Submodular semilinear valued constraint
satisfaction problems

Caterina Viola

TU-Dresden
Institut fiir Algebra

November 2016

VCSPs

Let D be a fixed set (called domain or set of labels).
A cost function over D is any f: D" — Q, for any n € N.

VCSPs

Let D be a fixed set (called domain or set of labels).
A cost function over D is any f: D" — Q, for any n € N.
(Valued constraint) language: a finite set I of cost functions over D.

VCSPs

Let D be a fixed set (called domain or set of labels).
A cost function over D is any f: D" — Q, for any n € N.
(Valued constraint) language: a finite set I of cost functions over D.

The valued constraint satisfaction problem for I', VCSP(I'), is a
computational optimisation problem.

INPUT:
m a finite set V = {xq, ..., x,} of variables, and
m an objective function ®(xy, ..., x,) = Zf.‘zlf,-(xi,l, ..., Xig,), Where

1 <i<k, x;j €Vandfis a cost function over D.

GOAL: find an assignment of labels (or labeling) to the variables that
minimises O.

What we know

Let I" be a valued constraint language over a finite domain D.
The computational complexity of VCSP(I') has attracted a lot of attention in
the literature. All partial classifications were subsumed and generalised by:

Theorem (Thapper and Zivny, 2013)
VCSP(D) is either polynomial-time solvable or NP-hard.

What we know

Let I" be a valued constraint language over a finite domain D.
The computational complexity of VCSP(I') has attracted a lot of attention in
the literature. All partial classifications were subsumed and generalised by:

Theorem (Thapper and Zivny, 2013)
VCSP(D) is either polynomial-time solvable or NP-hard.

What happens in infinite domains?

What we know

Let I" be a valued constraint language over a finite domain D.
The computational complexity of VCSP(I') has attracted a lot of attention in
the literature. All partial classifications were subsumed and generalised by:

Theorem (Thapper and Zivny, 2013)
VCSP(D) is either polynomial-time solvable or NP-hard.

What happens in infinite domains?

Our goal is classify the computational complexity of VCSPs for semilinear
languages.

Semilinear VCSPs

A function f: Q" — Q is semilinear if it is first-order definable over

(Q; <, +,1).

Semilinear VCSPs

A function f: Q" — Q is semilinear if it is first-order definable over
(@<, +,1).

Example

f@-Q

Sx+ 7z if x+y<3
fG,y,2)=9 2 if x+y>3and max(x,y) >z+1
min(2y + 6,—1) otherwise

Semilinear VCSPs

A function f: Q" — Q is semilinear if it is first-order definable over

@<, +,1).
Example
f:Q@-Q
Sx+ 7z if x+y<3
fG,y,2)=9 2 if x+y>3and max(x,y) >z+1
min(2y + 6,—1) otherwise

In a semilinear VCSP the underlying domain is Q and the language is made
up by semilinear cost functions.

The Thapper&Zivny’s dichotomy

Let D be a finite set.

m Either I' has a symmetric fractional polymorphism and VCSP(I) is in
Ps

m or VCSP(I') is NP-hard.

Fractional polymorphisms

Let Og") denote the set of all m-ary operations g: D™ — D, form € N.

Fractional polymorphisms

Let Og") denote the set of all m-ary operations g: D™ — D, form € N.

An m-ary fractional operation w on D is a probability distribution on 05:')").
The support of w is defined as Supp(w) = {g € OE')") | w(g) > 0}.

Fractional polymorphisms

Let Og") denote the set of all m-ary operations g: D™ — D, form € N.

An m-ary fractional operation w on D is a probability distribution on Og").
The support of w is defined as Supp(w) = {g € Og”) | w(g) > 0}.

A m-ary fractional operation w on D with finite support is said to be a
fractional polymorphism of a cost function f if, for any x;, x,, ..., X, € D",
we have

1
D, @ E0) S () +)+ +f),

g€Supp(w)

where g is applied componentwise.

Fractional polymorphisms

Let Og") denote the set of all m-ary operations g: D™ — D, form € N.

An m-ary fractional operation w on D is a probability distribution on Og").
The support of w is defined as Supp(w) = {g € Og”) | w(g) > 0}.

A m-ary fractional operation w on D with finite support is said to be a
fractional polymorphism of a cost function f if, for any x;, x,, ..., X, € D",
we have

1
D @@ @1, x2, X)) £ — (1) +F002) + -+ F)),
geSupp(w) "

where g is applied componentwise.

