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CHAPTER 1

Introduction

1. * Examples of nonlinear problems

1.1. Roots of polynomials.Let p: C — C be a polynomial.
Problem: Prove existence of a root @f that is, prove that the equation

p(2) =0
admits a solution. If possible, try to find an explicit formula for a solution, or try to
locate a solution.

The same questions may be asked for polynonpal§€" — C".

1.2. Ordinary differential equations. Let f : R" — R" be a continuous func-
tion, and letxy € R". Prove existence (and uniqueness) of a local solution of the
ordinary diferential equation with initial value

X(t) = f(x(©)),  x(0) = xo.

1.3. Optimization problems. Let j : R — R be a convex function and define
the cost functional on the spac€([0, 1]) by

1
o= [ iue)ds uec(o.1).
0
Prove that the cost functiondladmits a global (or local) minimum.

1.4. Nonlinear diffusion. Let Q) c R" be a an open set. Let: [0,T] xQ - R
be some function depending on a time variab#d0, T] and a space variabbee Q.
For example, this function may in the applications be an energy density, a population
density, or an image.

In the following, we think ofu being an energy density. @ c Q is a small
volume (with smooth boundagO), then

fou(t, X) dx

is the total energy in the volun@ at timet. The total energy it© can only change

if there is an energy transport through the boundary, or if there is an energy source
within O. According to Fourier’s law, an energy transport is only possible in the
opposite direction of the gradie®tu; recall that the gradienvu points into the
direction in whichu increases most, in particular, into the direction in which there is
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6 1. INTRODUCTION

a higher energy density, and energy transport is directed to regions with lower energy

density.
ﬁfudx—f a(|Vu|)—ndo-
ot Jo - IVul

Hence,
wherea : R, — R, is some given function (the fllusion codicient function),
the integral over the boundafiO is taken with respect to the surface measure and
n = n(X) is the outer normal in a pointe 9O.

By changing the order of fferentiation and integration on the left-hand side,
and by applying the divergence theorem to the integral on the right-hand side, we

obtain
f—dx fdlv(a(Nul)ﬁ)dx

Since this last inequality holds for every arbitrary volu®e Q, we obtain that
the energy density satisfies the following partial @fierential equation:

a
(1.1) —div (a(IVUI)m) =

This is a quite general example of gfdsion equation which appears in heat con-
duction, population dynamics, geometric flows, image analysis,depending on
the choice for the diusion codicienta.

For example, if we choos&s) = s, then

div (a(|Vu|)—) =divVu =: Au

IVul
is theLaplace operatarand the equation (1.1) is the lineaffdsion equation
ou
— —Au=0.
ot

If the diffusion codicient is nonlinear but homogeneous, for exampl&(§ =
sP-1 for somep > 1, then

div (a(|Vu|)m) = div (|Vu[P?Vu) =: Apu
is the p-Laplace operator, and the equation (1.1) becomes the nonlin@asidn
equation

ou

— —Apu=0
at ot
involving thep-Laplace operator. Note that the 2-Laplace operator is just the Laplace
operator defined before. This equation will serve as a model problem for nonlinear
diffusion.
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In the applications, other fiusion codicients appear. For example, the function

a(s) = \/15732 leads to the nonlinear partialftBrential equation

ou ) Vu

— —-div(——=) =0
ot V1+|VupP

which is related to the mean curvature flow of surfaces, and only slightigreint
diffusion codicients are also used in image analysis.

1.5. Nonlinear elliptic problems. Instead of the time dependent problems from
the previous section, we may also consider the stationary (time-independent) prob-
lems

-Apu=1f InQ, u=0 inoQ,
or, more generally,
—div(a(|Vu|)E) =f InQ, u=0 indQ.
IVul

Problem: Prove that for every in a certain class of functions there exists a unique
solutionu.

Before solving this problem, one actually has to define the notiocsohftion
for example, one has to say in which class of functions a solution should live, and in
which sense it solves the PDEs above.

2. The Sobolev spac&/*P(Q)

Let Q c R" be an open set. For every functiare C(Q) we define itssupport
by

suppu = {x e Q : u(x) # 0};

the closure is to be taken Ri'. Then we define the space of all compactly supported
C= functions, also calletkest functions

D(Q) = {ue C7(Q) : suppu is compact and contained py}.

Note that the support of test functiomse D(Q) is compact (by definition) and
contained in theopensetQ. As a consequence, for eaghe D(Q) the support
does not touch (that is, has empty intersection with) the bounda€y. dh other
words, every test function € D(Q) vanishes in a neighbnourhoodd@®. For every
1 < p < oo we define théSobolev space

WHP(Q) = {uelP(Q):V1<i<niyelP(Q)VeeDQ)

0y f
U— =— | Vig}.
o 0% Q ¥

We note that the elements are uniquely determined, if they exist; this has to be
proved, of course, but we omit the proof. We wr;g?gli—:-:: v; and we call(;’—;i theweak
partial derivativeof u with respect tax.
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We equip the spac@/*P(Q) with the norm
5 du 1
Iullwee 2= (U, + Zl] 55 16"

Then the spac®/*P(Q) is a Banach space.
We further define the subspace
W;P(@) = D@ .
WheneverX is a Banach space, we denote Xyits dual space, which is the
space
X ={X : X > R: X islinear and continuous
It is equipped with the norm

IX1Ix == sup [X'(X)I.

IIXlIx<1
Instead ofx'(x) we will also write(X’, X)x: x.
The dual space o, ?(Q) is denoted by~ (Q) with p’ = =5, that is
WoP(Q) = WP (Q).
For everyu € L”(Q) and every 1< i < nwe define thaveak partial derivative
& as an element ilv-P(Q) by
(%,v)w_l,pf,wl,p = - fg ug—; dx
Lemma 2.1. For everyl < p < oo, the operators
0
&ﬁwwm)a LP(Q),
u = @
0x;’
and
ﬁaLWm - WP (Q),
0%

ou
9%

u =

are linear and continuous.

Proor. The two operators are clearly linear. For the first operator, one has

u
5 lle < llullwee,
0%
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by the definition of the norm ilv*P. For the second operator, one calculates, using
Holder’s inequality,

124 sup |22 v
oo lw-ie = > —1p WP
0% ML p<t OX W
wop
= sup | uavl
||v||W3,psl 0X;
ov
< sup Ul ”a_HLP
||v||Wé,ps1 X
< lUlle.
Hence, both operators are continuous. O

The following lemma is an immediate consequence of the preceding lemma.
Lemma 2.2. For everyl < p < oo, the operators

div : WHP@Q)" — LP(Q),
aui
and

div : LP(Q)" —» WP (Q),
(9Ui
u=(U) = —
W) = D5
are linear and continuous.

The following theorem, Poincais inequality, will be frequently used in the se-
quel. We state it without proof.

Tueorem 2.3 (Poincaé inequality).Let Q c R" be aboundeddomain, and let
1 < p < 0. Then there exists a constantX0 such that

flulpstleﬂp for every ue Wé’p(Q)-
le) Q

We note that the Poincainequality implies that

lull == (fg IVulp)é

defines an equivalent norm (W@’p(Q) if Q c R"is bounded. Clearly,

lull < lull,zs  for everyu e W2P,
0



10 1. INTRODUCTION
by the definition of the norm if-P. On the other hand,

ullyze < C(llulle +11Vullie)
ClIVullee = Clull,

IA

by the Poinca inequality.

We also state the following two theorems without proof.

Tueorem 2.4 (Sobolev embedding theorenbet Q c R" be an open set with’C
boundary. Letl < p < co and define

p*::{ % ifls p<n
o ifn<p,
and if p=n, then p € [1, ). Then, for every g q < p* we have
WHP(Q) c LYQ)
with continuous embedding, that is, there exists C(p, ) > 0 such that
lulla < Cllullwee  for every ue W-P(Q).

Tueorem 2.5 (Rellich-Kondrachov)Let Q c R" be an open and bounded set
with C! boundary. Letl < p < ~ and define pas in the Sobolev embedding
theorem. Then, for every $ q < « the embedding

WEP(Q) c LY(Q)
is compact, that is, every bounded sequence #?(f¥) has a subsequence which
converges in #4(Q).
3. * The p-Laplace operator

Let Q c R" be an open set. Thp-Laplace operatorg > 1) is the partial
differential operator which to every function Q — R assigns the function
Apu(X) := div ([VU(X)|P?Vu(x)), xe€ Q.
We simply writeA instead ofA, and call the 2-Laplace operator simply Laplace op-
erator.

In the following, we will realize thep-Laplace operator as an abstract operator
between two Banach spaces and use functional analytic methods in order to solve el-
liptic and parabolic PDEs involving the-Laplace operator. We will see that several
abstract methods will apply.

Deriniion 3.1 (p-Laplace operator). Let £ p < o, and letQ c R" be an open
set. We define thBirichlet p-Laplace operatoon Q to be the operator

AT TWIP(Q) - WHP(Q),
u > Aju:=div(VuPP?vu).
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Lemma 3.2. The Dirichlet p-Laplace operator is well defined and continuous.
Moreover, there exist constantsx0, n > 0 such that for every & Wé’p(Q)
AUl < ClIUlP
and
- <A%U, u>w—1,p’ ’W(;LP > n ”VUHED

Proor. The operator
div : LP(Q)" —» WP(Q),
n
u=(y) - divu:= ——

is linear and continuous by Lemma 2.2, aﬂn‘@lis the composition of the operator
D:W,P@Q) — LP(Q)",
u - |VuP?vu,

and the operator div. We show that the oper&as well defined and continuous.
First of all, for everyu € W>P(Q)

leU|p,=f|VU|(p_1)p,:f|Vu|p<OO,
Q Q Q

which implies thaD is well defined. So it remains to show tHats continuous.

Let (U)) c W, P(Q) be converging to some € WP(Q). ThenVu, — Vuin
LP(Q)". For every convergent sequencelif, we find a subsequence which con-
verges almost everywhere and which is dominated by some functiaf, ithat
is, after passing to a subsequence (!) which we denote again,hywe have
Vu, — Vu almost everywhere an®u,| < g for someg € LP(Q2) and alln. Hence,
IVUnP2Vu, — |VulP-?2Vu almost everywhere, an@u,|P! < gP! € L%(Q) =
LP(Q) for everyn. By Lebesgue’s dominated convergence theorem, this implies
IVUn[P~2VU, — [VU[P2Vuin LP(Q).

We have thus shown that for every convergent sequante (WP(Q), u, — u,
we find a subsequence (again denoted lpy)(such thatDu, — Du in LP(Q).

This implies thatD is continuous, as the following short argument by contradiction
shows. Assume thdD is not continous. Then there exists a convergent sequence
(un) € WHP(Q), u, — u, such that Du,) does not converge tbu in LP(Q). The
property that Du,) does not converge tbu means that there exists a subsequence
of (un) (which we denote again byy)) and some: > 0 such that

IDu, — Dul| v > & for everyn.

But the subsequencey is still convergent tai, and by what has been said before,
there exists again a subsequence (again denoted,pys(ich thatDu, — Du in
LP(Q), a contradition to the estimate above. Hence, the assumptiomtisanot
continuous must be false, and therefbrés continuous.
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It remains to show the two estimates. First of all,

Q
sup |<Ap u, V>W’1’P',Wé‘p|

Q
1A Ully-15
M, 1p<1
0

sup | | IVUP2Vuwy|

V| <1
M gp<t’ V0

-1
< sup [[Vulll, VI
My o<1
-1
< [IVUlgs
p-1
<l
Secondly,
— (A%, u) 1y = |VulP
p*h W—l.p”WO-p - 0 ’
and the claim is completely proved. O

The following theorem shows that the (negatiyglaplace operator is the
Frechet derivative of a strictly convex functional Wj’p(ﬁ).

Tueorem 3.3. Letl < p < oo, and letQ c R" be an open set. Consider the
function

E:WP(Q) — R,

1
u - —f|Vu|p.
P Ja

Then Ee CY(W,P(Q)) is strictly convex and

f IVU|P~2VuVvv
Q

(~ARU V) 1y a0 for every uve WyP(Q).

