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Abstract

In the description of economic models by Arrow and Hahn the exis-
tence of a market equilibrium is proved under the assumption of con-
tinuity of the excess demand function in this model. This assumption
is replaced by the w-discontinuity which yields to an extension of the
class of mathematical models to economies of such kind. There are
studied some properties of w-discontinuous mappings, and based on
them, for a new economic model the existence of a certain equilibrium
is proved.
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1 Introduction

The classical microeconomic models have their origins mainly in the work of
L. Walras [17], (1954), a wider discussion of them is presented by K. J. Arrow
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sponsored by both the Grant No.01.0527 of the Latvian Academy of Science and the
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and G. Debreu [3], (1954) and also by K. J. Arrow and F. H. Hahn [4], (1971)
(we make use of the last one). An extended description of the classical model
can also be found in textbooks on microeconomics, for example, H. Varian
[16], (1990), D. M. Kreps [12], (1990) or W. Nicholson [15], (1992). For a
strictly functional-analytic approach we refer to the book of C. D. Aliprantis,
D. J. Brown and O. Burkinshaw [2], (1990).

One of the basic assumptions in mathematical modelling of the standard eco-
nomic model is the continuity of the excess demand function involved. There
are reasons to maintain that the necessity of this assumption is caused by
the methods provided by mathematics. First of all the fixed points theorems
of Brouwer and Kakutani have to be mentioned, since both require the con-
tinuity of the maps. They are the main tools for establishing the existence of
an equilibrium. However, the necessity of the assumption of continuity has
also some economic motivation: in a neoclassical exchange economy due to
the strict convexity and strict monotony of the preferences of all consumers
the excess demand function is continuous (see [2], Th.1.4.4). In fact this is
a different assumption about the behavior of consumers. The paper offers a
possibility to substitute the continuity of the excess demand function by the
w-discontinuity of this function and therefore to deal, in some extend, with
unstable economies. We will examine the properties of w-discontinuous map-
pings and finally, under some additional conditions, we prove the existence
of a generalized equilibrium. The scheme of the proof is traditional, however
it is worth to mention that the Walras’ Law is not supposed in this type
of economy. Another assumption is needed (Assumption 3’) instead. The
proposal on the Walras’ Law follows from the hypothesis that all consumers
and all producers (or households and firms) act in a maximal rational way by
taking into consideration their budget constraints. But the maximal rational
way is possible only when each consumer and each producer is thoroughly
familiar with the price system of all the goods. In the real situation even on
the scale of one small state (for example, Latvia), this is not possible.

2 w-discontinuous mappings and their proper-
ties

A class of mappings between metric spaces which are moderately discontin-
uous is defined as follows. Let (X, d) and (Y, 0) be two metric spaces and w
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a positive number.

Definition 1 Let f: domf — Y, where domf C X. Let zy € domf and
w > 0. A positive number § is called an w-tolerance of the map f at the
point xq, if any point x € domf which satisfies the condition d(x,zy) < 0
satisfies also the inequality o( f(z), f(zo)) < w.

Denote the set of all w-tolerances of f at zq by T (f, zo,w). A number 6 > 0
belongs to T (f, zo,w) if

x € dom(f) N B(zo;0) = f(z) € B(f(zo);w),

where B(xz;r) denotes the open ball in a metric space centered at the point
x with radius r.

One has immediately the following properties of w-tolerances® where, in what
follows, w, w;(i € {1,...,k}, k € N) are supposed to be positive numbers and
intersections of domains are assumed to be nonempty.

(i) wi <w implies T(f, zo,w1) C T (f, o, w)
(i) 0 < d; <dand § € T(f, xo,w) imply 61 € T(f, xp,w),
(iii) Let fi1,..., fr be a finite number of mappings and let xy belong to
'(k]l dom f;.
1;51- € T(fi,xo,w;) i =1,...,k, then

0= minéiET(fi,xo,w1+-~-+wk) Z:L,k

1<i<k
(iv) Let Y be a real normed space with the norm || - |ly. Consider for
fir X — Y i=1,....k and ay,...,a; € R the linear combination

k
g=oa1f1+ -+ apfr. Let xg belong to () domf;. Then
i=1

k
0 € T(fiswo,wi), i =1,k imply  min & € T (g, 0, > levilws).

i=1

'We adapt some ideas which are used in [13] for continuous functions.
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(v) LetbeY = R. For f: X — R define the functions |f|(x) = |f(x)], fi(z) =
max{ f(x),0} and® f_(z) = max{—f(z),0}. Let zy belong to domf.
Then

T(f,z0,w) C T (g, %0, w),

where ¢ stands for |f], fi, f_.

