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Chapter 1

Bochner-Lebesgue and Bochner-Sobolev
spaces

1.1 The Bochner integral

Let X and Y be Banach spaces, and let (Q,A, ) be a measure space. A
function f : Q2 — X is called step function, if there exists a sequence (4,) C
A of mutually disjoint measurable sets and a sequence (x;) € X such that
f=X,1a,%:. A function f:Q — X is called mesurable, if there exists a
sequence (f,) of step functions f, : Q — X such that f, — f pointwise p-
almost everywhere.

Remark 1.1. Note that there may be a difference to the definition of mesura-
bility of scalar valued functions. Measurability of a function is here depend-
ing on the measure y. However, if the measure space (Q2, A, u) is complete
in the sense that u(A) = 0 and B C A implies B € A, then the above definition
of measurability and the classical definition of measurability coincide. Note
that one may always consider complete measure spaces.

Lemma 1.2. If f: Q — X is measurable, then ||f|| : Q — R is measurable. More
generally, if f:Q — X is measurable and if g: X — Y is continuous, then go f :
0 — Y is measurable.

Proof. This is an easy consequence of the definition of measurability and the
continuity of g. Note that in particular the norm ||-|| : X — R is continuous.

Lemma13.If f: Q — X and g: Q — K are measurable, then fg:Q — X is
measurable. Similarly, if f : Q — Xand g: Q — X’ are measurable, then (g, f)x' x :
Q — K is measurable.

Proof. For the proof it suffices to use the definition of measurability and to
show that the (duality) product of two step functions is again a step function.
This is, however, straightforward.

Theorem 1.4 (Pettis). A function f: Q — X is measurable if and only if (x’, f) is
measurable for every x’ € X' (we say that f is weakly measurable) and if there



2 1 Bochner-Lebesgue and Bochner-Sobolev spaces

exists a p-null set N € A such that f(Q\N) is separable (we say that f is almost
separably valued).

For the following proof of Pettis’ theorem, see HiLLE & PuiLLiPs
[Hille and Phillips (1957)].

Proof. Sufficiency. Assume that f is measurable. Then f is weakly measurable
by Lemma 1.2. Moreover, by definition, there exists a sequence (f;) of test
functions and a py-null set N € A such that

fu(t) = f(t) forall t € Q\N.

Hence,

f\N)y <[ fu().

Since for every step function f, the range is countable, the set on the right-
hand side of this inclusion is separable, and hence f is almost separably
valued.

Necessity. Assume that f is weakly measurable and almost separably val-
ued. We first show that ||f|| is measurable. By assumption, there exists a
p-null set and a sequence (x,) in X such that D := {x,, : n € N} is dense in
f(Q\N). By the Hahn-Banach theorem, there exists a sequence (x;,) in X*
such that [|x;,]| = 1 and (x},,x,,) = [|x,|. Since f is weakly measurable, [{x;,, f)|
is measurable for every n. As a consequence, sup, [(xy, f)| is measurable. But
sup,, [Kx;,, £ = || fll on Q\ N by the choice of the sequence (x,) and the density
of D in the f(Q2\N). Since our measure space (2, A, ) is supposed to be
complete, we obtain that || f|| is measurable. In a similar way, one shows that
|lf — || is measurable for every x € X, and in particular for x = x,,.

Now fix m € IN and define

At ={llf —xll < 1é&fmllf—ﬁqcll},

Amz ::{”f_xZHSlé?Sfm”f_xk”}\Amll

Apa = Allf —xsll < _inf |If = xill}\ (Ap U Amo),
1<k<m

m—1

A= (If =l < Si?sfmnf—xku}\(g A)-

Then (Aun)1<n<m is a family of measurable, mutually disjoint sets such that
U:’11=1 Amn =0. Deﬁnel

! We are grateful to Anton Claufnitzer for the definition of the sets A, and the functions

fm~
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m
fm = Z 1Amnxn.
n=1

Then (f,,) is a sequence of step functions, (||f; — fll)m is decreasing pointwise
everywhere, and since D is dense in f(Q2\N),

lim ||fn(t) = f(®)I| = O for every t € Q\N.
m—oo

thatis, f,, — f p-almost everywhere. As a consequence, f is measurable.

Corollary 1.5. If (f,) is a sequence of measurable functions (2 — X such that f, — f
pointwise u-almost everywhere, then f is measurable.

Proof. We assume that this corollary is known in the scalar case, that is, when
X=K.

By Pettis’s theorem (Theorem 1.4), for all  there exists a y-null set N, € A
such that f,(Q2\ N,) is separable. Moreover there exists a p-null set Np € Q2
such that f,,(f) — f(f) forall t € Q\ Ny. Let N := |,;50 Ny,; as a countable union
of u-null sets, N is a y-null set.

Then f (restricted to Q2 \ N) is the pointwise limit everywhere of the se-
quence (fy). In particular f is weakly measurable. Moreover, f(Q\N) is
separable since

fe\N | @\N),
n
and since f,(Q2\ N) is separable. The claim follows from Pettis” theorem.
A measurable function f : 2 — X is called integrable if fQ IIf1l dy < co.

Lemma 1.6. For every integrable step function f: Q — X, f =Y., 14,x, the series
Y Xnli(An) converges absolutely and its limit is independent of the representation

of f.

Proof. Let f =}, 14,%, be an integrable step function. The sets (A,) € A are
mutually disjoint and (x,) € X. Then

Y Ihall (A = fo 1l dpt < co.

Let f: Q — X be an integrable step function, f =}, 14,x,. We define the
Bochner integral (for integrable step functions) by

Lf du:= an U(An).

Lemma 1.7. (a) For every integrable function f: (Q — X there exists a sequence
(fn) of integrable step functions O — X such that || f,|| <||f|l and f, — f pointwise
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u-almost everywhere.
(b) Let f : Q — X be integrable. Let (f,) be a sequence of integrable step functions
such that || full <|Ifll and f,, — f pointwise u-almost everywhere. Then

x:=1lim | f,duexists
Q

n—oo

and

Il < fo Ifll .

Proof. (a) Let f:Q — X be integrable. Then ||f|| : 2 — R is integrable.
Therefore there exists a sequence (g,) of integrable step functions such that
0<gn <IIflland g, — lIf|l pointwise p-almost everywhere.

Since f is measurable, there exists a sequence () of step functions Q — X
such that f, — f pointwise yu-almost everywhere.

Put

— f;gn
Ju: Il + 1

(b) For every integrable step function g : (2 — X one has

I f g dy| < f lgll de
Q Q
Hence, for every n, m

||fofn—fm dHHSLan—fmlldy,

and by Lebesgue’s dominated convergence theorem the sequence ( fQ fn dpt)
is a Cauchy sequence. When we put x = lim; fO fn dp then

lellﬁliminffllfnlldu=fIlflldu-
n—oo 0 0

Let f : Q — X be integrable. We define the Bochner integral

ffdy: limffndy,
0 n=eda

where (f;) is a sequence of step functions Q — X such that ||f,|| < |||l and
fu — f pointwise u-almost everywhere. The definition of the Bochner integral
for integrable functions is independent of the choice of the sequence (f,)
of step functions, by Lemma 1.7. Moreover, if f is a step function, then
this definition of the Bochner integral and the previous definition coincide.
Finally, by Lemma 1.7 (b),
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||ffdy||$f||f||dy (triangle inequality). (1.1)
Q Q

Remark 1.8. We will also use the following notation for the Bochner integral:

| roder | rorauc

and if Q = (4,b) is an interval in R:

fmwfmwa

If u = A is the Lebesgue measure then we also write

fa b f(t)dt.

Lemma 1.9. Let f: QQ — X be integrable and T € L(X,Y). Then Tf: Q = Y is

integrable and
fody=Tffdy.
Q Q

Theorem 1.10 (Lebesgue, dominated convergence). Let (f,) be a sequence of
integrable functions. Suppose there exists an integrable function g: (Q — R and
an (integrable) measurable function f:Q — X such that ||fy|| < g and f, — f
pointwise u-almost everywhere. Then

ffdy:limffndy.
Q = Jo

Proof. By the triangle inequality and the classical Lebesgue dominated con-
vergence theorem,

||Lfd#—j;fndyllSLIIf—fnlldyAOasnﬁoo.

Proof. Exercise.

1.2 Bochner-Lebesgue spaces
Definition 1.11 (LF spaces). For every 1 < p < co we define

LP(Q;X) :={f: Q - X measurable : f IfIIP dp < ool
Q
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We also define
L2(0;X) :={f : Q —» X measurable : AC > 0 such that u({||f]| = C}) = 0}.

Lemma 1.12. For every 1 < p < oo we put

= [ nrw ).

We also put
[1flloo :=inf{C 2 0 : u({lIfIl = C}) = O}.

Then ||-||, is a seminorn on LP(€2;X) (1 <p < o0).

Remark 1.13. A function ||| : X — R+ on a real or complex vector space is
called a seminorm if

(i) x=0=|lxlI=0,
(i) [[Ax]l = |Alllx]] for every A € Kand all x € X,
(iii) |lx+yll < llxll + |yl for all x, y € X.

Definition 1.14 (L’ spaces). For every 1 < p < co we put

Ny = [ € /(X0 : Ifll, = O]
={f € LP(Q;X): f = 0u-almost everywhere}.

We define the quotient space
P(Q;X) == LP(Q; X)/Np,
which is the space of all equivalence classes
[fl:==f+N,, feLP(Q;X).
Lemma 1.15. For every [ f] € LF (Q2; X) (f € LP(Q; X)) the value

LAl == 11 f 1l

is well defined, i.e. independent of the representant f. The function ||-||, is a norm
on IP(Q; X). The space 1P (Q2; X) is a Banach space when equipped with this norm.

Remark 1.16. As in the scalar case we will in the following identify functions
f € LP(Q; X) with their equivalence classes [f] € LP(Q; X), and we say that I/
is a function space although we should be aware that it is only a space of
equivalence classes of functions.

Remark 1.17. For Q = (a,b) an interval in R and for u = A the Lebesgue
measure we simply write
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(a,b;X) := LP((a, b); X).

We can do so since the spaces LF([a,b]; X) and LP((a,b); X) coincide since the
end points {a} and {b} have Lebesgue measure zero and there is no danger of
confusion.

Lemma 1.18. Let Q C R be open and bounded. Then C(Q; X) C LP(Q;X) for every
1<p<oco.

Proof. Actually, for finite measure spaces, we have the more general inclu-
sions
L2(Q; X) C IP(Q; X) C L1(Q; X) € LY(Q; X)

ifl<g<p<oo.

Lemma 1.19. Let the measure space (Q,A, 1) be such that 17(Q) is separable for
1<p<oo(e.g. QR beanopen set with the Lebesgue measure). Let X be separable.
Then 1P (Q; X) is separable for 1 < p < oo.

Proof. By assumption the spaces LF(Q2) and X are separable. Let (h,) C
IP(Q;X) and (x,) € X be two dense sequences. Then the set

F={f:Q->X:f=hyxy}

is countable. It suffices to shows that # C LF(Q; X) is total, i.e. span ¥ is dense
in [P(Q; X). This is an exercise.

Theorem 1.20. Let 2 be as in lemma 1.19. Let 1 < p < oo and assume that X is
reflexive. Then the space 1P (Q; X) is reflexive and

P(Q;X) =1 (2;X).