E'(uv

Proor. We consider the function
1T WoPQ) - R

u - wt:(jwvw%i
Q

which is a semi-norm owg’p(g). This means that it satisfies all the properties of a
norm except the implicatioju| = 0 = u = 0 which is not true in general.
In particular, for every, v € W&’p(Q), the triangle inequality

U+ V| < |ul + |V
is true, and this implies the triangle inequality from above

u—vi > [lul - .
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This triangle inequality from above implies, thauif — uin Wé’p(Q), then

0 « |l — Ullwze > [Un — Ul > |Jug| — Ul

2

and hence the applicatign| is continuous. Moreover, for every v € Wé’p(Q) and
everyt € [0, 1] the triangle inequality implies
[tu+ (1 —t)v| < tjul + (1 - t)|v,
so that] - | is also convex.
Since the functiorR, — R, s — 1P is continuous, increasing and convex,
and sincek is the composition of - | with this latter function, we obtain th& is

continuous and convex.
Next, we note that for eveny € W&"’(Q) the operator

Ty i W, P(Q) — R,
h - Th:fqulp‘ZVth
Q

is well defined, linear and continuous. Moreover, one can show that for every
Wy P(©)
E(u+h)-E(u)-Tsh 0

lIhll, 1.p—0 hl|,,»
W Ihllyzo

In fact, this equality is a consequence of th&atientiability of the functioR" —
R, X — [X|P, where now - | denotes the euclidean norm, and several convergence
theorems from measure and integration theory; we omit the detailed proof.

This last equality implies, by definition, that the functifns differentiable and
E’'(u) = T, that is,

E'(u)e = f IVulP2VuVe for everyu, ¢ € Wé’p(Q).
Q

Hence, ifp > 2 and ifQ c R" is bounded, then, for eveny € Wé’p(Q) one has
E'(u) = —Aju, or simply E’ = —A§. Since, by Lemma 3.2, the operatdf is
continuous, we obtain that the functi@nis C! in this case. In the general case, that
is, for 1< p < o0 andQ c R" open, the continuity oE’ is proved as in Lemma 3.2.
In order to prove strict convexity d, letu, v € Wg’p(Q), u#vandlett € (0,1).
Then ... O






CHAPTER 2

Minimization of convex functions

In the following, X denotes a Banach space with ndrm|. The space
X :={xX : X —> K: X islinear and bounded
is thedual spaceof X, that is, the space of all linear and bounded functionalX.on
The dual spac’ is a Banach space for the norm

(0.1) X := qupIX’(X)I.
IIXI<1

1. Reflexive Banach spaces

The following theorem, one version of the Hahn-Banach theorem, is standard in
any functional analysis course and it will not be proved here.

Tueorem 1.1 (Hahn-Banach; extension of bounded functiondlgt X be a
normed space and Uc X a linear subspace. Then for every bounded linear
U : U — K there exists a bounded linear extensidgn: XX — K (i.e. X|y = U)
such that|x|| = ||U]].

Cororrary 1.2. If X is a normed space, then for everyexX \ {0} there exists
X' € X" such that

X1 = 1and X(x) = [IXI.

Proor. By the Hahn-Banach theorem (Theorem 1.1), there exists an extension
X' € X' of the functionalu’ : sparix} — K defined byu'(1x) = A||x]| such that
X1l = [ju]l = 1. O

Cororrary 1.3. If X is a normed space, then for everg X
(1.1) X = supIx'(x)I.

X' eX!
IX’ll<1

Proor. For everyx’' € X’ with ||X|]| < 1 one has
IX' (1 < IXIHIXI < {11,

which proves one of the required inequalities. The other inequality follows from
Corollary 1.2. O

Remark 1.4. The equality (1.1) should be compared to the definition (0.1) of the
norm of an elemernt’ € X'.

15



16 2. MINIMIZATION OF CONVEX FUNCTIONS

From now on, it will be convenient to use the following notation. Given a normed
spaceX and elementg € X, X' € X/, we write
(X, %) 1= (X, Xyxoxx 7= X (X).
For the bracket:, -), we note the following properties. The function
Gy X'x X - K
(X, %) = (X, %) =X(X
is bilinear and for every’ € X', x € X,
[OX, 0 < 1IXIHIXIL
The bracket-, -) thus appeals to the notion of the scalar product on inner product
spaces, and the last inequality appeals to the Cauchy-Schwarz inequality, but note,
however, that the bracket ot a scalar product since it is defined on a pair of two

different spaces. Moreover, evenXf= H is a complex Hilbert space, then the
bracket difers from the scalar product in that it is bilinear instead of sesquilinear.

CoroLrary 1.5. Let X be a normed space, U X a closed linear subspace and
x € X\ U. Then there exists x X’ such that
(X', Xy # 0and({x’,uy = O for every ue U.
Proor. Letr : X — X/U be the quotient mapr(x) = x+ U). Sincex ¢ U, we

haven(x) # 0. By Corollary 1.2, there exisis € (X/U)’ such thaty, n(x)) # O.
Thenx := ¢ o € X" is a desired functional we are looking for. O

CororLary 1.6. If X is a normed space such that ¥ separable, then X is
separable, too.

Proor. Let D’ = {x], : n € N} be a dense subset of the unit sphereof For
everyn € N we choose an elemert € X such that|x,|| < 1 and|{X],, Xn)| zll. We
claim thatD := span{x, : n € N} is dense inX. If this was not true, i.e. iD # X,
then, by Corollary 1.5, we find an elemetite X’ \ {0} such that'(x,) = O for every
n € N. We may without loss of generality assume tfwl] = 1. SinceD’ is dense in
the unit sphere oK’, we findng € N such thaf|x’ — x| || < %1. But then

< 0 Xl = 0, = X Xl < 1, = X1l < 5.
which is a contradiction. Henc®, = X andX is separable. |

Given a normed space, we call

X" = (XY

thebidual of X.

Lemma 1.7. Let X be a normed space. Then the mapping

J: X - X,
X = (X (X, X),
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is well defined and isometric.
Proor. The linearity ofx' — (X, X) is clear, and from the inequality
[IXO) = 1K, 00 < IIXIHIXL

follows thatJx € X” (i.e. Jis well defined) and|JX| < ||X||. The fact that] is
isometric follows from Corollary 1.2. O

Dermnition 1.8. A Banach spacX is calledreflexiveif the isometryJ from
Lemma 1.7 is surjective, i.e. 3X = X”. In other words: a normed spageis
reflexive if for everyx” € X” there existx € X such that

X', Xy =«(X,x)forall X € X"

Remark 1.9. It may happen that the spacésind X” are isomorphic withouk
being reflexive (the example of such a Banach space is however quite involved). We
emphasize that reflexivity means that the special opedawan isomorphism.

Lemma 1.10. Every Hilbert space is reflexive.

Proor. By the Theorem of Riesz-Echet, we may identifyH with its dual H’
and thus alsé1 with its bidualH”. The identification is done via the scalar product.
It should be noted, however, that for complex Hilbert spaces, the identificatidn of
with its dualH’ is only antilinear, but after the second identificatibif (vith H”) it
turns out that the identification ¢&f with H” is linear.

It is finally an exercise to show that this identificationtéfwith H” coincides
with the mapping) from Lemma 1.7. O

Lemma 1.11. Every finite dimensional Banach space is reflexive.
Proor. It suffices to remark that iX is finite dimensional, then
dimX =dimX =dimX"” < co.

Surjectivity of the mapping (which is always injective) thus follows from linear
algebra. O

Tueorem 1.12. The space B(Q) is reflexive ifl < p < oo ((Q, A, ) being an
arbitrary measure space).

Lemma 1.13. The spacest) LY(Q) (@ c RN) and ([0, 1]) are not reflexive.
Proor. For everyt € [0, 1], leté; € C([0, 1])’ be defined by
6., F) = (1), feC(o,1]).
Then||6|| = 1 and whenevetr # s, then
|0y — O]l = 2.

In particular, the uncountably many baB¢o;, %) (t € [0, 1]) are mutually disjoint so
thatC([0, 1])’ is not separable.
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Now, if C([0, 1]) were reflexive, thelC([0, 1])” = C([0, 1]) would be separable
(sinceC([0, 1]) is separable), and then, by Corollary 1[0, 1])’ would be sepa-
rable; a contradiction to what has been said before. This prove€([tatl]) is not
reflexive.

The cases df andL}(Q) are proved similarly. They are separable Banach spaces
with nonseparable dual. |

Tueorem 1.14. Every closed subspace of a reflexive Banach space is reflexive.

Proor. Let X be a reflexive Banach space, andUlet: X be a closed subspace.
Letu” € U”. Then the mapping” : X’ — K defined by

X, Xy = (U, Xy), X eX,
is linear and bounded, i.&” € X”. By reflexivity of X, there existx € X such that
1.2) X, %) =", X|y), X eX.

Assume thak ¢ U. Then, by Corollary 1.3, there exists € X’ such that|y = 0
and(x’, Xy # 0; a contradiction to the last equality. Henge; U. We need to show
that

(1.3) w,uy =, x),Yu e U’.
However, ifu’ € U’, then, by Hahn-Banach we can choose an extengianX’, i.e.
X'y = U. The equation (1.3) thus follows from (1.2). |

CororLaRy 1.15. The Sobolev spacesiW(Q) (Q c RN open) are reflexive if
l<p<oo,keN.

Proor. For example, fok = 1, the operator
T:WHP(Q) — LPQ)M™N,
ou
el
N
is isometric, so that we may considér-P(Q) as a closed subspace bf(Q)*N
which is reflexive by Theorem 1.12. The claim follows from Theorem 1.14. O

y (u ou
= 5 A, 2t
8X1

CoroLLARY 1.16. A Banach space is reflexive if and only if its dual is reflexive.

Proor. Assume that the Banach spaceés reflexive. Letx”” € X’ (the tridual!).
Then the mapping’ : X — K defined by

X, Xy = (X7, Ix(X)), XeX

is linear and bounded, i.ex € X’ (hereJy denotes the isometr¥ — X”). Let
X" € X” be arbitrary. SinceX is reflexive, there existg € X such thatlyx = x”.
Hence,

(X7, X7 = (X", IxX)y = (X, X) = (X", X),
which proves thafy X' = X, i.e. the isometryly. : X — X" is surjective. Hence,
X is reflexive.
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On the other hand, assume thétis reflexive. ThenX” is reflexive by the
preceeding argument, and therefotéconsidered as a closed subspacetivia
the isometryd) is reflexive by Theorem 1.14. i

DerniTion 1.17. LetX be a normed space. We say that a sequerged X
converges weaklyp somex € X if

lim (X, X,y = (X, X) for everyx’' € X'.

Nn—oo
Notations: if ,) converges weakly t®, then we writex, — X, w — lim,_. X, = X,
Xn — XIn o (X, X’), or X, = x weakly.

Tueorem 1.18. In a reflexive Banach space every bounded sequence admits a
weakly convergent subsequence.

Proor. Let (x,) be a bounded sequence in a reflexive Banach sade first
assume thaX is separable. TheK” is separable by reflexivity, and is separable
by Corollary 1.6. LetX;,,) ¢ X’ be a dense sequence.

Since (X, X)) is bounded by the boundednessx(there exists a subsequence
(Xpuy) Of (%) (¢1 : N — Nis increasing, unbounded) such that

lim (X7, X,,(n)) €Xists.
n—oo

Similarly, there exists a subsequengg, ) of (X,,w)) such that

lim (X5, X)) EXists.
nN—oo

Note that for this subsequence, we also have that
rI]im (X1, Xpp(n)) EXIStS.
Iterating this argument, we find a subsequencg.() of (X,,) and finally for
everyme N, m> 2, a subsequenceéy, ) of (X, ,m) such that
1im (X, Xg,,)) €Xists for every I j <m
Let (yn) := (X,,n) b€ the 'diagonal sequence’. Ther)(is a subsequence o)

and
lim (X, yn) exists for everyn € N.
n—oo

Let X' € X’ be arbitrary, and let > 0. Since{x/, : m € N} is dense inX’, there
existsm € N such that
X = Xqll < &
Then there existgy € N such that for every, v > ng
(X Y = W)l < &

Hence, for every, v > ng,

X, Yy = Yol KX = X Y = Yo + KX Vi = W)

e(2M + 1),
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whereM = sup, llynll < oo is independent of, x andv. As a consequence,
X', Xy = lim (X, y,) exists for every’ e X',
n—oo

andx” is a bounded linear functional of.
SinceX is reflexive, there exists € X such thatlx = x”. For thisx, we have by
definition of J
rLim (X, ¥ny = (X, X) exists for every’ € X',

i.e. (yn) converges weakly ta. .

If X is not separable as we first assumed, then one may repldneX :=
Span{x, : n € N} which is separable. By the above, there exists X and a
subsequence ok{) (which we denote again b)) such that for everx’e X’,

lim (X', Xa) = (X', X),
N—oo

i.e. (x,) converges weakly iiX. If X € X/, thenx|z € X/, and it follows easily that
the sequencexf) also converges weakly X to the elemenk. O

2. Main theorem

We start by stating a second version of the Hahn-Banach theorem. We will not
prove this theorem. We only recall that a subisedf a Banach spacX is convexf
for everyx, y € K and evert € [0, 1] one hagx + (1 - t)y € K.

