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Abstra
t

In the des
ription of e
onomi
 models by Arrow and Hahn the exis-

ten
e of a market equilibrium is proved under the assumption of 
on-

tinuity of the ex
ess demand fun
tion in this model. This assumption

is repla
ed by the w-dis
ontinuity whi
h yields to an extension of the


lass of mathemati
al models to e
onomies of su
h kind. There are

studied some properties of w-dis
ontinuous mappings, and based on

them, for a new e
onomi
 model the existen
e of a 
ertain equilibrium

is proved.
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1 Introdu
tion

The 
lassi
al mi
roe
onomi
 models have their origins mainly in the work of

L. Walras [17℄, (1954), a wider dis
ussion of them is presented by K. J. Arrow
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and G. Debreu [3℄, (1954) and also by K. J. Arrow and F. H. Hahn [4℄, (1971)

(we make use of the last one). An extended des
ription of the 
lassi
al model


an also be found in textbooks on mi
roe
onomi
s, for example, H. Varian

[16℄, (1990), D. M. Kreps [12℄, (1990) or W. Ni
holson [15℄, (1992). For a

stri
tly fun
tional-analyti
 approa
h we refer to the book of C. D. Aliprantis,

D. J. Brown and O. Burkinshaw [2℄, (1990).

One of the basi
 assumptions in mathemati
al modelling of the standard e
o-

nomi
 model is the 
ontinuity of the ex
ess demand fun
tion involved. There

are reasons to maintain that the ne
essity of this assumption is 
aused by

the methods provided by mathemati
s. First of all the �xed points theorems

of Brouwer and Kakutani have to be mentioned, sin
e both require the 
on-

tinuity of the maps. They are the main tools for establishing the existen
e of

an equilibrium. However, the ne
essity of the assumption of 
ontinuity has

also some e
onomi
 motivation: in a neo
lassi
al ex
hange e
onomy due to

the stri
t 
onvexity and stri
t monotony of the preferen
es of all 
onsumers

the ex
ess demand fun
tion is 
ontinuous (see [2℄, Th.1.4.4). In fa
t this is

a di�erent assumption about the behavior of 
onsumers. The paper o�ers a

possibility to substitute the 
ontinuity of the ex
ess demand fun
tion by the

w-dis
ontinuity of this fun
tion and therefore to deal, in some extend, with

unstable e
onomies. We will examine the properties of w-dis
ontinuous map-

pings and �nally, under some additional 
onditions, we prove the existen
e

of a generalized equilibrium. The s
heme of the proof is traditional, however

it is worth to mention that the Walras' Law is not supposed in this type

of e
onomy. Another assumption is needed (Assumption 3') instead. The

proposal on the Walras' Law follows from the hypothesis that all 
onsumers

and all produ
ers (or households and �rms) a
t in a maximal rational way by

taking into 
onsideration their budget 
onstraints. But the maximal rational

way is possible only when ea
h 
onsumer and ea
h produ
er is thoroughly

familiar with the pri
e system of all the goods. In the real situation even on

the s
ale of one small state (for example, Latvia), this is not possible.

2 w-dis
ontinuous mappings and their proper-

ties

A 
lass of mappings between metri
 spa
es whi
h are moderately dis
ontin-

uous is de�ned as follows. Let (X, d) and (Y, ̺) be two metri
 spa
es and ω
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a positive number.

De�nition 1 Let f : domf −→ Y , where domf ⊆ X. Let x0 ∈ domf and

w > 0. A positive number δ is 
alled an ω-toleran
e of the map f at the

point x0, if any point x ∈ domf whi
h satis�es the 
ondition d(x, x0) < δ

satis�es also the inequality ̺(f(x), f(x0)) < ω.

Denote the set of all ω-toleran
es of f at x0 by T (f, x0, ω). A number δ > 0
belongs to T (f, x0, ω) if

x ∈ dom(f) ∩B(x0; δ) =⇒ f(x) ∈ B(f(x0);ω),

where B(x; r) denotes the open ball in a metri
 spa
e 
entered at the point

x with radius r.

One has immediately the following properties of ω-toleran
es1 where, in what

follows, ω, ωi(i ∈ {1, . . . , k}, k ∈ N) are supposed to be positive numbers and

interse
tions of domains are assumed to be nonempty.

(i) ω1 < ω implies T (f, x0, ω1) ⊂ T (f, x0, ω)

(ii) 0 < δ1 < δ and δ ∈ T (f, x0, ω) imply δ1 ∈ T (f, x0, ω),

(iii) Let f1, . . . , fk be a �nite number of mappings and let x0 belong to

k
⋂

i=1

domfi.

If δi ∈ T (fi, x0, ωi) i = 1, . . . , k, then

δ := min
1≤i≤k

δi ∈ T (fi, x0, ω1 + · · ·+ ωk) i = 1, . . . , k.

(iv) Let Y be a real normed spa
e with the norm ‖ · ‖Y . Consider for

fi : X −→ Y, i = 1, . . . , k and α1, . . . , αk ∈ R the linear 
ombination

g = α1f1 + · · ·+ αkfk. Let x0 belong to

k
⋂

i=1

domfi. Then

δi ∈ T (fi, x0, ωi), i = 1, . . . , k imply min
1≤i≤k

δi ∈ T (g, x0,

k
∑

i=1

|αi|ωi).

1

We adapt some ideas whi
h are used in [13℄ for 
ontinuous fun
tions.
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(v) Let be Y = R. For f : X −→ R de�ne the fun
tions |f |(x) = |f(x)|, f+(x) =
max{f(x), 0} and

2 f−(x) = max{−f(x), 0}. Let x0 belong to domf .

Then

T (f, x0, ω) ⊂ T (g, x0, ω),

where g stands for |f |, f+, f−.

(vi) For the mappings fi : domfi −→ R, domfi ⊂ X, i = 1, 2 de�ne the

fun
tions f1 ∨ f2 = max{f1, f2} and f1 ∧ f2 = min{f1, f2} pointwise on

domf1 ∩ domf2. Let x0 belong to domf1 ∩ domf2. Then

δi ∈ T (fi, x0, ωi), i = 1, 2 imply min{δ1, δ2} ∈ T (g, x0, ω1 + ω2),

where g = f1 ∨ f2 or g = f1 ∧ f2.