Proof. Without proof.

1.3 The convolution

Theorem 1.21 (Young's inequality). Let T € LY(RN; £(X,Y)) and f € IP(RN; X)
(1 < p < o). Then for almost every x € RN the integral

T f(x):= f T(x-y)f(y)dy
RN
converges absolutely, and for the function T f thus defined one has

T+feP(RN;Y) and
T+ flle < Tl fllp-
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Proof. The case p = oo is almost trivial. Actually, the strong continuity of
the shift semigroup on L! yields continuity (and thus measurability) of T* f
while the boundedness of T* f and Young’s inequality are immediate from
the triangle inequality.

Assume now that p = 1. By Tonnelli’s theorem, we have

fm fRN”T(x—y)HHf(y)n dy dx

_ f f TG = Il dx dy
RN JRN
1Tl Wl

and from this equality follows the claim.
Assume now 1 < p < co. From the previous case we deduce that for almost
allx e RN
ITGe=IIFEIP € LYRY),

and thus :
TG =P 1)l € P(RY).

L ,
On the other hand, ||T(x—)|[¥" € IP'(RN) for every x € RN. By Holder’s in-
equality, for almost every x € RV,

TG =)IIFON € LYRY),

P
fw (LN"T<x—y>llllf(y)||dy) dx

r
:U,
- - p
szN(jﬂ;NllT(x y)lldy) fRN”T(x PINFIP dy dx

i [ [ ime- i axdy
RN JRN
= ITIE, 1A,

< 00.

and

Forevery T € LY(RN; £L(X,Y)) and every f € LI(RVN; X) we call the function
Tx f € IP(RN;Y) the convolution of T and f. It is a fundamental tool in
harmonic analysis and the theory of partial differential equations. One first
property is the following regularizing effect of the convolution. We recall that
we adopt multi-index notation. For example, for every multi-index a € ]Né\’
we define
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=

N
a .- ngk (x e CN).

Moreover, we denote by Ji the partial derivative operator with respect to
the k-th variable, and define the a-th partial derivative

9" = LW

Let Q C RN be an open set. For every function f € C(Q2;X) we define the
support

supp f:={x€Q: f(x) #0},
where the closure has to be taken in Q! We then define for k € IN U {oo}

CK(Q;X) := {f € C(Q; X) : supp f is compact},

the space of compactly supported Ck-functions. In the special case X = K we
define
D(Q) :=CZ(Q).

Elements of D(Q) are called test functions.

Lemma 1.22 (Regularization). For every f € L'(RN;X) and every ¢ € C*(RN)
one has f+qp € C*(RN; X) and

I*(f+p) = fdp.

Lemma 1.23 (Strong continuity of the shift-group). For every x € RN and
every 1 < p < oo we define the shift operator S(x) € L(LP(RN; X)) by

SENW) = fle+y) (f ePRY;X), y e RY),
Then S(x) is an isometric isomorphism and, if p < oo,

hl’I(l)”S(X)f—f”]_p =0 for every f € IP(RY;X).

Proof. The first statement about S(x) being an isometric isomorphism is easy
(with S(x)~! = S(—x)). Next, for every simple step function f = 1o ®x with
a cube Q CRY, the second statement follows easily from Lebesgue’s dom-
inated convergence theorem. By linearity, the second statement holds for
every f in the dense subspace
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D :=span{lg®x:QC RY a cube, x € X).

Now fix f € [7(RN; X) and let € > 0. Then there exists g€Dsuchthat||f—gllir <
€. Moreover, there exists 6 > 0 such that ||S(x)g — gllir < € for every x € RN
with ||x]| < 6. Hence, for every x € RN with ||x]| < &

IS f = fllr < NSC)f = S()GlIr +11S(x)g = gl +1lg = fllrr
<2|lg = fllr +1IS(x)g — gllr
< 3e.

If p € LY(IRN) is such that f]RN @ =1, then we call the sequence (¢;), given
by
Pn(x) = nN(p(nx) (xeRN, neN)
an approximate identity or an approximate unit. The reason for this notion
follows from the following lemma.

Lemma 1.24 (Property of an approximate identity). Let f € [P(RY;X) (1 <
p < o) and let (py), be an approximate identity. Then

lim f+*@, = f in P(RY; X).

n—oo

Proof. By Tonnelli’s theorem, the Holder inequality, by the strong continuity
of the shift-group and by Lebesgue’s dominated convergence theorem we
have

p
dx

i pu=fy = [ [ = vdents dy=seo

14
= f]RN ( fm £ (=)= FONlPav) dy) dx
—-Y)— P p—1
SfRNfRN”ﬂx W)= I lpay) dylipall;" dx

<ol [ [ 1= ol dxent dy
<ot [ [ 1= D= ol axt) ay

-0 (n— ).
Corollary 1.25. For every 1 < p < oo the space CZ(RN; X) is dense in LP(RN; X).

Proof (by regularization and truncation). Let f € IP(RN; X). In the first step, the
regularization step, we choose an approximate identity (¢,) starting with a
test function ¢ € CZ°(RN). By Young’s inequality, f*¢, € LP(RY; X), by Lemma
1.22, f*¢@, € C°(RY), and by Lemma 1.24,
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Tim [1f * @ flly =O0.

In the second step, the truncation step, we choose a sequence (Y;), of
test functions satisfying 0 < ¢, <1 and ¢, =1 on the ball B(0,m) (such
functions can be obtained by convolving characteristic functions xp(,2,) with
appropriate positive test functions, relying on Lemma 1.22). It is clear from

Lebesgue’s dominated convergence theorem, that for every ¢ € I7(RN; X) one
has

Jim g = glly = 0.

Combining the preceding two equalities, we find a sequence (11,,), in IN such
that

Tm [1(F * @) ¥, — fllir =0,
and since (f * @) P, € CX(RN;X), the claim is proved.
Corollary 1.26. Let f € IF(RN; X) be such that

jﬂ;Nfgo =0 for every ¢ € D(RN).
Then f =0.
Proof. The assumption implies that
fro(x) = LNf(y)(p(x—y) dy =0 for every x e RN, p € D(RY),
which just means that

f*q =0 for every ¢ € D(RY).

The claim now follows upon choosing an approximate identity (¢;,) out of a
test function ¢ and by applying Lemma 1.24.

1.4 Bochner-Sobolev spaces

Let Q C RN be an open set, 1 <p < oo and k € N. We define the Bochner-
Sobolev space

WEP(Q; X) := {u € IP(Q;X) : Ya € NY Fo, € L (Q; X)Vp € D(Q)

[ o= [ o
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The functions v, in this definition of the space W*?((2; X) are uniquely deter-
mined. We write v, =: d*u and we call the function d“u the weak a-th partial
derivative of u. The space WEP(Q; X) becomes a Banach space for the norm

lllygey =Y, 10%ulep.

ae]NS]

ler|<k
Similarly as in the case of the LF-spaces we write wkp (a,b; X) instead of
WEP((a,b); X). In the special case when p =2 and X = H is a Hilbert space, we

also write
HY(Q; H) := Wr2(Q; H).

This space is a Hilbert space for the inner product

(W, 0)pg 1= Z (D"u, d%v);2.

aE]N{]V
|a|<k

The resulting norm || || is equivalent to the norm || - ||,yx2 defined above.

The main results about Sobolev spaces of scalar-valued functions remain
true for Sobolev spaces of Banach space valued functions if interpreted prop-
erly. In particular, the Sobolev embedding theorem, a version of the product
rule, the integration by parts formula and Poincaré’s inequality remain true.
Even a version of the Rellich-Kondrachev theorem remains true.

Lemma 1.27. Forevery —oo <a<b < coand every 1 <p < oo one has W'#(a,b; X) C
CP((a,b); X). For every u € WP(a,b; X) and every s, t € (a,b) one has

¢
u(t) —u(s) = f u'(r) dr.

Lemma 1.28. Assume that the embedding V — H is continuous and let u €
W20, T;H) N 1L>(0,T; V). Then u is weakly continuous with values in V, that
is, for every v € V' the function t — (v, u(t))y v is continuous on [0, T].

Proof. Since every function u € W2(0, T; H) is continuous (and hence weakly
continuous) with values in H, the claim follows from [Temam (1984), Lemma
1.4, page 263] .

Lemma 1.29. Assume that the embedding V — H is continuous and let (u,) be a
sequence such that

Uy — U in Wl'z(O,T;H) and
Uy 5 u in L=(,T;V).

Then there exists a subsequence of (uy,) (which we denote again by (u,)) such that
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uy(t) = u(t) in V forevery t € [0, T].

Proof. Using the fact that the point evaluation in t € [0, T] from W'2(0, T; H)
into H is bounded and linear, and maps weakly convergent sequences into
weakly convergent sequences, the assumption implies that for every t € [0, T]

uy(t) = u(t) in H.
Letnow w € H and t € [0, T]. Then one has
(w, un(t) —u(t)v,v = (W, un(t) — u(t))gr,g — 0.

Using the fact that H’ is dense in V’ and that the sequence (u,(t)) is bounded
in V, the claim follows from Lemma ?7?.






Chapter 2
The Fourier transform

2.1 The Fourier transform in L!

Let X be a Banach space with norm |-|:=|-|x. For every f € L'(RN;X) we
define the Fourier transform ¥ f and the adjoint Fourier transform ¥ f by

Ff(x):= f e f(y)dy and
RN
Fio= [ ey werd,
RN
The integrals are absolutely convergent, and we have the trivial estimates
|F F, IF f(x)l < | fll;1 for every x € RN,

In particular, the functions ¥ f and ¥ f are bounded.

Theorem 2.1 (Riemann-Lebesgue). For every f € LY(RN; X) one has F f, F f €
C,(RN; X).
Proof. The fact that the Fourier transform ¥ f is continuous follows easily

from Lebesgue’s dominated convergence theorem. Next, for every x € RN,
x#0,

TR0 =3 | e ) dy
s

1 .
—5 | -+ S aw

Since the shift group on L!(RN; X) is strongly continuous, we thus obtain
1 TIX
I7FN< 5 [ @)= o+ T dy —0as e
2 Jry ||

15



16 2 The Fourier transform
The arguments for the adjoint Fourier transform are similar.

Corollary 2.2. The Fourier transform F and the adjoint Fourier transform are
bounded, linear operators from L'(RY; X) into C,(RN; X).

We need the following basiclemma in order to prove the inversion formula
for the Fourier transform.

Lemma 2.3 (Féjer kernel). One has, for a >0,

sin®ax
5 dx =an.
R X

Proof. We define

2

F(A) = fo e-“SirJ‘;x dx (A€ (0,00)).

Then f € C*((0,00)) and

00 . 2 : 2
1
lim f(A) = f Tl dx=s f S A% 4y, and
A50+ 0 X 2 g x?

Tim f(4) =0.

A simple computation shows

00 -2
Fl)y=- f e‘A"# dx, and
0

(A = fo e M sin®ax dx
2

_ foo e—Ax (eiax _ ?—iax) dx
0 2i
2

__1(;_ L1 )
4\A—-2ia A A+2ia
142 2A

=15~ mam)

AS a Consequence,
£ = 10g 2
T3 %%

In order to integrate this function, we make the ansatz

1 A2
fM =7 ()\ 10gm +8(/\)),
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which leads to the equation

842

/A -
gt A2 +4qg2"

that is,

A
g(A) = —4aarctan % +C

Together with the condition lim,_,« f(A) = 0 we thus find

1 A2 T A
= — 1 —_— 4+ 44(— - —)].
f(A) 1 Alog SRy +4a( > arctan % ))

This yields
. s
lim f(1) =,
which implies the claim.