Tueorem 2.1 (Hahn-Banach; separation of convex setst X be a Banach
space, Kc X a closed, nhonempty, convex subset, and XX \ K. Then there
exists X e X" ande > 0 such that

Re(X, X) + € < Re(X, Xg), Xe€K.

CoroLrLary 2.2. Let X be a Banach space and K X a closed, convex subset
(closed for the norm topology). (k,) c K converges weakly to someesxX, then
x € K.

Proor. Assume the contrary, i.e ¢ K. By the Hahn-Banach theorem (Theorem
2.1), there exisk’ € X’ ande > 0 such that

Re(X, X,y + € < Re(X, x) for everyn e N,
a contradiction to the assumption th@t— x. O

A function f : K - R U {+o0} on a convex subsdf of a Banach spacX is
calledconvexf for every x, y € K, and everyt € [0, 1],

2.1) ftx+ (L —t)y) <t f(x) + (1 -1t) F(y).

Let K ¢ X be an arbitrary subset of a Banach space. A funcfionK —
R U {+o0} is calledlower semicontinuous for every sequencex{) c K and every
x € K one has
X = rI]im X = f(x)< Iiminf f(Xn).
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Lemma 2.3. A function f: K — R U {+oo} is lower semicontinuous if and only if
for every ce R the seffx € K : f(X) < x}is closed in K.

Proor. Assume first thaf is lower semicontinuous. Lete R and letK, := {x €
K: f(X) < c}. Let (x,) ¢ K¢ be a convergent sequence such thatlim,_,., X, € K.
Then, by lower semicontinuity,

f(X) < liminf f(x,) < c,
N—oo

so thatx € K.. Hence K. is closed inK.

Assume now thak, := {x € K : f(x) < c} is closed for everyc € R. Let
(%) € K be a convergent sequence such thatlim,_,. X, € K. We have to show
that f(x) < liminf,_. f(X,) =: c. If this inequality was not true then there exists
&> 0 such that

f(xX) > liminf f(x,) +&e=Cc+e.
n—oo

In addition, there exists a subsequengg)(©f (x,) such that lim_,., f(x,) = c. This
means thak,, € KC+§ for all k large enough. Since, — xand sincd<c+§ is closed
in K, this impliesx € K., or, equivalently,

&
f(x) <c+ >

which is a contradiction to the above inequality. Hence, we have showrt tisat
lower semicontinuous. O

CoroLLArY 2.4. Let X be a Banach space, K X a closed, convex subset, and
f : K > RU {+o0} a lower semicontinuous, convex function(Xf) c K converges
weakly to xe K, then

f(x) < Iim_)i(gf f(Xn).

Proor. For everyc € R, the setK; := {x € K : f(X) < ¢} is closed (by lower
semicontinuity off and by Lemma 2.3) and convex (by convexity Of After
extracting a subsequence, if necessary, we may assunme:théitn inf ., f(Xx,) =
lim,_. f(X,). Then for everye > 0 the sequencex{) is eventually inK,,, i.e.
except for finitely many,, the sequencexf) lies inK.,.. Hence, by Corollary 2.2,
X € Kgs, Which means that(x) < c + . Sincee > 0 was arbitrary, the claim
follows. O

Tueorem 2.5. Let X be a reflexive Banach space, & X a closed, convex,
nonempty subset, and :f K — R U {+o0} a lower semicontinuous, convex func-
tion such that

lim f(x) = +0 (weak coercivity)

[IX||—>00
xeK

Then there existsye K such that

f(xo) = Iinf{f(X): xe K} > —
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Proor. Let (X,) ¢ K be such that lim.., f(X,) = inf{f(X) : x € K}. By the
coercivity assumption of, the sequencexf) is bounded. Sinc¥ is reflexive, there
exists a weakly convergent subsequence (Theorem 1.18); we denxgehiylimit.
By Corollary 2.2,x, € K. By Corollary 2.4,

(%) < lim f(x) = inf(f(x) : x € K},

The claim is proved. O

3. * Nonlinear elliptic problems |

Let Q c R" be a bounded open set and fet> 2. Letf : Q — R be some

function inL?(Q2). We consider the nonlinear elliptic boundary value problem
—-Apu(X) = f(X), xeQ,
(3.1) pu(x) = f(x)
u(x) =0, X € 0Q.

We call a functioru Wé’p(Q) aweak solutiorof this problem if
(3.2) f |VulP2VuVe = f fo for everyp e CHQ).
Q Q

Note thatu € Wé’p(Q) is a weak solution of (3.1) if and only #AJu = f, whereAD
is the p-Laplace operator defined in Chapter 1, Section 3.

In the following lemma, we give another characterization and we will see that
ue Wé’p(Q) is a weak solution of (3.1) if and only if is a critical point of some real
valuedenergy function

Lemma 3.1. LetQ c R" be an open sefl, < p < oo, and define
E:W,P(Q) — R,

u - E(u) ::}fWulp—ffu.
P Ja Q

Then the function E C!, and ue W&’p(Q) is a weak solution of3.1)if and only if
E’'(u) = 0.

Proor. We have already proved in Theorem 3.3 (Chapter 1), that the function
WoP(Q) — R, U+ %fg IVu|P is continuously dferentiable. Moreover, the function

ume fQ fu is bounded and linear, and therefore continuousfiedentiable. By
Theorem 3.3 in Chapter 1, we have

E'(U)y = fgqulp‘ZVqup - L fo foreveryu, ¢ € Wé’p(Q),

so thatu € W P(Q) is a weak solution of (3.1) if and only E'(u) = O. O

Tueorem 3.2. LetQ c R" be bounded and open, and let>p2. Then for every
f € L2(Q) there exists a unique weak solutiore lVVé’p(Q) of the problen(3.1).
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Proor. Existence:By Lemma 3.1, it sffices to prove that the functida € C?!
defined in Lemma 3.1 is convex and weakly coercive. In fact, thdéras a global
minimumu by Theorem 2.5. For this global minimum one t&éu) = 0 and there-
foreuis a weak solution of (3.1) by Lemma 3.1.

Since every linear function is convex, convexitybfollows from Theorem 3.3
in Chapter 1.

By the Poincag inequality, and by the Cauchy-Schwarz inequality,

1 1
p P_
2 fg IVul® + 0GP fg ul® =11 fll2 [lull2

> 7l ., — I F1l21ullyz0
0

E(u)

W%

-1
= lullyzo (oIl 1)

Sincep > 1, this implies
lim E(u) = oo,

u —00
Iull 1

that is, E is weakly coercive. Since the spa‘ﬁ%’p(ﬂ) is reflexive, by Theorem 2.5
about the minimization of convex functions, there existsWé’p(Q) such that

u=inf E,
W(Z)LP
that is,u is a global minimum. Since every local (or global) minimummpis a
critical point of E, we have thus proved existence of a weak solution of (3.1).

UniquenessAssume that Wé’p(Q) is a second weak solution. Th&i(v) =
E’(u) = 0. SinceE is in addition convex, we obtain that the functién [0, 1] — R,
f(t) = E(tu+ (1 - t)u) is convex andf’(0) = f’(1) = 0. Hence,f’(t) = O for every
t € [0, 1] (the derivative of a convex function is increasing), so thas constant.
Hencev is also a global minimum dE. If u # v, then the strict convexity dt (!!)
implies
u+v, Eu)+E(V) .

> ) < > =inf E,

which is a contradiction. Hence, we must have v. O

E(

4. * The von Neumann minimax theorem

In the following theorem, we call a functioh: K — R on a convex subs& of
a Banach spac¥ concavef —f is convex, or, equivalently, if for every, y € K and
everyt € [0, 1],

(4.1) ftx+ (L—t)y) >t F(x) + (1 -t) F(y).

A function f : K — R is calledstrictly convexresp.strictly concaveif for every x,
ye K, x=#Yy, f(x) = f(y) the inequality in (2.1) (resp. (4.1)) is strict foe (0, 1).
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Tueorem 4.1 (von Neumann)Let K and L be two closed, bounded, nonempty,
convex subsets of reflexive Banach spaces X and Y, respectively. Ket £ — R
be a continuous function such that

x — f(x,y) is strictly convex for every g L, and
y — f(x,y) is concave for every & K.

Then there exist&, y) € K x L such that
(4.2) f(xy) < f(xy) < f(x,y) forevery xe K, y € L.

Remark 4.2. A point &, y) € K x L satisfying (4.2) is called saddle poinbf f.

A saddle point is a point oéquilibriumin a two-person zero-sum game in the
following sense: If the player controlling the strategynodifies his strategy when
the second player plays he increases his loss; hence, it is his interest to glay
Similarly, if the player controlling the strategymodifies his strategy when the first
player playsx, he diminishes his gain; thus itis in his interest to pfayhis property
of equilibrium of saddle points justifies their use as a (reasonable) solution in a two-
person zero-sum games[].

Proor. Define the functiorF : L — R by F(y) := infyk f(X,y) (y € L). By
Theorem 2.5, for every € L there existx € K such that~(y) = f(X,y). By strict
convexity, this elemenx is uniquely determined. We denoke:= ®(y) and thus
obtain

4.3) F) =inf f(xy) = F@®).Y), yeL.

By concavity of the functiory — f(x,y) and by the definition of, for everyy,,
y> € L and everyt € [0, 1],
F(ty. + (1-1)y2) f(D(tys + (1 - t)y2). tys + (1 - 1)y2)
> tH(@(tyr + (1-1)y2), y1) + (1 - 1) F(D(tyr + (1 - 1)y2). y2)
> tF(y) + (1 - 1) F(y2),
so thatF is concave. MoreovekF is upper semicontinuous: legy) c L be conver-

genttoy € L. For everyx € K and everyn € N one had-(y,) < f(X,y»), and taking
the limes superior on both sides, we obtain, by continuity,of

limsupF(y,) < limsupf(x,y,) = f(x,y).

n—oo n—oo

Sincex € K was arbitrary, this inequality implies limspp, F(yn) < F(y), i.e.Fis
upper semicontinuous.
By Theorem 2.5 (applied teF), there existy € L such that

F(@(Y).y) = F(Y) = SupF(y).

yeL
We putx = ®(y) and show thatx, y) is a saddle point. Clearly, for everye K,

(4.4) f(xy) < f(xy).
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Therefore it remains to show that for everyg L,

(4.5) f(xy) = f(xy).

Lety € L be arbitrary and puy, := (1 - )y + fy andx, = ®(y,). Then, by
concavity,

FGY) = Fiyn) = f(XnYn)
> a—#um%+%ﬂmw
> a—#ﬁw+%ﬂmw,

or
F(Y) > (X, Y) for everyn e N.

SinceK is bounded and closed, the sequengg € K has a weakly convergent
subsequence which converges to some elemgatk (Theorem 1.18 and Corollary
2.2). By the preceeding inequality and Corollary 2.4,

FY) > f(Xo.Y).

This is just the remaining inequality (4.5) if we can prove that Xx. By concavity,
for everyx € K and everyn € N,

f(Xyn) = f(Xnyn)
a—#ﬂm%+%ﬂmw

1 1
(1- ﬁ)f(xn,)_’) + HF(Y)-

Lettingn — oo in this inequality and using Corollary 2.4 again, we obtain that for
everyx € K,

\%

v

f(xy) > f(x.Y)
Hence X, = ®(y) = X and the theorem is proved. O

5. * The brachistochrone problem

The following problem was asked by Johann Bernoulli in 1696:

For given two pointsA and B in a vertical plane, find a curve con-
nectingA andB which is optimal among all other such curves in the
following sense. The poirf® of unit mass which starts frorA with

zero velocity and moves along this curve only due to the gravitational
force will reach the poinB in a minimal time.

Without loss of generality, we may assume that in Xyglane we haveA =
(0,a) andB = (b,0) for somea, b > 0. We will look for a curve connecting
and B and which is in addition a graph of a continuouslyfelientiable function
y: [0, b] — R satisfyingy(0) = aandy(b) = 0.
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The principle of conservation of energy implies that

1
SV(D® = gyx(),
wherev is the velocity of the poinP, g is the gravitational constant ant) is the

x-coordinate of the poinP at timet (andy(x(t)) is the height of the poin®). Note
that

v(t) = V1+y(X()? X(1),

o dxo o 2gy(x(t))
0= &0 = \Tryeor

Hence, the timd at which the poinP reaches the poiri is given by

(T [ [y
T_fo dt_f0 a—Zgy(x)dX

The problem is therefore to minimize the functiofagjiven by

(P [1+y(x?
@) = fo w/—a_zgy(x) dx

wherey varies in the convex set

and therefore

K := {y e W-P(0, b) : y(0) = aandy(b) = 0}

andp > 1is to be fixed. It is easy to check that the functionas convex and that
for everyp > 1 the set is closed inW*P(0,1). However, the space&/*P(0, 1) is
reflexive only ifp > 1. On the other hand, the functiongis coercive only ifp = 1.

