Wie versprochen möchte ich Ihnen hier den Beweis des Lemmas von Goursat nachreichen. (vgl. Fischer/Lieb: Funktionentheorie)

Satz:(Lemma von Goursat)

Sei \triangle ein abgeschlossenes Dreick in $\mathbb C$. Dann gilt für jede in einer Umgebung von \triangle holomorphe Funktion f

$$\int_{\partial \Delta} f(z)dz = 0$$

Beweis: Zerlege \triangle in vier Teildreiecke $\triangle_1^1, ..., \triangle_1^4$, indem man die Mittelpunkte der Seiten von \triangle miteinander verbindet. Alle Seiten aller Dreiecke werden mathematisch positiv orientiert (Skizze anfertigen!). Bildet man

$$\sum_{k=1}^{4} \int_{\partial \triangle_{\tau}^{k}} f(z)dz,$$

so werden die im Inneren von \triangle liegenden Dreieckseiten der Teildreiecke zweimal in entgegengesetzter Richtung durchlaufen, heben sich also weg. Also:

$$\left| \int\limits_{\partial \triangle} f(z)dz \right| = \left| \sum_{k=1}^{4} \int\limits_{\partial \triangle_{1}^{k}} f(z)dz \right| \le 4 \max_{k} \left| \int\limits_{\partial \triangle_{1}^{k}} f(z)dz \right| = 4 \left| \int\limits_{\triangle_{1}} f(z)dz \right|$$

Hierbei ist \triangle_1 eines der Dreiecke unter den \triangle_k^1 , dessen Randintegral maximalen Betrag hat. Mit \triangle_1 verfahren wir wie mit \triangle und erhalten dann ein Dreieck \triangle_2 mit

$$\left| \int_{\partial \triangle} f(z) dz \right| \le 4 \left| \int_{\triangle_1} f(z) dz \right| \le 4^2 \left| \int_{\triangle_2} f(z) dz \right|$$

Setzt man diesen Prozess fort, so erhält man eine Folge von Dreiecken

$$\triangle =: \triangle_0 \supset \triangle_1 \supset \triangle_2 \supset \dots$$

mit

$$\left| \int_{\partial \triangle} f(z) dz \right| \le 4^n \left| \int_{\triangle_n} f(z) dz \right| \qquad (*)$$

Aus der Konstruktion folgt für die Längen L(.) der Dreiecksberandungen:

$$L(\partial \triangle_n) = \frac{1}{2}L(\partial \triangle_{n-1}) = \dots = 2^{-n}L(\partial \triangle)$$
 (**)

Da alle Dreiecke kompakt sind, existiert genau ein $z_0 \in \Delta$ mit

$$\bigcap_{n\geq 0} \triangle_n = \{z_0\}.$$

Die Differenzierbarkeit von f in z_0 können wir bekanntlich schreiben als

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + r(z), \quad \frac{r(z)}{|z - z_0|} \to 0 \text{ für } z \to z_0.$$

Wir schreiben $r(z) = R(z)(z - z_0)$. Dann ist R(.) eine stetige Funktion, die in z_0 verschwindet. Das benutzen wir, um die Integrale über $\partial \triangle_n$ abzuschätzen. Da der lineare Teil $f(z_0) + f'(z_0)(z - z_0)$ offenbar eine Stammfunktion besitzt, verschwindet dessen Integral über $\partial \triangle_n$. Mithin

$$\left| \int_{\partial \triangle_n} f(z) dz \right| = \left| \int_{\partial \triangle_n} (z - z_0) R(z) dz \right| \le L(\partial \triangle_n) \cdot \max_{z \in \partial \triangle_n} (|z - z_0| \cdot |R(z)|) \le L(\partial \triangle_n))^2 \max_{z \in \partial \triangle_n} |R(z)|.$$

Jetzt benutzt man (*) und (**) und erhält (der Faktor 4^n aus (*) hebt sich wegen (**) weg!)

$$\left| \int_{\partial \triangle} f(z) dz \right| \le (L(\partial \triangle))^2 \cdot \max_{z \in \triangle_n} |R(z)|.$$

Da die stetige Funktion R(.) in z_0 verschwindet, wird die rechte Seite beliebig klein, wenn n hinreichend groß. Damit ist der Satz gezeigt.

Dieser Satz hat eine häufig benutzte Folgerung.

Folgerung:

Sei \triangle wie im Satz und $z_0 \in \triangle$. Ist f in einer Umgebung von \triangle mit eventueller Ausnahme von z_0 holomorph und in z_0 noch stetig, dann gilt

$$\int_{\partial \triangle} f(z)dz = 0.$$

Beweis: Durch Fallunterscheidungen kann man sich davon überzeugen, dass man z_0 als Eckpunkt von Δ annehmen kann (etwa linke untere Ecke, Δ habe die Ecken z_0, b, c , entgegen dem Uhrzeigersinn.). Man bilde ein kleines Dreieck $\Delta_1 = z_0, z_1, z_2$, wobei die Strecke $\overline{z_1}\overline{z_2}$ parallel zur der Seite verläuft, die z_0 gegenüberliegt (Seite \overline{bc}). Man verbinde dann z_1 mit c und erhält insgesamt 3 Dreiecke $\Delta_1, \Delta_2, \Delta_3$. (Skizze anfertigen!). Nach dem vorigen Satz verschwinden die Integrale von f über $\partial \Delta_2, \partial \Delta_3$ und es bleibt:

$$\int_{\partial \triangle} f(z)dz = \int_{\partial \triangle_1} f(z)dz.$$

Da f auf \triangle stetig, also betragsmäßig beschränkt($|f(z)| \le M$) und z_1 beliebig (nahe an z_0) gewählt werden kann, folgt

$$\left| \int_{\partial \triangle} f(z) dz \right| = \left| \int_{\partial \triangle_1} f(z) dz \right| \le M \cdot L(\partial \triangle_1)$$

Die rechte Seite kann beliebig klein gemacht werden.