(vi) For the mappings f;: domf; — R, domf; C X, i = 1,2 define the
functions fi V fo = max{fi, fo} and fi A fo = min{ f1, fo} pointwise on
dom f; Ndomf,. Let xg belong to dom f; N domf,. Then

0 € T(fi,xo,w;), i =1,2 imply min{d;,ds} € T(g,x0,wr + wo),

where g = f1V faor g = fi A fa.

(vii) Let (Z,dz) be a metric space, f: X — Y, g: Y — Z and imf C
domg. Define (go f)(x) = g(f(x)), * € domf. Let zy belong to
domf. If o € T (g, f(xg),w) then

T(f7 Lo, U) C T(g o f, l’o,w).

We establish only the properties (iv) - (vii), since (i) and (ii) are obvious and
(iii) immediately follows from (i) and (ii).

(iv). If 6; € T(fi,xo,w;) and 6 = min{dy,..., 0} then according to (ii) for
each i =1,...,k one has § € T(fi,xo,w;). If x € X and d(z, ) < ¢ then

I ) = o) =1 3 sfte) = 35 S o) v =1 35 o) = fan) v
Sl () = ol < 3 ke

1
(v). The property (v) for |f| follows from the inequality ||a| — [b]| < |a —(b)|
for real numbers a,b. The proof of the other parts of (v) makes use of the
relations f,. = 3(f + |f]) and f- = 3(f —[f]).
(vi). For the proof use the relations fi1 V fo = 3(fi + fo + |fi — f2|) and
fiNfo = %(fl + fo—|fi = f2]). If § = min{dy, 2} then by (iv) and (v)

2Tt is sufficient for f to belong to a normed vector lattice of functions defined on X,
where | f] is the modul of the element f.



d € T(fi £ fo,wo,w1 +w2) C T(|f1 = folsxo,w1 +w2), and so 6 € T(f1 V
fo, w0, w1 +ws) and 0 € T(f1 A fa, w0, w1 + wa).

(vii). If 0 € T(f, x9,0) and z € domf satisfies d(x, xg) < d then o( f(x), f(xo)) <
o and, since o € T (g, f(x),w), one has dz(g(f(2)),g(f(%0))) < w, i. e.

0 €T (go f,zo,w).

Corollary 1 For f,g and o # 0 one has
T(f,ﬂfo, % + wl) N T(gux(b % =+ w?) C T(f + g, o, € + wy + w?) and
T(f, 20, 1o +w) C T(af, mo, € + afw).

Definition 2 A mapping f: X — Y is said to be w-discontinuous at the
point zy € X if for every e > 0 there exists an € + w-tolerance of f at the
point q.

The w-discontinuity of a mapping f at zq means that T (f,zo,e + w) # ()
for Ve > 0, i. e. for each € > 0 there exists § > 0 such that whenever x € X
and d(z,zo) < ¢ then o(f(x), f(x¢)) < e +w. Of course, the constant w may
not be the best possible (smallest) one. Very often, especially in economic
applications, there is known only a rough upper estimation for the "jump".
A mapping f is called w-discontinuous in X if it is w-discontinuous at all
points of X.

The notion of w-discontinuous maps is not new. It is already found in [14]
as the concept of oscillation or in [6] as continuity defect. The notion of
w-discontinuity (former w-continuity) was introduced by the first author in

[5].
Example 1 The usual Dirichlet function on R and also the generalized
Dirichlet function f : R™ — {0, 1}, defined for all z = (x1, xo, ..., z,) € R™ by

o) = 1, if all components x; € Q
~ | 0, if there exists ig such that z;, e R\ Q ’

are l-discontinuous (and consequently, due to (i), for any w > 1 also w-
discontinuous) functions.

Example 2 The number w in the definition 2 may dramatically depend on
the value of the function at the point zy. The functions

1, ifx>0
fo(z) = sign(x) = 0, ifz=0,
-1, ifx <0



and
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coincide in any neighborhood of 0 but fy, f; are 2- and f; is 3-discontinuous
at 0.

Proposition 1 If f is continuous at the point xq and g is w-discontinuous
at the point f(xo) then g o f is w-discontinuous at x.

Proof. Indeed, T (f,zo,e) # 0 and T (g, f(x¢),e+w) # D forany e > 0. If o €
T (g, f(x0),e+w) then by view of (vii) each 6 € T(f,xg, o) belongs to T (go
f,xo,e+w). That means x € domf and d(z,z¢) < 0 imply o( f(x), f(z0)) <
o and the latter in turn yields dz (g(f(2)), 9(f(20))) < € + w. |

If, conversely, f is w-discontinuous at zy and g continuous at f(xq) then the
set T(f, xg,0) is not empty only for sufficiently large positive o € T (g, f(z0), ).
Consider for example T(f,0,0), o € T(g,0, 5) with f(z) = sign(z), g(z) =z
and o = i. In order to apply the property (vii) to the mapping g o f the
number ¢ has to satisfy, for example, ¢ > w. This, in general, leads to an

additional restrictive condition on the function g.