Hence, we camot apply the main theorem of this section on minimization of
convex functionals (Theorem 2.5), unless we replace thK $gta bounded convex
subset which is likely to contain the global minimumTaf

In this section, we will proceed filerently, that is, we will solve the problem
of finding a global minimum by solving the corresponding Euler-Lagrange equation
which is in this case an ordinaryftirential equation. Note that in the preceding
examples (especially the nonlinear elliptic problems) we proved directly existence
of global minima and thus proved existence of solutions of the corresponding Euler-
Lagrange equations.
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In order to find the Euler-Lagrange equation for the functidndkety € K and
let ze D(0, b) be a test function. Then

Iim } (T(y+1t2 —T(y))

T'(y)z =
= 1/1 2
f\/a 2@13/\/1+(y)2 f ) W
i f Va- 2gyv1+(y)2 f‘l W(JTS

If yis a global minimum off, thenT’(y) = 0 which means thak’(y)z = O for every
test funtionz € D(0, b). Hence, ify is a global minimum off, then

o g _ y’ a(y)? ~
e (va-2gyp \/c':1—2<91y\/1+(y’)2+ (va-2gy)® V1 +(y)?
. vy’
Va-2gy(V1+(y)?)?
y’ B ay')?

Va=29y(vV1+(?? (Va=-20y° V1+(y)?
or, if we simplify,
y'(a-29y) -g(1+(y)) =0 on(Qb), y(0)=a y(b)=0.
By substitutingz(x) := a— 2gy(x), and by assuming (for simplicity) thagz 1, this
differential equation is equivalent to the following problem:
(5.1) 27 +(Z)?*+1=0 on(Qb), z0)=0, z(b) = a.






CHAPTER 3

Nonconvex analysis

We follow the monographs by Struw#&] and Diabek & Milota [8].

1. Ekeland’s variational principle

Tueorem 1.1. Let (M, d) be a complete metric space. Let BM — R U {oo} be
lower semicontinuous, bounded from below a&nd. Then for everg > 0,5 > 0
and ue M with E(u) < infy E + ¢ there exists ¥ M which is the unique minimizer
of the function E: M — R U {0} given by

E (W) = E(w) + gd(v, w).

Moreover,
E(v) <E(u) and du,v)<é.
Proor. Puta := £. We define inductively a sequenag)(c M as follows:
First, we putv; := u.

Next, assume that, is already constructed for some> 1. Then we define the
set

Shi={ve M:E() < E(Vy) — ad(v,V,)}
and
Un = Iglnf E.

Clearly,S, is non-empty since, € S,. Moreoveru, > infy, E. We choose,,; € Sy,
such that

() ~ E(ner) 2 3 (ER) ~ ).

Such an element,,; exists by the definition of the infimum.

Having thus constructed the sequengg &nd also the sequences, ) and (u,)
we first remark thaB,,; c S,. Infact, ifv e S,,1, then, by definition 05,4, by the
triangle inequality and sincg,,; € Sy,

E(V) E(Vn+l) —a d(V» Vn+1)
E(Vn) — @ d(Vhi1, Vn) — @ d(V, Vpy1)
E(vh) — ad(v,v,).

29

ININ A
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Hence,v € S,, which proves the inclusio®,,; ¢ S,. As a consequence, the
sequenceuy) is increasing. Hence,

E(Vn+1) — Mn+1

IA

E(Vn+1) — Mn
% (E(Vn) = ),

IA

which, by iteration, implies
1
E(Vni1) — fins1 < (E)n (E(u1) — p1).
Hence, for every € S, we have

(1.1) d(vn, V)

IA

L (B - EW)
(04

~ (E) )

Cc 1,
e
In particular, ifm > n, thenv,, € S, and

IA

d(Vp, Vi) < ¢ (})”.
a 2

This means thaty) is a Cauchy sequence. Sinkkis complete, there existse M
such thatv = lim,_,., V. SinceS, is closed by lower semicontinuity &, we have
v € Sy, for everyn. In particulary € S; which means that

E(vV) < E(v1) — ad(vy,V) < E(v1) = E(u)

and

1

du.v) < —(E() - EWV)

IA

1. .
< —(infE+e&-infE)
a M M
1
= —g=0.
a

Finally, letw € M be such that
Ev(w) = E(w) + a@d(w, V) < E\(V) = E(V).
Then, sincey € S, for everyn,

Ew) < E(V)-ad(w,V)
< E(w) — ad(vy, V) — ad(w,V)
< E(V) — ad(v,,w),

that is,w € S, for everyn. By (1.1), this implied(v,, w) < %(%)”. Hence,w =
limne Va = Vv, Which proves thav is the only global minimizer of the function
E,. O
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CoroLLARY 1.2. Let V be a Banach space and€=C*(V). If E is bounded from
below then there exists a sequei(ag c V such that

lim E(u,) = i(\/f E and Ilim |E(u)\ =0.
Nn—o0 n—oo

Proor. Choose a sequence,) c R such thak, > 0 and lim,_.., e, = 0. Choose
a minimizing sequenceuf) c V such thaE(u,) < infy E + £2. Applying Ekeland’s
variational principle withe = £2, § = &, andu = u,, we find a sequence/{) c V
such thate(v,) < E(u,) and for everyw € V one has

E(vn) < E(Va+W)+&nWlv
E(Vn) + E,(Vn)W + O(W) + &nlWlyv.

This inequality implies that for every > O

’ ’ W
IE'(V)llv: = sup [E'(Vn)——]
lIwily <6 [IWI|v/
(0]
sup' (w)| .
s [IWilv

Lettings — 0, one obtains
IE"(Vn)llv < &n,

so that ¢,)) is a sequence we are looking for. O

DeriniTion 1.3. LetV be a Banach space and et CY(V). A sequencey,) c V
is called aPalais-Smale sequendehere exists a constaft > 0 such that

E(un) < C for everyn, and
lim [IE’(Un)llv- = O.

Remark 1.4. The Corollary 1.2 says that every functiBne C(V) which is
bounded from below admits a minimizing Palais-Smale sequence.

DeriniTion 1.5. LetV be a Banach space and Ete CY(V). We say thatE
satisfies th&alais-Smale conditioif every Palais-Smale sequence admits a strongly
convergent subsequence.

Remark 1.6. If E satisfies the Palais-Smale conditiand if E admits a Palais-
Smale sequence, thé&hhas a critical point. This is immediate from the definition
and the continuity oE’.

2. * Nonlinear elliptic problems Il
We consider the problem
{ ~Au+ f(U)=0 InQ,

2.1
2.1) u=0 in0Q,
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whereQ c R" is a bounded open set and the functioa C(R) satisfies the growth
condition

2.2)  |f(9 <C(L+|g"Y) forsomeC>0,0<p< nZTnz and alls € R.

We putF(s) := [° f(r) dr and we define the enerdy: H}(Q) — R by

1
(2.3) E(u) := = f IVul? + f F(u), ueHjQ).

2 Q Q

Tueorem 2.1. Assume that there existsX0 ande > 0 such that
A
F(s) > (—71 +e)€-C forevery =R,

whered; > Ois the first eigenvalue of the Dirichlet-Laplace operator év). Then
the problem(2.1) admits a weak solution @ Hj(Q).

Lemma 2.2. Assume that f satisfies the growth condit{@mR). LetQ c R" be
open and bounded, and let EH}(Q) — R be defined as irf2.3). Then every
boundedPalais-Smale sequence admits a subsequence which convergg$in H

Proor. Let (U,) ¢ H3(Q2) be a bounded Palais-Smale sequence. This means that
there exists a consta@t> 0 such that

E(un) < C for everyn,
lim ||[E"(up)|ly-2 = 0, and
n—oo

||un||Hé < C for everyn.

Since (1,) is bounded, sinceij(Q) is reflexive and by the Rellich-Kondrachov theo-
rem, there exists a subsequence (which will be again denotegdPwtdu € H3(Q)
such that

U, — uin H3(Q) and
U, — uin L%(Q).

Since (1n) is bounded inH}(Q), by the Sobolev embedding theorem and by the
growth condition onf, the sequencef(uy,)) is bounded in_P(Q). Hence,

2 2
lun = ullZ, = fIV(un—U)I
0 Q

LV(un - u)Vu, + L f(uy)(u, —u) —

- f f (Un) (Un — U) — f V(U — U)VU
Q Q
I1E" (Un)ll-2 1 = Ullpz + (1 (Un)lla [1Un — Ul e — fV(Un — u)vu.
Q

Each term on the right-hand side of this inequality converges tor)-asoo: the
first term since,) is bounded and Palais-Smale, the second term bec&(isg) (s

IA
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bounded andi, — uin L9 and the third term because of the weak convergence of
(Un). a

3. The mountain pass theorem

LetV be a real Hilbert space and Ete C*(V). Assume the followingnountain
pass geometry

(M1) there existsly € V such thate’(ug) = 0,
(M2) there exists > 0 such that

inf  E(u) > E(up),
llu—uol|=r
and
(M3) there existsl; € V with ||u; — Ugl| > r such thate(u;) < E(up).

In fact, it is not essential thak is a critical point and the first condition may be
dropped. In this section, however, we ask whethadmits a critical point which is
not equal tady. In general, assuming only the mountain pass geometry above is not
enough to prove existence of a second critical point.

ExampLE 3.1 (Brézis-Nirenberg). Consider the functiéh: R?> — R given by
E(x,y) = X2 + (1 - X)%~2. Then

E'(xy) = (2x- 3(1- %%, 2(1~ X)%) = (0,0)

if and only if (x,y) = (0, 0), that is, the origin is the only critical point & On the
other hand

E(0,0)=0,
E(2,2) =0, and

inf E(x,y) >0,
x2y2=1

that is,E satisfies the mountain pass geometry.
Tueorem 3.2. Let E € C1(V) satisfy the mountain pass geometry (M1)-(M3). Let

(3.1) c:= Iyrg trer[%E(y(t)),

where
[':={y € C([0,1]; V) : ¥(0) = up andy(1) = uy}.

Assume that E satisfies the Palais-Smale condition. Then c is a critical value of E,
that is, there exists & V such that Eu) = c and B(u) = 0.
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4. * Nonlinear elliptic problems 11|
In this section we consider again the problem
—Au+ f(uy=0 InQ,
(4.2) _
u=0 in 0QY,

whereQ c R" is a bounded open set and the functioa C(R) satisfies the growth
condition (2.2).

Tueorem 4.1. Assume in addition that

(i) liminf 012 > 0 and
(ii) there exist g~ 2 and R> 0 such that0 > g F(s) > f(s)s for every <= R
with |§ > R.

Then the probleni.1) admits a nonzero weak solutionstH} ().

Proor. We apply the Mountain Pass Theorem (Theorem 3.2).

We note first thaE(0) = 0, sinceF(0) = 0.

Next, by assumption (i), for every > 0O there exist$ > 0 such that for every
se Rwith |g < 6 one has@ > —g. This inequality implies that

F(s) > -es* for everyse R with |g < 6.
On the other hand, the growth condition (2.2) implies that
F(s) > —C(g)|9® for everyse R with |g > 6.
As a consequence,
F(s) > - —C(e)|9P for everyse R.

Using Poincag’s inequalityd; [|ull?, < [[Vull?, and the continuity of the embedding
H3(Q) — LP(Q) (Sobolev), we obtain for every e H3(Q)

E(u > %LWUF—eLUZ—C(s)Llqu

1 ¢ 2 > P

\Y

\%

1 x _
G~ 7~ M) I

Hi@’ " Hi@)

In particular, ife > 0 andr > 0 are small enough, then

. 1 -
inf EW) = G-~ -CErr)r2 > 0.
g =r 2 A

Hence, we have proved thBtsatisfies condition (M2).
In order to prove condition (M3), we note that hypothesis (iii) says that

0> qF(s) = F'(s)s foreveryse Rwith|g >R
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Integrating this dierential inequality implies that there exists a constantO such
that
F(s) <c|d? foreveryse Rwith|g >R

From this inequality we deduce that for everg H3(2) and everyl > 0

1
E(lu) = /lz—f|Vu|2+f F(/lu)+f F(u)
2 Q {lAu<R} {lAu>R}

1
A2 2 f IVUl? + |Q| supF(s) — |19 f |ulP.
2 Q |[S<R {lAu>R}

Sincec > 0 andq > 2, we see that for every nonzemos H3(Q) there existst > 0
such thaﬂl/lu||H%(Q) > r andE(Au) < 0; in fact, we have lif,., E(AU) = —co. In
particular,E satisfies the condition (M3).

