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VCSPs

Let D be a fixed set (called domain or set of labels).
A cost function over D is any f : Dn → Q, for any n ∈ N.

(Valued constraint) language: a finite set Γ of cost functions over D.

The valued constraint satisfaction problem for Γ, VCSP(Γ), is a
computational optimisation problem.
INPUT:

a finite set V = {x1, . . . , xn} of variables, and
an objective function Φ(x1, . . . , xn) =

∑k
i=1 fi(xi,1, . . . , xi,qi ), where

1 ≤ i ≤ k, xi,j ∈ V and fi is a cost function over D.
GOAL: find an assignment of labels (or labeling) to the variables that
minimises Φ.
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What we know

Let Γ be a valued constraint language over a finite domain D.
The computational complexity of VCSP(Γ) has attracted a lot of attention in
the literature. All partial classifications were subsumed and generalised by:

Theorem (Thapper and Živný, 2013)

VCSP(Γ) is either polynomial-time solvable or NP-hard.

What happens in infinite domains?

Our goal is classify the computational complexity of VCSPs for semilinear
languages.
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Semilinear VCSPs

A function f : Qn → Q is semilinear if it is first-order definable over
(Q;≤,+, 1).

Example

f : Q3 → Q

f (x, y, z) =


5x + 7z if x + y ≤ 3
−2 if x + y > 3 and max(x, y) > z + 1
min(2y + 6,−1) otherwise

In a semilinear VCSP the underlying domain is Q and the language is made
up by semilinear cost functions.
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The Thapper&Živný’s dichotomy

Let D be a finite set.

Either Γ has a symmetric fractional polymorphism and VCSP(Γ) is in
P,
or VCSP(Γ) is NP-hard.
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Fractional polymorphisms

Let O(m)
D denote the set of all m-ary operations g : Dm → D, for m ∈ N.

An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

The support of ω is defined as Supp(ω) = {g ∈ O(m)
D | ω(g) > 0}.

A m-ary fractional operation ω on D with finite support is said to be a
fractional polymorphism of a cost function f if, for any x1, x2, . . . , xm ∈ Dn,
we have∑

g∈Supp(ω)

ω(g)f (g(x1, x2, . . . , xm)) ≤
1
m

(f (x1) + f (x2) + · · · + f (xm)),

where g is applied componentwise.

For a valued constraint language Γ, fPol(Γ) denotes the set of fractional
operations that are fractional polymorphisms of every cost function in Γ.
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Symmetric fractional polymorphisms

A (m-ary) fractional polymorphism is said to be symmetric if all operations
g in its support is symmetric, i.e. for every permutation π ∈ Sym(1, . . . ,m),
we have g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)).
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Example: submoduar semilinear languages

Let the domain D be totally ordered. We say that f : Dn → Q is submodular
if for each x, y ∈ Dn

f (x) + f (y) ≥ f (max{x, y}) + f (min{x, y})

Submodularity is an important concept in discrete optimisation.

A cost function is submodular iff it has the (binary) fractional polymorphism
ω : O(2)

D → [0, 1],

ω(g) =


1
2 if g = max
1
2 if g = min
0 if otherwise
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Submodular semilinear VCSPs

Γ: submodular language over a totally ordered domain D.

If D is finite then the VCSP is in P (Cohen, Cooper, Jeavons, Krokhin).
What is the computational complexity of VCSP(Γ) if Γ is a submodular
semilinear language?
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Submodular semilinear functions
Examples of submodular semilinear cost functions:

all unary cost functions are submodular;
all linear cost functions are submodular;
the cost function f : Q3 → Q, f (x1, x2, x3) = max(x1, x2, x3) is
submodular;
the cost function f : Q2 → Q, f (x, y) = min(x,−y) is submodular.

Lemma (Topkis, 1978)

A binary function f : Q2 → Q is submodular if, and only if, for every α1 < α2
and β1 < β2 in Q

f (α1, β1) + f (α2, β2) ≤ f (α1, β2) + f (α2, β1).

Theorem (Topkis, 1978)

f : Qn → Q is submodular if and only if the (binary) projection to every
plane parallel to one of the coordinate planes is submodular.
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Submodular semilinear functions

A function f : Qn → Q is separable if f (x) =
∑n

i=1 fi(xi) for all
x = (x1, . . . , xn), with xi ∈ Q for i = 1, . . . , n.

Theorem (Topkis, 1978)

If Di is a chain (totally ordered set) for i = 1, . . . , n, then f is separable on∏n
i=1 Di if, and only if, both f and −f are submodular on

∏n
i=1 Di.

Proposition

fi : Q→ Q, i = 1, . . . , n finitely many unary semilinear cost functions. Then,
find infx∈Q(f1(x) + · · · + fn(x)) is in P.
It follows that the VCSP for a language containing only separable
semilinear cost functions is in P.
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Submodular semilinear functions

Proposition

Maximum of non-decreasing unary functions are submodular.

