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@ Noncrossing Set Partitions
9 A Symmetric Group Object
© Reflection Groups

e Combinatorial Models

e Extensions



@ Noncrossing Set Partitions



@ set partition



@ set partition

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ set partition

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ dual refinement order

n=16 16 1 2
15 3
14 4
13 5
12 6
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10 9 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ dual refinement order

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ dual refinement order

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1, 6,7},{2,3,4,5,8,14,15},{9,10,12,13}, {11}, {16}}



Proposition (Folklore)

For n > 0 the poset (I1,, <gyef) is a graded lattice. We have




@ Bell number:

n—1
n—1 2
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= N

Proposition (Folklore)

For n > 0 the poset (I1,, <gyef) is a graded lattice. We have
@ number of elements: B(n)




@ Stirling number of second kind:

1
11
1 3 1
16 7 1
1
1

stk = - (5

j=0 J

10 25 15 1
15 65 90 31 1

Proposition (Folklore)

For n > 0 the poset (I1,, <gyef) is a graded lattice. We have
@ number of elements: B(n)

o number of elements of rank k: S(n, k)




@ bounded poset: poset with least and greatest element
~ 0,1
@ Mobius number: (0, 1)

Proposition (Folklore)

For n > 0 the poset (I1,, <gyef) is a graded lattice. We have

@ number of elements: B(n)
o number of elements of rank k: S(n, k)
@ Mobius number: (—1)""1(n —1)!




Proposition (Folklore)

For n > 0 the poset (I1,, <gyef) is a graded lattice. We have

@ number of elements: B(n)
o number of elements of rank k: S(n, k)
@ Mobius number: (—1)""1(n —1)!

. . I(n—1)!
o number of maximal chains: * (22_1 )







@ noncrossing set partition

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ noncrossing set partition

=16 16 1 2
15 3
14 4
13 5
12 6 Nope!
11 7
10 9 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ noncrossing set partition

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1}, (2,8,14,15},{3,4,5}, {6,7},{9,10,12,13}, {11}, {16}}



Proposition (G. Kreweras, 1972)

For n > 0 the poset (NCy, <gref) is a graded, complemented
lattice. We have




@ Catalan number:

1 (20 :
Cat(n):n+1(n> §

Proposition (G. Kreweras, 1972)
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For n > 0 the poset (NCy, <gref) is a graded, complemented
lattice. We have

o number of elements: Cat(n)




@ Narayana number:

e =)0

Proposition (G. Kreweras, 1972)
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For n > 0 the poset (NCy, <gref) is a graded, complemented
lattice. We have

o number of elements: Cat(n)
o number of elements of rank k: Nar(n, k)




Proposition (G. Kreweras, 1972)

For n > 0 the poset (NCy, <gref) is a graded, complemented
lattice. We have

o number of elements: Cat(n)

o number of elements of rank k: Nar(n, k)
@ Mobius number: (—1)""'Cat(n — 1)




Proposition (G. Kreweras, 1972)

For n > 0 the poset (NCy, <gref) is a graded, complemented
lattice. We have

o number of elements: Cat(n)

o number of elements of rank k: Nar(n, k)

@ Mobius number: (—1)""'Cat(n — 1)
n—2

@ number of maximal chains: n
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14 4
13 5
12 6
11 7
0 o 8

{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}
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13 5
12 6
11 7
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{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



{{1, 6,7},12,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



13

12

11
10

{{1, 15,16}, {2,5,7}, {3}, {4}, {6}, {8,13}, {9}, {10, 11}, {12}, {14}}




o further properties of (NCn, Sdref):
o it is lexicographically shellable [A. Bjorner, P. Edelman, 1980]
o itis self-dual [R. Simion, D. Ullman, 1991]
@ it admits a symmetric chain decomposition
[R. Simion, D. Ullman, 1991]
o itis strongly Sperner [R. Simion, D. Ullman, 1991]




@ noncrossing partitions

o determine the matrix of chromatic joins [W. Tutte, 193]
o index free cumulants in the moments of a
non-commutative random variable [R. Speicher, 1997]

o index connected components of positroids
[F. Ardila, F. Rincén, L. Williams, 2016]



@ noncrossing partitions

o determine the matrix of chromatic joins [W. Tutte, 193]
o index free cumulants in the moments of a
non-commutative random variable [R. Speicher, 1997]

o index connected components of positroids
[F. Ardila, F. Rincén, L. Williams, 2016]
@ the order complex of the noncrossing partition lattice

o has a quotient with contractible universal cover and the
braid group as fundamental group
[D. Krammer, 2000; T. Brady, 2001]