It remains to show thaE satisfies the Palais-Smale condition. Lat)(be a
Palais-Smale sequence. This means that there €xist® such tha€(u,) < C for
everyn and lim,_., ||[E’(un)|| = 0. By choosindC large enough, we may also assume
that||E’(un)ll < C for everyn. Then we obtain, using also hypothesis (ii), that for
everyne N

qC +C ”Un“Hé

IA

\%

q E(Un) - E/(Un)un

_ ‘LZZ fg VU + fg (0 F(Un) — f (Un) )
q-2

2 5 ||Un||,2_|é-
This inequality implies that the sequeneg)(is bounded. It follows from Lemma
2.2 that (1) has a convergent subsequence. Siogewas an arbitrary Palais-Smale
sequence, it therefore follows thatsatisfies the Palais-Smale condition.

By the Mountain Pass Theorem (Theorem 3.2), there exists a critical pant
H3(Q) such thaE(u) = ¢ > 0, wherecis defined as in Theorem 3.2. Sing€) = 0,

it follows thatu is nonzero. O






CHAPTER 4

Iterative methods

1. * Newton’s method

Tueorem 1.1 (Newton’s method)Let X and Y be two Banach spacescX an
open set. Let £ C'(U;Y) and assume that there exist& U such that (i) {x) =0
and (i) f/(X) € L(X,Y) is an isomorphism. Then for everyd_ (0, 1) there exists
a neighbourhood c U of x such that for everygxe V the operator f(Xp) is an
isomorphism, the sequenfe) defined iteratively by

(1.1) Xae1 = %o — /(%) (%), n>0,
remains in V andix,— X|| < L"||xo—X]| for every ne N. In particular, lim,_,. X, = X.
Remark 1.2. The iteration given by (1.1) is callétewton iteration

Proor oF Tueorem 1.1. By continuity, there exists a neighbourhoddc U of
x such thatf’(x) is an isomorphism for alk € V. It will be useful to define the
auxiliary functiony : V — X by

o(x) = x— /()7 (x), xeV.
Sincef(X) = 0, we find that for every € V
e(X) — (X x— 07 (F(¥) - f(X)) - X
x = X= 1097 (R (x = X) + o(x — X)),
so that by the continuity of’(-)™!

i 100 = (N _
x=>x|IX =X

In particular, for evenyt € (0, 1) there exists > 0 such thaV := B(x,r) c V c U
and such that for every e V

lle(x) = X = lle(X) = (I < LIIx = X.

This implies that for everyk, € V one hasp(X) € V and if we define iteratively
X1 = (%) = ¢™H(X0), then

1% — X]| < L"[|X — X]| = 0 asn — oo.

37
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2. Local inverse theorem and implicit function theorem

Let X andY be two Banach spaces and lgtbe an open subset &f. The
following are two classical theorems infidirential calculus.

Tueorem 2.1 (Local inverse theoremlet f : U — Y be continuously ger-
entiable andx € U such that f(X) : X — Y is an isomorphism, that is, bounded,
bijective and the inverse is also bounded. Then there exist neighbourhoadd V
of Xxand Wc Y of f(X) such that f: V — W is a C diffeomorphism, that is f is
continuously dferentiable, bijective and the inverse'f: W — V is continuously
differentiable.

Tueorem 2.2 (Implicit function theorem)Assume that X= X; x X, for two
Banach spaces, and let f X > U — Y be continuously gerentiable and
X = (X, %) € U such that(f—;z()i) : X2 — Y is an isomorphism. Then there exist
neighbourhoods YUc X; of x; and U, c X, of x,, U; x U, c U, and a continuously
differentiable function g U; — U, such that

{xe Uy xU,: f(X) = f(X)} = {(X1, 9(X1)) : X1 € Uq}.
For the proof of the local inverse theorem, we need the following lemma.

Lemma 2.3. Let f : U — Y be continuously gerentiable such that f U —
f(U) isa homeomorphism, that is, continuous, bijective and with continuous inverse.
Then f is a C diffeomorphism if and only if for every « U the derivative f(X) :
X — Y is an isomorphism.

Proor. Assume first thaff is aC! diffeomorphism. When we fierentiate the
identitiesx = f~1(f(x)) andy = f(f~1(y)), which are true for every € U and every
y € f(U), then we find

[x (f 1Y (f(x)f'(X) foreveryxe U and

ly = £(fFMEY)
f/()(f1) (f(X) foreveryx = f(y) e U.

As a consequencd;(x) is an isomorphism for every e U.
For the converse, assume thigtx) is an isomorphism for every e U. For every
X1, X2 € U one has, by dierentiability,

f(x2) = f(x0) + /(X)) (X2 — X1) + 0(X2 = X1),

whereo depends orx; and lim,_,,, 22X = 0, We havex; = f-(y;) andx, =

[IX2=Xall

f-1(y,) if we puty; := f(x). Hence, the above identity becomes

y2 =y + F/(FHy))(F(y2) = 74 (ya)) + o(f H(y2) — 74 (va)).
To this identity, we apply the inverse operatdf(f ~*(y.)))~* and we obtain

FHy2) = F7Hya) + (F(FH ) 2 = ya) = (F(FH ) o(FH(y2) — 7 (ya)).
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Since f~1 is continuous, the last term on the right-hand side of the last equality is
sublinear. Hencef ! is differentiable and

(F() = (F(F o) ™
From this identity (using that—* and f’ are continuous) we obtain that! is con-
tinuously diferentiable. The claim is proved. O

PrROOF OF THE LOCAL INVERSE THEOREM. Consider the function
g:U - X
X - F)H(X).
It suffices to show thag : V — W is aC?! diffeomorphism for appropriate neigh-

bourhoods/ of x andW of g(x).
Consider also the function

p:U - X
X B X=g(Xx).

This functiony is continuously dierentiable ang’(x) = | — f/(X)~1f’(x) for every
x € U. In particular,¢’(X) = 0. By continuity ofy’, there exists > 0 andL < 1
such that|¢’(X)|| < L for everyx € B(x,r) c U. Hence,

lo(X1) — ()l < LII%q — Xol| for everyxy, x; € B(Xr).

By the definition ofyp, this implies

(2.1) I9(x2) — gl = [IX1 = X2 = (@(X2) — (X))l

> [IXe = Xoll = L% — Xl

= (1-L) %=l
We claim that for every € B(g(X), (1 — L)r) there exists a unique € B(X; r) such
thatg(x) =y.

The uniqueness follows from (2.1).
In order to prove existence, leg = X, and then define recursivek,; = y +
o(X%) = Y+ X, — F/(X)"1f(x,) for everyn > 0. Then

n-1
1 Xt = Xl
k=0

n-1

e = %ol + > 1lp () = %)l
k=1

1% = X

IA

n-1

< Dol — ol
k=0
1-L"

= T Ily- 9l

IA

@a-mr <
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which impliesx, € I§(>?, r) for everyn > 0. Similarly, for everyn > m> 0,

n-1
o= Xl < > L¥lly = g(RI,
k=m

so that the sequencg,j is a Cauchy sequence B(X,r). SinceB(X r) is complete,
there exists lim.., X, =: X € B(X, r). By continuity,
X=Y+@(X) =y+Xx-9(x),
or
g(x) =Y.
This proves the above claim, that gsis locally invertible. It remains to show that
g~! is continuous (thely is a homeomorphism, and therefor€adiffeomorphism

by Lemma 2.3). Contiunity of the inverse function, however, is a direct consequence
of (2.1) (which even implies Lipschitz continuity). O

Remark 2.4. The iteration formula
Xns1 = Y + %o — £/ ()7 (%)

used in the proof of the local inverse theorem in order to find a solutia{>f=
f/(X)~1f(x) = y should be compared to the Newton iteration

Xae1 = Y+ Xn — £/ (X0) T (X0).
PROOF OF THE IMPLICIT FUNCTION THEOREM. Consider the function
F:U — X;xY,
(X1, %2) (X1, F(X1, X2)).
ThenF is continuously dferentiable and

f f
F/(R)(hs, ) = (P, j—xl(i)hl + S—XZ(f()hz).

In particular, by the assumptioR;(x) is locally invertible with inverse

(00 ys) = O, ((f—xfz&»*(yz . (f—xfl(i)yl».

By the local inverse theorem (Theorem 2.1), there exists a neighbouthoofix,,
a neighbourhoodJ, of X, and a neighbourhoo¥ of (x;, f(X)) = F(X) such that
F : U; x U, — Vis aC! diffeomorphism. The inverse is of the form

F (Y1, Y2) = (Y, ha(ya, ¥2)),
whereh, is a function such that(ys, ho(y1, y2)) = ¥». Let
01 ={XpeUy: (Xl, f()_()) € V}.

ThenUj is open by continuity of the functior, — (i, f(X), andx; € U;. We
restrictF to U; x U,, and we define

(2.2) g:U1 > X,
X1 - g(x) = F(xq, (X))o
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whereF ~!(-), denotes the second componenfof(-). Theng is continuously dif-
ferentiable,g(U;) c U, andg satisfies the required property of the implicit func-
tion. O

LemMa 2.5 (Higher regularity of the local inverselet f € CX(U;Y) for some
k > 1and assum that U — f(U) is a C* diffeomorphism. Then f is akC
diffeomorphism, that is, * is k times continuously glerentiable.

Proor. For everyy € f(U) we have
(F'y) = F(Fo)™
The proof therefore follows by induction da O

Lemma 2.6 (Higher regularity of the implicit function)f, in the implicit function
theorem (Theorem 2.2), the function f is k times continuoughrentiable, then the
implicit function g is also k times continuouslyjdrentiable.

Proor. This follows from the previous lemma (Lemma 2.5) and the definition of
the implicit function in the proof of the implicit function theorem. O

3. * Parameter dependence of solutions of ordinary dferential equations

Let P and X be two Banach spaces and lete CX(P x X; X). Consider the
ordinary diferential equation

(3.1) X(t) = f(p. (1)), x(0)=0,

wherep is a parameter. Fix a paramefay € P, letl ¢ R be a compact intervall
such that Gz Iy, and let a solution, € C*(lo; X) be a solution of the above problem
for the parametep = py.

Tueorem 3.1. Then there exists a neighbourhood d P of p and a k times
continuously dferentiable function g Ug — C(lo; X) such that for every g Uy
the function ¥ = g(p) is the unique solution of3.1) for the parameter p. All
solutions of(3.1) in a neighbourhood ofpg, Xo) are of this form.

Proor. Let Ci(lg; X) = {x € C'(lg; X) : x(0) = 0} be equipped with the norm

IXllc: = lIXlle + IXll0, SO thatC] is @ Banach space. Consider the function
F:PxCil;X) — C(lo; X),
(p,X) — x-—f(p,x).

Then, by definition o, F(po, Xo) = 0. Moreover, the functiofr is k times contin-
uously diferentiable andf(po, Xo) is an isomorphism fron€i(lo; X) onto C(lo; X)
(M.

By the implicit function theorem (Theorem 2.2), there exists a neighbourhood
Uy of pp andk times continuously dierentiable functiorg : Uy — C3(lo; X) (we
use also Lemma 2.6) such that for evgrye Uy one hasF(p,g(p)) = 0O, that is,

d(p) is the solution of (3.1) for the parameterand it also follows from the implicit
function theorem, that every solution of (3.1) is of this form. O
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4. * A bifurcation theorem and ordinary di fferential equations
We follow [8, Section 4.3].

Tueorem 4.1 (Crandall-Rabinowitz)Let X and Y be two Banach spaces,dJ
R x X be an open set, letd C*(U;Y) and(4, X) € U. Assume that
() f(2,x) = 0for all 2in a neighbourhood of,
. . of /7 . of 1
(i) dim Kerz (4, >6_: codim Rga—x(gl, >_<)_: 1, and ~
(iii) if X o € Ker 35(2. %) \ {0}, then 25 (4, X)(L Xo) ¢ Rg (4. X).
Denote by Xthe topological complement Kbr%(/l, X) in X.

Then there exists a continuouslyfdrentiable curveA, x) : (-4,8) — R x X
such that

(A(0),x(0)) = (1, X) and f(A(t), txo + tx(t)) = 0 for every te (=3, 6).
Moreover, there is a neighbourhood&/'U of (Z X) such that
f(1,x)=0 for(1,x) eV

if and only if
either x=0 or A= A(t), X = txy + tx(t).

