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Abstract

We use variational methods to study problems in nonlinear 3-dimensional elasticity
where the deformation of the elastic body is restricted by a rigid obstacle. For an as-
signed variational problem we first verify the existence of constrained minimizers whereby
we extend previous results with different respects. Then we rigorously derive the Euler-
Lagrange equation as necessary condition for minimizers, which was possible before merely
with strong hypothetical smoothness assumptions for the solution. The Lagrange multi-
plier corresponding to the obstacle constraint provides structural information about the
nature of frictionless contact and, in the case of contact with, e.g., a corner of the ob-
stacle, we derive a qualitatively new contact condition taking into account the deformed
shape of the elastic body. By our rigorous analysis it is shown the first time that energy
minimizers really solve the mechanical contact problem.

1 Introduction

In nature we often meet the situation that the deformation of an elastic body is restricted by
the presence of a rigid body. We call this an obstacle problem or, if we focus on the touching
of the bodies, a contact problem. From the mathematical point of view, the fundamental
difficulty inherent in this important class of problems is that they are not only nonlinear
but even nonsmooth, which is due to the sudden change of mechanics at the borderline
between free deformation and contact. However, for a long time powerful nonsmooth tools
were not available. Thus contact problems were usually studied on the basis of essential
simplifications in geometry and mechanics such that the admissible deformations form a
convex set in a suitable function space. In that case a constrained minimzer of the energy
satisfies a variational inequality and, for their treatment, a general theory was developed in
the 1970s and 1980s. In fact still today it is the common opinion that the investigation of
contact problems is related to variational inequalities. However, for general contact problems
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in nonlinear elasticity convexity is lost even in simple situations and, therefore, the classical
approach is not applicable. Since the development of efficient methods for the treatment
of nonconvex nonsmooth problems is just going on, there is not yet a general theory for
nonlinear contact problems today. To be more precise, there are quite general results about
the existence of solutions as constrained minimizers of the energy, but there is no rigorous
derivation of the Euler-Lagrange equation, which corresponds to the mechanical equilibrium
conditions for frictionless contact, and there are no further regularity results. This paper
presents some contribution to close this gap.

Nonlinear contact problems in 3-dimensional elasticity are studied by Ciarlet & Nečas [7],
[8] (cf. also Ciarlet [6]). In [7] the special situation that some part of the deformed boundary
of the elastic body should not interpenetrate a rigid obstacle is considered. [8] treats the
standard problem that the whole elastic body cannot interpenetrate some rigid obstacle and,
in addition, self-penetration of the elastic body is excluded. The results in [7], [8] concerning
the existence of a constrained minimizer in some Sobolev space W1,p(Ω) are quite general.
But the necessary condition for these minimizers in form of a boundary value problem for a
partial differential equation is based on strong hypothetical smoothness assumptions for the
solution which cannot be verified in general. In the present paper we state existence results for
contact problems which are based on further developments in nonlinear elasticity and which
generalize the former results. Then, as main result, we derive the Euler-Lagrange equation
for minimizers in waek form rigorously, i.e., for minimizers obtained from existence theory
without further regularity assumptions. Here Clarke’s calculus of generalized gradients is an
essential tool. Finally we present qualitatively new contact conditions which are relevant for
obstacles with corners and edges. Let us still mention that the used techniques were already
successfully applied to obstacle problems for shearable nonlinearly elastic rods (cf. Schuricht
[15], [16], and Schuricht & Degiovanni [12]).