If X, Y, V are real normed vector spaces the following properties of w-
discontinuous mappings are established by adapting the methods for contin-
uous mappings.

Proposition 2 Let be f; : X — Y, a; € R, i =1,...,k and g = a1 f1 +
oo ag fr. Suppose w; > 0 and that f; is w;- discontinuous on the set X for
each i =1,...)k. Then g = agfi + -+ aufr is a |oq|wy + -+ - + |og|wy-
discontinuous mapping.

Proof. The statement is an immediate consequence of the next property,

which can be obtained from (iv): If e > 0 and ¢ = +’ then
14370 |l

k
0; € T(fi,x0,0+w;), i =1,...,k implies 11;1& 0; € ’T(g,xo,er; lai|w;).

Indeed, let be €, 0 and §; as above and put 6 = min{dy,...,dx}. Then
according to (ii) one has 0 € T(fi;,xo,0 +w;) foreachi=1,... k. Ifx € X
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and d(z,x9) < 0 then by slightly altering the estimation (1) one gets

k k

I'9(x) = g(@o) [ly=Il 20 ai (fi(x) = fi(xo)) [y < 3 lail [[ fi(z) = filwo)lly <
k = k =
> leil(o +wi) <o(l4 3 |ou]) + X0 osw; = €+ 3 |a|w;.
i=1 i=1 i=1 i=1

|
From the Definition 2, which makes sense also for w = 0, immediately follows
that the 0-discontinuous mappings are exactly the continuous ones.

Corollary 2 Suppose that f,g: X — Y, [ is w'- discontinuous and g is w"-
discontinuous. Then f + g and f — g are w' + w”- discontinuous mappings.
In particular, if one of the mappings, f. e. g, is continuous, then f + g are
w'- discontinuous.

Corollary 3 If f: X — Y is w- discontinuous and c is a constant then c- f
is a |clw- discontinuous mapping.

Proposition 3 Let f: domf — R and g: dom g — R be w’'-, w”-discontinuous
functions, respectively. Then the functions f AN g and fV g are w' + w”-
discontinuous on domf N dom g.

Proof. 1If 61 € T(f,zo,w1) and 0y € T(g,xo,w;) then by means of (vi)
min{dy, 0o} € T(f V g,20,w1 + ws). The case of f A g is proved in the
same way. |

Corollary 4 If f is w- discontinuous and g is continuous then fV g is w-
discontinuous.

In order to consider the product of mappings we need the notation of the
product in a normed space.

Definition 3 ([11]) Let X,Y,Z be real normed vector spaces. A mapping
m: X XY — Z is called a product if it satisfies the following conditions:
foralla,be X, u,v €Y and X\ € R one has

1. 7((a+b,v)) =7((a,v)) +w((b,v))

2. m((a,u+v)) =7((a,u)) +7((a,v))
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3. m((Aa,u)) = Ar((a,u)) = m((a, Au))

4o Nlm((a, w)llz < lallx[[ully-
A simple example is given by X =Y =R", Z =R and 7((z,y)) = (x,y) —
the scalar product in R”, i.e. (z,y) = > x; y;.
=1

Let V, X,Y,Z be real normed vector s_paces and let 7: X XY — Z be a
product. The product of the mappings f: domf CV — X and g: domg C
V' — Y is understood pointwise, i.e.

(f - 9)(w) =n(f(v),9(v)), Vv €& domfNdomyg,
where dom f, domg C V.

Proposition 4 Suppose that f: domf — X isw'-discontinuous and g: dom g —

Y is w”-discontinuous on domfNdom g. Then f-g is a (w'w"4+w'||g(xo)||y +

W || f(zo)| x)-discontinuous mapping at every point o € domf N dom g.

Proof. We choose zp € V and put p = v’ + w” + || f(x0)||x + ||g(x0)]||y. For
any € > 0 the quadratic function

y(t) =" +pt—¢ (2)

possesses the positive root ¢’ = 1(y/p? + 4e — p). Denote by § = min{dy, &},
where 407 is an &’ + w'-tolerance of f and d, an &' 4+ w”- tolerance of g both
at the point zo. Then x € V and || 2 — z¢ ||y < J imply

) = f(zo)llx llg(x) = g(zo)lly +[1f () = f(zo)llx lg(zo) ly+

o) |lx lg(x) = g(zo)lly <

< (&' +w)(e +w") + (& + w)llg(o)ly + (" + w”) [ f(xo)llx) =

= (@) + ' W +w" + llg(zo)ly + [/ (zo)llx) +w'w” + w'llg(zo)ly + w”||f (z0) ] x-
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Since £’ is a root of the equation (2) one has
e=()+pe, ie () +W 0" +lg(zo)lly + [1f(zo)llx) =€,
and so

I ((f (), 9(2)) =7 ((f (z0), 9(x0))) |z < eFw'w"+w'l|g(wo)lly +w"|[ f (o) x-
u

Corollary 5 If f : V — X is w-discontinuous and g : V — Y s continuous
then f - g is a ||g(zo)|ly w- discontinuous mapping at every point xo € V.