Proor. For simplicity, we assume that,(X) = (0, 0). Fix
of —
Ker —
Xo € erax(/l, X), Xo#0,

and consider the functiof : R x R x X; — Y which is given by

(ALt +x)) fort+0,
Ft,4,X) =1
(4, 0)(% + X)) fort=0.
Then
F(0,0,0)=0
and the operator
R X Xl e Y,

OF OF
(1x) = 220,000+ =-(0.0.0x

is an isomorphism by assumptions (ii) and (iii). The claim follows from the implicit
function theorem (Theorem 2.2). O

ExampLE 4.2. We study the periodic boundary value problem
X(t) + Ax(t) + g(A, t, x(t), x(t)) =0, te]O0,2n],
(4.1) X(0) = x(2n),
X(0) = x(2n).

The functiong : R x [0,27] x R xR — R, g = g(4,t, X, p) satisfies the following
assumptions:
(i) g is k times continuously dierentiable for somé& > 2, and Z-periodic with
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respect td,
(i) g(1,t,0,0) = 0, and
(iii) 5(4,t,0,0) = 53(1,1,0,0) = 0,
We will study the above problem near the paint 0 which is a simple eigen-

value of the associated eigenvalue problem
X(t) + Ax(t) =0, te]lO0,2q],

(4.2) X(0) = x(27),
X(0) = x(2r).
Let
X = {xeC?[0,2n]) : x(0) = x(2n), X(0) = x(1) andx(0) = %(2r)} and

Y = {yeC(0,2n]) : y(0) = y(2n)}.
The spaceX andY are Banach spaces when they are equipped with the norms
[1X/Ix IXlleo + [IXlleo + [IXllc  and
Ivily IVl
respectively. Let us define: R x X — Y by

f(1,X) = X+ Ax+9(4, -, X X).

It follows from (i) that f is well-defined andk times continuously dierentiable.
Moreover, by hypothesis (iii), we have

of "
5((/1, O)w = W + Aw,
which implies
: of
Ker— =1;
dim eraX(O,O) ;

in fact, the only functions lying irX and satisfyingk'= 0 are the constant functions.
Next, lety € Rg ‘;—L(O, 0). Then there exists a functione X such thatx'= .
Integrating this equality over the interval, Px] implies

ffy=f02"2='x(1)—'x(0>:o,

R ﬂ(OO)C{ eY"fzjr = 0}
gax ’ y - 0 y_ .

On the other hand, lgte Y be such thafOZ’ry = 0. Define

so that

t 27
X(t) ::fo(t—s)y(s)ds—tf0 (2 - 9)y(s) ds

Thenx e X andx'=y. We have therefore proved the equality

of o
Rg&(O,O):{er:f0 y = 0}
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From this we deduce o
imRg— =1
codim gax(o, 0)
Note that Kel‘g—i(O, 0) is the space of constant functions and that a topological com-
plement is given by
21
X1 ={xeX: f x(t) dt}.
0

Since Y of

1 aX(O, 0)1=1 and 1¢ Rg&(o, 0),

the condition (iii) of Theorem 4.1 is satisfied. It follows from the Crandall-
Rabinowitz theorem (Theorem 4.1) that 0O is a point of bifurcation of (4.1).
In particular, the point (D) € R x X belongs to the branch of trivial solutions
(1, 0), but also to the branch
[ ={(A(9), s+ sX9)) : s€ (-9,9)}
where @, X) : (-6,6) —» R x X is a curve satisfying

d
X(0) =0, Zx(0)=0. 4(0)=0.

Hence, for anys € (-6, 6), s # 0, the nontrivial solutiors+sXs) (sum of the constant
function s and the perturbatioaxs)) belongs tax;.



CHAPTER 5

Monotone operators

1. Monotone operators

DerniTion 1.1. Letv be a real Banach space, and\tbe its dual space. An
operatorA : V — V'’ is monotonef for everyu, v € V one has

(Au—Av,Uu—-Vv)y > 0.

Exampie 1.2. LetQ c R" be open and bounded. For evagry> 2 and every
1 <i < n, the linear operator

B :W,P(Q) — WP(Q),

ou

8_Xi’

is monotone. In fact, for eveny e Wé’p(Q), by an integration by parts,
u,

o 0%

_ f u

o 0%

—(Biu, u),

u —

(Biu,u) =

so that
(Bju,u) = 0.
By linearity, B; is hence monotone.

ExampL 1.3. The negativgp-Laplace operatorA;, : Wé’p(Q) — WP (Q)is
monotone. In fact, for every, v e Wé’p(Q),

—(Apu— ApV,u— v)W,l,,,,’Wé,p = f (IVU[P~2Vu — |[VVP2Vv)(Vu — VV)
Q

> f (IVUPP + Vv — |VUlP V] — VUl [VVPY)
Q

= f (VUPt = [vvP) (VU] - [VV])
Q

> 0.

The fact, that-A, is a monotone operator, can also be deduced from the follow-
ing simple lemma.

45



46 5. MONOTONE OPERATORS

Lemma 1.4. Lety : V — R be a continuously dierentiable, convex function.
Theny’ : V — V’ is monotone.

Proor. For everyu, v € V, the functiont — ¢(tu + (1 — t)v) is convex which
means that its derivative is increasing. In particular,

d d
d—t‘P(tU + (1= V)|=1 > a‘ﬁ(tu + (1 = t)V)l-o,

which means
(@' (U),u=V) > (¢’ (v),u-V).
Hencey’ is monotone. O

Since the negative-Laplace operatorA, is the derivative of the continuously
differentiable and convex functian: Wé’p(Q) — R given byy(u) = %fg [VulP, the
preceding lemma provides another proof of the monotonicity /.

DeriniTion 1.5. LetV be a Banach space. An operaforV — V' is
(i) hemi-continuousf for every u, v, w € V the functiont — (A(u + tv),w) is
continous,
(i) boundedf it maps bounded sets into bounded sets, and
(iif) pseudo-monotonié A is bounded and if
u, — uinVand o
) = liminf{Au,, u, — V) > (Au,u— V).

Lemma 1.6. Let V be a Banach space and: A — V’ be an operator. Consider
the following properties:
(i) A'is monotone, bounded and hemicontinuous,
(i) A is pseudo-monotone,
(ii) A satisfies
U, — uinV,
Au, — yinV’ and = Au=y.
Then (i} (i) = (iii).
Proor. (i)=(ii) Assume thatA is monotone, bounded and hemicontinuous, and
let (u,) C V be a sequence satisfying

U, = uinVand limsugAu, u, —uy < 0.

n—oo

By monotonicity ofA, we have
(AU, Uy — Uy > (AU, Uy — U).
The weak convergence afi{) implies

liminf (Au,, u, — uy > 0.
nN—oo
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Together with the assumption above, this implies
(1.2) nILrpo<Au1, U,—uy=0.
Letv e V and definev := (1 — D)u+ Av (2 € (0, 1)). By monotonicity,
(Au, — Aw, U, —w) > 0.
Together with the definition of, this implies

(Alh, Uy — U} + A (AU, U — V)
(AW, Un — W)

= (AW, U, — U) + A (AW, U — V).

\%

Sinceu, — uand by (1.1), we obtain
liminf (Au,, u—Vv) > (A((1 - YU+ AV),u — V).
n—oo

Letting A \, 0 and using the hemi-continuity & we finally obtain
liminf (Au,, u—V) > (Au, U — V).
Nn—oo
Hence A is pseudo-monotone.

(i) =(iii) Assume thatA is pseudo-monotone, and let,J ¢ V be a sequence
such thau, — u, Au, — y and lim sup_, . (A, Uy) < (x, U). Then

limsup(Au,, Up —u) <0

nN—oo

which together with the pseudo-monotonicity implies

liminf(Au,, u, —v) > (Au,u—v) foreveryve V.
N—oo

Together with the assumption above, this implies

<X’ u>_<X’V> > <AU,U—V>,
or
(x —Au,u—-Vv) >0 foreveryveV.

This is equivalent to
(x —AuVv) >0 foreveryveyV,

which in turn implies (the inequality is true ferand-v)
(x —Au,v) =0 foreveryve V.
Hence Au = y. O

CoroLLARY 1.7. Let V be a reflexive Banach space, and let X — V’ be a
monotone, bounded, hemicontinuous operator. Then

Uu,—->uinV = Au — AuinV.
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Proor. Assume that,, — uin V. SinceA is bounded, the sequencAy) is
bounded inv’. SinceV is reflexive, and after passing to a subsequence, there exists
x € V' such thatAu, — y in V.

Moreover,
(AUn, Uy = (AU, Up — U) + (Aln, U)
< AW llun = ul] + (A, U).
Hence,
lim sup{Au,, Un) < (x, U).
n—oo
By Lemma 1.6 (implication (i (iii)), we obtainAu = y. m

2. Surjectivity of monotone operators

In this section we give a $licient condition for the surjectivity of a monotone
operatorA : V — V’. Before, however, we recall Brouwer’s fixed point theorem,
without proof.

Tueorem 2.1 (Brouwer’s fixed point theorem).et C c R" be a nonempty, com-
pact, convex set, and let:fC — C be a continuous function. Then f has a fixed
point, that is, there exists x C such that {x) = x.

CoroLrAry 2.2. Let f € C(R";R"). Assume that there exists> 0 such that
(f(x), x)rn > 0 whenevel|x|| = o. Then there exists & R" such thaf|x|| < o and
f(x) =0.

_ Proor. Assume, on the contrary, th&(x) # 0 whenevet|x|| < o, and letC :=
B(0,0). Then the functiorg : C — C given byg(X) = —o 7 is well defined
and continuous. By Brouwer’s fixed point theorem, there exists C such that

X = g(X) = —o ~2__ Sincellg(X)|| = o, this implies||x|| = o. Therefore,

HSIN
f(x)
2
= (X’X> = - <—’X> < O’
¢ T
using also the assumption dn This is a contradiction tp > 0, and therefore, there
existsx € C such thatf(x) = O. O

Tueorem 2.3. Let V be a separable, reflexive Banach space. LeWA— V’ be
a monotone, bounded, hemicontinuous operator and assume that A elwive
that is,

jim AV _
IMi—eo  [|V]|
Then A is surjective, that is, for everyefV’ there exists & V such that Au= f.

Proor. Let f € V. We have to solve the equatidw = f.

Let (wy) be a total sequence, that is, a sequence such thatwpam} is dense
in V; the existence of such a sequence is guaranteed by the assumptidhishat
separable.

LetV,, ;= spanw : 1 <k <mj.
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We first prove that for evergn there exista, € Vy,, such that
(2.2) (Aum, W) = (f,wy) forevery 1<k<m.

For everyu € V,, we restrict the linear functionalu € V' = £(V,R) to the closed
subspac¥/,,, and we thus obtain a linear functional @g. In other words, we define
an operatoAy, : Vi, — V/, by

(AU, Wz v, -= (AU W)y y .
By coercivity, there exists > 0 such that for every € V, ||ul| > o,

(Amu—f, v, v, = (Au-f, Uy

(Au, uy = (I F{|ull
(Au, u)

u —|If

lull ( o 1)

0.

The operatoA,, inherits the properties &, that is,A,, is monotone, bounded, hemi-
continuous. By Corollary 1.7, it therefore maps convergent sequencés imo
weakly convergent sequencesdfy; more precisely, iti, — uin Vy, thenAu, — Au
in V. However, the spacé, being finite dimensional, weak convergence and norm
convergence coincide, and hern&ggis continuous.

By the continuity ofA,, by the above inequality, and by Corollary 2.2, there
existsun, € Vi, such thatAu,, — f = 0. In other words, for everw € V,,,

(Aup — f,Whyr vy = (Apum — f, Wy v, = 0,
so that we have proved (2.1).
By the preceding equality, for every,
(A, Um) = (f, Um) < [T |Unll-

Therefore, the sequencéiie)) is bounded inv. By coercivity of A, this implies

that the sequencey) is bounded irV. SinceA is bounded, also the sequenéeaif)

is bounded. Sinc¥ andV’ are reflexive, and after passing to a subsequence, there
existsu € V, y € V' such that

v

\%

U, —=uinV and Au,— yinV’.
For everyk we have
O Wi = 1M (A, W) = (, W).
Since the sequencey) is total inV, this impliesy = f. Moreover,
lIM sup(Auy, Uy = limsup(f, uyn)

m—oo m—oo

= lim<{f,uy)
= (f,u).
By Lemma 1.6 (implication (8 (iii)), Au= f. O
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Lemma 2.4. Let A: V — V’ be monotone and assume that one of the following
conditions holds:
() A is strictly monotonethat is

(Au—Av,u-v) >0 foreveryyveV,u=#v,

(ii) A'is hemicontinuous, V is strictly convex, and AwAv implieg||ul| = |V
Then Ais injective.

