INTERNATIONAL SEMINAR OPEN PROBLEMS SESSION 21 OCTOBER 2016

Henri Mühle

We present permutations $\pi \in S_n$ by strings $\pi_1 \pi_2 \dots \pi_n$ where $\pi_i = \pi(i)$ for all $i \in \{1, \dots, n\}$. Let $\pi = \pi_1 \pi_2 \dots \pi_n \in S_n$, $\sigma = \sigma_1 \sigma_2 \dots \sigma_m \in S_m$, $n \leq m$. We say that σ contains the pattern π , and we write $\pi \leq \sigma$, if there exist indices $1 \leq i_1 \leq i_2 \leq \dots i_n \leq m$ such that $\pi_1 \pi_2 \dots \pi_n$ is order-isomorphic to $\sigma_{i_1} \sigma_{i_2} \dots \sigma_{i_n}$. For example, 4213 \leq 5741263, because the subsequence 7416 of 5741263 is order-isomorphic to 4213. Write $\operatorname{Av}^{(n)}(\pi_1, \pi_2, \dots, \pi_k) := \{\sigma \in S_n \mid \forall i \in [k] : \pi_i \nleq \sigma\}$.

Problem. Does the equality

 $|\operatorname{Av}^{(n)}(12345, 12354, 21345, 21354)| = |\operatorname{Av}^{(n)}(41352, 42351, 51342, 52341)|$

hold for all $n \in \mathbb{N}_+$?

ANTOINE MOTTET

A subgroup G of $\operatorname{Sym}(\mathbb{Q} \times \mathbb{Z})$ is *closed* if for all $h \in \operatorname{Sym}(\mathbb{Q} \times \mathbb{Z})$ it holds that $h \in G$ whenever for every finite subset A of $\mathbb{Q} \times \mathbb{Z}$ there exists $g \in G$ such that $g|_A = h_A$.

Problem. Find the closed subgroups G of $\text{Sym}(\mathbb{Q} \times \mathbb{Z})$ containing $\text{Aut}(\mathbb{Z}, <) \wr_{\mathbb{Q}}$ $\text{Aut}(\mathbb{Q}, <)$ with the property that the elements of G act on the copies of \mathbb{Z} by isometries, i.e., for all $\alpha \in G$, $x \sim y$ implies $|\alpha(x) - \alpha(y)| = x - y$.

Jens Zumbrägel

Denote the set of all k-element subsets of [n] by $\binom{[n]}{k}$. A Steiner system S(t, k, n) is a collection $\mathcal{B} \subseteq \binom{[n]}{k}$ such that for every $A \in \binom{[n]}{t}$, there exists a unique $B \in \mathcal{B}$ such that $A \subseteq B$. If we modify the above definition and replace $\binom{[n]}{k}$ by the Grassmannian $\begin{bmatrix} \mathbb{F}_q^n \\ k \end{bmatrix} := \{U \leq \mathbb{F}_q^n \mid \dim U = k\}$, we obtain the definition of a q-analog of a Steiner system or a q-Steiner system $S[t, k, n]_q$.

Problem. Does there exist $S[2,3,7]_2$?

Remark. It has been shown that q-Steiner systems $S[2, 3, 13]_2$ exist; see [1].

 M. BRAUN, T. ETZION, P. R. J. ÖSTERGÅRD, A. VARDY, A. WASSERMANN, Existence of qanalogs of Steiner systems, Forum Math. Pi 4 (2016) e7, 14 pp.

MANUEL BODIRSKY

A structure A has an *interpretation* in a structure B if there exists a surjective partial map $I: B^n \to A$ such that preimages of relations defined by atomic formulas are first-order definable in B.

Fact. All finite structures are interpretable over $(\mathbb{N}, =)$.

2 INTERNATIONAL SEMINAR, OPEN PROBLEMS SESSION, 21 OCTOBER 2016

Fact. For every structure interpretable over $(\mathbb{N}, =)$, there exists a homomorphically equivalent structure B such that $\overline{\operatorname{Aut}(B)} = \operatorname{End}(B)$. Moreover, B is unique up to isomorphism.

Problem. Is B interpretable over $(\mathbb{N}, =)$?

SZYMON TORUŃCZYK

Graphs interpretable over $(\mathbb{N}, =)$ are precisely those which can be described by finite expressions involving possibly nested set-builder expressions with first-order formulas in the language of $(\mathbb{N}, =)$, such as for instance the one below:

$$\begin{split} V &= \{\{a,b\}: a, b \in \mathbb{N}, \, a \neq b\}, \\ E &= \{\{\{a,b\}, \{b,c\}\}: a, b, c \in \mathbb{N}, \, a \neq b, \, b \neq c, \, a \neq c\}. \end{split}$$

We are interested in the decidability of the following decision problem.

Problem. Given two graphs that are interpretable over $(\mathbb{N}, =)$, decide if they are isomorphic. Equivalently, given a graph G = (V, E) and $v, w \in V$, decide whether v and w are in the same orbit of Aut(G).

Bertalan Bodor

A structure B is a *reduct* of a structure A if B has the same domain as A and all relations of B are first-order definable in A. A and B are *interdefinable* if they are reducts of each other.

Problem. Let A be a structure interpretable over $(\mathbb{N}, =)$? Does A have finitely many reducts up to interdefinability?

CATERINA VIOLA

Consider a structure (D, \leq) , where \leq is a total order. A function $f: D^k \to \mathbb{Q}$ is submodular if for all $\mathbf{x}, \mathbf{y} \in D^k$,

$$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\max(\mathbf{x}, \mathbf{y})) + f(\min(\mathbf{x}, \mathbf{y})).$$

Theorem. A function $f: D^2 \to \mathbb{Q}$ is submodular if and only if for all $\alpha, \beta, \gamma, \delta \in D$ such that $\alpha < \beta$ and $\gamma < \delta$, it holds that $f(\alpha, \delta) + f(\beta, \gamma) \ge f(\alpha, \gamma) + f(\beta, \delta)$.

Theorem. Let $f: D^k \to \mathbb{Q}$, and assume that k > 2. Then f is submodular if and only if for all $\alpha, \beta, \gamma, \delta \in D$ such that $\alpha < \beta$ and $\gamma < \delta$, for all $i, j \in \{1, \ldots, k\}$ with $i \neq j$, and for all $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k \in D$, it holds that

$$f(x_1, \dots, \alpha, \dots, \delta, \dots, x_k) + f(x_1, \dots, \beta, \dots, \gamma, \dots, x_k) \ge f(x_1, \dots, \alpha, \dots, \gamma, \dots, x_k) + f(x_1, \dots, \beta, \dots, \delta, \dots, x_k).$$

Problem. If $f: D^n \to \mathbb{Q}$ is of the form

$$f(x_1, \dots, x_n) = \sum_i \max(g_{i1}(x_{i1}), \dots, g_{iq_i}(x_{iq_i})) + \sum_j \min(f_{j1}(x_{j1}), f_{j2}(x_{j2})) + \sum_k h_k(x_{k1}),$$

where the $g_{i\ell}$ and f_{j1} are non-decreasing and the f_{j2} are non-increasing, then f is submodular. Does the converse implication hold if D is finite?