For the division we reconcile with simplified situation, where (X, d) is again
a metric space.

Proposition 5 Let the function f: X — R be w-discontinuous at the point

xo and f(xo) # 0. If there exists a neighborhood U of xy and a number

1
ag > 0 such that | f(x)| > aqg for all x € U then the function = is S

[ aol f(xo)]

discontinuous at xg.

Proof. For € > 0 put € = cag|f(zo)]. By the w-discontinuity of f there
exists 0 > 0 such that x € U and d(z, x¢) < 0 implies | f(z) — f(zo)| < &' +w.
Then

PR S (O 58 (I LT
f(@)  flxo) [f(@)f(zo)l [f @) f(o)| ~
e +w :5ao\f(xo)\+w:€+ w
— gl f(zo)] ag|f(zo)] aol f(xo)|
[
As a special case we get
Corollary 6 If f : X — [1,4o00[ is w-discontinuous then % is a f(lio)_

discontinuous mapping for every point xo € X.

If the domain of definition for a continuous mapping is compact, then its
range is also compact and, in particular, bounded. The boundedness of the
most functions used in economic models seems to be indispenable in studying
such models. The boundedness of the range is guaranteed for w-discontinuous
mappings as well, however, compactness may not hold.
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Example 3 Define f: [0;1] — [0;1] as

[ 3, if ze{0,1}
f<x)_{x, if z€(0,1).

The function f is 3-discontinuous and its range (0,1) is bounded, but not
compact.

Further on we need some notations introduced by the following definitions.
Let (X, d) and (Y, ) be two metric spaces and w a positive number.

Definition 4 A mapping f: domf — Y, domf C X is said to be uni-
formly w-discontinuous if for every e > 0 there is 6 > 0 such that for ev-
ery two points x,y € domf the inequality d(z,y) < § implies o(f(x), f(y)) <
€+ w.

Definition 5 Let A be a subset of X, domf C A and f: domf — Y. A
mapping g: A — Y is said to be a pu- approximation (u > 0) of the map f
on domf if

o(f(z),9(z)) <p Va € domf.
The following theorems are proved in [5].

Theorem 1 If A is a compact subset of a mormed vector space X and
f: A—Y is w-discontinuous, then f is uniformly 2w-discontinuous.

Now let X and Y be a real normed vector spaces.

Theorem 2 Suppose that X is a normed vector space, A C X s compact,
f A — Y is uniformly w-discontinuous and w' is an arbitrary number
w' > w. Then there exists a continuous w'-approzimation f for f in A such
that f(z) € conv(f(A)), z € A, where conv(f(A)) denotes the convex hull of
the set f(A).

Now we are able to prove the next theorem.

Theorem 3 Suppose that A C X is compact and let f: A — X be w-
discontinuous. Then f(A) is bounded.
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Proof. According to Theorem 1 the mapping f is uniformly 2w-discontinuous,
and by Theorem 2 for every w’ > w there exists a continuous 2w’-approximation
f of the mapping f on the set A. Since A is compact and f is continuous the
set f(A) is compact and, consequently, bounded. Therefore, for some r > 0
and zy € f(A) one has f(A) C B(xo;r). Because f is a 2w’-approximation
of f on A there holds the inequality

d(f(z), f(z)) < 2w/, Vz € A.

It follows that f(A) C B(xo;r + 2w'), i. e. f(A) is bounded. |

The following essential result is proved by O.Zaytsev in [18| and can be con-
sidered as a generalization of the Bohl-Brouwer-Schauder fixed point theorem
(see [9]) for w-discontinuous mappings.

Theorem 4 Let K be a nonempty, compact and conver subset in a normed
vector space X. For every w-discontinuous mapping f : K — K (w > 0)
there exists a point x* € K such that || * — f(z*) ||< w.

3  Market equilibrium of the standard economic
model

We give the description of a simple economic model £ considered by Arrow
and Hahn in [4].
Let there be n (n € N) different goods (commodities) on the market: services
and wares, and a finite number of economic agents: households and firms,
where each household can be considered as a firm, and, vice versa, each firm
can be considered as a hosehold.
Let xp; be the quantity of good ¢ which is needed to the household A. If
xp; < 0 then |zy;| denotes the quantity of good i which is supplied by the
household h. If z; > 0 then z; is the (real) demand of good i by h, including
the zero demand. The summation over all households will be indicated by
x; =Y xp; and is the total demand of good 4, 1 =1,... n.

h

The quantity of good ¢ that is supplied by the firm f will be denoted by
yri. Again, if yr; < 0 then |yg| is the demand (input) of good ¢ by f. If
yri > 0 then yy; is the supplied quantity (output) of ¢ by f, where the zero
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supply again is included. The summation over all firms will be indicated by
yi = »_ Yy and is the supply of good i, i =1,...,n.
f

The initially available amount (or resources) of good i in all households will
be denoted by Z;. Note that Z; must be non-negative.

