured



grid was employed. In particular the upstream region can be resolved more efficiently.
Note that a coarsening of the grid in spanwise direction can easily be achieved in re-
gions where the flow is known to be almost two–dimensional. The elements adjacent to
the wall are of size�r� � ����	, similar to [3]. Radial profiles of the average solution
are displayed in Figure 8. Comparing the curves for the two computations we notice
the slight acceleration due to the different domain size mentioned above. The curves at
larger angles are quite sensitive to the actual form of the recirculation bubble. Those
of NRUN1 are to the left of the companion ones due to the slightly larger separation
angle. The symbols in Figure 8 reflect the respective discretization. It is somewhat finer
in the structured grid with, e.g.,�
 instead of�� points within a distance of��� from the
cylinder wall. However, the difference is not as drastic as it might appear. The symbols
representing the intersection with the element faces are clustered and, e.g., the shear
layer at� � ���� is discretized with�� and�� points, respectively. An interesting fea-
ture is the increased smoothness of the mean velocity with N3S particularly visible at
� � ����. Note that this is a location where the flow is still laminar. The oscillations
persisting in the average are presumably due to the existence of a prefered direction in
the structured mesh, whereas this radial anisotropy is not present in the bulk of the FE
mesh (cf. Figure 3). Finally, the discussion in Section 3.5 and the results of [21], [22]
and [6] show that sufficient resolution in spanwise direction is important. The higher
the number of points on the cylinder wall in this direction, the larger is the potential
saving with an unstructured discretization.

Comparing the performance of two entirely different codes run on different machines
is of course a delicate task and can only result in gross estimates. Note for example that
N3S is a complex general purpose code whereas LESOCC is “streamlined” for the
present task. The price to be paid for the saving of grid points with an unstructured
discretization is a higher complexity of the code and a larger CPU time per point. The
advantage of this approach highly depends on the flow considered and the particular
discretization. The results presented were obtained with LESOCC at 620 MFLOPS on
a VPP300� and with N3S at���MFLOPS on a CRAY98�. The CFL number was��
��
for LRUN3 and��� for NRUN1. One time step of LRUN3 took���sec and�
sec in
NRUN1. Taking into account the different FLOP–rate the performance of both codes
is similar for the present case. For higher spanwise resolution or problems with more
complex geometry the unstructured method is likely to be more efficient.

3.7 Results for Re = 140000

The Reynolds number considered is in the upper subcritical regime: the boundary layer
on the cylinder is still laminar, but the transition to turbulence takes place very shortly
after separation. For slightly higher values, i.e. aroundRe � � � � � ��� the bound-
ary layer becomes turbulent, the Strouhal number increases and the well–known drag
crisis is observed. Hence, at the border of the upper subcritical regime the flow is fairly
sensitive to disturbances in experimental or numerical conditions [11] [28].
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Figure 10 Results for the cylinder flow atRe � 
�����: a) streamlines of the mean
flow, b) magnitude of the instantaneous velocity in a plane normal to the cylinder axis,
the maximum is about 2.25, c) mean streamwise velocity aty � �, d) mean streamwise
velocity atx � 
, e) resolved shear stress� �u��v� �. Symbols indicate measured total
shear stress from [11] obtained by adding phase–averaged and random contribution.

The flow was computed with LESOCC and a no–slip condition on the wall. Since the
boundary layer thickness behaves like��

p
Re [34] the grid spacing should be smaller

by a factor of� than in the computations above to achieve the same quality of resolution.
It is clear, however, that this cannot be obtained with the available means. Reducing the
minimal mesh size in radial direction is relatively easy due to the exponential behav-
iour resulting from the geometric stretching employed. On the other hand, the mesh
size decreases only linearly with the number of points in azimuthal and spanwise di-
rections. After extensive two–dimensional tests we used a grid with��� � ��� � ��
points in radial, azimuthal, and axial direction, respectively. Radial stretching of��	�
yields�r� � ��
� ����, and the cells were evenly spaced on the cylinder wall in all
directions. Experimental results in [42] suggest that the spanwise correlation length is
significantly lower in the present regime than forRe � ���� so that we set the spanwise
period length to�. The diameter of the computational domain is�	. The Smagorinsky
model was applied withCs � ��� and the computation was started from uniform flow.
After about
 shedding periods the statistical quantities were assembled during�� peri-
ods.