For a valued constraint language I, fPol(I) denotes the set of fractional
operations that are fractional polymorphisms of every cost function in I".

Symmetric fractional polymorphisms

A (m-ary) fractional polymorphism is said to be symmetric if all operations
g in its support is symmetric, i.e. for every permutation 7 € Sym(1,...,m),
we have g(xl, e ,Xm) = g(x,,(l), e ,xﬂ(m)).

Example: submoduar semilinear languages

Let the domain D be totally ordered. We say that f: D" — Q is submodular
if for each x,y € D"

J@) +f(y) 2 f(max{x, y}) + f(min{x, y})

Example: submoduar semilinear languages

Let the domain D be totally ordered. We say that f: D" — Q is submodular
if for each x,y € D"

J@) +f(y) 2 f(max{x, y}) + f(min{x, y})

Submodularity is an important concept in discrete optimisation.

A cost function is submodular iff it has the (binary) fractional polymorphism
w: 0 —[0,1],
% if g =max
w(g) = % if g =min
0 if otherwise

Submodular semilinear VCSPs

I': submodular language over a totally ordered domain D.

m If D is finite then the VCSP is in P (Cohen, Cooper, Jeavons, Krokhin).

m What is the computational complexity of VCSP(I') if I is a submodular
semilinear language?

Submodular semilinear functions
Examples of submodular semilinear cost functions:
m all unary cost functions are submodular;
m all linear cost functions are submodular;
m the cost function f: Q° — Q, f(x1, X2, x3) = max(xy, X2, x3) is
submodular;
m the cost function f: Q% — Q, f(x,y) = min(x, —y) is submodular.

Submodular semilinear functions
Examples of submodular semilinear cost functions:
m all unary cost functions are submodular;
m all linear cost functions are submodular;
m the cost function f: Q° — Q, f(x1, X2, x3) = max(xy, X2, x3) is
submodular;
m the cost function f: Q% — Q, f(x,y) = min(x, —y) is submodular.

Lemma (Topkis, 1978)

A binary function f : Q* = Q is submodular if. and only if. for every a; < a»
and By < B inQ

Sflay,Br) + flaz, B2) < flai,B2) + f(az, B1).

10/20

Submodular semilinear functions
Examples of submodular semilinear cost functions:
m all unary cost functions are submodular;
m all linear cost functions are submodular;
m the cost function f: Q° — Q, f(x1, X2, x3) = max(xy, X2, x3) is
submodular;
m the cost function f: Q% — Q, f(x,y) = min(x, —y) is submodular.

Lemma (Topkis, 1978)

A binary function f : Q* = Q is submodular if. and only if. for every a; < a»
and By < B inQ

Sflay,Br) + flaz, B2) < flai,B2) + f(az, B1).

Theorem (Topkis, 1978)

f: Q" — Q is submodular if and only if the (binary) projection to every
plane parallel to one of the coordinate planes is submodular.

10/20

Submodular semilinear functions

A function f: Q" — Q is separable if f(x) = X%, fi(x;) for all
x=X,...,x,), withx; e Qfori=1,...,n.

11/20

Submodular semilinear functions

A function f: Q" — Q is separable if f(x) = X%, fi(x;) for all
x=X,...,x,), withx; e Qfori=1,...,n.

Theorem (Topkis, 1978)

If D; is a chain (totally ordered set) fori = 1,...,n, then f is separable on
[1%, D; if, and only if, both f and —f are submodular on []}_, D;.

Submodular semilinear functions

A function f: Q" — Q is separable if f(x) = X%, fi(x;) for all
x=X,...,x,), withx; e Qfori=1,...,n.

Theorem (Topkis, 1978)

If D; is a chain (totally ordered set) fori = 1,...,n, then f is separable on
[1%, D; if, and only if, both f and —f are submodular on []}_, D;.

Proposition

fi:Q—> Q,i=1,...,nfinitely many unary semilinear cost functions. Then,
Sfind infyeq(fi(x) + - - - + fu(x)) is in P.

It follows that the VCSP for a language containing only separable
semilinear cost functions is in P.

Submodular semilinear functions

Proposition

Maximum of non-decreasing unary functions are submodular.

Submodular semilinear functions

Proposition

Maximum of non-decreasing unary functions are submodular.

Example

f: Q> = Q, f(x1,x2) = max(x; + 6,3x,) is submodular.

Submodular semilinear functions

Proposition

Maximum of non-decreasing unary functions are submodular.