A market equilibrium, which is one of the most important characteristics
of any economy (see e.g. [2], [4], [7], [10]), describes (in our situation) the
economic situation that the total demand of each good in the economy is
satisfied by its total supply. This fact is obviously expressed by saying that
the difference between the total demand of each good and its total supply
is less than or equal to zero. The total supply of good i is understood as
the sum of the supply of the good ¢ and the quantity of ¢ which is already
available, i. e. the total supply of the good ¢ equals to y; + x;. The excess
demand of good 7 is then defined as x; —y; —7;, 1 =1, ..., n.

If economic agents at the market are faced with a system of prices, i.e. with
a price vector p = (p1,...,pn), where p; is the price of one unit of good 7,
then the quantities xy;, ys; and also x;,y;,7; depend on p. Now we denote
the excess demand of the good i by z;(p), i.e.

a(0) = ip) — (wp) + 7).

If prices are involved then an equilibrium price (a price system at which an
equilibrium is reached) clears the market.

Further on we frequently make use of the natural order in R™ introduced by
the cone

RY ={z=(z1,...,2,) e R" 12, >0, i =1,...,n},

i. e, for two vectors x = (x1,...,2,),y = (y1,...,yn) and write z < y iff
x; <y foralli=1,...,n, we write x < y iff v <y and z;, < y;, for at least
one index iy. The zero vector (0,...,0) € R" is denoted by 0. The norm we

will use in the space R" is defined as

n

Izl = lzil, @ = (21, ..,2) €R™

i=1

This norm is equivalent to the Euclidean norm which is introduced by means
n

of the scalar product (z,y) = > x;y;. Note that in economic publications

i=1

the scalar product of two vectors x,y € R is usually written as x y.
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For the standard economic model the following four assumptions® have to be
met.

Assumption 1. Let p = (p1,...,p,) be n-dimensional price vector with
the prices p; for one unit the good 7 as components, i = 1,2, ...,n. For any p
let the excess demand for i be characterized by a unique number z;(p) and
so the unique vector z(p) = (z1(p), ..., 2a(p)) - the excess demand function
with excess demand functions for ¢ as components (i = 1,2,...,n) - is well
defined.

Assumption 2. z(p) = z(A\p), Vp>0and A > 0.

Assumption 2 asserts that z is a homogeneous vector-function of degree zero.
Economically this means that the value of the excess demand function does
not depend on the price system if the latter is changed for all the goods
simultaneously by the same portion.

From the Assumption 2 it follows that prices can be normalized (see [4],p.20)
or [7],p.10). If for some price p one has z(p) = 0 then z(Ap) = O for all prices
of the ray {A\p: A > 0}. Therefore, further on we consider only prices from
the n — 1-dimensional simplex of R"

i=1

We rule out the situations when all the prices are zero or some of them are
negative. Note that A, is a compact and convex set in the space R" equipped
with one of its (equivalent) norms.

Assumption 3 or Walras’ Law. pz(p) =0, VpeEA,.

Walras’ Law can be regarded as an attempt to have a model sufficiently truly
reflecting rationally motivated activities of economic agents. According to
Walras’ Law all the firms and all the households both spend their financial
resources completely ([7]).

Assumption 4. The excess demand function z is continuous on its domain
of definition A,,.

It means that a small change of a price system will imply only a small change
in the excess demand. As a consequence from continuity of z, the standard

3the Assumptions (F), (H), (W) and (C) in [4]

15



model can be used only for the description of economies with continuous
excess demand functions. Sometimes they are called stable economies.

In economies such prices are important at which the excess demand for each
good is nonpositive, i.e. the total supply of each good satisfies at least its
total demand.

Definition 6 A price p* € A, is called an equilibrium (price) if z(p*) < 0.

If p* is an equilibrium price then > z;(p*) < 0.
i=1

For the standard model of an economy with a finite number of goods and
agents such prices always exist as is proved in the following theorem.

Theorem 5 ([4]) If an economy € with a finite number of goods and agents
satisfies the assumptions 1—4, then there exists an equilibrium in &.

We remark that in the case of a neoclassical exchange economy & (see e.g.[2])

each agent has his excess demand vector z,(p), which is uniquely defined

by means of the unique maximal element of his preferences in the budget

set for the price p and his initial endowment. Then the excess demand

function of the economy £ is defined as the vector z(p) = > z;(p). It satisfies
h

also Assumptions 2,3,4 and, in addition, also some other conditions (see
[2],Th.1.4.6).
This allows to prove the existence of a price p* even such that z(p*) = 0.