(vii) Let (Z, dZ) be a metri
 spa
e, f : X −→ Y, g : Y −→ Z and imf ⊂
dom g. De�ne (g ◦ f)(x) = g (f(x)) , x ∈ domf . Let x0 belong to

domf . If σ ∈ T (g, f(x0), ω) then

T (f, x0, σ) ⊂ T (g ◦ f, x0, ω).

We establish only the properties (iv) - (vii), sin
e (i) and (ii) are obvious and

(iii) immediately follows from (i) and (ii).

(iv). If δi ∈ T (fi, x0, ωi) and δ = min{δ1, . . . , δk} then a

ording to (ii) for

ea
h i = 1, . . . , k one has δ ∈ T (fi, x0, ωi). If x ∈ X and d(x, x0) < δ then

‖ g(x)− g(x0) ‖Y=‖
k
∑

i=1

αifi(x)−
k
∑

i=1

αif(x0) ‖Y=‖
k
∑

i=1

αi (fi(x)− fi(x0)) ‖Y≤
k
∑

i=1

|αi| ‖fi(x)− fi(x0)‖Y ≤
k
∑

i=1

|αi|ωi.

(1)

(v). The property (v) for |f | follows from the inequality

∣

∣|a| − |b|
∣

∣ ≤ |a− b|
for real numbers a, b. The proof of the other parts of (v) makes use of the

relations f+ = 1
2
(f + |f |) and f− = 1

2
(f − |f |).

(vi). For the proof use the relations f1 ∨ f2 = 1
2
(f1 + f2 + |f1 − f2|) and

f1 ∧ f2 = 1
2
(f1 + f2 − |f1 − f2|). If δ = min{δ1, δ2} then by (iv) and (v)

2

It is su�
ient for f to belong to a normed ve
tor latti
e of fun
tions de�ned on X ,

where |f | is the modul of the element f .
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δ ∈ T (f1 ± f2, x0, ω1 + ω2) ⊂ T (|f1 − f2|, x0, ω1 + ω2), and so δ ∈ T (f1 ∨
f2, x0, ω1 + ω2) and δ ∈ T (f1 ∧ f2, x0, ω1 + ω2).

(vii). If δ ∈ T (f, x0, σ) and x ∈ domf satis�es d(x, x0) < δ then ̺(f(x), f(x0)) <
σ and, sin
e σ ∈ T (g, f(x0), ω), one has dZ

(

g(f(x)), g(f(x0))
)

< ω, i. e.

δ ∈ T (g ◦ f, x0, ω).

Corollary 1 For f, g and α 6= 0 one has

T (f, x0,
ε
2
+ w1) ∩ T (g, x0,

ε
2
+ w2) ⊂ T (f + g, x0, ε+ w1 + w2) and

T (f, x0,
ε
|α| + w) ⊂ T (αf, x0, ε+ |α|w).

De�nition 2 A mapping f : X → Y is said to be w-dis
ontinuous at the

point x0 ∈ X if for every ε > 0 there exists an ε + w-toleran
e of f at the

point x0.

The w-dis
ontinuity of a mapping f at x0 means that T (f, x0, ε + w) 6= ∅
for ∀ε > 0, i. e. for ea
h ε > 0 there exists δ > 0 su
h that whenever x ∈ X

and d(x, x0) < δ then ̺(f(x), f(x0)) < ε+w. Of 
ourse, the 
onstant w may

not be the best possible (smallest) one. Very often, espe
ially in e
onomi


appli
ations, there is known only a rough upper estimation for the "jump".

A mapping f is 
alled w-dis
ontinuous in X if it is w-dis
ontinuous at all

points of X .

The notion of w-dis
ontinuous maps is not new. It is already found in [14℄

as the 
on
ept of os
illation or in [6℄ as 
ontinuity defe
t. The notion of

w-dis
ontinuity (former w-
ontinuity) was introdu
ed by the �rst author in

[5℄.

Example 1 The usual Diri
hlet fun
tion on R and also the generalized

Diri
hlet fun
tion f : Rn → {0, 1}, de�ned for all x = (x1, x2, ..., xn) ∈ Rn
by

f(x) =

{

1, if all 
omponents xi ∈ Q

0, if there exists i0 su
h that xi0 ∈ R \Q ,

are 1-dis
ontinuous (and 
onsequently, due to (i), for any ω ≥ 1 also ω-

dis
ontinuous) fun
tions.

Example 2 The number w in the de�nition 2 may dramati
ally depend on

the value of the fun
tion at the point x0. The fun
tions

f0(x) = sign(x) =







1, if x > 0
0, if x = 0

−1, if x < 0
,
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and

f1(x) =

{

f0(x), if x 6= 0
1, if x = 0

, f2(x) =

{

f0(x), if x 6= 0
2, if x = 0


oin
ide in any neighborhood of 0 but f0, f1 are 2- and f2 is 3-dis
ontinuous
at 0.

Proposition 1 If f is 
ontinuous at the point x0 and g is w-dis
ontinuous

at the point f(x0) then g ◦ f is w-dis
ontinuous at x0.

Proof. Indeed, T (f, x0, ε) 6= ∅ and T (g, f(x0), ε+w) 6= ∅ for any ε > 0. If σ ∈
T (g, f(x0), ε+w) then by view of (vii) ea
h δ ∈ T (f, x0, σ) belongs to T (g ◦
f, x0, ε+w). That means x ∈ domf and d(x, x0) < δ imply ̺(f(x), f(x0)) <
σ and the latter in turn yields dZ

(

g(f(x)), g(f(x0))
)

< ε+ w.

If, 
onversely, f is w-dis
ontinuous at x0 and g 
ontinuous at f(x0) then the

set T (f, x0, σ) is not empty only for su�
iently large positive σ ∈ T (g, f(x0), ε).
Consider for example T (f, 0, σ), σ ∈ T (g, 0, 1

2
) with f(x) = sign(x), g(x) = x

and σ = 1
4
. In order to apply the property (vii) to the mapping g ◦ f the

number σ has to satisfy, for example, σ > w. This, in general, leads to an

additional restri
tive 
ondition on the fun
tion g.