Before stating the following theorem we define for every r € RN with r; > 0

the set
N
Q= XI-rund.
k=1

Theorem 2.4 (Inversion formula for the Fourier transform I). Let f €
LY(RN; X). For every R > 0 we put

— 1 ix N
gr(x) := RN L,R]Nfre 'Ffy)dydr (xeRY).

Then gr € LY(RN; X) and
I%i_l;l;lo“gR —fllgr =0.

Proof. Forevery R >0and every x € RN we compute, using Fubini’s theorem,
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1 .
YF f(y) dy dr
1 y(x—z
z—(an)N f{o o fR N f V=2 dyf(z) dz dr

Sm(”k(xk Zx))
(T(R)N f]RN f[;) R]N H Zk de(Z) dz

N

f N]‘[sm . zk»i (o~ 2 () dz

=1

- fR ke(x—2)f(2) dz
=kgr = f(x)

where
N Ry,
2%

kp(x) := H SH;
2

=1

(x e RM)

is the Féjer kernel. Note that

kg € LY(RM),

kr =0,

kr(x) = RN ko (Rx) for every x € RN and

f kr(x)dx =1 (Lemma 2.3)

RN

for every R > 0. Hence, (kr)r ~« is an approximate identity, and the claim
follows from Young's inequality and Lemma 1.24.
Corollary 2.5 (Inversion formula for the Fourier transform II). Let f €

LY(RN; X) be such that F f € L\(RN; X). Then F f € L(RN; X) and

f= ——=F(Ff)and

@2n )N

f= F(F D)

(ZH)N

Proof. Since
Ff(x) = f e™ f(y) dy = F f(~x) for every x e RY,
RN

we immediately obtain ¥ f € LI(RY; X).
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Now let gr be defined as in the preceding theorem. For every R > 0 and
every x € RN we then have

1
@

Sr(X) = F(F x) =

1 (1 | |
" 2N [R_N L,R]Nf T W dydr- f]RN T fy) udy]

1 1 iy
= dy dr,
@mN RN L,R]Nf - T dydr

and hence, for every L >0

1

h?fip Qr(%)— (ZH)NT(Tf)(x) <
< —[limsu if fefxysff( ) dy dr

(27-[)N R—o00

1 f f ixy.
— eVF f(y)dy dr
RN Jio RV, RV J e fly) dy e

1 . (R—L)N . NLRN-1
< —(Zn)N[h?—igp RN 7 f dy+hgljolij—N IITfIIL1]

+limsup

R—ooo

([-L.LIN)y

1
< F d
@m)N j(;—L,L]N ¥ 71wl dy

Since L > 0 was arbitrary, and since

lim IF f(y)ldy =0,
L=eo J(-L,LNye
we thus obtain
I%l_r)r‘}o Qr(¥) = (271)1\] F(F f)(x) for every x € RV,

Combining this with the first inversion formula, we obtain the first identity.
The second identity is proved similarly.

Corollary 2.6. The Fourier transforms ¥, F : LY(RN;X) — CO(]RN ; X) are injec-
tive.

Remark 2.7. The Fourier transform # on L! is not surjective onto C,-

Lemma 2.8 (Fourier transform and convolution). For cvery T €
LYRN; £(X,Y)) and every f € LY(IRN; X) one has
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F(T+f)=FTF fand
F(T+f)=FTFf.

Proof. For every x € RN we compute, using Fubini’s theorem,

Frepw= [ Ty

R

:f f e T (y—2)f(2) dy dz
RN JRN
— —ix(y+z)

fR N fR NG T(y) dy f(2) dz

= fR y e ™T(y) dy fR y e f(2) dz
=FTX)F f(x).

The second identity is proved similarly.

Lemma 2.9 (Fourier transforms of partial derivatives). For every f €
C(IRN; X), every multi-index a € ]Né" and every x € RN one has

F (2" )x) = ()" F f(x).

Proof. For every k € {1,...,N} we obtain, using integration by parts,
FOHW= [ s dy
- [ @i ay
]RN

= ix f e f(y) dy
RN
= ix F f(x).
The general formula for higher derivatives follows by induction.

Corollary 2.10 (Fourier transforms of vector-valued test functions). For ev-
ery f € CX(RYN; X) we have F f € L{(RY; X).

Proof. Letp:CN — C be any polynomial. The preceding lemma implies
F(p(d)f)(x) = p(ix) F f(x) for every x € RN.

By the Lemma of Riemann-Lebesgue, the left-hand side of this equality is
uniformly bounded in x € RN. Hence, for every polynomial p : CN — C we
have

sup [p(ix) F f(x)| < oo.

xeRN
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Choosing p such that p(ix) =1+ x|k for some k € N large enough, we obtain
the claim.
2.2 The Fourier transform on L2

Theorem 2.11 (Parseval’s identity).
a) Forevery T € LY(RN; L(X,Y)) and every f € L'(RN; X) one has

f FT(x)f(x)dx= f T(x)F f(x) dx.
RN RN
b) For every f, g € LY(IRN) one has
[ Frostac= [ wFgean
RN RN

c) Forevery f, g € L\(RN) such that F f, F g € L'(RN) one has

_ 1 -
f]R S @)g() dx = N fR T FF () dx.

Similar identities hold if we replace everywhere F by ¥ and vice versa.

Proof. (a) We calculate, using Fubini’s theorem,

f}R TR f(x) dx = fR y f]R Ne—"xyT(y) dy f(x) dx

- [ 1) [ e aray
RN RN
- [ Twr s
RN
(b) is proved in a similar way and (c) follows from (b) by using the Inversion

Formula II (Corollary 2.5).

Theorem 2.12 (Plancherel). The Fourier transforms F, F : C°(RN) — L>(IRN)
extend uniquely to bounded, linear operators on L>(RN). The operators ﬁ?‘“ ,

L_7 . [2(RN) — L*(RN) are unitary and

\/27-[]\/
1 1 -
FY = —7.
Y Y

Proof. From Parseval’s identity (Theorem 2.11 (c)) we obtain, that for every
f, g€ CX(RN)
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(FLF O =0 ),
and in particular,

IF 12, = @rNIFIZ.

As a consequence, since CZ°(RY) is dense in L2(RN), F extends in a unique
way to a bounded, linear operator on L%(RN). Moreover, we see from the
above equality that —F is isometric. As a consequence, this operator is

V2rN
injective and has closed range. However, from the inversion formula we see

that C2°(RN) is contained in the range. Hence, ﬁ?’ is surjective, and thus
unitary. .
The arguments for ¥ are similar.

Theorem 2.13 (Plancherel in Hilbert space). Let H be a Hilbert space. Then
the Fourier transforms F,  : C°(RN; H) — L2(RN; H) extend to bounded, linear

operators on L>(RN; H). The operators \/217@1 F, ;nN?_' : L2(RN;H) — L2(RN; H)

are unitary and
1 1 -
(= F) = =T
V2rN 2nN

Proof. The proof is very similar to the previous proof, once one has proved
the following variant of Parseval’s identity (Theorem 2.11 (c)) for every f,
g € LY(RN; H) such that F f, ¥ ¢ € LY(RN; H):

1
[ gy ds= o [ o, st

Remark 2.14. Kwapien has shown the following result: if the Fourier trans-
from extends from CZ®(RV;X) to a bounded, linear operator on L%(RN;X)
(X being a general Banach space), then X is already isomorphic to a Hilbert
space, that is, there exists an inner product on X which induces an equivalent
norm. We will not prove this result here.

2.3 The Fourier transform on S
We define the space

S(RY; X) := {feC‘x’(]RN;X):Va,ﬁeNoN:f [l 9% £ (x)||* dax < o0},
]RN

Elements of S(RV) (thatis, X = C) are called the rapidly decreasing functions
or Schwartz (test) functions. Clearly, the space of (classical) test functions
C2(RN) = D(RN) is a subspace of S(RV), but the function f(x) = ¢ is an
example of a Schwartz test function which does not have compact support.
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It is an exercise to show that

SMRN;X) = {f € C*(RY;X): Va, e N}’ : fRNnxﬁa“f(x)H dx < oo}

={f e C*(RV;X): Va, peIN} : sup |lx’ 07 f(x)|| < oo}.
xeRN

The space S(RV; X) is equiped with the topology induced by the countable

family of seminorms (|| [la,) apeNY” where

£l ::( f}R N||xﬁa“f(x)||dx)2.

This countable family of seminorms induces in a natural way a metric d

given by
i, 9) = Z IIf = 8llag

Ca,p ’
1+ —
afe 8] ”f g”a,ﬁ

where the coefficients ¢, g > 0 are fixed such that }° | geNN Cap < 0. We have
/I 0

fio> finSMRY;X) o VYa,BeNY:|Ify—fllog — 0
o d(fu, f)—0,

and the space S(RV; X) is complete. In other words, the countable family of
seminorms turns S(RV; X) into a Fréchet space.

From the definition of the space S(RN; X) we immediately obtain the
following lemma which is, however, worth of being stated separately.

Lemma 2.15. Forevery f € S(RN; X) and every polynomial p: CN — C the product
pf and the (sum of) partial derivative p(d)f belong again to S(RN;X). In other
words, the mappings

fpf and
fp)f

leave the space S(RN) invariant.

Lemma 2.16. For every f € S(RN;X) and every polynomial p : CN — C one has
Ff, FfeCRN;X), and
F(p)f) =p@)F f,
F(p(=i)f) = pO)F £,
F(p()f) = p(=i)F f, and
F(p(i)f) =p)F f.
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Proof. Let f € S(RN;X)and k€ {1,...,N}. Then
Flia == [ g dy
RN

0 .
- [ ey

=0 [ e dy
=T f(x).

Moreover, by an integration by parts,
— —ixy J
FOf)x) = ——f(y) dy
Yk

e
RN

J .
- _ Y -ixy
[ s sway

=—in, [ i) dy
= —ixiF f(x).

The first two equalities follow from these two identities and by induction.
The proofs for the adjoint Fourier transform ¥ are similar.

Theorem 2.17. For every f € S(RN;X) one has F f, ¥ f € SRN;X) and the
Fourier transforms F, F : S(RN; X) — S(RN; X) are linear isomorphisms.

Proof.

2.4 The Fourier transform on &’

We call

S'(RY; X) := L(S(RN); X)
:={T: S(RY) — X : T is linear and continuous}
the space of (vector-valued) tempered distributions. It is equiped with the

following “topology”: a sequence (T};) of tempered distributions converges
in §'(R; X) to a tempered distribution T if

lim (Ty,, @) = (T, ) for every ¢ € S(RY).
n—oo

Many classical function spaces are included in the space of tempered

distributions. For example, the weighted spaces L!(IRY, l+1|x\k dx; X) (k € Np)
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are in a natural way contained in the space of tempered distributions via the
mapping

1
1+ |xfk

LYRN, dx; X) - S'(RN; X),
f= Tf,
where

Trp = f]R S@p@dx (pe S(RN)).