4  Economic models with discontinuous excess
demand functions

If z is the excess demand function for a neoclassical exchange economy, then
z is continuous on the set

S={pelA,|p>0i=1,2,..n}

(see [2],Th.1.4.4 and Th.1.4.6). A neoclassical exchange economy (see [2])
is characterized by a finite set of agents, where each agent ¢ has a non-zero
initial endowment w; and his preference relation >; is continuous, strictly
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monotone and strictly convex (on R’) or else his preference relation >; is
continuous, strictly monotone and strictly convex on interior of R”, and
everything in the interior is prefered to anything on the boundary and the
total endowment w = > wj; is strictly positive. If the preference relation =,

is continuous, strictly HZLOIIOtOIle and strictly convex then the corresponding
utility function and the excess demand function are continuous on the set S.
We will consider the situation with a discontinuous excess demand function.
It is clear that in this case the properties of the preference relations differ
from them in the neoclassical exchange economy.

y A

N

0 1 2 324 5 x
Fig.1.

For example, consider the preference relation on Ri that is represented by
the utility function® u(x,y) = max{x,y} and an initial endowment w =
(2,2). The utility function is continuous, but it is not strictly monotone
(for example, (2,2) > (2,1) but u(2,2) = 2 = u(2,1)) and it is not strictly
concave, it is convex. The indifference curves for the values 1, 2, 3, 4 and
5 are illustrated in Figure 1. Let p = (o, 1 — «) be a fixed price vector for
some 0 < a < 1. We maximize the utility function u subject to the budget
constraint ax+(1—a)y = 2a+2(1—a) = 2. This line goes through the point
(2,2) and intersects the axis in the points (0, %) and (2,0). From Figure
1 we see that the maximal vector of u over budget set (the dotted region in

2 respectively. If

Figure 1) is the point (0, %) if @ >  and (2,0) if & < 2,

Yie. (w1,91) = (22,y2) if and only if u(x1,y1) > u(w2,y2)
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o = % then 1% = % and therefore we have two maximizing vectors. The

(e}
excess demand function in this case is

0.%),  a>g3,
l‘(p) :x(a,l—a): {(074)7(47())}7 a:%,
(2,0), o< 3.

In the point (3,1) the excess demand multifunction is discontinuous.

In [1] it is proved that in a neoclassical excange economy the condition
Pn — p € 0S with (p,)nen C S implies lim ||z(p,)|| = co. It is also not our
n—o0

case (see Theorem 3). In [1] it is shown that a utility function u: X — R
(X - topological space) representing a continuous preference relation is not
necessarily continuous. If we start with an arbitrary chosen discontinuous
utility function then we have no mathematical tools for finding the corre-
sponding demand function (in the classical situation an agent maximizes
the utility function with respect to the budget constraint and uses the La-
grange multiplier method for finding demand function). We note that there
exist preference relations which cannot be represented by a real-valued func-
tion, for example, the lexicographic preference ordering of R? (by definition
(a,b) = (¢,d) if (1) a > cor (2) a=cand b > d) (see [8], notes to chapt.4).
The above situation inspires one to consider models without explicitly given
preference relations. In which cases is the excess demand function discontin-
uous? Consider some good ¢ and a fixed price system p. In the case that this
good is, e.g. an aeroplane or a power station, its demand x;(p) is naturally
an integer. A function like z;(p) = [3&&0?}, where [z] denotes the integer part
of x, provides an example.

Obviously, if the good is a piece-good (table, shoes, flower and other) then
the demand for this good is an integer. Similarly, the supply of piece-goods
is an integer. Therefore the demand and supply functions for piece-goods are
discontinuous and consequently excess demand function too.

What can be said about the existence of an equilibrium in an economy
if the excess demand function is not continuous, for example, if it is w-
discontinuous? We will analyse some model of an economy with w-discontinuous
excess demand functions.

For the economies under consideration we keep the two first assumptions
from the standard model and change the two last as follows.

18



Assumption 4’. The excess demand function z is w-discontinuous on its
domain of definition A,,.

The w-discontinuity of the excess demand function makes our model available
to describe some properties of an unstable economic as well.

It is quite natural that for every price vector p € A,, there exist at least one
good ¢ with the price p; > 0 and such that the demand for them is satisfied,
i.e. z(p) <0.