Example

f: Q> = Q, f(x1,x2) = max(x; + 6,3x,) is submodular.

Counterexample

f:Q* = Q, f(x1,x) = min(—x;, —x, + 1). It is minimum of non-increasing
functions and it is not submodular. Take, for instance (2,4), (5, -2) € Q2.

Submodular semilinear functions

Proposition

Minimum of a non-decreasing unary function and a non-increasing unary
function are submodular.

Submodular semilinear functions

Proposition

Minimum of a non-decreasing unary function and a non-increasing unary

function are submodular.

Example

f: Q% = Q, f(x1,x) = min(x; + 2, —x») is submodular.

Submodular semilinear functions

Proposition

Minimum of a non-decreasing unary function and a non-increasing unary
function are submodular.

Example

f: Q% = Q, f(x1,x) = min(x; + 2, —x») is submodular.

Counterexample

f: Q% = Q, f(x1,x) = max(x;, —x») is maximum of a non-decreasing
function and a non-increasing function. It is not submodular: consider
(-3,2),(5,) e Q*.

The expressive power

Let I" be a valued constraint language.

A k-ary cost function f is expressible over I if there exists an instance 7 of
VCSP(I') with objective function f7 and with variables
V ={x1,..., Xk, Xks1» - - - » X}, Such that

S, x) = min f70e0, .., X Xkt - -5 Xn)-
Xt 150005Xn

14/20

The expressive power

Let I" be a valued constraint language.

A k-ary cost function f is expressible over I if there exists an instance 7 of
VCSP(I') with objective function f7 and with variables

V ={x1,..., Xk, Xks1» - - - » X}, Such that
f(xla""xk): min f](X[,...,.Xk,Xk+],...,xn).
Xt 150005Xn

Expressive power of I': the set (I) of all cost functions expressible over I'.

Remark: (I') is the closure of I" under addition, non-negative scalar
multiplication, minimisation over extra variables.

14/20

The expressive power

Let I" be a valued constraint language.
A k-ary cost function f is expressible over I if there exists an instance 7 of
VCSP(I') with objective function f7 and with variables

V ={x1,..., Xk, Xks1» - - - » X}, Such that
f(xla""xk): min f](X[,...,.Xk,Xk+],...,xn).
Xt 150005Xn

Expressive power of I': the set (I) of all cost functions expressible over I'.

Remark: (I') is the closure of I" under addition, non-negative scalar
multiplication, minimisation over extra variables.

Proposition (Cohen, Cooper, Jeavons, 2006)
I" valued constraint language over a finite domain. Then fPol(I') = fPol({I')).

The proof works also for finite languages I" over an infinite domain.

14/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

15/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

m f(x) = max{fi(x1),...,fu(xn)}, where fi(x;) are non-decreasing cost
functions;

15/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

m f(x) = max{fi(x1),...,fu(xn)}, where fi(x;) are non-decreasing cost
functions;

B f(x) = min{f(x1),2(x2)}, where f1(x1) is a non-decreasing cost function
and f>(x,) is a non-increasing cost function;

15/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

m f(x) = max{fi(x1),...,fu(xn)}, where fi(x;) are non-decreasing cost
functions;

B f(x) = min{f(x1),2(x2)}, where f1(x1) is a non-decreasing cost function
and f>(x,) is a non-increasing cost function;

m (non-negative linear) combinations of previous cases.

15/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

m f(x) = max{fi(x1),...,fu(xn)}, where fi(x;) are non-decreasing cost
functions;

B f(x) = min{f(x1),2(x2)}, where f1(x1) is a non-decreasing cost function
and f>(x,) is a non-increasing cost function;

m (non-negative linear) combinations of previous cases.

Then T is a semilinear submodular language.

15/20

Corollary

Let I be a semilinear language made up by:

B separable cost functions: that can be written as sum of unary cost
functions;

m f(x) = max{fi(x1),...,fu(xn)}, where fi(x;) are non-decreasing cost
functions;

B f(x) = min{f(x1),2(x2)}, where f1(x1) is a non-decreasing cost function
and f>(x,) is a non-increasing cost function;

m (non-negative linear) combinations of previous cases.

Then T is a semilinear submodular language.

I' is a tame submodular semilinear language if it satisfies the hypothesis of
the corollary above.

15/20

Algorithm

Consider the following objective function

D(x, y,2) = f1(x) + f2(y) + max(g1(y), 82(2)) + min(h; (x), 72 (2)).