Note that the integral is absolutely convergent.

Lemma 2.18. Let f, g € LN(RN, —Lrdx; X) be such that T = Tg. Then f = g.

7 1+|xk

Proof. By linearity, it suffices to show that Ty = 0 implies f =0. So let f €
LY (RN, —L_dx; X) be such that Ty =0.Then

7 1+|xfk

f f(x)@(x) dx =0 for every @ € S(RM),
RN

which implies

f f(x=y)p(y) dy = 0 for every ¢ € S(RV), x € RN,
RN

Hence
f+@ =0 forevery ¢ € S(RY).

Choosing an approximate identity (¢,) out of a test function ¢ € S(RV), we
obtain f =0.

Note that the classical space [P(RN;X) (1 <p < o) is a subspace of

LY (RN ,dex;X) for some k € Ny large enough. Hence, L7 functions are

tempered distributions via the above embedding.
Conversely we say that a distribution T € S'(RV;X) belongs to
P(RY, —L2dx; X) (1 <p < o0, k € Ny) if there exists f € LP(RN, —L—dx; X)

" 1+l 7 1+l
such that T = Ty. By the preceding lemma, the function f, if it exists, is

uniquely determined. We simply write T € LP(RY, dex; X) if the tempered
distribution T belongs to this space.
For every tempered distribution T € S(RV; X) and every multi-index « €

]Né\’ we define the partial derivative 9T € S(RV; X) by

(°T, @) = (-1)UT, %) (¢ € SRM)).

Moreover, we define the Fourier transforms F T, T € S’ (RN; X) by
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(FT,p):=(T,F¢)and
(FT,¢) :=(T,F ).

Finally, for every polynomial p : CN — C we define the product pT by

(T, @) := (T, pp).

Lemma 2.19. For every f € S(RV;X), every multi-index a € ]Nf)‘] and every poly-
nomial p : CN — C one has

aan = Taaf,
7:Tf = T‘Tfr
7_:Tf = T¢f, and
pTs=Tpp

that is, the distributional partial derivatives, Fourier transforms and products are
consistent with the corresponding classical operators on S(RN; X) (€ S'(RY; X)).

Proof. For every ¢ € S(RN) and every a € N one has, by definition of the
distributional derivative and by integration by parts,

(0°Ts, ) = (-1)*(Ty,0%p)
= (-1 Pp(x)d
0 [ Fopt ds

= f 9" f(X)¢p(x) dx
RN
= <Taaf,(P>
This proves the first equality. Using Parseval’s identity, we obtain
(FTr,0)=<Tr,F )
= f fQF () dx
RN

- fR T @) dx
= Ty, 9),

and this proves the second equality. The third one is proved similarly. The
fourth equality uses only the associativity of the product:
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pTs, 0y =(Ts,pp)
= f F)px)p(x) dx
RN
= <Tpf/ §0>

Remark 2.20. In the above lemma, the function f can be replaced by any
other function for which the formula of integration by parts (first equality)
or Parseval’s identity (second and third equality) still holds. For example, in
the second and third equality, one may take f € L'(R; X) or, if X is a Hilbert
space, f € L2(RN;X).

Theorem 2.21. The Fourier transforms F,  : S'(RN; X) — S’ (RN; X) are linear,
bijective and continuous.

Proof. This follows immediately from Theorem 2.17.

From Theorem 2.21, but also from the Riemann-Lebesgue Lemma (The-
orem 2.1), Plancherel’s Theorem (Theorem 2.12), the Hausdorff-Young The-
orem and Theorem 2.17 we obtain the following picture for the Fourier
transform. In the following diagram, a (horizontal) double arrow means that
the Fourier transform is an isomorphism between the spaces in the same
line. Vertical arrows mean inclusion / natural embeddings.

S'(RY; X) —7 S'(RV;X)
LL(RN; X) —% C,®N;X)
T

LP(RN; X)

" (RN.
X Fourier type p IF RY;:X)

T
2mN. —
LAR™; X) X Hilbert

S(RY; X) —7 S(RY; X)

From Lemma 2.16 we immediately obtain the following analogon for
tempered distributions.

Lemma 2.22. For every T € S'(RN; X) and every polynomial p : CN — C one has

L*(RN; X)

e e
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F(p@)T) =p@)FT,
F(p(=i)T) = p()F T,
F(p)T) = p(—i)F T, and
F (p(i)T) = p)F T.
Theorem 2.23 (Fourier characterization of Sobolev spaces). Let H be a Hilbert

space and k € N. Then the Fourier transforms F, F map the Sobolev space
H*(RN;H) isomorphically onto the weighted space L*(RN, (1 + [x[2)*dux; H).

Proof. Let first k = 1. Then we have
feHY(RN;H)
&f,o1f,...,onf € LA(RY;H)
(by Plancherel) ©F f, F(91f), ..., F (dnf) € LA(RN; H)
(by Lemma 2.22) &F f, ix;F f, ..., ix~nF f € L*(RN; H)
@fRNa +x7 4+ a3 F f(x) dx < o0
oF f e LX(RN, (1 +|x?) dx; H).

The case k > 2 is proved by induction and the assertion for ¥ is proved
similarly.

For the Sobolev spaces we thus have the following picture, in which again
vertical arrows stand for inclusions and all (horizontal) double arrows mean
that the Fourier transform is an isomorphism.

F

L2(RN; H) PN [2(RN; H)
T T
HY(RN; H) PN L2(RVN, (1 + |x2) dx; H)
T
H2(RN; H) PRI L2(RN, (1 + |x2)2 dx; H)
H*(RN; H) PEAN L2(RN, (1 + |xP)* dx; H)
PEAN

Remark 2.24. This definition justifies to define the fractional Sobolev space
H*(RN; H) for s € R (thus including Sobolev spaces of negative order) by
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HRN;H) .= F1L2RYN, (1 + |x?)° dx; H).

Note that for negative s € R the weighted space on the right-hand side of

this definition is only included in &'(RN;H), but not in L*2(RN;H). As a

consequence, if s € R is negative, then H*(RN; H) is a subspace of the space
of tempered distributions which actually includes L?(RY; X).

2.5 Elliptic and parabolic equations in RV

2.6 The Marcinkiewicz multiplier theorem






Chapter 3
Singular integrals

3.1 The Marcinkiewicz interpolation theorem

Let (Q,u) be a measure space and (X,|-|x) be a Banach space. Given a
measurable function f: Q2 — X and a parameter A > 0, we shortly write
{Iflx > A} :={t e Q:|f(H)Ix > A}, and we define the distribution function
my: (0,00)  [0,00] by

me(A):=u({lflx > A} (A>0).

Lemma 3.1. Let @ : [0,00) — [0,00) be differentiable, increasing and such that
@(0)=0. Let f: Q — X be a measurable function. Then

f ®(1flx) du = f ' (A)m (1) dA.
Q 0

Proof. This follows from a simple application of Tonnelli’s theorem:

If(Hx
[ otrman= [ [ o ardun

= f D' (M) dp dA
0 {Iflx>A}

= f @' (A)m (1) dA.
0

Example 3.2. For ®(A) = AP (p > 1) we obtain

0 dA
||pd=f)\”mA—,
fo“po f()/\

and in particular, f € LP(Q; X) if and only if

31
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A Am ()7 € 12(0,00),

where
12(0,00) = 170,00 ).

Note that f € LP(Q; X) thus implies that

sup APmg(A) < oo,
A>0

Denote by M((2;X) be the space of all measurable functions 2 — X. Let
(Q1, 1) and (Qy, u2) be two measure spaces, and let (X|-|x) and (Y,|-y)
be two Banach spaces. We say that a (not necessarily linear) operator T :
LP(Q1,X) — M(Q,,Y) satisfies a weak-(p,q) estimate, or we say that T is
weak-(p, q) if there exists a constant C > 0 such that, for every f € LF(€1;X)
and every A >0

q
< () itg <o)

or

ITfll= < Cliflly  (if g = o0).

We say that an operator T on a subspace of M(Q2; X) with values in M(Q3,Y)
subadditive if for every f, ¢ in the domain of T

IT(f + 9y <ITfly +|Tgly almost everywhere,

and we say that it is homogeneous if for every a € K and every f in the
domain of T
IT(af)ly = lalIT fly almost everywhere.

Finally, T is said to be sublinear if it is both subadditive and homogeneous.

Theorem 3.3 (Marcinkiewicz interpolation). Let (Q1,u1), (Q2,u2) be two
measure spaces, X, Y be two Banach spaces, 1 < pg < p1 < oo, and let T : LP0 +
LP1(Q1; X) — M(Q2,Y) be a subadditive operator which is both weak-(po, po) and
weak-(p1,p1). Then, for every po < p < py there exists C > 0 such that

ITfllr < Cllflly for every f € LF(Q1;X).

Proof. Let f € LP(Q1;X) and c > 0. For each A > 0 we write f = fy + f; with

Jo=fLypgseays
f= gy

Then fy € LP(Q24; X) and f; € LP1(Q1; X), and, by the subadditivity of T,

ITF(Oly <IT fo(®)ly +IT f1(t)ly for every t € Q5.
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As a consequence, for every A’ >0,

’ ’

, A
mrp(A’) < mTfO(E) +mTf1(?)'

By assumption, there exist constants Cy, C; > 0 independent of f, fo, fi, A, A/
such that

’ 2C Po
mTfo(%)S( 0||Ajio||mo) and

X (2G|
mm(ps(#) (p1 <),

ITflle < Cilliflle (p1 = o0).
The case p1 = co. Choose ¢ := (2C1)"'and A’ = A. Then mrf, (%) =0. Hence
Ay =p [ ) dn
<p mAp—lm (&) dA
=7, Thly

<p f AP=I7Po(2C )P0 f LFOI dut) dA
0 {Iflx>cA}

If(Blx/c L
-pacor | il fo 1P dA duct
1

= L com ey i,

P—po

The case p1 < co. Similarly as above we obtain, for every ¢ > 0,
Ay =p [ A7) dn
00 » A
<p AP mrp (5) dA
0 2
00 o /\
+p AP mrg (E) dA
0
<p [ aimecor [ ok dun
0 {Iflx>cA}

+p f AP=I=PL(2Cy )P f [FOI du(t) dA
0 {Iflx=cA)

1 N 1 (2Cp)po N (2Cq)po
P—po p1—p cP~Po cP~Po

<p( IFIE,.



34 3 Singular integrals
This completes the proof.

Remark 3.4. By minimizing over ¢ > 0, we obtain that the constant C > 0 in
Theorem 3.3 can be chosen as

1 1

+
p—pPo PpP1—P

1 1
C=2p¥( ) Cyeye,
where the Cp, C; > 0 are the constants from the weak-(p;,p;) estimates, and
0 €(0,1) is chosen such that
1-6

9
P

1
p

3.2 The Hardy-Littlewood maximal operator

Let (X,|- |x) be a Banach space and N € IN. For every f € M(RYN; X) we define
the maximal function Mf : RN — [0, 0] by

Mf():=su flf(y)lxdy (xeRY),
Qax JQ

where Q is any cube with sides parallel to the axes, that is, ball with respect
to the | -|c norm, and where for every measurable set B C RN we have set

f=mi

|B| being the Lebesgue measure of B. By continuity, the definition does not
change if one considers only the supremum over all cubes with rational cen-
ters and rational radii, so that one sees that Mf is measurable. The operator
M : M(RN; X) — M(RN) is called the Hardy-Littlewood maximal operator.
It is easily seen that M is sublinear.