If X , Y , V are real normed ve
tor spa
es the following properties of w-

dis
ontinuous mappings are established by adapting the methods for 
ontin-

uous mappings.

Proposition 2 Let be fi : X → Y, αi ∈ R, i = 1, . . . , k and g = α1f1 +
· · ·+ αkfk. Suppose wi > 0 and that fi is wi- dis
ontinuous on the set X for

ea
h i = 1, . . . , k. Then g = α1f1 + · · · + αkfk is a |α1|w1 + · · · + |αk|wk-

dis
ontinuous mapping.

Proof. The statement is an immediate 
onsequen
e of the next property,

whi
h 
an be obtained from (iv): If ε > 0 and σ =
ε

1 +
∑k

i=1 |αi|
, then

δi ∈ T (fi, x0, σ+wi), i = 1, . . . , k implies min
1≤i≤k

δi ∈ T (g, x0, ε+
k

∑

i=1

|αi|wi).

Indeed, let be ε, σ and δi as above and put δ = min{δ1, . . . , δk}. Then

a

ording to (ii) one has δ ∈ T (fi, x0, σ +wi) for ea
h i = 1, . . . , k. If x ∈ X
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and d(x, x0) < δ then by slightly altering the estimation (1) one gets

‖ g(x)− g(x0) ‖Y=‖
k
∑

i=1

αi (fi(x)− fi(x0)) ‖Y≤
k
∑

i=1

|αi| ‖fi(x)− fi(x0)‖Y ≤
k
∑

i=1

|αi|(σ + wi) < σ(1 +
k
∑

i=1

|αi|) +
k
∑

i=1

|αi|wi = ε+
k
∑

i=1

|αi|wi.

From the De�nition 2, whi
h makes sense also for w = 0, immediately follows

that the 0-dis
ontinuous mappings are exa
tly the 
ontinuous ones.

Corollary 2 Suppose that f, g : X → Y , f is w′
- dis
ontinuous and g is w′′

-

dis
ontinuous. Then f + g and f − g are w′ + w′′
- dis
ontinuous mappings.

In parti
ular, if one of the mappings, f. e. g, is 
ontinuous, then f ± g are

w′
- dis
ontinuous.

Corollary 3 If f : X → Y is w- dis
ontinuous and c is a 
onstant then c · f
is a |c|w- dis
ontinuous mapping.

Proposition 3 Let f : domf −→ R and g : dom g −→ R be w′
-, w′′

-dis
ontinuous

fun
tions, respe
tively. Then the fun
tions f ∧ g and f ∨ g are w′ + w′′
-

dis
ontinuous on domf ∩ dom g.

Proof. If δ1 ∈ T (f, x0, ω1) and δ2 ∈ T (g, x0, ωi) then by means of (vi)

min{δ1, δ2} ∈ T (f ∨ g, x0, ω1 + ω2). The 
ase of f ∧ g is proved in the

same way.

Corollary 4 If f is w- dis
ontinuous and g is 
ontinuous then f ∨ g is w-

dis
ontinuous.

In order to 
onsider the produ
t of mappings we need the notation of the

produ
t in a normed spa
e.

De�nition 3 ([11℄) Let X, Y, Z be real normed ve
tor spa
es. A mapping

π : X × Y → Z is 
alled a produ
t if it satis�es the following 
onditions:

for all a, b ∈ X, u, v ∈ Y and λ ∈ R one has

1. π((a+ b, v)) = π((a, v)) + π((b, v))

2. π((a, u+ v)) = π((a, u)) + π((a, v))
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3. π((λa, u)) = λπ((a, u)) = π((a, λu))

4. ‖π((a, u))‖Z ≤ ‖a‖X‖u‖Y .
A simple example is given by X = Y = Rn, Z = R and π((x, y)) = 〈x, y〉 �
the s
alar produ
t in Rn

, i.e. 〈x, y〉 =
n
∑

i=1

xi yi.

Let V,X, Y, Z be real normed ve
tor spa
es and let π : X × Y → Z be a

produ
t. The produ
t of the mappings f : domf ⊆ V → X and g : dom g ⊆
V → Y is understood pointwise, i.e.

(f · g)(v) = π
(

f(v), g(v)
)

, ∀v ∈ domf ∩ dom g,

where domf, dom g ⊆ V .

Proposition 4 Suppose that f : domf → X is w′
-dis
ontinuous and g : dom g →

Y is w′′
-dis
ontinuous on domf∩dom g. Then f ·g is a (w′w′′+w′‖g(x0)‖Y +

w′′‖f(x0)‖X)-dis
ontinuous mapping at every point x0 ∈ domf ∩ dom g.

Proof. We 
hoose x0 ∈ V and put p = w′ + w′′ + ‖f(x0)‖X + ‖g(x0)‖Y . For
any ε > 0 the quadrati
 fun
tion

y(t) = t2 + pt− ε (2)

possesses the positive root ε′ = 1
2
(
√

p2 + 4ε−p). Denote by δ = min{δ1, δ2},
where δ1 is an ε′ + w′

-toleran
e of f and δ2 an ε′ + w′′
- toleran
e of g both

at the point x0. Then x ∈ V and ‖ x− x0 ‖V< δ imply

‖π
(

(f(x), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z =

= ‖π
(

(f(x), g(x))
)

− π
(

(f(x0), g(x))
)

+ π
(

(f(x0), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z ≤
≤ ‖π

(

(f(x), g(x))
)

− π
(

(f(x0), g(x))
)

‖Z + ‖π
(

(f(x0), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z =

= ‖π
(

(f(x)− f(x0), g(x))
)

‖Z + ‖π
(

(f(x0), g(x)− g(x0))
)

‖Z ≤
≤ ‖π

(

(f(x)− f(x0), g(x)− g(x0))
)

‖Z + ‖π
(

(f(x)− f(x0), g(x0))
)

‖Z+
‖π

(

(f(x0), g(x)− g(x0))
)

‖Z ≤
≤ ‖f(x)− f(x0)‖X ‖g(x)− g(x0)‖Y + ‖f(x)− f(x0)‖X ‖g(x0)‖Y+
‖f(x0)‖X ‖g(x)− g(x0)‖Y <

< (ε′ + w′)(ε′ + w′′) + (ε′ + w′)‖g(x0)‖Y + (ε′ + w′′)‖f(x0)‖X) =
= (ε′)2 + ε′(w′ + w′′ + ‖g(x0)‖Y + ‖f(x0)‖X) + w′w′′ + w′‖g(x0)‖Y + w′′‖f(x0)‖X .
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Sin
e ε′ is a root of the equation (2) one has

ε = (ε′)2 + pε′, i. e. (ε′)2 + ε′(w′ + w′′ + ‖g(x0)‖Y + ‖f(x0)‖X) = ε,

and so

‖π((f(x), g(x)))−π((f(x0), g(x0)))‖Z < ε+w′w′′+w′‖g(x0)‖Y +w′′‖f(x0)‖X .