16/20

Algorithm

Consider the following objective function

D(x, y,2) = f1(x) + f2(y) + max(g1(y), 82(2)) + min(h; (x), 72 (2)).

Where the elementary unary functions are:
S5x+2 x<4 “3y+1 y<-7
fih =41 x=4 L) =9 -8 y=-7
2x-5 x>4 y—2 y> =7

z+1 z7<2

2y+2 y<0 3 z=2
gl(v)={3 y=0 &@) =9 2z-1 2<z<3

y+3 y>0 7 z=3

2z+3 z>3

x—=3 x<-1
/’l](x) = O x=-1 hz(Z) = -z
x+2 x>-1

16/20

Algorithm

m Define B = {-7,-1,0,2, 3,4} (special points).

B (QXE;=<),where E ={-1,0,1}and (a,b) < (c,d) iff a < cora = c and
b<d.

Algorithm

m Define B = {-7,-1,0,2, 3,4} (special points).

B (QXE;=<),where E ={-1,0,1}and (a,b) < (c,d) iff a < cora = c and
b<d.

) 5x+2 (o)< 4,0) “3y+1 (L) <(=7,0)
m fi(x, @) ={ 1 ra)=40) LG ={ -8 0,2 =(=7,0)
-5 (x,a)>(4,0) y=2 (ha)>(-7.0)

z+1 (z,) < (2,0)

2y+2 (y.@) < (0,0) 3 (z.@) = (2,0)
S =4 3 0,0 =0,0) ©HEa)=y 2z-1 (2,0)0<Ea) <30
y+3 (.)>(0,0) 7 (z.@) = (3,0)

2z+3 (z,@) > (3,0)

x=3 (x,a) <(-1,0)
hix,@)=14 0 (@)= (-1,0) hy(z,@) =2
x+2 (x,a) > (-1,0)

Algorithm

m Every f is unary and inherits the monotonicity of f, therefore
((x, @), (0.8, (@.7)) = filx, @)+A.H)+max(§1 (v,). £2(z, Y)+min((x, @), 7y (2.)

is an instance of a VCSP for a new tame submodular semilinear
language, I over Q X E.

18/20

Algorithm

m Every f is unary and inherits the monotonicity of f, therefore
((x, @), (0.8, (@.7)) = filx, @)+A.H)+max(§1 (v,). £2(z, Y)+min((x, @), 7y (2.)

is an instance of a VCSP for a new tame submodular semilinear
language, I over Q X E.

m info @ = infgyg ®.

18/20

Algorithm

m Every f is unary and inherits the monotonicity of f, therefore
((x, @), (0.8, (@.7)) = filx, @)+A.H)+max(§1 (v,). £2(z, Y)+min((x, @), 7y (2.)

is an instance of a VCSP for a new tame submodular semilinear
language, I over Q X E.

m info @ = infgyg ®.

m D ={(a,0),(a —-1),(a,1)| @ € B} (finite).

18/20

Algorithm

m Every f is unary and inherits the monotonicity of f, therefore
((x, @), (0.8, (@.7)) = filx, @)+A.H)+max(§1 (v,). £2(z, Y)+min((x, @), 7y (2.)

is an instance of a VCSP for a new tame submodular semilinear
language, I over Q X E.

m infg @ = infoug o.

m D= {(a,0),(a,-1),(a, 1) | @ € B} (finite).

m Cost functions in I are still submodular over D ¢ Q X E.

18/20

Algorithm

m Every f is unary and inherits the monotonicity of f, therefore
B((x, @), (0, 8). (2, 7) = fi(x,)+, H+max(§i (v, f), 2z, y)+min(hy (x, @), h2(z,))
is an instance of a VCSP for a new tame submodular semilinear
language, I over Q X E.

m info @ = infgyg ®.

m D= {(a,0),(a,-1),(a, 1) | @ € B} (finite).

m Cost functions in I are still submodular over D ¢ Q X E.

Fact

I" tame submodular semilinear language.

If infoxg ® = inf), ®, then there exists a polynomial-time reduction from a
VCSP(I') to a VCSP for a submodular language over a finite domain.

In particular, VCSP(I') is in P.

18/20

Next steps and open problems

Prove that infoxg ® = infp .

Adapt the algorithm to the case in which all elementary unary cost
function in the instance are linear (no special points).

Find a syntactic characterisation for all submodular semilinear
functions.

Does fPol(I') = fPol(A) implies (I') = (A)?

19/20

Thank you