Lemma 3.5 (Covering lemma in IR). Let K C IR be a compact set, and let (In)qea
be a family of intervals such that K = \J,ea Io. Then there exists a finite subfamily
(Iaj)1<j<n such that

n
Z 11(1], (x) <2 for every x € R.
j=1
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Theorem 3.6. The Hardy-Littlewood maximal operator M is weak (1,1) and strong
(p,p) for every 1 < p < co.

Proof (for the case N = 1). The estimate

IMfllLe < flle

follows immediately from the definition. Hence, M is strong (c0,0) = weak
(00, 00). By the Marcinkiewicz interpolation theorem it suffices to show that
M is weak (1,1).

Now let f € LY(RN;X). Let A >0 and let K C {Mf > A} be any compact
subset. For every x € K there exists an interval I, containing x such that

Iflx > A.
I

Clearly, K € Uyex Iy, so that, by Lemma 3.5, there exists a finite subset
{x1,...,x,} C K such that

K

N

n
U Ix/. and
j=1
n
Z 1 L (x) <2 for every x € R.
j=1

Hence,

n

IS
j=1
=1
< _
<23 fl fix
j=1 X
1 n
< =
_AfR;wﬂx

2
< 1 £l

Since this inequality holds for every compact subset K C {Mf > A}, the inner
regularity of the Lebesgue measure yields

2
mpi(A) < 1 £l

For the general case N > 1, we need the following covering lemma, which
is a variant of Lemma 3.5.
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Lemma 3.7 (Vitali). Let K C RN be a compact set, and let (Qu)aca be a family of
cubes in RN such that
Kel JQa

acA

Then there exist aq, ..., &y € A such that

n
Kc U Qa].,5 and
j=1

n

1Qa]v S 1

-
1l
—_

Proof.

Proof (of Theorem 3.6 for the general case N > 1). The beginning of the proof is
the same as in the case N = 1. We only need to prove a weak (1,1) estimate.
Let f € LY(RN;X). Let A > 0 and let K C {Mf > A} be any compact subset. For
every x € K there exists a cube Q, containing x such that

ng|f|x>/\.

Clearly, K € (U ex Qx, so that, by Lemma 3.7, there exists a finite subset
{x1,...,x,} € K such that

n
KcC U Qx].,5 and
=1

n
Z 1ij (x) <1 for every x € RN.
=1

Hence,
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n
IKI< )" Qx5
j=1
n
=Y 510y
=1
n
1
Yl
— ] f Flx
=1 %
Ny
<= Y1
A \f]RN = Qx; Iflx

5N
< THfHLl.

Since this inequality holds for every compact subset K C {Mf > A}, the inner
regularity of the Lebesgue measure yields

5N
mpr(A) < T £l

Lemma 3.8. If f € LY(RN; X) is not identically 0, then Mf ¢ L'(RN).

Proof. If f € LY(IRN; X) is not identically 0, then there exist 7 > 0 and ¢ > 0 such

that
[ rody=e
Qr(0)
Now, for any x € RN with |x| > r one has

Qr(o) c Qlel(x)r
and hence 1
€
Mf(x) > RN fQ o lf(Wx dy = NN’
so that Mf ¢ L1(RYN).

A weight w: RN - R is a measurable function which is strictly positive
almost everywhere. Given a weight w, we denote also by w the weighted
Lebesgue measure w(x)dA(x), so that, for a measurable set B C RN

w(B) := jH;N 15(x) w(x) dA(x).

If f: RN — X is in addition a measurable function, the we denote its distri-
bution function with respect to the weighted Lebesgue measure by wy, that
is,
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wg(A) :=w({|flx > A}).

We denote by LF (RN; X) the weighted L space LP(RN,w(x) dA(x); X).

We say that a locally integrable weight w satisfies the Muckenhoupt A,
condition or that wis an A, weight (1 <p < o), and we write w € A, if there
exists a constant C > 0 such that

Muw(x) < Cw(x) for every x € RV, if p=1,

p-1
(wa) (chl_”/) < C for every cube QC RN, if p > 1.
Q Q

The smallest possible constant C > 0 for which the above inequality (for p =1
or for p > 1) holds is called the A,-constant of the weight; it is denoted by
[wla,-

Theorem 3.9. For every 1 < p < oo the weak (p,p) estimate

C
o< [ e 61

holds if and only if w € Ay,

Proof. Necessity. Assume that there exists a constant C > 0 such that for every
f e LP(Q;X) theinequality (3.1) holds. Let Q € RN be a cube such that fQ Iflx >

0, and let A > 0 be such that JCQ Iflx > A. Then

Q< M(flg)> A}

and therefore
w(Q) < Wa(r10)(A)-
From inequality (3.1) follows

C
w5 [ 1w

and since this inequality holds for every A > 0 such that fQ |flx > A, we obtain

w@Q . Jolflxw

<C

QP = (fylflx)

(3.2)

The case p = 1. We choose any measurable subset B C Q and f = 13 in the
above inequality. Then this inequality becomes

w@Q) _ ~w(B)
o <TE
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This inequality implies for almost every x € Q

w(Q)

— < Cw(x),

QI

and maximizing over all cubes Q containing x, we obtain
Muw(x) < Cw(x),

that is, w € A;.
The case 1 < p < oo. We choose f = '™ 1g in inequality (3.2) which then

becomes )
1 1—p’) C f 1-p
w(Q)(| ol L w < Qw ,

or, since Q C RN was arbitrary, w € A,.
Sufficiency. Let f € Lk (RN; X). For every cube Q € RN one has, by Holder’s

inequality,
(ngflx)l(ll@f(glflxw;w_;)p
() [

L epe) 191
S[w]Ap(|Q| fQ Iflxw) Q) (3.3)

Now let A >0 and let K € {Mf > A} be any compact subset. For every x € K
there exists a cube Q, containing x such that

J[ |f|X > A.
Qx
Clearly, K € U ex Qx-
We consider noew the case N = 1. By the covering lemma (3.5, there exists a
finite subset {x1,...,x,} C K such that

n
Kc U Qy; and
j=1

n
Z 1ij (x) <2 for every x € R.
j=1

Hence, if we combine this with inequality (3.3),
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w(K) < ) w(Qx)
j=1

[w]
<Y ) e

=1

]:
[Wla, [
P
= f]RZ;lQ"j flxw
]:

2[w]a
7 L IIfIIZp-

<

Since this inequality holds for every compact subset K C {Mf > A}, the inner
regularity of the weighted Lebesgue measure yields

2[w]a
7 £ ||f||’£,g-

Remark 3.10. The proof of Theorem 3.9 shows in the necessity part that if
C > 0is a constant such that weak (p, p)-inequality (3.1) holds, then

[w] Ap <C
On the other hand, the sufficiency part shows that in the case N =1

2[w]a,
p
W) < —— Il

that is, C can be chosen equal to 2 [w] 4, in (3.1), if N = 1. In the general case
N > 1 we obtain that C = 5N [w] 4,18 possible constant in (3.1).

We list a few properties of Muckenhoupt weights. The first few properties
are mainly simple consequences of the Holder inequality.

Lemma3.11. a) For1<p<gq<ocoonehasA,C Ay and for every w € Ay,
[wla, <[w]a,.

b) For1<p < ocoonehasw € A,y if and only if w' P € A, and then

1

1-p’ _ p-1
(@' 1, = [l

o) Ifw veAand1<p< oo, thenwo'™ € A, and

[wo' P14, < [wla, [o], 7.
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1
d) Ifl1<p<g weA;andve A, then u:= (Wi ui?)iT € A, and

[ula, < ([l ' [v]j;f)p%,

Proof. (a) For p=1and q > 1 one has

q-1 B
(JC wl—q’) <supw(x)” = (mf ()™ < [wla, (JC w) '
Q XGQ Q

For p > 1, the inclusion follows immediately from Holder’s inequality.
(b) The A,y condition for w7 is

p'-1
Sup (f wl_p/) (f w(1_P’)(1_P)) < 0,
Q \WQ Q

1
but since (p’ —1)(p — 1) = 1, the left-hand side is equal to [w]l’;;1
(c) We compute, using a similar inequality as in the proof of (a),

(frfrismr]”
< (f wter; <f o) (Fotat for)

= [wla, [, A1

Theorem 3.12 (Reverse Holder inequality). Let w € A, for some 1 <p < oo.
Then there exist constants € > 0, C > 0 depending only on [w]a, such that

1
v
(JC w“g) <C JC w for every cube Q C RV,
Q Q

Corollary 3.13. a) For every w € Ap (1 <p < oo) there exists ¢ > 0 depending
only on [w]Ap such that w € Ap—.. In other words,

A= 4,
1<q<p

b) For every w € Ay (1 <p < o0) there exist & > 0 such that w'*¢ € A,
c) IfweA,forsomel<p < oo, then there exists 6 >0, C > 0 such that
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w(S) 15\’
<C (—) for every cube Q C RN and every SC Q.

w@Q ~ \IQl

Proof. (a) Let w € Ay, for some 1 <p < co. By Lemma 3.11 (b), w7 e Apy. By
the reverse Holder inequality (Theorem 3.12), there exists ¢ > 0 and C >0
such that

1
’ 3 m 4
(JC wp )(1”)) <C JC w7’ for every cube Q C RV,
Q Q

Fix g € (1,p) such that 1 —¢" = (1 -p’)(1 — ¢). Then the preceding inequality

gives
-1 p-1
(fur|" co (fur]
Q Q

which finally yields w € A,.

(b) Since w € A, and w7 e Ay, we can choose, by the reverse Holder
inequality and by Lemma 3.11 (a), a common ¢ > 0 such

(ch“é) SCJCwand
Q Q
Tie
(J[ w(lﬁ)(l_}’/)) <C JC w'™"" for every cube Q C RN.
Q Q

From both inequalities together follows w!*¢ € A,,.

(c) Fix a cube Q CRN and S C Q. Let ¢ > 0 be such that w satisfies the reverse
Holder inequality with exponent 1+ ¢. Then, by Holder’s inequality and by
the reverse Holder inequality,

w(S):flsw
Q
;
S(fw1+£) |S|ﬁ
Q

<Cw(Q) (%)1 .

We say that a weight satisfies the Muckenhoupt A condition or that w
is an A weight, and we write w € A, if w satisfies the property in Corollary
3.13 (c). By Corollary 3.13 (c), one has

L 4 ca.,

1<p<oo
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and one can show that one actually has equality (compare with Corollary
3.13 (a)).

Theorem 3.14 (Muckenhoupt). For every 1 < p < oo and every Muckenhoupt
weight w € Ay there exists a constant C > 0 (depending only on [w]a,) such that

IMfllp < Clifllp for every f € Liy(Q; X).

In other words, the Hardy-Littlewood maximal operator M is strong (p,p) on the
weighted Lebesgue space L.

Proof. LetwbeaMuckenhoupt A,-weight for some 1 <p < co. By the corollary
to the reverse Holder inequality (Corollary 3.13 (a)), there exists g < p such
that w € A;. By Theorem 3.9, the Hardy-Littlewood maximal operator M is
weak (g,9) on LZ,. On the other hand, M satisfies the strong = weak (c0,00)
estimate on L = L;;. By Marcinkiewicz’ interpolation theorem (Theorem
3.3), M satisfies therefore a strong (p, p)-estimate on L.