If for some economy & with the excess demand vector z(p), p € A, there
holds the Walras’ Law, i. e. pz(p) = 0 for any p € A, then for each p € A,

the inequality
Tp = Z pi >0
zi(p)<0

is satisfied. Indeed, if for some p = (p1,...,pn) € A, there would be
Y. pi =0, then

2i(p)<0

n

Z pi+ Z pizzpizl

4SO 2z(p)>0 i=1

would imply the existence of an index iy such that p;, > 0 and z;,(p) > O.
This yields pz(p) = > pizi(p) > pizi,(p) > 0, a contradiction to Walras’
i=1

Law.
Our next assumption requires the existence of a uniform lower bound for the

sums Y. p;, forall pe A,.
2i(p)<0

Assumption 3°. v = pi€nAfn ¥p > 0.

We indicate some examples which show that Assumption (3’) is independent
on the Walras’ Law. In each of the figures below the functions z; and 2z
are considered on the intervall [p/, p”], which is nothing than the simplex A,.
If we represent the vectors p = (p1,p2) € Ag as p = (1 — ¢)p’ + tp”, where
t € [0,1], then p; = (1 — t)p} + tp/, which yields p; = t and p, = 1 — ¢.
For t € (0,1) the Walras Law pz(p) = p121((p1,p2)) + peza((p1,p2)) = 0
now reduces to the relation zy(p) = —521(p). For the cases ¢ € {0,1}
some additional care has to be taken. We suppose that all this is true in the
Figures 2 and 3, where Walras’ Law is assumed to be satisfied. In the other

figures it is easy to find a vector p € Ay (in Figure 4, e.g. the vector p/),

19



where p z(p) # 0. In Figures 2 and 5 it is easy to see that Assumption 3’ does
not hold. In both cases for any p € Ay we calculate > p; =py =1—1
2i(p)<0

and so i(nf )(1 —t) = 0. In Figures 3 and 4 Assumption 3’ is satisfied with
te(0,1

v = min{ty, 1 —to}.
y

Y = (1,0)

Y
S

Z(p)

Fig.2. Walras’Law does not imply (3’). Fig.3. Walras’Law and (3’) hold.

z1(p)

¥ =0,1) [ w=00

Z(p)

Fig.4. (3’) holds but not Walras’Law.  Fig.5. Neither Walras'Law nor (3’).
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It seems to be clear that it would be hard to find out why an equilibrium
exists in our model. But it will be possible if we can estimate the unsatisfied
aggregate demand. This leads to the concept of quasi- or k-equilibrium.

Definition 7 Let k be a positive real. A price vector p* € A, is called a
k-equilibrium if it satisfies the condition

Z zi(p") < k.
Zi(p*)>0

The constant £ € R, as a numerical value of the maximally possible un-
satisfied demand for a given price p* € A, characterizes to what state the
economy differs from the market equilibrium (Definition 6).

We can prove now the following

Theorem 6 Let £ be an economy with n goods that satisfies the Assumptions
1,2 and the Assumption 3’ with some number v > 0. Put

we =wy(n7) = 5 (~(n 1) + /T D24 8m)

2n
If now Assumption J’ is satisfied with w € [0,w,), then the economy &
nw? + (n + 1w

k-equilibri hk>
POSSESSES O equiltoTIum fOT‘ eac = 2/}/ — an — (TL + 1)w

Proof. For p € A, define z;'(p) = max{0, z;(p)}, i = 1,..,n, z7(p) =
(= (), 28 (p),

p1+ 2 (p)

v(p) = (p+z"(p),e) =1+ Y z(p) and Gi(p) = —=——== i=1,..n,
a0 v(p)
where e = (1,...,1) denotes the vector of R™ with all components equal to
1. Note that ||e]| = n.
p+2"(p)

Define now amap 7: A,, — A, by T'(p) = . Since 0 < ¢;(p) <

(p+2"(p),e)
1 for each 7 and

n

Bwrse) 1+ 8
Zt O =1

v(p)
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one has T'(p) : A, — A,.

Now the particular maps which the map T consists of, possess the following
properties:

The idendity map ¢d on A, is continuous, by Assumption 4’ the map z: A —
R" is w-discontinuous and by Corollary 4 so is z". By Corollary 2 the
map id + zt is w-discontinuous, what by Corollary 5 implies the w]|e]|-
discontinuity, i.e. the nw-discontinuity of v(p) = (p + 27(p),e). Since

. . hw .. .
v: A, — [1,00) the function — is ——-discontinuous as a consequence of

v v(p) )
Corollary 6. Finally, based on Proposition 4, the map T'(p) = (p + 27 (p)) o)
vip
is wo-discontinuous at a every point p € A,,, where
2 + 2
+ +
wo = wo(p) = oY nwlp+ 27 (p)|| _ nw Yo < nw?+(n+1)w
v(p) v(p) v(p) v(p)

(3)
and so, the map T is also nw? 4+ (n + 1)w-discontinuous on the set A,,.
Since A, is a convex and compact subset in the normed vector space R™ and
T(p) : A, — A, we conclude by means of Theorem 4 that there exists a
vector p* € A, satisfying the inequality