Figure 10 collects some of the results. The plot of the instantaneous velocity illus-
trates the extremely narrow boundary layer and shear layer, the fine scale structures in
the wake, as well as spurious oscillations on the sides. The recirculation length is much
smaller than for the lower Reynolds number, and no secondary recirculation zone is
observed. In this context it is interesting to note that in [37] a secondary vortex with
angular extent of��� was observed forRe � ���. The velocity gradient from which
this was infered can however also result from spanwise flow since the employed device
is insensitive to direction. Indeed, the three–dimensionality of the flow is considerable
(see Figure 11). The spanwise velocity component locally exceeds���. In Figure 10 we
observe that the recirculation length matches the experimental data (the value in Table 2
is obtained from flying–hot–wire data which are less reliable very close to the cylinder
[11]). Comparing the velocity on the centerline reveals that� �u � is overpredicted
closely behind the recirculation bubble while being slightly too small around� diame-
ters from the cylinder. In the latter region, however, the grid is already quite coarse and
the averaging could be improved. Nevertheless, the agreement is quite good. The nor-
mal profile of� �u � in Figure 10d also shows the relatively good agreement with the
experiment. Figure 10e finally reports the resolved shear stress� �u��v� �, which also
agrees satisfactorily. On the other hand, Figure 10a and Table 2 show that the separation
angle is too large in the computation. This goes along with a slightly lower drag. The
Strouhal number is within the experimental range but relatively large while the back
pressure coefficient agrees fairly well. Our interpretation, backed by the wavy streak-
lines upstream of the separation in Figure 11, is the following: as discussed above the
discretization of the boundary layer is relatively coarse (at certain instances the value of
y�� locally exceeds	 in the front part). This induces additional numerical oscillations so
that the boundary layer experiences additional “turbulence” as if the Reynolds number
were somewhat larger. Indeed, the backward shift of the separation, reduced drag, and
increase in Strouhal number all point to a premature tendency towards the critical state.

Finally, we can make a comparison with previous results obtained with statistical
models. Figure 10c includes the corresponding curve obtained with a two–layerk � 	
turbulence model [16]. It is evident that the model gives unsatisfactory results for the
considered flow. This is due to the presence of large scale fluctations which are known
to be difficult to model by RANS methods; in particular thek � 	 model underpredicts
the strength of the periodic shedding motion.

Table 2 Global quantities for cylinder flow computations atRe � 
�����.

St CD Cbp Lr�D �

LESOCC ����
 ���	
 ����� ���� ���


Experiment [11] ���
� ����
 ����� ��	
[33],[38],[37] ��� ��� ����� 
�



Figure 11 Streaklines in the computation atRe � 
������ starting at two points close
to the stagnation line, top and side view at the same instant. The figures show a closeup
near the cylinder, tics are placed at unity distance. In the top view the streaklines are partly
covered by the representation of the cylinder wall.

4 Conclusions

The paper reports on large-eddy simulations of flow around circular cylinders at two
different subcritical Reynolds numbers. The complex physical phenomena occurring
in these flows are generally well captured by the calculations and the results agree
favourably with experiments. It is the first time that such calculations are reported for
the high Reynolds number of Re = 140000; also in this case the results are in most
respects satisfactory, but the very thin laminar boundary layer up to separation could
not be resolved sufficiently and a better treatment of this boundary layer should be
attempted. Altogether, the results show clearly that LES is much more suitable for sim-
ulating this type of flow than are RANS models.

A special effort was made to compute the case with Re = 3900 under similar condi-
tions with a structured FV code and an unstructured FE code in order to allow a detailed
comparison of the two methods. First of all, the results demonstrate that the unstruc-
tured LES code is operational and LES calculations are possible with unstructured FV
methods. The comparison has shown that both codes run at similar cost for the case
computed: the extra computational effort due to the unstructured nature of the code is
roughly compensated by the lower number of grid points that need to be used. How-
ever, the comparison of the results also revealed that, in the case of the unstructured grid
employed, the reduction of grid points was overdone somewhat as the separated shear
layer and the wake were not resolved sufficiently.



Proper construction of a suitable grid for LES calculations of complex flows is a dif-
ficult task for both structured and unstructured grids. While the former suffer from the
introduction of unnecessary points in certain areas, the latter require a priori knowl-
edge on where fine resolution is necessary and hence on what an ideal discretization
should look like. Only with substantially fewer grid points does the higher price per
grid point pay off when the unstructured method is used. Hence, great effort has usu-
ally to be invested in generating a suitable mesh. In the case of structured grids, better
economy with regard to grid points can be achieved by using block-structured grids;
this technique is currently implemented into LESOCC.

In any case, with a fixed mesh good a priori knowledge on the properties of the
solution is required. However, often such knowledge is lacking and it is increasingly
difficult to obtain the more complex the flow situation is. When using an unstructured
grid, the natural way out of this dilemma is of course to employ a method that allows to
adapt the grid during the calculation, based on certain quality criteria. Certainly, much
work is still required in developing such adaptive mesh techniques suitable for large-
eddy simulations.
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