We conclude this section by noting that in some cases it is also useful to
consider the centered maximal operator

M f(2) := sup f fix (eRY),
Qr(x)

r>0

in which the supremum is only taken over all cubes centered at x, and the
dyadic maximal operator

M, f(x) := sup fg ()|f|x (xeRY)

kez

in which the supremum is only taken over all dyadic cubes centered at x,
that is, cubes with radius = 2* for some k € Z. Clearly, for every f € M(RN; X),
M, f <M. f < Mf pointwise everywhere. These trivial inequalities show that
the centered and the dyadic maximal operators also satisfy strong (p,p)
estimates on L}, whenever 1 <p < co and w € Ap. However, one actually
has a sort of equivalence between the maximal operators in the sense that,
for every f € M(RN;X),

Mf <2V M. f < 4N M, f pointwise everywhere.

We may exploit this fact later on. We also define the sharp maximal operator

Mﬁf(x) = su Jclf—fQIX (xeRN),
Qax JQ

where the supremum is taken over all cubes containing x, and where fg :=
JCQ f is the mean of f over Q. We say that a function f has bounded mean
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oscillation if M* f € L*(RN), and we consider the space of all functions of
bounded mean oscillation

BMO(RN; X) := {f € M(RY; X) : M f € L*(RV)),
which is equipped with the seminorm

I fllznmo := IMF flleo.

Note that constant functions have mean oscillation equal to 0, and one would
have to take the quotient of BMO with respect to the constant functions in
order to obtain a Banach space.

3.3 The Rubio de Francia extrapolation theorem

by SeBasTIAN KROL

The aim of the section is the proof of a variant of the following bounded-
ness principle by Rubio de Francia [?]:

The boundedness properties of a linear operator depend only on the
weighted L? inequalities that it satisfies.

This is a final version of the extrapolation theorem Muckenhoupt’s A,
weights.

The first variant of the principle is was given by Rubio de Francia in 1982
[Rubio de Francia (1982)]. Below, we shall present the proof of the extrapo-
lation theorem of Rubio de Francia in its first formulation.

The underlying philosophy of Rubio de Francia’s extrapolation theory
has been summarized by A. Cordoba [Cérdoba (1988)]:

There are no L, spaces only weighted L;.

This was the basic idea in the original (non constructive) proof of the ex-
trapolation theorem for Muckenhoupt’s A, weights. Although originally
given for operators, it was realized that the operators do not play any
role and all the statements can be given in therms of families of nonneg-
ative measurable functions. It is a setting observed by Cruz-Uribe and Perez
[Cruz-Uribe and Pérez (2000)].

Below we follow a presentation given by Duoandikoetxea
[Duoandikoetxea (2011)] - a version of the extrapolation theorem with
sharp bounds - it is of main interest in studying the sharp dependence of
the norms of operators in therms of the A,-constant of the weights.

Subsequently, given p € [1,00), a weight w, and a family ¥ of pairs of
nonnegative, measurable functions, we put
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Forw = 1(F,9) € F f Puwds < o).
IRH

Theorem 3.15. Let pg € (1, 00) and F be a family of pairs of nonnegative, measurable
functions. Assume that there exists an increasing function N : (0, 00) — (0, 00) such
that for every Muckenhoupt weight w € Ay, we have:

1/po 1/po
( f n g”ﬂwdx) sN([w]po)( fR ) f’”ﬂwdx) (.9 €Fpom). (B4

Then for every p € (1,00) and every Muckenhoupt weight w € A, we have

1/p 1/p
(f g”’wdx) SCNp([w]p)(f fpwdx) ((f,g) Gfp,w),
R” R"

where C does not depend on w, and Ny([w]a,) is given by
N([wla, @IMIlL, @) ), ifp <po,

Ny([wla,) = ot =
o [[w] (2081, 1) ]zfp>po

The proof of the Theorem 3.15 is based on the following results: the fac-
torization of Muckenhoupt’s A, weights and the construction of A; weights
via Rubio de Francia’s iteration algorithm.

Lemma 3.16 (Factorization).
a) Letl<p<po<oco.lfweAy,andu€ Ay, thenv:=wul™ € Ay and [v]Ap0 <

[w]a, [l .

1
b) Let 1<py<p<oo. IfweA,and u € Ay, then v := (WP~ luP™P0)r 1 € A,

po-l Pz plo
and [v]a,, s[w]ffp [u];1 .

Proof. The statements of Lemma 3.16 follow directly from the definition of
Muckenhoupt’s A, classes and Holder’s inequality. Here, we provide only
the proof of the statement (b).

Fix a cube Q C R". Note that +— >1, and (Po 1)
inequality, we easily get

Po p By Holder’s

-1 P=Po

Po
1 1 1o 11 p_plo 1 T 1 1
@Lvdx—@f(gwp dx<(|Q|fwdx) (lQlfQudx) . (3.5)
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On the other hand, since u(x)™! < [u] Al(IQI fQudx ~1 for almost every x € Q,
and (po—1)(p;—1) =1, we have

P=ro
(IQlva dx < |Q|Lw X [u]A1 IQlfqu . (3.6)

Therefore, combining (3.5) and (3.6) we obtain the desired conclusion.

Recall that, by Muckenhoupt’s theorem (Theorem 3.14, the Hardy-
Littlewood maximal operator M is bounded on L}, for every p € (1,00) and
every Muckenhoupt weight w € A,. For every p € (1,00) and every Muck-
enhoupt weight w € A, we define therefore define the Rubio de Francia
operator R = R, as follows

MFf
Rf= Z'(2||M||L )k (feLa)

where MK denotes the k-th iterate of M, and ||M]| ;» is the operator norm of
w
p : _
Mon L), that is, “MHLZ; = sup”f”Lffl ”Mf”qu'

Lemma 3.17 (Rubio de Francia’s iteration algorithm). Let R be the Rubio de
Francia extrapolation operator, 1 <p < oo, w € Ap, and h € Lfv. Then:

a) One has

|h| < Rh pointwise almost everywhere, and
IRy <211l

b) Ifh>0, then
M(Rh) < 2||M||,» Rh pointwise almost everywhere,

that is, Rh € Ay and
[Rh]a, <2[IMl|pp -

Proof. The proof is immediate.

Proof (of Theorem 3.15). The case p < po. Fix w € A, and (f, §) € T, with f € LI,
and g #0. Let
|| fliy

||g||Lp
Note that [|k]|;» <2||fll,» . By Lemma 3.17,

Rh € Ay with [Rh]a, <2|IM]|;».
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Consequently, Lemma 3.16 yields
— P—Po ; po-p
v :=w(Rh) € Ap, with [v]Ap0 <[wla, [Rh]A1 .
) ligll,p llgll,p p
Furthermore, since ¢ < Wh < =2 Rh (see Lemma 3.17), note that g € L;”,
L'll}

= Ty
that is, (f,8) € Fpy,0-
Thus, combining Hoélder’s inequality (with respect to the weighted mea-

sure wdx - note also % > 1 and (’%)’ =) our assumption (3.4), and

© PP
Lemma 3.17, we easily get:

P, P
f g'w dx=f g R PP R d
R" R"

P 1-L£
s( f gpow(Rh)p_pde)m ( f (Rh)'w dx) a
Rn Rn

i
Po

%
SN([w]AP[Rh]Zol_p)p ( fm ) fPow(RI)PPo dx) ( (Rh)Pw dx)

RH

SN([W]A;,(ZIIMIILQ)’WP)F fW(Rh)”w dx

< N(fwls, M7 2 [ wwds
w Rn

< 2N ([awla, @Ml P f}R frudr

The case p > po. Fixw € A, and (f, ) € . with f € L}, and g # 0. By a duality
argument we can write

(f g”wdx) s sup{ f g pwdx : p € LM (w), llpll = 1,¢ > o}.
R” R"

Fix such a function ¢. Let h stand for the function given by

p
P—Po P~P0\p-po
W™ =[p+ / T - w
((P (ufng,; } [nguﬁ;

Notethath e LZJ’ - andw! ™" € Ay . Therefore, by Rubio de Francia’s iteration
algorithm (Lemma 3.17), we obtain that the operator R = R, -y i bounded

on LZl_p, , with norm less than or equal to 2, 1 < Rh, and Rh € Ay with [Rh]4, <

1
2”M”L”' ) Lemma 3.16 shows that v := (wpo‘l(Rh)p‘pO)” e Ap,- Moreover,

wlfpl
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since
P _Po_

g <lgl; PR < gl (R

note that (f,g) € Fp 0-
p=po po—1 P—Po

Finally, since pw <h »T w T < (Rh) P!

=
(=)
|
—_

w P =7v, we obtain

o ng(Pw dx < ‘[I;n gpovdx < N([U]Apo )PO f fPOU dx

- po-1

P—Po
= N([0]4,,)" pr(Rh) 1w T w lwdx

PO 1-Fo
SN([U]APO)F’O( f f”wdx)p ( f (RhY 0" dx) ’
R” R”
) %O 1_%0
27N N([ola,, )" ( f fPw dx) ( f W w7 dx)

2P N Gola, 1 [ o dx) ,

IN

where we applied Holder’s inequality. Therefore, the proof is complete.

The example considered below well illustrates the underlying ideas of
Rubio de Francia’s extrapolation theory, which are not so transparent in the
setting of pairs of functions presented above. This theory was summarized
by A. Cordoba as follows:

There are no L? spaces only L?;

compare with (3.7) below.

Example 3.18. Let X be a Banach space. Let T be a sublinear operator, which
is bounded on L2 (X) for every Muckenhoupt weight w € A,. Assume that,
for every C > 0,

supi[|Tll2 x) : w € Az, [w]a, < C} <00

How can we apply Rubio de Francia’s extrapolation principle to show that T
extends to a bounded operator on L}, (X) for every p € (1,00) and every
Muckenhoupt weight w € Ap?

Set
= (T : fe () Ao,

weA;

and
N(t) := sup{IITllezU(X) tw € Ay, [wla, <t} (t>0).
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Then,
Fo 2{(fIxITfIx) : f € L3(X)}.

By Rubio de Francia’s extrapolation theorem (Theorem 3.15), for every
p € (1,00) and every Muckenhoupt weight w € A, there exists a constant C,, 4,
such that

TP wdx<Cpa |fwdx forevery f e Lzz,(X) with Tf € LZ,(X).
X P, X y
RV RV

Z)EAQ

Therefore, if

Dy i={f € | J LX) : Tf e LX)}

'UGAZ

is dense in L} (X), then T admits a unique extension to a bounded operator
on Ly,(X), and [[Tll» ) < Cpa-

In fact, we show that D), 2 LP (X). Note first that

| oo = 2. (3.7)
pe(l,e0) veAy
veAp

Indeed, let 0 # f € L2(X). In the case p < 2, following the lines of the corre-
sponding part of the proof of Theorem 3.15, it is easy to check that f € L2(X)
with v := wu?~2 € Ay, where u := Rh for h := Iflx. Forp>2, f € L%(X) with

0= (WiP2)7T € Ay, where 1 := Rh for h given by "' w' 7 = |ff w.