Corollary 5 If f : V → X is w-dis
ontinuous and g : V → Y is 
ontinuous

then f · g is a ‖g(x0)‖Y w- dis
ontinuous mapping at every point x0 ∈ V .

For the division we re
on
ile with simpli�ed situation, where (X, d) is again
a metri
 spa
e.

Proposition 5 Let the fun
tion f : X → R be w-dis
ontinuous at the point

x0 and f(x0) 6= 0. If there exists a neighborhood U of x0 and a number

α0 > 0 su
h that |f(x)| ≥ α0 for all x ∈ U then the fun
tion

1

f
is

w

α0|f(x0)|
-

dis
ontinuous at x0.

Proof. For ε > 0 put ε′ = ε α0|f(x0)|. By the w-dis
ontinuity of f there

exists δ > 0 su
h that x ∈ U and d(x, x0) < δ implies |f(x)−f(x0)| < ε′+w.

Then

∣

∣

∣

∣

1

f(x)
− 1

f(x0)

∣

∣

∣

∣

=
|f(x0)− f(x)|
|f(x)f(x0)|

<
ε′ + w

|f(x)||f(x0)|
≤

≤ ε′ + w

α0|f(x0)|
=

ε α0|f(x0)|+ w

α0|f(x0)|
= ε+

w

α0|f(x0)|
.

As a spe
ial 
ase we get

Corollary 6 If f : X → [1,+∞[ is w-dis
ontinuous then

1

f
is a

w

f(x0)
-

dis
ontinuous mapping for every point x0 ∈ X.

If the domain of de�nition for a 
ontinuous mapping is 
ompa
t, then its

range is also 
ompa
t and, in parti
ular, bounded. The boundedness of the

most fun
tions used in e
onomi
 models seems to be indispenable in studying

su
h models. The boundedness of the range is guaranteed for w-dis
ontinuous

mappings as well, however, 
ompa
tness may not hold.
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Example 3 De�ne f : [0; 1] → [0; 1] as

f(x) =

{

1
2
, if x ∈ {0, 1}

x, if x ∈ (0, 1).

The fun
tion f is

1
2
-dis
ontinuous and its range (0, 1) is bounded, but not


ompa
t.

Further on we need some notations introdu
ed by the following de�nitions.

Let (X, d) and (Y, ̺) be two metri
 spa
es and w a positive number.

De�nition 4 A mapping f : domf −→ Y, domf ⊆ X is said to be uni-

formly w-dis
ontinuous if for every ε > 0 there is δ > 0 su
h that for ev-

ery two points x, y ∈ domf the inequality d(x, y) < δ implies ̺(f(x), f(y)) <
ε+ w.

De�nition 5 Let A be a subset of X, domf ⊆ A and f : domf −→ Y . A

mapping g : A → Y is said to be a µ- approximation (µ > 0) of the map f

on domf if

̺(f(x), g(x)) ≤ µ ∀x ∈ domf.

The following theorems are proved in [5℄.

Theorem 1 If A is a 
ompa
t subset of a normed ve
tor spa
e X and

f : A −→ Y is w-dis
ontinuous, then f is uniformly 2w-dis
ontinuous.

Now let X and Y be a real normed ve
tor spa
es.

Theorem 2 Suppose that X is a normed ve
tor spa
e, A ⊂ X is 
ompa
t,

f : A −→ Y is uniformly w-dis
ontinuous and w′
is an arbitrary number

w′ > w. Then there exists a 
ontinuous w′
-approximation f for f in A su
h

that f(x) ∈ conv(f(A)), x ∈ A, where conv(f(A)) denotes the 
onvex hull of

the set f(A).

Now we are able to prove the next theorem.

Theorem 3 Suppose that A ⊂ X is 
ompa
t and let f : A −→ X be w-

dis
ontinuous. Then f(A) is bounded.

12



Proof. A

ording to Theorem 1 the mapping f is uniformly 2w-dis
ontinuous,
and by Theorem 2 for every w′ > w there exists a 
ontinuous 2w′

-approximation

f of the mapping f on the set A. Sin
e A is 
ompa
t and f is 
ontinuous the

set f(A) is 
ompa
t and, 
onsequently, bounded. Therefore, for some r > 0
and x0 ∈ f(A) one has f(A) ⊂ B(x0; r). Be
ause f is a 2w′

-approximation

of f on A there holds the inequality

d(f(x), f(x)) ≤ 2w′, ∀x ∈ A.

It follows that f(A) ⊂ B(x0; r + 2w′), i. e. f(A) is bounded.

The following essential result is proved by O.Zaytsev in [18℄ and 
an be 
on-

sidered as a generalization of the Bohl-Brouwer-S
hauder �xed point theorem

(see [9℄) for w-dis
ontinuous mappings.

Theorem 4 Let K be a nonempty, 
ompa
t and 
onvex subset in a normed

ve
tor spa
e X. For every w-dis
ontinuous mapping f : K −→ K (w > 0)
there exists a point x∗ ∈ K su
h that ‖ x∗ − f(x∗) ‖≤ w.

3 Market equilibrium of the standard e
onomi


model

We give the des
ription of a simple e
onomi
 model E 
onsidered by Arrow

and Hahn in [4℄.