After a brief introduction to nonlinear elasticity and the formulation of contact problems
in Section 2, we show the existence of solutions of general obstacle problems as constrained
energy minimizers in suitable Sobolev spaces W1,p(Ω) in Section 3. Theorem 3.3 is based on
polyconvexity and generalizes previous results for contact problems with different respects
as, e.g., less restrictive growth conditions, consideration of non-homogeneous materials, more
general boundary conditions, and treatment of the case p ≤ 3. Some of these extensions
are just the application of new general results in nonlinear elasticity to contact problems,
but also new aspects are contained. With Theorem 3.7 we provide a second existence result
based on quasiconvexity. That we can derive the Euler-Lagrange equation in Section 4,
we have to invoke a usual growth restriction from above to the elastic energy. This way
we exclude the physically reasonable case that the energy blows up as det Du approaches
zero. This case, however, cannot be treated rigorously even without unilateral constraints.
But the generality of the arguments related to contact, which is the main aspect of this
paper, is not restricted by such a growth assumption. Theorem 4.3 states the Euler-Lagrange
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equation in weak form for minimizers of general contact problems in W1,p(Ω). In contrast
to a variational inequality we here even compute the Lagrange multiplier corresponding to
the obstacle constraint which provides additional structural information about the nature of
contact reactions. We in particular get by rigorous variational arguments that the contact
forces for frictionless contact are directed normally to the boundary of the obstacle. This
could be shown before merely by additional smooothnes assumptions for the solution or it
was invoked into the theory just as hypotheses. The key idea of our proof is to formulate the
obstacle constraint as inequality side condition with a locally Lipschitz continuous functional
and then to apply a nonsmooth Lagrange multiplier rule from Clarke’s calculus of generalized
gradients. While most investigations of contact problems suppose a smooth boundary of the
obstacle and of the reference configuration of the elastic body, our analysis even works for
Lipschitz boundaries. This way we cover, e.g., general obstacles with corners and edges. In
cases where the boundary of the obstacle is not smooth at some contact point (e.g., a corner)
we derive a qualitatively new condition for the direction of the contact force which takes
into account also the deformed shape of the elastic body. Finally the appendix gives a brief
introduction to Clarke’s calculus of generalized gradients and it provides the material we need
for our analysis.

Notation.
For the set A we denote by Ac, cl A or Ā, ∂A, co A, and |A| the complement, the closure,

the boundary, the closed convex hull, and the Lebesgue measure. distA(·) assigns the shortest
distance to A to each point. cone A ≡ cl {tu| u ∈ A, t ≥ 0} is the closed cone hull of A.

For a matrix F ∈ R3×3 we express by |F |, det F , and adj F any fixed norm, the determi-
nant, and the adjugate (i.e., F adj F = det F id).

If X is a Banach space, then X∗ stands for its dual space, 〈·, ·〉 for the duality form
on X∗ × X, un → u for the strong convergence, and un ⇀ u for the weak convergence.
Bε(x) is the open ball of radius ε around x. For a locally Lipschitz continuous function
f : X → R , Clarke’s generalized gradient is denoted by ∂f(u) and the generalized directional
derivative by f0(u; v) (cf. appendix). For readers who are not familiar with the last notions
it is sufficient for a rough understanding of the main ideas to consider ∂f(u) as a set of
“reasonable gradients” assigned to f at u.

Lp stands for the Lebesgue space of p-integrable functions and W1,p for the Sobolev space
of all functions u ∈ Lp with generalized derivatives Du ∈ Lp. Ck denotes the space of all
k-times continuously differentiable functions and Ck

0 the corresponding subspace of functions
having compact support. R[M ] is the set of regular finite Borel measures with support in
the set M .
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2 Formulation of contact problems

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary (cf. Evans & Gariepy [13, p. 127],
Zeidler [17, p. 232]). We identify Ω with the reference configuration of an elastic body and its
elastic deformation may be described by mappings u ∈ W1,p(Ω; R3) where Du is also called
deformation gradient of u. We are mainly interested in continuous deformations which is
related to the case p > 3. The general nonlinear material response of an elastic material can
be described by a stored energy density (x, F ) → W (x, F ) on R3×3 ×Ω such that the stored
energy of a deformed configuration u ∈ W1,p(Ω) is given by

Es(u) =
∫

Ω
W (x,Du(x)) dx .

Usually it is assumed that
(W1) W (x, ·) is rank-1-convex and continuously differentiable on R3×3 for all x ∈ Ω, and
(W2) W (·, F ) is measurable on Ω for all F ∈ R3×3.

Prescribed external forces (as, e.g., gravity or boundary stresses) can be expressed in a
very general way by means of a vector valued measure f ∈ R[Ω̄] such that the corresponding
potential energy is given by

Ep(u) =
∫

Ω̄
u(x) df(x) .

Hence the total energy of a deformed body is

E(u) ≡ Es(u)− Ep(u) =
∫

Ω
W (x,Du(x)) dx−

∫
Ω̄

u(x) df(x) .

We claim to study minimizers of that energy subject to additional side conditions modelling
suitable restrictions of the deformation.