Example

f : Q2 → Q, f (x1, x2) = max(x1 + 6, 3x2) is submodular.

Counterexample

f : Q2 → Q, f (x1, x2) = min(−x1,−x2 + 1). It is minimum of non-increasing
functions and it is not submodular. Take, for instance (2, 4), (5,−2) ∈ Q2.
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Submodular semilinear functions

Proposition

Minimum of a non-decreasing unary function and a non-increasing unary
function are submodular.

Example

f : Q2 → Q, f (x1, x2) = min(x1 + 2,−x2) is submodular.

Counterexample

f : Q2 → Q, f (x1, x2) = max(x1,−x2) is maximum of a non-decreasing
function and a non-increasing function. It is not submodular: consider
(−3, 2), (5, 1) ∈ Q2.
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The expressive power

Let Γ be a valued constraint language.
A k-ary cost function f is expressible over Γ if there exists an instance I of
VCSP(Γ) with objective function fI and with variables
V = {x1, . . . , xk, xk+1, . . . , xn}, such that

f (x1, . . . , xk) = min
xk+1,...,xn

fI(x1, . . . , xk, xk+1, . . . , xn).

Expressive power of Γ: the set 〈Γ〉 of all cost functions expressible over Γ.

Remark: 〈Γ〉 is the closure of Γ under addition, non-negative scalar
multiplication, minimisation over extra variables.

Proposition (Cohen, Cooper, Jeavons, 2006)

Γ valued constraint language over a finite domain. Then fPol(Γ) = fPol(〈Γ〉).

The proof works also for finite languages Γ over an infinite domain.
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Corollary

Let Γ be a semilinear language made up by:

separable cost functions: that can be written as sum of unary cost
functions;

f (x) = max{f1(x1), . . . , fm(xm)}, where fi(xi) are non-decreasing cost
functions;

f (x) = min{f1(x1), f2(x2)}, where f1(x1) is a non-decreasing cost function
and f2(x2) is a non-increasing cost function;

(non-negative linear) combinations of previous cases.

Then Γ is a semilinear submodular language.

Γ is a tame submodular semilinear language if it satisfies the hypothesis of
the corollary above.
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Algorithm
Consider the following objective function

Φ(x, y, z) = f1(x) + f2(y) + max(g1(y), g2(z)) + min(h1(x), h2(z)).

Where the elementary unary functions are:

f1(x) =


5x + 2 x < 4
1 x = 4
2x − 5 x > 4

f2(y) =


−3y + 1 y < −7
−8 y = −7
y − 2 y > −7

g1(y) =


2y + 2 y < 0
3 y = 0
y + 3 y > 0

g2(z) =


z + 1 z < 2
3 z = 2
2z − 1 2 < z < 3
7 z = 3
2z + 3 z > 3

h1(x) =


x − 3 x < −1
0 x = −1
x + 2 x > −1

h2(z) = −z

16 / 20
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
z + 1 z < 2
3 z = 2
2z − 1 2 < z < 3
7 z = 3
2z + 3 z > 3

h1(x) =


x − 3 x < −1
0 x = −1
x + 2 x > −1

h2(z) = −z
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Algorithm
Define B = {−7,−1, 0, 2, 3, 4} (special points).

(Q × E;�), where E = {−1, 0, 1} and (a, b) � (c, d) iff a < c or a = c and
b ≤ d.
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x − 3 (x, α) ≺ (−1, 0)
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Algorithm

Every f̃ is unary and inherits the monotonicity of f , therefore

Φ̃((x, α), (y, β), (z, γ)) = f̃1(x, α)+f̃2(y, β)+max(g̃1(y, β), g̃2(z, γ))+min(h̃1(x, α), h̃2(z, γ))

is an instance of a VCSP for a new tame submodular semilinear
language, Γ′ over Q × E.

infQΦ = infQ×E Φ̃.
D = {(α, 0), (α,−1), (α, 1) | α ∈ B} (finite).
Cost functions in Γ′ are still submodular over D ⊂ Q × E.

Fact
Γ tame submodular semilinear language.
If infQ×E Φ̃ = infD Φ̃, then there exists a polynomial-time reduction from a
VCSP(Γ) to a VCSP for a submodular language over a finite domain.
In particular, VCSP(Γ) is in P.
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Next steps and open problems

1 Prove that infQ×E Φ̃ = infD Φ̃.
2 Adapt the algorithm to the case in which all elementary unary cost

function in the instance are linear (no special points).
3 Find a syntactic characterisation for all submodular semilinear

functions.
4 Does fPol(Γ) = fPol(∆) implies 〈Γ〉 = 〈∆〉?
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Thank you
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