IT(p") = p"[l < nw® + (n + Dw.
Using the norm in R"™ this yields

) -l = [

Pz ) —pi—pf > )
Zi(p*)>0

v(p)

i=1 v(p)

Since 1+ > z(p*) > 0 one has
zi(p*)>0

n

> ) - v z(p")| < (nw? + (n + )w) v(p"). (4)

i=1 2 (p*)>0
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The left side of inequality (4) can be splitted into the two sums

Sl —pr Y w)|+ D |a) - Y mk)| =

zi(p*)<0 zi(p*)>0 zi(p*)>0 zi(p*)>0
S Y )+ ap) = > =) ()
zi(p*)<0 zi(p*)>0 2 (p*)>0 z;(p*)>0

Using the triangle inequality we get the estimation

S law)-p Y ae) || < Y a) —0r D k)], (6)

zi(p*)>0 zi(p*)>0 zi(p*)>0 zi(p*)>0

and further the left hand side of (6) calculates as

zi(p*)>0 zi(p*)>0 zi(p*)>0 zi(p*)>0

zi(p*)>0 zi(p*)>0 zi(p*)>0 zi(p*

) )
By means of the equalities (5), (7) and the inequalities (4), (6) we obtain
now

2 > alp Z pz— dooal) Yo+ ) ) - ) Al <

2i(p*)>0 zi(p*) zi(p*)>0 2i(p*)<0 zi(p*)>0 zi(p*
< (nw? + (n+ Dw) v(p").
It follows by means of Assumption 3’
2y Z () <2 Y 27 p; < (nw® + (n+ Dw) v(p").
zi(p*) zi(p*)>0 2i(p*)<0

Since v(p*) =14+ > =z(p*) the last inequality yields
Zi(p*)>0

Z () < nw? 4+ (n+ 1)w e Z ) <k,

2y —nw? — (n+ Dw
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nw? + (n + 1w
2y —nw? — (n+ 1w’

where k satisfies & >

In order to have the number 2y —nw? — (n+ 1)w positive the value of w must
belong to the interval [0, w, ), where w, is the positive root of the equation

1 2
w? + iw 2 0. [ |
n n
Remarks.

1. Let n and v > 0 be fixed. Then w; = w,(n,~) is defined as indicated in
the theorem. For w € [0, w,) put

ol w) nw? + (n + 1w
n,w) = :
o 2y —nw? — (n+ 1w

The number ko(n,w) is non-negative as was shown above. Note that a
sharper estimation® in (3) would yield a smaller value of kq(n,w) and, there-
fore, would give a better result. In view of Theorem 4, however, an estimation
has be obtained independently on p.

2. In Figure 6 for n = 2 there is shown a situation without a classic equilib-
rium.

, /1(p)
<w o ’
p'=(01) () 1l [<w p'=(L0)
: p
\
2(p)

Fig.6. No classical equilibrium, but k—equ1l1br1un11€}lcsl% Sir that

there is no p € Ay which satisfies the inequality z(p) = (21(p), z2(p)) < 0. As-
sumptions 1, 2, 4’ are obviously fulfilled. Assumption 3’ also holds. Indeed,
represent p = (p1,p2) € Ay as

p=(1-tp+tp"  te[01]

>Our estimation is based on the rough inequality v(p) > 1.
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12
implies z1(p) = 0, z2(p) > 0 and so 7, = p1. In both cases we get 7, > 3
which shows that the Assumption 3’ holds with v = % Theorem 6 guarantees
the existence of a k-equilibrium for & > 13‘2"5}% ifw < —% + @. Note that
Walras’ Law is not satisfied.

then ¢ € [0, 1] implies z1(p) > 0, 22(p) < 0 and so v, = ps and ¢ € (3,1]
1

3. The number w, (n,~) is positive for each n and fixed v > 0. If one takes
w = 0 then ky(n,v) = 0 and with & = 0 there is obtained the classical
case. Observe that in this case it is not necessary to use the Walras’ Law for
establishing a classical equilibrium.

4. Note that in the classical situation it is impossible to carry out any
quantitative analysis. On the contrary, the inequalities from Theorem 6

w < wi(n,y) and k> ko(n,w)

give a chance to analyse the behaviour of an economy for different numerical
values of the parameters n,w,y included in our model. From

0< =
= w+(n7 7) m om

it follows that lim w,(n,vy) = +0. Since ko(n,0) = 0, the positive number
n—oo

k can be choosen arbitrary small. This shows that the larger the number of
goods the better the chance for a classical equilibrium.

5. Tt is reasonable to put ko(n,wy(n,vy)) = +oo. If for fixed n and v the
value w is sufficiently close to w(n,~), then k is very large. In such a case
the existence of an k-equilibrium seems to be of low economic meaning.
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