In particular, Tf is well-defined for all f € L (X). Therefore, it is sufficient
to show that |Tf|x € L}, for all f € L}, (X).

For this purpose, consider the (formal) adjoint operator M’ to the Hardy-
Littlewood maximal operator M (as an operator on L)), that is,

(feLhy).

wmh = MO0
w

Note that M’ is bounded on LZ. Indeed, we first note that w' 7 € Ay with
[w! 7] Ay < [w]ﬁl 1 _ it follows immediately from the definition of the A,
p

4 4
class. Therefore, since fw € L’:U - ifand only if f € L’Z,, and ||f] ”L’”' =\If ||L,,, ,
R w

we have

[~

= ( f (M(faw)y w' ¥ dx)”' <IMlly Il
RN -p’ w

1

( M FY w dx)p
RN

w

Consequently,
M|y < IMI|

wl P
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Consider also the (formal) adjoint operator R’ to R (see Lemma 3.17) given

by:

N M@ '
Rh=) ——=—  (fell).
&Iy
The counterpart of Lemma 3.17 holds for the operator R’, namely:

a) ForheL! onehas

Ih] < R’h pointwise almost everywhere, and
IRl <21l

b) If, in addition, & > 0, then
M(wR’h) < 2|IM||;» wR’h pointwise almost everywhere,
thatis, wR’h € A1 and

[wRhla, < 2[IMll, -

Let 0% f € L(X) and h € L!, with h > 0. Set v := R(/f|x)~! R/hw. Note that,
by Lemma 3.16 (a), v € Ap with [v]4, < [R(|f|lx)]a,[R"]4,. Then, by Holder’s
inequality, we obtain

T2 00 IRALAAON . IIR'hIIL;;;

> Ml [ ROAOR G d
R

> Tl 25 ( fR BR(f0 TR (yw dx)z ( fR R(fOR () dx)

2

2( fR NITf|§<R(If|x)‘1R’(h)wclx)2 ( fR NR(|f|X)R’(h)wdx)
> f}R AR () w dx
Zjl;Nlelxhwdx.

This implies that |T f|x € (qu/ )* = L. Therefore, our claim holds.
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3.4 Calderon-Zygmund operators

Let X and Y be two Banach spaces. We say that a measurable kernel K :
RN xRN — £(X,Y) satisfies the standard conditions if there exist constants
C>0and 6 > 0 such that

C .
IK(x, Wl gy < W if x—y| >0, (51)
IK(x, y) = KCo, ) £,y <C|_—y/|6~ ifo<ly-y'l< 1Ix—]/l (52)
’ 4 ) = |x—y|N+b -2 4
’ |x_x/|6 . ’ 1
IK(x, y) = KX, Wl gex vy < CW fO<|x—x'| < Elx—yl. (S3)

Moreover, we call a bounded, linear operator T : LP(RN;X) —» LP(RN;Y) a
(generalized) Calderon-Zygmund operator (1 <p < oo fixed) if there exists
a kernel satisfying the standard conditions such that

T = [ K dy
for every f € C.(RV;X) and almost every x ¢ supp f.

(3.8)

Theorem 3.19 (Weak (1,1) estimate for Calderon-Zygmund operators). Ev-
ery Calderon-Zygmund operator T : LP(RN; X) — LP(RN;Y) (1 < p < oo fixed) is
weak (1,1) in the sense that there exists a constant C > 0 such that for every A >0
and every f € LP NLY(RN; X) one has

() = € R ITFCh > A < . [ 1wl

Proof. Fix A >0and f € P NLY(RY; X). Applying the corollary of [Stein (1970),
Theorem 4, Chapter 1.3.4] to the function |f(-)|x, we obtain a decomposition
R"=FUQ, FNQ =0, such that

If(x)lx <A for almost every x € F,

Q= U Qj for cubes Q; such that m(Q; N Q) =0 for j #k,
j

and such that Qo NF =0,

m(Q) < % j][;n |f(x)Ix dx, and

1
@ fQj |f(x)lx dx < CA.
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Here Q) denotes, similarly as before, the double cube which has the same
center as Q; but whose sides are twice as long as those of Q. We set

F) forxeF,
8() = { & Jo, fw dx forxe Q,
and we set b(x) = f(x) - g(x). Then
b(x)=0 forxeF and

f b(x)dx=0 for each cube Q;.

Qj

Moreover, ¢ € L' N L®(RN; X), Igllr1cy < fllpaexy and ligllze(x) < CA.
Since Tf = Tg+ T, it follows that

m({x e R" : [T f(x)ly > A}) <

<m(fx e R":|Tg(x)ly > = )+m( x €R": |Th(x)ly > g H,

and it suffices to estimate both terms on the right hand side separately.
First, we estimate Tg. First of all, g € LP(X) and

1915, = f}R g dx < A gl < A il g
By using in addition the assumption of boundedness of T,

and this implies

m(lr € R":[Tg@hy > 51 < S fllg

Second, we estimate Tb. Let b; = b)(Q].. Then b =Y, jbj and it suffices to
estimate Tb;.
Fix x € F and fix j. Since fQ b =0, we have
]

Thj(x) = fQ (KCx, y) = K(x,2))) b(y) dy,

i

where x; is the center of the cube Q;. In particular,
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LlTb](x)|Y dx < j;L |K(x/ y) —K(x,xj)|£(X,Y) |b(y)|X dy dx
j
= L LlK(x, y) _K(X,Xj)|£(X’Y) dxlb(y)b( dy
j
Sf f IK(x, ) — K(x, %))] £cx vy dx [b(y)|x dy
Qj Qiz

<Cx f bl dy,
Qj

where we have used the fact that F is a subset of the complement of the
double cube Q;». Of course, we also used that K satisfies the second standard
condition (S2). From the preceding estimate we obtain

fF ITb()ly dx < Z}“ fF ITb;()ly dx

< Cx f Ib(y)lx dy
Q
SZCK”fHLl(X)

This estimate implies

A C
m(lx € F:Tb(ly > 51 < < Ifllo
On the other hand,
A C
mire Q: Moy > 5 <m(@) < < Il

The preceding two estimates together give the estimate for Tb.

Lemma 3.20 (Good-A inequality). Fix a weight w € Ac. Then there exist C > 0
and 6 > 0 such that for every A > 0, and every y > 0 small enough the inequality

w({x € R : T* f(x) > 2A and Mf(x) < yA}) < Cy%w(lx e R": T* f(x) > A}) (3.9)
holds.

Proof. First, we can assume that w({x € R" : T*f(x) > A}) # 0, for otherwise
the above inequality is clearly satisfied. Since the measure w(x) dx is outer
regular, there exists an open set U, such that

{xeR": T"f(x)>A}cU, and

w(lU,) <2w({x e R": T*f(x) > ). (3.10)
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By Whitney’s lemma (Lemma 3.30), there exists a sequence (Q) of mutually
disjoint cubes with sides parallel to the coordinate axes such that U, = |, Ok
and such that Q4 (the cube which has the same center as the cube Q
and satisfies diam Qy 4 = 4diam Q) has nonempty intersection with U;. The
cubes Qy are of the form B(X, ;) for some center ¥, and some radius 7, > 0,
and hence Qy 4 = B(%x, 4r%).

We prove that there exists a constant C > 0 which is independent of f such
that for every y > 0 small enough and every k,

m({x € Qr : T" f(x) > 2A and Mf(x) < yA}) < Cym(Qy). (3.11)

We may in fact assume that y is small, since the above inequality is trivial
fory >C1.

Fix k. We may assume that there exists & € Qy such that Mf(&) < yA,
because otherwise the inequality (3.11) is obviously satisfied. Moreover, since
QkaNUY is nonempty, there exists xx € Qx4 such that

T* F(x) < A

Now let Qi := B(xy, 167}) be the cube centered at x; and satisfying diam Or=
16diam Q. Define f1 = fx5 and fo = f X ¢80 that f = f1 + f>. By subadditivity

of the maximal operator T*, we have
m(lx € Qp: T"f(x) > 2A and Mf(x) < yA}) <
<m(lxeQp: T fi(x) > % and Mf(x) < yA})+ (3.12)
smllre Qe T () > 2t and Mf() <A,

and it suffices to estimate the two terms on the right-hand side of this in-
equality. 3
Since &k € Qk € Qy, it follows that

1 . n n
00 f}Rn |f1(]/)|xd]/—mj(;klf(y)lxdysw MF(&) <16™yA,

m(

so that the weak (1,1) estimates from Theorem 3.19 and Corollary ?? yield

mixe R T > 2y < 2 fR Ifilxdy<Cym@)  (313)

for some constant C > 0 which is independent of f, v, k and A. Next, we shall
estimate, for small y > 0, the second term on the right-hand side of (3.12). Fix
X € Q = B(Xk,1x) and € > 0. Then
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T @l = | fB L KEnhm b,
<| f KGxi ) fo() dy,
B(xy,€)°
. fB K=K lcoon ol dy
Xp,€)°

v f IKGe, ) 20 2 (lx dy
B(x,€)AB(xy,€)
=L +L+I3

where B(x, €) A B(xy, €) denotes the symmetric difference of B(x, €) and B(xy, €).
We have

h=| f Ko, ) f(y) dyl, < T f(u) < A
(B(xk,€)UB(xy 8r))°

by the choice of xy, since B(xy, €) U B(xx, 87¢) = B(xx,suple,8r¢}) is a cube cen-
tered at x;, and by the definition of T*. Furthermore, by using & € Qx € Ok
again, and by proceeding similarly as in the estimates (??), one obtains

I <CMf(&) < CyA.

Note that I3 = 0 whenever ¢ < 167,. On the other hand, for € > 167, one has
B(x, €) A B(xy, €) C B(x,2¢) \ B(x, £/2), and therefore,

Ck
I3 < f lf(Wlx d
B(x,2¢)\B(x,¢/2) X = YI" fWlx dy

Cg2"
< & f Flx dy
€ B(x,2¢)

<CMf(&) < CyA.

We note that the preceding estimates can also be made for ¢ = 0 if one
interpretes Ty = T. Taking all the above estimates together, and taking the
supremum over ¢ > 0, we find that there exists a constant C > 0 which is
independent of f, A, k, y such that for every x € Q,

IT* fa(x)ly < CyA +A.
Taking y > 0 so small that Cy < %, it follows that
. 31
m({x € Qx: T fa(x) > - and Mf(x) <yA}) =0.

As a consequence, we have proved (3.11). Now, since the weight w belongs
to A, there exist constants 6 > 0 such that
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o) (@
20 =G

Hence, the estimate (3.11) implies that, for every k,

6
) for every cube Q and every measurable E C Q.

w({x € Q: T* f(x) > 2A and Mf(x) < yA}) < CY°w(Qy).
Summing up in k and recalling the inequality (3.10) yields the estimate (3.9).

Theorem 3.21 (Coifman-Fefferman). Let T : [P(RN;X) — LP(RN;Y) be a
Calderon-Zygmund operator. Then, for every Muckenhoupt weight w € A, the
operator T extends to a bounded, linear operator from L, (RN; X) into Lk, (RN; Y).