Proor. (i) If Au= Ay, then(Au— Av,u—v) = 0, and thereforel = v by strict
monaotonicity.
(i) We first prove that for everyf € V’

(2.2) Au=f & VYveV:(Av-f,v—u)>0.

In fact, if Au= f, then(Av- f,v—u) > 0 by monotonicity ofA. For the converse
implication, letw € V, 1 > 0 and putv = u + Aw. Then

(A(U+ aw) — f,aw) > 0,
or
(A(U+ aw) — f,w) > 0.
Letting A ™\, 0 and using thaf is hemicontinuous, we obtain
(Au- f,w) > 0.

Replacingw by —w, we obtainKAu— f,w) = 0, and sincav € V is arbitrary,Au = f.
Hence we have proved (2.2).

LetS := {ue V : Au= f} be the set of all solutions of the equatiéw = f.
For everyv € V, the setS, .= {ue V : (Av- f,v—u) > 0} is convex, and by (2.2),
S = Nev Sy is therefore convex, too. By assumpti@¢ {||ul| = o} for someo > 0.
SinceV is strictly convex, the se is therefore reduced to at most one point. As a
consequencé is injective. |

3. * Nonlinear elliptic problems IV

LetQ c R" be a bounded open set and et 2. Letb € R", and letf : Q —
R be some function in.2(©2). We consider the nonlinear elliptic boundary value
problem

(3.1) { —ApU(X) +b-Vu(x) = f(x), xeQ,

u(x) =0, X € 0Q.

We call a functioru € Wé’p(Q) aweak solutiorof this problem if

n
(3.2) f|Vu|p_2VuV(,0+Zfbi@(p:ff(p for everyy € C(Q).
Q — Jo 0% Q

Note thatu € Wy *(Q) is a weak solution of (3.1) if and only #A%u+ YL, b 24 = f,
whereAj is the p-Laplace operator defined in Chapter 1, Section 3.
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Tueorem 3.1. For every f € L?(Q) there exists a unique weak solutioneu
WP(Q) of the problem(3.1).

For the proof, we first prove a general result.
Lemma 3.2. Let h € C(R; R) be a function satisfying the growth condition
(3.3) Ibi(s)] < C(L+]5)"? for some C> 0and all se R.
Then the operator
B :W,P(Q) — WP(Q),

u — bi(u)S—;,

is well defined, bounded and hemicontinuous; 1§ lconstant, then Bs in addition
monotone.

Proor. Letu, v e Wg’p(Q). Then, by the growth estimate (3.3) and bgléer’'s

inequality,
ou
Bi(u)v] = bi(u) — v
[ = [ @y

ou
C | @+|u)P?|—V
fg( |ul) I(9Xi |

- 1 du
C(f(1+|u|)”p”-f) VEDT 1,
Q X

IA

IA

IA

p-2 ou
C 14 U)P)T [V, =
(fg( ") 1M 121
< oo,

so thatB; is well-defined. From this estimate we obtain in addition for euery
Wy P(©)

11Bi (Ul lw-2e

sup | | Bi(uv|

<
Myapst Jo

IA

_ ou
sup |1+ |ulllf 2|Vl |Ia—)q||p

\Y <1
My 1p<

IA

p-2
(C+ ||U||p) ||U||Wé,p,

so thatB; is bounded.
Next, letu, v, w € Wy P(Q). Then

(B(u+tv) - BU)w) < f |bi(u+tv)—bi(u>||§—:||w|+

ov
t b t —_
. fg| (w1

— 0 ast—0,
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by Lebesgue’s dominated convergence theorem. As a conseqB:imedemicon-
tinuous.

The monotonicity oB; in the case of constabt € R has been proved in Example
1.2. O

Proor oF THEOREM 3.1. mi

4. Evolution equations involving monotone operators
LetV be a separable reflexive Banach spacetdradHilbert space such that
Vs H=H < V.

LetA:V — V' be anoperatoff : [0, T] — V’ be an integrable function ang € H.
In this section we consider the evolution problem

(4.2) u(t) + Aut) = f(t), te[0,T], u(0)= uo.
TueoreMm 4.1. Suppose that, for some>p1,
A is monotone and hemicontinugus

AUl < CIVIT™*  for some C> Oand all ve V,
(Au, Uy > 1 ||v||f} for somep > 0and all ve V.

Suppose in addition
feL”(0,T;V) and e H.
Then the problend.1) admits a unique solution
ue LPO, T;V) nW-P(0, T; V') N C([0, T]; H).

Proor. UniquenessAssume thati; andu, are two solutions. Then

1d

= —lua(t) — w(OIIF

2 dt (U (t) = Up(t), us(t) — Ua()vr v

—(AU(t) — Aup(t), ug(t) — Ux(t))v v
< 0,

by monotonicity ofA. Moreover,
lux(0) - Ux(O)I% = O.

Both relations implyijus(t) — ux(t)lI3 = O for everyt € [0, T], that is,u; = .
Existence:Let (w,,) be a total sequence, that is, a sequence such thafwspan
m} is dense irV; the existence of such a sequence is guaranteed by the assumption
thatV is separable.
LetVy, ;= spanw,: 1 <k <mj.
We first prove that for evergn there existsi,, € C([0, T]; Vi) such that

(4.2) (Um + Aum, W) = (f,wy) foreveryl<k<m te[0,T].
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For everyu € V,, we restrict the linear functionalu € V' = £(V,R) to the closed
subspac¥/,,, and we thus obtain a linear functional @g. In other words, we define
an operatoAy, : Vi, — V/, by

(AU, Wy v, i= (AU, Wy .

Similarly, we restrictf (t) € V' andug € H c V’ to V,;, and denote the restrictions by
fn andugm, respectively. Note that since we identifyywith its dualH’, and since
Vi € H is finite dimensional, we obtai, = V/,; only the normg| - |y, || - [ls and
Il - [Iv» may diter onV,.

Recall from the proof of Theorem 2.3 tha, : Vi, — V/, is continuous. Hence,
by Peano’s theorem (theory of ordinanftdrential equations), and by the unique-
ness result obtained above, the problem

Un + AnUnm = T t€[0,T], u(0) = ugm,

admits a unique maximal solutiam, € W:P ([0, T'); Vi) for some 0< T/ < T.
Similarly as in the proof of uniqueness, we obtain by using the monotonicity,of

1 d 2 -
E a”um”H - <um, um>
S _<fm, um>
< fmllve Ul

Since the norm§ - ||y and|| - |y are equivalent in the finite dimensional spatge
this inequality implies,

T t
lum(®)I1E < lluomll3 +Cf | fmn(SII dS+f lum(9)I% ds
0 0

Hence, by Gronwall’s inequality,

i
lunIR, < € (lUoml?, + C f 1Tn(SI2 d9),
0

so thatu, remains bounded iN,,. By the dtterential equation fouy, this implies
Un € LP(0,T’; V), and thereforas,, € W-P(0, T; V). Sinceuy, is maximal, we
obtainT’ = T, and therefore this solutiom,, is the function we are looking for in
(4.2).

By (4.2),

<Um + Al'h'b um>V’,V = <f, um>V’,V for everyt € [0’ T]’

so that, together with assumption (iii),

1d

T IUm(®IIE + 7 lum®I15 < [Ifllv: lumlly ~ for everyt € [0, T].
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Integrating this inequality yields

IA

1 t t 1
> Um(®IIZ + 7 f lum(9)II ds f 1T (S)llv [lum(S)llv ds+ §||u0m|||2-|
0 0

IA

t
/ 1
CIIE, + 7 f lun(9I ds-+ Sl
0

From this inequality we deduce that the sequence

(uy) is bounded irL®(0, T; H) n LP(0, T; V).
By assumption o\,

AUl 017y < AUl @7y < CP lUmllLer vy

so that

(Amum) and Auy) are bounded il ” (0, T; V).
From the diterential equationi, + Anun = f, we finally obtain that

(Up) is bounded irLP (0, T; V).

Since the spacds’(0, T; V), L (0, T; V") andH are reflexive, andfter passing to a
subsequencave find that

Un— u in LP(0,T;V),

Au, — y in LP(0,T;V), and

Un(T) = ¢ in H.
In the rest of the proof, we show that the functiems the solution we are looking

for.
For everyw and every test functiop € C.(0, T) we have

T T
f (U, Wiy v lim f (Um, Wivr v
0 m—oco 0

i
lim — f (s Wi w0
0

m—oo

.
lim f (AnUm + T, Wiy v
0

m—oo

i
jim f (Alin— . W vep
0

m—oo

T
\fOV <X - f,Wk>90’

T T
(f Up, Wiy v = (f (x - e, Wwidvv  for everyk and everyp € CL(0, T).
0 0

or
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Since the sequencey) is total inV, this implies

T T
f Up = f (x — f)p for everyp € CL(0,T).
0 0

By definition of the Sobolev space, this implies W>? (0, T; V') and
u+y=f.

Moreover, for everyw, and every functionp € C([0, T]) (not necessarily a test
function), we have on the one hand

T T T
fmo = U¢|O—f Uep,
0 0
and on the other hand

T T
f UWvve = lim f (Um, Wivr v
0 m=eo Jo

.
. T .

Iim [, Wiovr v b - f (Um, Widvr vl
— 00 0

.
(€, Wiy ve(T) = (Uo, Wiy ve(0) + j; = f, Wiov ve,

or, since () is total inV,

[ w=eem-weo+ [ 6o
Comparing both expressions, we obtain
u(T)e(T) — u(0)p(0) = & ¢(T) — Uo ¢(0)
for every functiony € C1([0, T]). Choosingp(t) = t ande(t) = T — t, we obtain
ui0)=uy andu(T) =¢&.

In particular,u satisfies the initial condition of (4.1). It remains to show tAat= y.
In order to see this, we consider the operator

A:LPO,T;V) — LP(O,T;V),
vV > Ay,

which is well defined by the growth condition énand which is monotone, bounded
and hemicontinuous by the monotonicity, the growth condition and the hemiconti-
nuity of A. Recall that we have

Un — uin LP(O,T;V) and Au,— yin LP(0,T;V").
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Moreover,

T
(AUm, Um) w1 p f (AU, Um)V’, V
0

T
L <Amum, um)V’,V

T
f <fm - Um, um>V',V
0
T

1d
fo [<f, Umv'v — > G Uil ]

1 2 1 2 T
= E [[Uomllfy — E lum(T)Il + (f,umvrv.
0
One has lim,_,. Upm = Ug = U(0) in H so that

lim {|uom|ln = [IUolln = TU(O)lIi
m—oo

Moreover, sincauy(T) — & = u(T) in H and since the norni - ||y is a convex
function, we obtain from Corollary 2.4 from Chapter 2

UMl < liminf [Jun(T)Il4,
m—oo

or, equivalently,
lim sug —lum(T)IA] < —Ilu(T)I3.
mM—oo

Therefore
: 1 , 1 5 T
(4.3)  limsup(Aum, Un) e 1p < > Iu(O)IIE — > Iu(T)IlE + (f,Wvv
Mm—sco 0
.
(4.4) = (f =0, Uy
0
.
(45) = <X7 l"I>V’,V
0
(4.6) = <X, U)Lp”Lp.
By Lemma 1.6 applied toA (implication (i)=(iii)), we obtainAu = Au = y. The
claim is completely proved. |

5. * A nonlinear diffusion equation



CHAPTER 6
Appendix

1. Differentiable functions between Banach spaces

In the following, letX andY be two Banach spaces, andl&be an open subset
of X.

DerniTion 1.1. A functionF : U — Y is differentiablein some pointx € U if
there exists a continuous, lineér: X — Y such that for everyh € X with norm
small enough one has

F(x+h) = F(X) + Th+ o(h)
and

. lo(h)l|
I =0
nhlano IHall

If F is differentiable inx € U, then the operatof is uniquely determined; we
call T thederivativeof F in x and writeF’(x) instead ofT. Hence, the derivative of
a functionf : X > U — Y is a bounded linear operatr— Y.

Note furthermore that iF is differentiable inx € U, thenF is necessarily con-
tinuous inx. This follows from the definition of dierentiability, the continuity of
F’(x) and the continuity of the termin 0.

Dermnition 1.2. A functionF : U — Y is differentiableif it is differentiable in
every pointx € U. We say thaF is continuously dferentiable(or: of class C) if F
is differentiable and i’ : U — £(X,Y) is continuous.