Let there be n (n ∈ N) di�erent goods (
ommodities) on the market: servi
es

and wares, and a �nite number of e
onomi
 agents: households and �rms,

where ea
h household 
an be 
onsidered as a �rm, and, vi
e versa, ea
h �rm


an be 
onsidered as a hosehold.

Let xhi be the quantity of good i whi
h is needed to the household h. If

xhi < 0 then |xhi| denotes the quantity of good i whi
h is supplied by the

household h. If xhi ≥ 0 then xhi is the (real) demand of good i by h, in
luding

the zero demand. The summation over all households will be indi
ated by

xi =
∑

h

xhi and is the total demand of good i, i = 1, . . . , n.

The quantity of good i that is supplied by the �rm f will be denoted by

yfi. Again, if yfi < 0 then |yfi| is the demand (input) of good i by f . If

yfi ≥ 0 then yfi is the supplied quantity (output) of i by f , where the zero

13



supply again is in
luded. The summation over all �rms will be indi
ated by

yi =
∑

f

yfi and is the supply of good i, i = 1, . . . , n.

The initially available amount (or resour
es) of good i in all households will

be denoted by xi. Note that xi must be non-negative.

A market equilibrium, whi
h is one of the most important 
hara
teristi
s

of any e
onomy (see e.g. [2℄, [4℄, [7℄, [10℄), des
ribes (in our situation) the

e
onomi
 situation that the total demand of ea
h good in the e
onomy is

satis�ed by its total supply. This fa
t is obviously expressed by saying that

the di�eren
e between the total demand of ea
h good and its total supply

is less than or equal to zero. The total supply of good i is understood as

the sum of the supply of the good i and the quantity of i whi
h is already

available, i. e. the total supply of the good i equals to yi + xi. The ex
ess

demand of good i is then de�ned as xi − yi − xi, i = 1, ..., n.
If e
onomi
 agents at the market are fa
ed with a system of pri
es, i.e. with

a pri
e ve
tor p = (p1, . . . , pn), where pi is the pri
e of one unit of good i,

then the quantities xhi, yfi and also xi, yi, xi depend on p. Now we denote

the ex
ess demand of the good i by zi(p), i.e.

zi(p) = xi(p)−
(

yi(p) + xi(p)
)

.

If pri
es are involved then an equilibrium pri
e (a pri
e system at whi
h an

equilibrium is rea
hed) 
lears the market.

Further on we frequently make use of the natural order in Rn
introdu
ed by

the 
one

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n},

i. e., for two ve
tors x = (x1, . . . , xn), y = (y1, . . . , yn) and write x ≤ y i�

xi ≤ yi for all i = 1, . . . , n, we write x < y i� x ≤ y and xi0 < yi0 for at least

one index i0. The zero ve
tor (0, . . . , 0) ∈ Rn
is denoted by 0. The norm we

will use in the spa
e Rn
is de�ned as

‖x‖ =
n

∑

i=1

|xi|, x = (x1, ..., xn) ∈ Rn.

This norm is equivalent to the Eu
lidean norm whi
h is introdu
ed by means

of the s
alar produ
t 〈x, y〉 =
n
∑

i=1

xi yi. Note that in e
onomi
 publi
ations

the s
alar produ
t of two ve
tors x, y ∈ Rn
is usually written as x y.

14



For the standard e
onomi
 model the following four assumptions

3

have to be

met.

Assumption 1. Let p = (p1, ..., pn) be n-dimensional pri
e ve
tor with

the pri
es pi for one unit the good i as 
omponents, i = 1, 2, ..., n. For any p

let the ex
ess demand for i be 
hara
terized by a unique number zi(p) and
so the unique ve
tor z(p) = (z1(p), . . . , zn(p)) - the ex
ess demand fun
tion

with ex
ess demand fun
tions for i as 
omponents (i = 1, 2, ..., n) - is well
de�ned.

Assumption 2. z(p) = z(λp), ∀p > 0 and λ > 0.

Assumption 2 asserts that z is a homogeneous ve
tor-fun
tion of degree zero.

E
onomi
ally this means that the value of the ex
ess demand fun
tion does

not depend on the pri
e system if the latter is 
hanged for all the goods

simultaneously by the same portion.

From the Assumption 2 it follows that pri
es 
an be normalized (see [4℄,p.20)

or [7℄,p.10). If for some pri
e p one has z(p) = 0 then z(λp) = 0 for all pri
es

of the ray {λp : λ > 0}. Therefore, further on we 
onsider only pri
es from

the n− 1-dimensional simplex of Rn

∆n = {p = (p1, p2, ..., pn) | pi ≥ 0 and

n
∑

i=1

pi = 1}.

We rule out the situations when all the pri
es are zero or some of them are

negative. Note that ∆n is a 
ompa
t and 
onvex set in the spa
e Rn
equipped

with one of its (equivalent) norms.

Assumption 3 or Walras' Law. p z(p) = 0, ∀p ∈ ∆n.

Walras' Law 
an be regarded as an attempt to have a model su�
iently truly

re�e
ting rationally motivated a
tivities of e
onomi
 agents. A

ording to

Walras' Law all the �rms and all the households both spend their �nan
ial

resour
es 
ompletely ([7℄).

Assumption 4. The ex
ess demand fun
tion z is 
ontinuous on its domain

of de�nition ∆n.

It means that a small 
hange of a pri
e system will imply only a small 
hange

in the ex
ess demand. As a 
onsequen
e from 
ontinuity of z, the standard

3

the Assumptions (F), (H), (W) and (C) in [4℄
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model 
an be used only for the des
ription of e
onomies with 
ontinuous

ex
ess demand fun
tions. Sometimes they are 
alled stable e
onomies.

In e
onomies su
h pri
es are important at whi
h the ex
ess demand for ea
h

good is nonpositive, i.e. the total supply of ea
h good satis�es at least its

total demand.

De�nition 6 A pri
e p∗ ∈ ∆n is 
alled an equilibrium (pri
e) if z(p∗) ≤ 0.

If p∗ is an equilibrium pri
e then

n
∑

i=1

zi(p
∗) ≤ 0.

For the standard model of an e
onomy with a �nite number of goods and

agents su
h pri
es always exist as is proved in the following theorem.

Theorem 5 ([4℄) If an e
onomy E with a �nite number of goods and agents

satis�es the assumptions 1�4, then there exists an equilibrium in E .