@ the noncrossing partition lattice is (isomorphic to) the
poset of

o simple elements in the dual braid monoid =~ [D. Bessis, 2003]
o finitely-generated wide subcategories of
representations of a directed path [C. Ingalls, H. Thomas, 2009]

o certain shard intersections of the braid arrangement
[N. Reading, 2011]



9 A Symmetric Group Object



@ map parts to cycles

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1}, {2,8,14,15},{3,4,5}, {6,7}, {9,10,12,13}, {11}, {16}}



@ map parts to cycles

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

{{1}, {2,8,14,15},{3,4,5}, {6,7}, {9,10,12,13}, {11}, {16}}



@ map parts to cycles

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

(281415)(345)(67)(9 10 12 13)



@ map parts to cycles

o multiply by transpositions

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

(2814 15)(345)(67)(910 12 13)



@ map parts to cycles

o multiply by transpositions

n=16 16 1 2
15 3
14 4
13 5
12 6
11 7
10 9 8

(281415)(345)(67)(9101213) - (25)



@ map parts to cycles
@ multiply by transpositions

- 6 L 9
15 3
14 4
13 5
12 6
11 7
0 g 8

(234581415)(67)(910 12 13)



@ absolute length: /7(x) = n — cyc(x)

@ absolute order: u <r v if and only if

(r(v) = br(u) + br(u=1o)



@ absolute length: /7(x) = n — cyc(x)

@ absolute order: u <r v if and only if
lr(v) = Lr(u) + lr(u=to)
o NC,={xe6,|x<r(12...n)}



@ absolute length: /7(x) = n — cyc(x)

@ absolute order: u <r v if and only if
lr(v) = Lr(u) + lr(u=to)
o NC,={xe6,|x<r(12...n)}

Theorem (P. Biane, 1997)
For x,y € NC,, we have x <g,¢y if and only if B(x) <t B(y).
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@ V .. unitary complex vector space

@ (complex) reflection: unitary transformation on V/
fixing a space of codimension 1 ~ T

@ (complex) reflection group: finite subgroup of U(V)
generated by (complex) reflections ~ W

o irreducible: W does not fix a proper subspace of V

@ rank: codimension of space fixed by W ~ 1

o well-generated: minimal generating set has n elements



@ G(de,e,n) ford,e,n > 1is the group consisting of
o n X n matrices with a unique non-zero entry per row
and column
e the non-zero entries are (de)™ roots of unity
e the product of the non-zero entries is a d™ root of unity



@ G(de,e,n) ford,e,n > 1is the group consisting of
o n X n matrices with a unique non-zero entry per row
and column
e the non-zero entries are (de)™ roots of unity
o the product of the non-zero entries is a d root of unity

Theorem (G. C. Shephard, J. A. Todd, 1954)
The irreducible well-generated complex reflection groups are
(isomorphic to) either

o G(1,1,n) forn > 1,

o G(d,1,n) ford >2,n>1,

o G(d,d,n)ford,n>2, or

@ 26 exceptional groups.




@ Coxeter element: a “well-behaved” element ~ C

@ absolute length: minimum length of a factorization
into reflections ~s U

@ absolute order: u <r v if and only if
(1(v) = Lr(u) + br(u=1v)



@ Coxeter element: a “well-behaved” element ~ C

@ absolute length: minimum length of a factorization
into reflections ~s U

@ absolute order: u <r v if and only if
(1(v) = Lr(u) + br(u=1v)

Definition (T. Brady, C. Watt, 2002; D. Bessis, 2003)

Let W be an irreducible well-generated complex reflection
group, T its set of reflections, and ¢ € W a Coxeter element.
The set of W-noncrossing partitions is

NCw(c) = {we W |w<rc}.




@ Coxeter element: a “well-behaved” element ~ C

@ absolute length: minimum length of a factorization
into reflections ~s U

@ absolute order: u <r v if and only if
(1(v) = Lr(u) + br(u=1v)

Theorem (V. Reiner, V. Ripoll, C. Stump, 2014)

Let W be an irreducible well-generated complex reflection group,
and let ¢, ¢’ € W be two Coxeter elements. The posets
(NCw(c), <r) and (NCw(c"), <r) are isomorphic.