2. Closed linear operators

For the following, we will have to consider a larger class of linear operators.
WheneverX andY are two Banach spacesiaear operatoris a linear mapping
A : D(A) — Y defined on a linear subspab¥A) of X. The spacd(A) is called
domainof A. Note that the domai®(A) need not be a closed linear subspac of

DeriniTion 2.1. LetX andY be two Banach spaces. A linear opera&arD(A) —
Y is calledclosedif its graph

G(A) :={(x,AX) : xe D(A)} c XX Y
is closed in the product spagex Y.

57
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LemMma 2.2. A linear operator A: D(A) — Y is closed if and only if the following
property holds:

D(A) > X, — Xin X and

_ }:> x € D(A) and Ax=y.
AX, - yinY

Proor. It suffices to note thab(A) > x, — xin X andAx, — yin Y if and only
if G(A) 2 (X, A%,) — (X, Y) in the product spacX x Y, by definition of the product
topology.

If Ais closed and if5(A) > (X,, AX) — (X, Y) then &, y) € G(A) by the closed-
ness ofA and thusx € D(A) andy = Ax.

Conversely, ifG(A) 3 (X, Ax) — (X Y) implies necessarilk € D(A) and
y = Ax, then &, y) € G(A), i.e. G(A) is closed, and thua is closed. O

Lemma 2.3. A linear operator A: D(A) — Y is closed if and only if its domain
D(A) equipped with the graph norm

IXlloea) = lIXllx + [IAXly, X € D(A),
is a Banach space.

Proor. If Ais closed, then, by definitiog(A) is a closed subspace of the product
spaceX x Y. SinceX x Y is a Banach space, the grapfA) is a Banach space. Now
note thatD(A) equipped with the graph norm a{A) equipped with the product
norm are isometrically isomorphic under the isomdnip) — G(A), X - (X, AX).
HenceD(A) equipped with the graph norm is a Banach space.

Conversely, assume thB{A) equipped with the graph norm is a Banach space.
ThenG(A) (equipped with the product norm froX x Y) is a Banach space by the
same argument as before. In particu@fA) is a closed subspace ®fx Y. Hence,
Ais closed. O

Lemma 2.4. Every bounded linear operator TX — Y (with domain IT) = X)
is closed.

Proor. LetT € £(X,Y). The normg| - ||x and|| - [|pry are equivalent norms ox
which is a Banach space for the nojim||x. HenceX = D(T) is a Banach space for
the norm|| - ||p¢r). By Lemma 2.3T is closed. O

The following theorem is a fundamental theorem in functional analysis. Itis a
consequence of Baire’s theorem, but it will not be proved here.

Tueorem 2.5 (Closed graph theoremlet X and Y be Banach spaces and let
T : X - Y (with domain T) = X) be closed. Then T is bounded.

ExampLE 2.6. LetX = Y = C([0, 1]) be the space of continuous functions on
[0, 1] with norml|f[ = SUR 47 I T (X)I. Define thederivation operator Doy

D(D) := C¥([0, 1]) andDf := f' for f € D(D).

ThenD is closed. In fact, the spa€([0, 1]) is a Banach space for the graph norm
I flloy = llflle + 1]l (EXErcice).
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ExampLe 2.7. LetX = Y = LP(R) (1 < p < oo) with norm]|| - ||,. Define the
multiplication operator Mby

D(M) := {f € LP(R) : xf(x) € LP(R)} and M f) := xf(x) for f € D(M).
ThenM is closed. In fact,
D(M) = LP(R; (1 +[xP) d¥),
and the graph norm- ||p(v) is equivalent to the norm

1/p
I FllLp: (1 xp) ) = (f|f|p(1+ IXI”) dX) ,
R
which maked P(R; (1 + |x|P) dX) a Banach space.

3. Vector-valuedLP spaces
As beforeX denotes a Banach space. In this sectfonA|, 1) is a measure space.

Derniion 3.1. (@) A functionf : Q — X is calledstep functionif there exists
a sequenced,) c A of mutually disjoint measurable sets and a sequerged X
such thatf = 3}, 1a X.
(b) A functionf : Q — X is calledmesurableif there exists a sequencg) of step
functionsf, : Q — X such thatf, — f pointwiseu-almost everywhere.

Remark 3.2. Note that there may be di@irence to the definition of mesurability
of a scalar valued functions. Measurability of a function is here depending on the
measureu. However, if the measure spac®, (A, 1) is completein the sense that
u(A) = 0 andB c AimpliesB € A, then the above definition of measurability and
the classical definition of measurability coincide. Note that one may always consider
complete measure spaces.

Lemma 3.3. If f : Q — X is measurable, theff|| : Q — R is measurable.
More generally, if f: Q — X is measurable and if g X — Y is continuous, then
go f:Q — Y is measurable.

Proor. This is an easy consequence of the definition of measurability and the
continuity ofg. Note that in particular the norin- || : X — R is continous. O

Lemma 3.4.1f f : Q - X and g: Q — K are measurable, then fgQ — X is
measurable.

Similarly, if f : Q - X and g: Q — X’ are measurable, thef@, f)x x : Q@ - K
is measurable.

Tueorem 3.5 (Pettis).A function f: Q — X is measurable if and only {i’, f)
is measurable for every x X’ (we say that f isveakly measurab)eand if there
exists gu-null set Ne A such that {Q \ N) is separable.

For a proof of Pettis’ theorem, seaikk & PuiiLips [13].

Cororrary 3.6. If (f,)) is a sequence of measurable functiéhs-» X such that
f, — f pointwiseu-almost everywhere, then f is measurable.
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Proor. We assume that this corollary is known in the scalar case, i.e. when
X =K.
By Pettis’s theorem, for all there exists @ null setN, € A such thatf,(Q\ N,)
is separable. Moreover there exisig aull setNy € Q such thatf,(t) — f(t) for all
te Q\ No. LetN := {50 Nn; @s a countable union afnull sets,N is au null set.
Then f (restricted taQ \ N) is the pointwise limit everywhere of the sequence
(f,). In particularf is weakly measurable. MoreovdiQ2 \ N) is separable since

FQ\N) c | f(@\N),

and sincef,(Q \ N) is separable. The claim follows from Pettis’ theorem. O

DerniTion 3.7. A measurable functio : Q — X is calledintegrable if
Jo 111 due < 0.

Lemma 3.8. For every integrable step function fQ — X, f = 3, 1a X, the
series)., Xnu(An) converges absolutely and it is independent of the representation of

Proor. Let f = 3, 15 X, be an integrable step function. The seig)(c A are
mutually disjoint and %,) ¢ X. Then

> ellaCA) = [ 161 e < oo

O

Dermnition 3.9 (Bochner integral for integrable step functions). EetQ — X
be an integrable step functioh,= 3, 15 X,. We define

IRETERTTO)

LemMma 3.10. (a) For every integrable function fQ — X there exists a sequence
(fn) of integrable step function@ — X such that|f,|| < ||f||and f, — f pointwise
u-almost everywhere.

(b) Let f: Q — X be integrable. Letf,) be a sequence of integrable step functions
such that|f,|| < ||f|]| and f, —» f pointwiseu-almost everywhere. Then

X := lim f f, du exists
Q

N—oo

I < f 11 .
Q

Proor. (a) Letf : Q — X be integrable. Thefif|| : Q — R is integrable.
Therefore there exists a sequengg 6f integrable step functions such that@, <
Ifll andg, — [|f|| pointwiseu-almost everywhere.

Sincef is measurable, there exists a sequerigeof step function€2 — X'such
that f, — f pointwiseu-almost everywhere.

and
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Put .
fn On

~

f, = .
BT

(b) For every integrable step functign Q — X one has

I f g dul| < f gl dye.
Q Q
|| f fo— f | < f 1 — .1l du
Q Q

and by Lebesgue’s dominated convergence theorem the sequgn‘gedp) is a
Cauchy sequence. When we put lim,,_, [ f, du then

X < liminf f 1ol e = f 11 .
N—oo Q Q

DerniTion 3.11 (Bochner integral for integrable functions). lfet Q — X be

integrable. We define
ffd,u:: Iimffnd,u,
Q Nn—oo Q

where (f,) is a sequence of step functiofis— X such that|f,|| < ||f||andf, — f
pointwiseu-almost everywhere.

Hence, for everyy, m

O

Remark 3.12. The definition of the Bochner integral for integrable functions is
independent of the choice of the sequenize @f step functions, by Lemma 3.10.

Remark 3.13. We will also use the follwing notation for the Bochner integral:

fg f oder fg £(t) duu(t),

and if Q = (a, b) is an interval inR:

fab f oderfab f(t) du(t).

If u = Ais the Lebesgue measure then we also write

fa ’ £(t) dt.

Lemma 3.14. Let f: Q — X be integrable and & L(X,Y). ThenTf: Q - Y

is integrable and
fo du = Tf f du.
Q Q

Proor. Exercise. O
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Tueorem 3.15 (Lebesgue, dominates convergendest (f,) be a sequence of
integrable functions. Suppose there exists an integrable functio®g— R and
an (integrable) measurable function:fQ — X such that|f,|| < gand f — f
pointwiseu-almost everywhere. Then

ffd,u:Iimffnd,u.
Q Nn—oo Q

Proor. Exercise. O

Dermnirion 3.16 (LP spaces). For every 4 p < oo we define
LP(O;X)={f : Q> X measurablef IIf1I° du < oo}
Q

We also define
L7(Q; X) :={f : Q - X measurable AC > 0 such thau({||f|| = C}) = 0}.

Lemma 3.17. For everyl < p < co we put

111 5= [ 111
Q
We also put
I flleo := inf{C > 0 : u({lIf]| > C}) = O}.
Then|| - ||, is a seminorm oP(€2; X) (1 < p < o).

Remark 3.18. A function|| - || : X — R, on a real or complex vector space is
called aseminormif

() x=0= ¥l =0,
(@) [|AX|| = 4] 1Ix]| for everyaA € K and allx € X,
@iii) [Ix+yll < |IX| + Iyl for all x,y € X.

Derinition 3.19 (LP spaces). For every4 p < oo we put

No, = {feLPQ;X):[fll,=0)

= {f e £LP(Q; X) : f = Ou-almost everywherne
We define the quotient space
LP(Q; X) := LP(Q; X)/Np,
which is the space of all equivalence classes
[f]:=f+ Ny feLP(QX).
Lemma 3.20. For every[ f] € LP(Q); X) (T € LP(Q; X)) the value
NEFTIp == 11 fllp

is well defined, i.e. independent of the representant f. The funittinis a norm
on LP(Q; X). The space KQ; X) is a Banach space when equipped with this norm.
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Remark 3.21. As in the scalar case we will in the following identffynctions
f e L£P(Q; X) with their equivalence classdg$] € LP(Q; X), and we say thattP is
afunction spacalthough we should be aware that it is only a space of equivalence
classes of functions.

Remark 3.22. ForQ = (a, b) aninterval inR and foru = Athe Lebesgue measure
we simply write
LP(a, b; X) := LP((a, b); X).

We can do so since the spadée¥[a, b]; X) andLP((a, b); X) coincide since the end
points{a} and{b} have Lebesgue measure zero and there is no danger of confusion.

Lemma 3.23. Let Q c R" be open and bounded. Ther@} X) c LP(Q; X) for
everyl < p < oo,

Proor. Actually, for finite measure spaces, we have the more general inclusions
L2(Q; X) c LP(Q; X) c LYQ; X) c LYQ; X)
ifl<q<p<oo. |

Lemma 3.24. Let the measure spad€, A, ;1) be such that B(Q) is separable
forl < p < o (e.g. Q c R" be an open set with the Lebesgue measure). Let X be
separable. ThenA(Q; X) is separable fol < p < .

Proor. By assumption the spack’(Q2) andX are separable. Lely) c LP(Q; X)
and (,) c X be two dense sequences. Then the set

Fi={f:Q— X:f=h,Xn

is countable. It sfiices to shows thagt c LP(Q; X) is total, i.e. spaif is dense in
LP(Q; X). This is an exercise. O

Tueorem 3.25. LetQ be as in lemma 3.24. Lét< p < o and assume that X is
reflexive. Then the spac@(Q; X) is reflexive and

LP(Q; X)” = LP(Q; X).
Proor. Without proof. O

4. \ector-valued Sobolev spaces

DeriniTion 4.1 (Sobolev spaces). Leto <a<b < owand 1< p < co. We
define

WHP(a,b; X) := {ue LP(a,b; X) : 3Ave LP(a b; X) Yy € D(a,b)

b b
f Uy’ = —f Vil
a a

Notation:v =: U’.
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Lemma 4.2. For every—co < a < b < oo and everyl < p < o one has
WLP(a, b; X) ¢ CP((a,b); X). For every ue W%P(a,b: X) and every s, te (a,b)
one has

u(t) — u(s) = f t u(r) dr.
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