We remark that in the 
ase of a neo
lassi
al ex
hange e
onomy E (see e.g.[2℄)

ea
h agent has his ex
ess demand ve
tor zh(p), whi
h is uniquely de�ned

by means of the unique maximal element of his preferen
es in the budget

set for the pri
e p and his initial endowment. Then the ex
ess demand

fun
tion of the e
onomy E is de�ned as the ve
tor z(p) =
∑

h

zh(p). It satis�es

also Assumptions 2,3,4 and, in addition, also some other 
onditions (see

[2℄,Th.1.4.6).

This allows to prove the existen
e of a pri
e p∗ even su
h that z(p∗) = 0.

4 E
onomi
 models with dis
ontinuous ex
ess

demand fun
tions

If z is the ex
ess demand fun
tion for a neo
lassi
al ex
hange e
onomy, then

z is 
ontinuous on the set

S = {p ∈ ∆n | pi > 0, i = 1, 2, ..., n}

(see [2℄,Th.1.4.4 and Th.1.4.6). A neo
lassi
al ex
hange e
onomy (see [2℄)

is 
hara
terized by a �nite set of agents, where ea
h agent i has a non-zero

initial endowment ωi and his preferen
e relation �i is 
ontinuous, stri
tly

16



monotone and stri
tly 
onvex (on Rn
+) or else his preferen
e relation �i is


ontinuous, stri
tly monotone and stri
tly 
onvex on interior of Rn
+, and

everything in the interior is prefered to anything on the boundary and the

total endowment ω =
∑

i

ωi is stri
tly positive. If the preferen
e relation �i

is 
ontinuous, stri
tly monotone and stri
tly 
onvex then the 
orresponding

utility fun
tion and the ex
ess demand fun
tion are 
ontinuous on the set S.

We will 
onsider the situation with a dis
ontinuous ex
ess demand fun
tion.

It is 
lear that in this 
ase the properties of the preferen
e relations di�er

from them in the neo
lassi
al ex
hange e
onomy.

✲

✻
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For example, 
onsider the preferen
e relation on R2
+ that is represented by

the utility fun
tion

4 u(x, y) = max{x, y} and an initial endowment ω =
(2, 2). The utility fun
tion is 
ontinuous, but it is not stri
tly monotone

(for example, (2, 2) > (2, 1) but u(2, 2) = 2 = u(2, 1)) and it is not stri
tly


on
ave, it is 
onvex. The indi�eren
e 
urves for the values 1, 2, 3, 4 and

5 are illustrated in Figure 1. Let p = (α, 1 − α) be a �xed pri
e ve
tor for

some 0 < α < 1. We maximize the utility fun
tion u subje
t to the budget


onstraint αx+(1−α)y = 2α+2(1−α) = 2. This line goes through the point
(2, 2) and interse
ts the axis in the points (0, 2

1−α
) and ( 2

α
, 0). From Figure

1 we see that the maximal ve
tor of u over budget set (the dotted region in

Figure 1) is the point (0, 2
1−α

) if α > 1
2
and ( 2

α
, 0) if α < 1

2
, respe
tively. If

4

i.e. (x1, y1) � (x2, y2) if and only if u(x1, y1) ≥ u(x2, y2)
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α = 1
2
then

2
1−α

= 2
α
and therefore we have two maximizing ve
tors. The

ex
ess demand fun
tion in this 
ase is

x(p) = x(α, 1− α) =











(0, 2
1−α

), α > 1
2
,

{(0, 4), (4, 0)}, α = 1
2
,

( 2
α
, 0), α < 1

2
.

In the point (1
2
, 1
2
) the ex
ess demand multifun
tion is dis
ontinuous.

In [1℄ it is proved that in a neo
lassi
al ex
ange e
onomy the 
ondition

pn → p ∈ ∂S with (pn)n∈N ⊂ S implies lim
n→∞

||z(pn)|| = ∞. It is also not our


ase (see Theorem 3). In [1℄ it is shown that a utility fun
tion u : X → R

(X - topologi
al spa
e) representing a 
ontinuous preferen
e relation is not

ne
essarily 
ontinuous. If we start with an arbitrary 
hosen dis
ontinuous

utility fun
tion then we have no mathemati
al tools for �nding the 
orre-

sponding demand fun
tion (in the 
lassi
al situation an agent maximizes

the utility fun
tion with respe
t to the budget 
onstraint and uses the La-

grange multiplier method for �nding demand fun
tion). We note that there

exist preferen
e relations whi
h 
annot be represented by a real-valued fun
-

tion, for example, the lexi
ographi
 preferen
e ordering of R
2
(by de�nition

(a, b) � (c, d) if (1) a > c or (2) a = c and b > d) (see [8℄, notes to 
hapt.4).

The above situation inspires one to 
onsider models without expli
itly given

preferen
e relations. In whi
h 
ases is the ex
ess demand fun
tion dis
ontin-

uous? Consider some good i and a �xed pri
e system p. In the 
ase that this

good is, e.g. an aeroplane or a power station, its demand xi(p) is naturally
an integer. A fun
tion like xi(p) =

[

30000
1+α

]

, where [x] denotes the integer part
of x, provides an example.

Obviously, if the good is a pie
e-good (table, shoes, �ower and other) then

the demand for this good is an integer. Similarly, the supply of pie
e-goods

is an integer. Therefore the demand and supply fun
tions for pie
e-goods are

dis
ontinuous and 
onsequently ex
ess demand fun
tion too.

What 
an be said about the existen
e of an equilibrium in an e
onomy

if the ex
ess demand fun
tion is not 
ontinuous, for example, if it is w-

dis
ontinuous? We will analyse some model of an e
onomy with w-dis
ontinuous

ex
ess demand fun
tions.

For the e
onomies under 
onsideration we keep the two �rst assumptions

from the standard model and 
hange the two last as follows.

18



Assumption 4'. The ex
ess demand fun
tion z is w-dis
ontinuous on its

domain of de�nition ∆n.

The w-dis
ontinuity of the ex
ess demand fun
tion makes our model available

to des
ribe some properties of an unstable e
onomi
 as well.