Theorem (C. Chevalley, 1955)

A finite group G is a complex reflection group if and only if its
algebra of G-invariant polynomials is again a polynomial algebra.




o degrees: d; <dp < --- <d,

Theorem (C. Chevalley, 1955)

A finite group G is a complex reflection group if and only if its
algebra of G-invariant polynomials is again a polynomial algebra.
The degrees of a homogeneous choice of generators of this algebra
are group invariants.




o degrees: d; <dp < --- <d,

@ W-Catalan number:

n .
Cat(W) = [T % ;’id"

i=1




o degrees: d; <dp < --- <d,

@ W-Catalan number:

Theorem (G. Kreweras, 1972; V. Reiner, 1997; D. Bessis,

2004-2016)

For every irreducible well-generated complex reflection group W
the cardinality of NCyy is given by Cat(W).




o the degrees of G(1,1,n) are 2,3,...,n

o we get



o the degreesof G, are2,3,...,n

@ we get



o the degreesof G, are2,3,...,n

@ we get

it 14n
Cat(Gn) = q Z—l-—l



o the degreesof G, are2,3,...,n

@ we get

Cat(,) = 2



o the degreesof G, are2,3,...,n

@ we get

Cat((‘Sn) =



o the degreesof G, are2,3,...,n

1 2n
Cat(Sn) = n——H(n)

@ we get



o the degreesof G, are2,3,...,n

@ we get
Cat(&,) = Cat(n)



Cat(W)

(LLm) | 500
G(2,1,n) )
(2,2,n) | 2000
G(d, 1,n) ")
(d,d,n)

(d+1)n—d (Zn—Z
n n—1



o if Wis a Weyl group, NCyy is in bijection with:



o if Wis a Weyl group, NCyy is in bijection with:
o W-nonnesting partitions



o if W is a Coxeter group, NCw/(c) is in bijection with:
o W-nonnesting partitions
@ c-sortable elements of W



o if W is a Coxeter group, NCw/(c) is in bijection with:
o W-nonnesting partitions
@ c-sortable elements of W
o facets of the c-cluster complex of W



o if W is a Coxeter group, NCw/(c) is in bijection with:

W-nonnesting partitions

c-sortable elements of W

facets of the c-cluster complex of W

finitely generated wide subcategories of
finite-dimensional representations of the oriented
Coxeter diagram



e further properties of (NCy, <t):
o it is lexicographically shellable
[A. Bjorner, P. Edelman, 1980; V. Reiner, 1997; C. A. Athanasiadis, T. Brady, C. Watt, 2007; %; 2015]
o it is self-dual
o it admits a symmetric chain decomposition
[R. Simion, D. Ullman, 1991; V. Reiner, 1997; %; 2016]
o itis strongly Sperner (R Simion, D. Ullman, 1991; V. Reiner, 1997; €, 2016]



e Combinatorial Models









Qo G(l,l,l’l) — 6}1
@ we have seen this









o [n]*={1,2,...,n,—-1,-2,...,—n}
@ signed permutation: 7t : [n]* — [n]* such that
n(—i) = —n(i) for all i



o [n]*={1,2,...,n,—-1,-2,...,—n}

@ signed permutation: 7t : [n]* — [n]* such that
nt(—i) = —m(i) for all i

@ G(2,1,n): group of signed permutations



o [n]*={1,2,...,n,—-1,-2,...,—n}

@ signed permutation: 7t : [n]* — [n]* such that
nt(—i) = —m(i) for all i

@ G(2,1,n): hyperoctahedral group



o [n]*={1,2,...,n,—-1,-2,...,—n}

@ signed permutation: 7t : [n]* — [n]* such that
nt(—i) = —m(i) for all i

o G(2,1,n): hyperoctahedral group

@ NCg(2,1,4): nONcrossing set partitions of [n]* invariant
under 180° rotation



[V. Reiner, 1997]

{{1,6,7},42,4,5}, {3}, {8}, {~1,~6,~7}, {2, ~4,~5}, {3}, {8} |



[V. Reiner, 1997]

{11,6,7},{2,4,5}, {3}, {8, -8}, {~1,~6,~7}, {2, ~4,~5},{-3}}



[V. Reiner, 1997]

{{1,6, 7,8,—1,-6,—7,-8},12,4,5}, {3}, {—2, -4, -5}, {—3}}









@ G(2,2,n): group of signed permutations with an even
number of sign-changes



@ G(2,2,n): group of signed permutations with an even
number of sign-changes

@ NCg(2,): centrally symmetric noncrossing set
partitions of [n]* with zero block of cardinality # 2



[C. A. Athanasiadis, V. Reiner, 2004]

{11,6,7},{2,4,5}, {3}, {8}, {9}, {~1, 6,7}, {~2,~4,-5}, {3}, {8}, {9} }



[C. A. Athanasiadis, V. Reiner, 2004]

6 zero block

{{1,6, 7,8,9,~1,—6,—7,-8,-9},{2,4,5}, {3}, {~2,—4,—5}, {—3}}



[C. A. Athanasiadis, V. Reiner, 2004]

{{1,6, 7},{2,4,5},{3}, 18,9}, {-1,—6,—7},{~2,—4,—5},{~3},{-8, —9}}



[C. A. Athanasiadis, V. Reiner, 2004]