Proof. By the good-A inequality (3.9) from Lemma 3.20, for every f € L' N
P(RY;X),
f T* f(x)Pw(x) dx =

=C f " AP Lw({T*f > 2A)) dA
0

<C f " AP Lw((Mf > yA) dA+Cy° f " AP lw(T f > A)) dA
0 0

= 14 o T* 14
Cjﬂ;an(x) w(x) dx+Cy f]Ran(x) w(x) dx.

Taking y > 0 so small that C)® < %, we obtain the claim.

From the preceding theorem and the Rubio de Francia extrapolation theo-
rem (Theorem 3.15, we immediately obtain the following main result of this
section.

Theorem 3.22. Let T : LP(RN; X) — LF(RN;Y) be a Calderon-Zygmund operator.
Then, for every 1 < q < co and every Muckenhoupt weight w € A, the operator T

extends to a bounded, linear operator from L1(RN; X) into LI (RN;Y).

Lemma 3.23. If T is a Calderon-Zygmund operator, then, for each s > 1,
MHTAM) <CMIfRE°  (f e PRY;X), xeRY),

where M is the sharp maximal operator.

Proof. Fixs>1.Let f € LP(RN; X). Given a cube Q C RN and given x € Q, we
decompose f = fi + f», where f; = f1,gand f» = f 1p0)-, and weleta := T fo(x).
Then
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fQ ITF) —aly
< fQ ITHly+ Jg Th-ThH®.

Since T is bounded on L7, the first term on the right-hand side of this in-
equality can be estimated by

]g Thly < ( Jg |Tf1|~;)l
c ( JEQ |f|§()l

<25 CM(fF)(0)*
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For the second term on the right-hand side of the above inequality one has,
if L denotes the length of one side of the cube Q,

f Th=ThH®ly
Q

g

_ |6
<C dzd
fjﬂ;N\zQ I — 2N |f(z)lx dz dy

<CL5JC HLCE,
Qp——1v2

KL<pr—zj<2k+1L, Jx —zZ|N*0

dy
Y

f (K(y,2)~ K(x,2)) f(2) dz
]RN\

1
<CL®Yy ——— d
Z (sz)N+6 «fl;—z|<2k+1L|f(Z)|X z

|f(2)lx dz
zké J|€ z]<2k+1], f

2N c
ST % Mf(x)

< CM(fl)(x)*

Lemma 3.24. Fix 1 <p < o0 and w € Ay. If f € M(RN;X) is such that Myf €

LL (RN), then
f |Mdf|Pwscf IMF FP w.
RN RN

Proof.
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3.5 The Hilbert transform

Let X be a Banach space. For every f € S(IR; X) we define the Hilbert trans-
form Hf : R — X by

Hf(x):= P.V.fRzi/f(x—y) dy

=lim if(x—y)dy (x eR).

e—0 lyl=e

The limit actually exists for every Schwartz test functions f and every x € R,
since

f L=y dy = [Inlylfx—y)I™ + [nlylfe— ] =%, + f Inlylf'(x ) dy
lyl>e Y y

lyl>e

:lne(f(x+e)—f(x—e))+f Inlyl f'(x—y) dy

lyl=e
- flnlylf’(x—y) dyase—0.
R

In particular, if we take x = 0 and X = C, we see that the principal value

1
PV. | =f(y)d
fRyf(y) y

is well defined as tempered distribution.

Theorem 3.25. If X is a Hilbert space, then the Hilbert transform extends to a
bounded, linear operator on L*(R; X).

We give two different proofs for this fact.

Proof (First proof of Theorem 3.25). Our first proof uses the Fourier transform.
We prove that for every f € S(IR; H) one has

Hf =F '"MonT £,

where Mg, is the multiplication operator associated with the sign function,
that is, Msgng := sgn - ¢ for appropriate functions g. If the above equality is
true, then

Lemma 3.26 (Cotlar). Let (T,)ucz be a sequence of bounded, linear operators on
a Hilbert space H. Assume that

[T Tl 20y | T3 Tl £ 1) < Ay

where
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1
Zaﬁ = A < co.

nez.
Then:

a) For every finite| CZ
1) Tlzen <A,

nel

b) For every finite family (In)1<q<m Of finite, mutually disjoint 1, C Z. one has

m
|Z 17, Tz < A?,
a=1

where
Tj, =Y T
nel,
c) The series
YT
n=—oo

is strongly convergent.

Proof. (a) Recall that for every operator T € L(H) and every k € IN one has
Ty = ITT |y and [TV ) = (T T iy

In fact, using the Cauchy-Schwarz inequality in its full form (including the
equality), we obtain

|T*T|L(H) = sup IT*Tle
Ixlp<1

= sup (I"Tx,y)m

x|, lylr<1

= sup (Ix,Tydu

[xl, lylH<1

= sup ITfo{
[x[p<1

_ 2
= T,

which is the above equality for k = 1. Iterating this equality, and using that
(T*T)* = T*T, we obtain first

T4y = 1T Ty = (T )

and then the above equality for all powers k = 2™ (m € IN). The full claim fol-
lows by writing k € N in its binary extension. Having proved the above equal-
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ity, one sees that assertion (a) follows from (b), namely when one chooses
m=1.
(b) Take now a finite family (I)1<q<m Of finite, mutually disjoint I, C Z. Let

m
A= Ulaxla CZxZ,
a=1

the union being disjoint. Then

s::iT;aTla =) T
a=1

is selfadjoint, nonnegative and, for every k € IN one has

k _1qlk
5% 2ty = 15y
However,
k —_ 3
= Y T
(1,]1) - i )€

We have the two estimates
|T:»'1 le .. 'T?kT]'kl-C(H) <a(ip — ]1) """ a(iy — ]k)
and . .
|T;1 le .. T;k Tjkl.E(H) <a(0)2-a(jy—iz)---- a(jr—1 —1x) -a(0)2.
Hence

N S N e
1SV g1y < a(0) Z a(iy = j1)2 -a(jy —i2)? -+ a(jk-1 = i) 2 - alie = i)
(1,71) s jE)EA

2k-1
<a(O)ll {Za(j)i] :
ez

where I = |J]_;. Taking the k-th root and letting k tend to infinity, we obtain
the claim.

(c) Assume that there exists x € H such that the series )~ _ T,x does not
converge. Then there exists ¢ > 0 and a sequence (I,) e of mutually disjoint,
finite subsets I, € Z such that, using the notation from (b),

|T1au|H > E.

Then we can choose m € IN large enough so that
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m
2 2 2
Y I Tuaocty > A% P,

a=1

which is a contradiction to

m m
Y Ty = Y (T, T, 00
a=1 a=1
< A%,
which follows from (b).
Proof (Second proof of Theorem 3.25). For every n € Z we define
Api={xeR:2" < x| 2",
ky € LX(R) by ky(x) := 31—6 14,(x), and
T, € LIX(R;H)) by Ty, f :=ky* f.
From the equality T}, = =T}, and from Young's inequality 1.21 we obtain
\Tn Tl 2y = 1T Tl £y = 1T Tonl £y < e * kil 1.

Assume that n <m, and let x € R be positive. Then we can estimate

1 1
[y * ks ()] = f -—1,x-y)d
e 2”S|y|£2”+1 yx—-y yray
0 ifxe [zm _ 2n+1’2m+1 + 2n+l]’
4.0-m ifxe [2m _2n+1,2m +2n+l]’
<

2.01.D=2m  fy e [2m + 2n+1 om+1 _ 2n+1]
4.p—m ifxe [2m+l _on+l om+1 4 2n+l].

While the second and fourth estimate follow directly from crude estimates

in the integral, the third estimate uses the equality f]Rk" = 0, which allows
one to write

1 1
2”3|y|§2”+1 yx—-y

1,1 1
= f —(-—-2)dy
Z”SIyISZ”“ yx-y X

1 1
=f —dy.
2"S|y|§2n+1 X—yXx

K # Ko () dy




62 3 Singular integrals
Asa consequence,
Ky # Kogll 1 < 2+ (8- 277 42277
<36-271m,

The sequence (Ty)ncz thus satisfies the hypotheses of Cotlar’s lemma, so
that, for every f € L*(R; H) the limit

N-1 N-1
to 5t S

n=—N
exists in L2(IR; H). Since for every f € S(R;H) and every x € R
N-1 1
Jlim [ Z kn] +fx) = f2 ey N
=Hf(x),
we have proved the boundedness of the Hilbert transform in L*(R; H).

Corollary 3.27. If X is a Hilbert space, then for every 1 < p < co and every Muck-
enhoupt weight w € Ay, the Hilbert transform extends to a bounded, linear operator

on L (R; X).

We say that a Banach space X has the Hilbert transform property if, for
some 1 < p < oo, the Hilbert transform extends to a bounded, linear operator
on [P(R;X). By Theorem 3.25, Hilbert spaces have the Hilbert transform
property. From Theorem 3.22, we have the following general result.

Corollary 3.28. A Banach space X has the Hilbert transform property if and only
if for every 1 < p < co and every Muckenhoupt weight w € Ay, the Hilbert transform

extends to a bounded, linear operator on L (R; X).

Corollary 3.29. a) Hilbert spaces have the Hilbert transform property.

b) If X has the Hilbert transform property and if 1 < p < oo, then LF(€2;X) has
the Hilbert transform property ((Q2, A, u) being any measure space).

c) The spaces LP(Q) have the Hilbert transform property if 1 <p < oo.

Proof. (a) We already remarked that Hilbert spaces have the Hilbert trans-
form property by Theorem 3.25.
(b) This follows from the boundedness of the Hilbert transform on the

scalar-valued L*(IR) (Corollary 3.27) and Tonnelli’s theorem. In fact, for every
f e LP(IR;LP(Q2)) (this space can be identified with LF(Rx (2) and LP(Q; L*(IR))),
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P — P
i = [ IS g 0

:f]RfQ|Hf(x,a))|pda)dx
_ fo fm Hf(x, @) dx da
sCfoﬂ;If(x,a))lpdxdw
-C f]R fg 1F )P deo dx

— 14
= ClAly gy

where C is the operator norm of the Hilbert transform on LP(RR).

3.6 Covering and decomposition

63

This section contains several covering and decomposition results which

where useful in this chapter.

Lemma 3.30 (Whitney decomposition of open sets). Let U C RN be an open,
proper subset. Then there exists a sequence (Qy) of mutually disjoint open (dyadic)

cubes such that
U= U Qy and
k
diam Q; < dist(Qy, U°) < 4diam Q.

Proof. Let
Q="

be a reference cube and consider for each k € Z the collection
Dp = {2(x+Q) : x e ZVN)

of dyadic cubes of side length equal to 2, and
D:={ oy

the collection of all dyadic cubes.
Let now, for every k€ Z,

Uy = {x e U : 25 < dist (x, U°) < 281},
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U= Ukezu"'

QkZZ{QEZ)k:Qﬂuki@}

Q:= UQk

One easily observes, by definition of the @, that for every Q € Q

so that

We now put

and

diam Q < dist(Qy, U°) < 4 VN diam Q.

u={Je

but it may happen that the cubes in the collection Q are not mutually disjoint.
In order to obtain a mutually disjoint union, we choose for every Q € Q the
unique cube Qg € Q which contains Q and which has maximal diameter
(such a cube exists and is uniquely determined due to the fact that U is a
proper subset of RN, that is, the complement is nonempty). So if we take
the collection @ := {Quax : Q € Q}, then this collection satisfies all required
properties.

Moreover,
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