It is quite natural that for every pri
e ve
tor p ∈ ∆n there exist at least one

good i with the pri
e pi > 0 and su
h that the demand for them is satis�ed,

i. e. zi(p) ≤ 0.
If for some e
onomy E with the ex
ess demand ve
tor z(p), p ∈ ∆n there

holds the Walras' Law, i. e. p z(p) = 0 for any p ∈ ∆n, then for ea
h p ∈ ∆n

the inequality

γp =
∑

zi(p)≤0

pi > 0

is satis�ed. Indeed, if for some p = (p1, . . . , pn) ∈ ∆n there would be

∑

zi(p)≤0

pi = 0, then

∑

zi(p)≤0

pi +
∑

zi(p)>0

pi =
n

∑

i=1

pi = 1

would imply the existen
e of an index i0 su
h that pi0 > 0 and zi0(p) > 0.

This yields p z(p) =
n
∑

i=1

pizi(p) ≥ pi0zi0(p) > 0, a 
ontradi
tion to Walras'

Law.

Our next assumption requires the existen
e of a uniform lower bound for the

sums

∑

zi(p)≤0

pi, for all p ∈ ∆n.

Assumption 3'. γ = inf
p∈∆n

γp > 0.

We indi
ate some examples whi
h show that Assumption (3') is independent

on the Walras' Law. In ea
h of the �gures below the fun
tions z1 and z2
are 
onsidered on the intervall [p′, p′′], whi
h is nothing than the simplex ∆2.

If we represent the ve
tors p = (p1, p2) ∈ ∆2 as p = (1 − t)p′ + tp′′, where
t ∈ [0, 1], then pi = (1 − t)p′i + tp′′i , whi
h yields p1 = t and p2 = 1 − t.

For t ∈ (0, 1) the Walras Law p z(p) = p1z1((p1, p2)) + p2z2((p1, p2)) = 0
now redu
es to the relation z2(p) = − t

1−t
z1(p). For the 
ases t ∈ {0, 1}

some additional 
are has to be taken. We suppose that all this is true in the

Figures 2 and 3, where Walras' Law is assumed to be satis�ed. In the other

�gures it is easy to �nd a ve
tor p ∈ ∆2 (in Figure 4, e.g. the ve
tor p′),
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where p z(p) 6= 0. In Figures 2 and 5 it is easy to see that Assumption 3' does

not hold. In both 
ases for any p ∈ ∆2 we 
al
ulate

∑

zi(p)≤0

pi = p2 = 1 − t

and so inf
t∈(0,1)

(1 − t) = 0. In Figures 3 and 4 Assumption 3' is satis�ed with

γ = min{t0, 1− t0}.
✻

✲
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✲
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Fig.2. Walras'Law does not imply (3'). Fig.3. Walras'Law and (3') hold.
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Fig.4. (3') holds but not Walras'Law. Fig.5. Neither Walras'Law nor (3').

(t0, 1−t0)
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It seems to be 
lear that it would be hard to �nd out why an equilibrium

exists in our model. But it will be possible if we 
an estimate the unsatis�ed

aggregate demand. This leads to the 
on
ept of quasi- or k-equilibrium.

De�nition 7 Let k be a positive real. A pri
e ve
tor p∗ ∈ ∆n is 
alled a

k-equilibrium if it satis�es the 
ondition

∑

zi(p∗)>0

zi(p
∗) ≤ k.

The 
onstant k ∈ R+ as a numeri
al value of the maximally possible un-

satis�ed demand for a given pri
e p∗ ∈ ∆n 
hara
terizes to what state the

e
onomy di�ers from the market equilibrium (De�nition 6).

We 
an prove now the following

Theorem 6 Let E be an e
onomy with n goods that satis�es the Assumptions

1,2 and the Assumption 3' with some number γ > 0. Put

w+ = w+(n, γ) =
1

2n

(

−(n + 1) +
√

(n + 1)2 + 8nγ
)

.

If now Assumption 4' is satis�ed with w ∈ [0, w+), then the e
onomy E
possesses a k-equilibrium for ea
h k ≥ nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

Proof. For p ∈ ∆n de�ne z+i (p) = max{0, zi(p)}, i = 1, ..., n, z+(p) =
(z+1 (p), . . . , z

+
n (p)),

ν(p) = 〈p+z+(p), e〉 = 1+
∑

zi(p)>0

zi(p) and ti(p) =
p1 + z+i (p)

ν(p)
, i = 1, ..., n,

where e = (1, . . . , 1) denotes the ve
tor of Rn
with all 
omponents equal to

1. Note that ‖e‖ = n.

De�ne now a map T : ∆n −→ ∆n by T (p) =
p+ z+(p)

〈p+ z+(p), e〉 . Sin
e 0 ≤ ti(p) ≤
1 for ea
h i and

n
∑

i=1

ti(p) =

n
∑

i=1

(pi + z+i (p))

ν(p)
=

1 +
∑

zi(p)>0

zi(p)

ν(p)
= 1
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one has T (p) : ∆n −→ ∆n.

Now the parti
ular maps whi
h the map T 
onsists of, possess the following

properties:

The idendity map id on∆n is 
ontinuous, by Assumption 4' the map z : ∆ −→
Rn

is w-dis
ontinuous and by Corollary 4 so is z+. By Corollary 2 the

map id + z+ is w-dis
ontinuous, what by Corollary 5 implies the w‖e‖-
dis
ontinuity, i.e. the nw-dis
ontinuity of ν(p) = 〈p + z+(p), e〉. Sin
e

ν : ∆n −→ [1,∞) the fun
tion
1

ν
is

nw

ν(p)
-dis
ontinuous as a 
onsequen
e of

Corollary 6. Finally, based on Proposition 4, the map T (p) = (p+ z+(p))
1

ν(p)
is w0-dis
ontinuous at a every point p ∈ ∆n, where

w0 = w0(p) =
nw2

ν(p)
+

w

ν(p)
+
nw‖p+ z+(p)‖

ν(p)
=

nw2 + w

ν(p)
+nw < nw2+(n+1)w

(3)

and so, the map T is also nw2 + (n+ 1)w-dis
ontinuous on the set ∆n.