{{1,6, 7},{2,4,5}, {3}, {8, —9},{9, —8},{~1,—6,~7},{—2, -4, -5}, {—3}}









o [1]® = {10),20),.. . n©),10),20),._ pld-1)}

@ d-colored permutation: 7 : [n]@ — [1](® such that
(i) = j+4) for all i and s

@ G(d,1,n): group of d-colored permutations



o [1]® = {10),20),.. . n©),10),20),._ pld-1)}

@ d-colored permutation: 7 : [n]@ — [1](® such that
(i) = j+h) for all i and s

@ G(d,1,n): group of d-colored permutations

Proposition (D. Bessis, R. Corran, 2006)

For d > 2 we have (NCg(41,m), <1) = (NCg(2,1,n), <T)-







@ G(d,d,n): group of d-colored permutations, where the
number of color-changes is divisible by d



@ G(d,d,n): group of d-colored permutations, where the
number of color-changes is divisible by d

@ NCg(4,4,0): nONcrossing set partitions of [n] (@) that are
either

e invariant under a (360/d)° rotation, or
e have a unique asymmetric block



{ {200,400 1M} (30}, (501 {21 41) 1@} 3} {5001,
{2(2), 42) 10) 1, {3(2) 1, {5(2) 1, {2(3), 43) 100 1, {3(3) 1, {5(3) }}



zero block

{{1(0), 11,12 ,10)}, {200,400} {30}, {50),5(1) 52) 503)},
{20,407y {31}, {22,421 {31 {20) 403}, {3(3)}}



{{2(0),4(0), 1M,5M1 {30}, {21) 41 1) 521 {3},
(2,42 10) 50)}, (3@}, {203) 40) 1(0) 500}, {3(3)}}






Extensions



o recall: if W= &,, thenT = {(ij) |1 <i<j<n}
@ rework:

o letA={(ijk)|1<ijk<n|{ijk} =3}

@ alternating group: (A) =2, C &,




o recall: if W= &,, thenT = {(ij) |1 <i<j<n}
@ rework:

o letA={(ijk)|1<ijk<n|{ijk} =3}

@ alternating group: (A) =2, C &,

Proposition (M. Herzog, K. Reid, 1976)

Forn > 3and x € A, we have {4(x) = %yc(x), where ocyc(x)
counts the odd cycles of x.




o recall: if W= &,, thenT = {(ij) |1 <i<j<n}
@ rework:

o letA={(ijk)|1<ijk<n|{ijk} =3}

@ alternating group: (A) =2, C &,

e ENC, = {XEQ[Q,H_l |X§A (12 2n+1)}

Proposition (M. Herzog, K. Reid, 1976)

Forn > 3and x € A, we have {4(x) = %yc(x), where ocyc(x)
counts the odd cycles of x.




Proposition (¢, P. Nadeau, 2016)

Forn > 0 the poset (ENCpy,11, <a) is a graded, complemented,
self-dual poset. We have




@ even Catalan number:

1 3n+1 2
ECat(n) = m( " ) 370

Proposition (¢, P. Nadeau, 2016)

Forn > 0 the poset (ENCpy,11, <a) is a graded, complemented,
self-dual poset. We have

o number of elements: ECat(n)




@ even Narayana number:

1
11
o 2n+1 2n—ky (n+k 15 1
ENar(n,k) — —(2n72k+1)(2k+1)( k )(n—k) 114 14 1
130 8 30 1
1 55 308 308 55 1

Proposition (¢, P. Nadeau, 2016)

Forn > 0 the poset (ENCpy,11, <a) is a graded, complemented,
self-dual poset. We have

o number of elements: ECat(n)

o number of elements of rank k: ENar(n, k)




~
~

Proposition (¢, P. Nadeau, 2016)

Forn > 0 the poset (ENCpy,11, <a) is a graded, complemented,
self-dual poset. We have

o number of elements: ECat(n)

o number of elements of mnk k: ENar(n, k)

@ Mobius number: (—1)" 4n+1 (4”+1)




Proposition (¢, P. Nadeau, 2016)

Forn > 0 the poset (ENCpy,11, <a) is a graded, complemented,
self-dual poset. We have

o number of elements: ECat(n)

o number of elements of mnk k: ENar(n, k)

@ Mobius number: (—1)" 4n+1 (4”+1)

@ number of maximal chains: (2n + 1)"~




Proposition (¢, P. Nadeau, 2016)

Forn > 0, the poset (ENCoy+1, <a) is an induced subposet of
(NC241, <1).




@ we can also consider the subgroup G C &, generated
by all k-cycles

@ problem: for k > 5 the length function is not known

@ however: the elements below (12 ... kn + 1) seem to
behave nicely



@ consider the alternating subgroup of a Coxeter group
@ AW) ={xeW|(-1)® =0 (mod 2)}
@ it is generated by products of reflections

@ there seem to be promising formulas...



Thank You.
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