

Efficient distance computation for ellipsoids

in dilute and dense particle-laden flows

R. Rebel // J. Fröhlich

TU Dresden, Chair of Fluid Mechanics, George-Bähr-Str. 3c, 01069 Dresden, Germany

Contact point calculation

Contact points: Minimum distance

Formulation of contact detection as minimum distance problem Iterative solution of minimum distance problem with TNCG

Problem solution: Comparison of CPU time

Comparison of TNCG and GJK for small and large distances between ellipsoids

Performance analysis

Performance: Impact of collision configuration

Impact of parameters on CPU time evaluated with 7 · 10⁵ pairs of ellipsoids Histograms of parameter distributions on main diagonal

Parameters investigated

Diameters	Axis ratios E_i	Axis ratios E_j
$D_{\rm m} = 0.5(D_i + D_j)$	$A_{ab_i} = a_i/b_i$	$A_{\rm ab_j} = a_j/b_j$
$D_{\rm r} = D_i/D_j$	$A_{\mathrm{a}c_{\mathrm{i}}}=a_{i}/c_{i}$	$A_{ac_j} = a_j/c_j$

Achievements

- Formulation and solution of contact detection as 4D optimization problem
 Implementation of adapted TNCG algorithm
- Implementation of adapted TNCG algorithm

- Detailed analysis of factors influencing performance
- Improved performance and robustness compared to GJK