Sin
e ∆n is a 
onvex and 
ompa
t subset in the normed ve
tor spa
e Rn
and

T (p) : ∆n −→ ∆n we 
on
lude by means of Theorem 4 that there exists a

ve
tor p∗ ∈ ∆n satisfying the inequality

‖T (p∗)− p∗‖ ≤ nw2 + (n + 1)w.

Using the norm in Rn
this yields

‖T (p∗)− p∗‖ =

∥

∥

∥

∥

p∗ + z+(p∗)

ν(p)
− p∗

∥

∥

∥

∥

=
n
∑

i=1

∣

∣

∣

∣

p∗i + z+i (p
∗)

ν(p)
− p∗i

∣

∣

∣

∣

=

=
n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

p∗i + z+i (p
∗)− p∗i − p∗i

∑

zi(p∗)>0

zi(p
∗)

ν(p)

∣

∣

∣

∣

∣

∣

∣

≤ nw2 + (n+ 1)w.

Sin
e 1 +
∑

zi(p∗)>0

zi(p
∗) > 0 one has

n
∑

i=1

∣

∣

∣

∣

∣

∣

z+i (p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

≤
(

nw2 + (n + 1)w
)

ν(p∗). (4)
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The left side of inequality (4) 
an be splitted into the two sums

∑

zi(p∗)≤0

∣

∣

∣

∣

∣

∣

z+i (p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

+
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

=

∑

zi(p∗)≤0

p∗i
∑

zi(p∗)>0

zi(p
∗) +

∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

. (5)

Using the triangle inequality we get the estimation

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0



zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)





∣

∣

∣

∣

∣

∣

≤
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

, (6)

and further the left hand side of (6) 
al
ulates as

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0



zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0

zi(p
∗)



1−
∑

zi(p∗)>0

p∗i





∣

∣

∣

∣

∣

∣

=

∑

zi(p∗)>0

zi(p
∗)



1−
∑

zi(p∗)>0

p∗i



 =
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i . (7)

By means of the equalities (5), (7) and the inequalities (4), (6) we obtain

now

2
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i ≤
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i +
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

≤

≤
(

nw2 + (n+ 1)w
)

ν(p∗).

It follows by means of Assumption 3'

2γ
∑

zi(p∗)>0

zi(p
∗) ≤ 2

∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i ≤
(

nw2 + (n+ 1)w
)

ν(p∗).

Sin
e ν(p∗) = 1 +
∑

zi(p∗)>0

zi(p
∗) the last inequality yields

∑

zi(p∗)>0

zi(p
∗) ≤ nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
, i. e.

∑

zi(p∗)>0

zi(p
∗) ≤ k,
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where k satis�es k ≥ nw2 + (n + 1)w

2γ − nw2 − (n+ 1)w
.

In order to have the number 2γ−nw2−(n+1)w positive the value of w must

belong to the interval [0, w+), where w+ is the positive root of the equation

w2 +
n+ 1

n
w − 2γ

n
= 0.

Remarks.

1. Let n and γ > 0 be �xed. Then w+ = w+(n, γ) is de�ned as indi
ated in

the theorem. For w ∈ [0, w+) put

k0(n, w) =
nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

The number k0(n, w) is non-negative as was shown above. Note that a

sharper estimation

5

in (3) would yield a smaller value of k0(n, w) and, there-
fore, would give a better result. In view of Theorem 4, however, an estimation

has be obtained independently on p.

2. In Figure 6 for n = 2 there is shown a situation without a 
lassi
 equilib-

rium.

✲

✻

p′ = (0, 1) p′′ = (1, 0)
p

Fig.6. No 
lassi
al equilibrium, but k-equilibrium exists.
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✻

❄

≤ w
≤ w

❝

❝

(1
2
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2
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s

ss

s

s

s

z1(p)

z2(p)

✰

❲

❨

✻

It is 
lear that

there is no p ∈ ∆2 whi
h satis�es the inequality z(p) = (z1(p), z2(p)) ≤ 0. As-

sumptions 1, 2, 4' are obviously ful�lled. Assumption 3' also holds. Indeed,

represent p = (p1, p2) ∈ ∆2 as

p = (1− t)p′ + tp′′, t ∈ [0, 1],

5

Our estimation is based on the rough inequality ν(p) > 1.
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then t ∈ [0, 1
2
] implies z1(p) > 0, z2(p) < 0 and so γp = p2 and t ∈ (1

2
, 1]

implies z1(p) = 0, z2(p) > 0 and so γp = p1. In both 
ases we get γp ≥ 1
2

whi
h shows that the Assumption 3' holds with γ = 1
2
. Theorem 6 guarantees

the existen
e of a k-equilibrium for k ≥ 2w2+3w
1−2w2−3w

if w < −3
4
+

√
17
4
. Note that

Walras' Law is not satis�ed.

3. The number w+(n, γ) is positive for ea
h n and �xed γ > 0. If one takes
w = 0 then k0(n, γ) = 0 and with k = 0 there is obtained the 
lassi
al


ase. Observe that in this 
ase it is not ne
essary to use the Walras' Law for

establishing a 
lassi
al equilibrium.

4. Note that in the 
lassi
al situation it is impossible to 
arry out any

quantitative analysis. On the 
ontrary, the inequalities from Theorem 6

w < w+(n, γ) and k ≥ k0(n, w)

give a 
han
e to analyse the behaviour of an e
onomy for di�erent numeri
al

values of the parameters n, w, γ in
luded in our model. From

0 ≤ w+(n, γ) =
−(n+ 1) +

√

(n+ 1)2 + 8nγ

2n
<

−(n+ 1) + (n + 1) +
√
8nγ

2n
=

√

2γ

n

it follows that lim
n→∞

w+(n, γ) = +0. Sin
e k0(n, 0) = 0, the positive number

k 
an be 
hoosen arbitrary small. This shows that the larger the number of

goods the better the 
han
e for a 
lassi
al equilibrium.

5. It is reasonable to put k0(n, w+(n, γ)) = +∞. If for �xed n and γ the

value w is su�
iently 
lose to w+(n, γ), then k is very large. In su
h a 
ase

the existen
e of an k-equilibrium seems to be of low e
onomi
 meaning.
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