We prescribe Dirichlet boundary conditions on some part of the boundary ΓD ⊂ ∂Ω, i.e.,
there is some given uD ∈ W1,p(Ω) such that

u(x) = uD(x) on ΓD

for all admissible deformations u.
The deformation of the elastic body may be restricted by a rigid obstacle O ⊂ R3. It

is reasonable to assume that O is the closure of an open set and, for deformations not
interpenetreting the rigid obstacle, we demand that

u(x) ∈ R3 \ O on Ω̄ . (2.1)

Notice that “thin” obstacles as, e.g., points, curves, and surfaces, cannot be treated that
way (cf. also Schuricht [15]). This quite abstract obstacle condition (2.1) is sufficient to
get existence results. To derive the Euler-Lagrange equation as necessary condition for a
constrained minimizer of the energy, we however will use an alternative formulation which
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is analytically better accessible. For that reason we impose the mild assumption that O has
Lipschitz boundary. The signed distance function

dO(q) ≡ distOcq − distOq (2.2)

is obviously globally Lipschitz continuous on R3 with Lipschitz constant 1. The properties of
O easily imply that

0 6∈ ∂dO(q) for q ∈ ∂O (2.3)

where ∂dO(q) denotes Clarke’s generalized gradient of dO(·) at q (cf. appendix). (2.1) is then
equivalent to

g(u) ≡ max
x∈Ω̄

dO(u(x)) ≤ 0 . (2.4)

Note that the functional g is not smooth but merely locally Lipschitz continuous on W1,p(Ω)
in general. By Ωc(u) ⊂ Ω̄ we denote the contact set of the deformed elastic body u(Ω̄), i.e.,
x ∈ Ωc(u) if and only if u(x) ∈ O. Obviously Ωc(u) = ∅ if no contact occurs.

From the requirement that deformations should be locally invertible and orientation pre-
serving, the constraint

det Du > 0 a.e. on Ω (2.5)

enters the theory. It can be incorporated in a mechanically reasonable way by allowing W to
take the value +∞ and by setting

W (x, F ) = ∞ if det Du ≤ 0 , (2.6)

i.e., the elastic energy becomes infinite under total compression. Hence (2.5) is satisfied for
deformations with finite stored energy Es(u) < ∞. While we can invoke (2.6) in existence
theory, it is still an open question in nonlinear elasticity to derive the Euler-Lagrange equation
for an energy respecting (2.6) even in the case without obstacles.

We can now formulate a general class of obstacle problems as variational problem in the
following way

E(u) → Min! , u ∈ W1,p(Ω; R3) , (2.7)

u = uD on ΓD , (2.8)

g(u) ≤ 0 . (2.9)

The existence of minimizers and the derivation of the Euler-Lagrange equation is the subject
of this paper. We will in particular show that minimizers satisfy the mechanical equilib-
rium condition for frictionless contact without imposing hypothetical regularity assumptions.
Though, at first glance, it seems that we merely invoke displacement boundary conditions to
our variational problem, we in fact can treat mixed displacement traction boundary condi-
tions by the general choice of the potential energy Ep.
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While most investigations in elasticity are based on continuous deformations, it has been
shown that also discontinuous states u ∈ W1,p(Ω), 1 < p < 3, are possible as minimizer
of some energy and cavitation can occur (cf. Ball [4]). Hence there is some considerable
interest aslo in the case p ≤ 3. For discontinuous deformations, however, we have to be more
careful with the formulation of the side conditions in our variational problem. (2.8) is to take
in the sense of trace. In (2.1) and (2.4) we have to choose the precise representative of u,
i.e., (2.1) can merely be demanded for almost every x ∈ Ω and in (2.4) we have to take the
essential supremum on Ω. Though we do not intend to emphasize that case, we will cover it
in our existence results for completeness. Let us finally mention that we tacitly choose the
continuous representative in pointwise conditions for u(x) in the case p > 3.

3 Existence of a minimizer

3.1 Formulation of the results

The existence of energy minimizing configurations of a nonlinearly elastic body restricted
by a rigid obstacle was studied by Ciarlet and Nečas [7], [8]. In [7] the special case where
some part of the boundary ∂Ω cannot occupy points inside the obstacle O is treated. [8]
considers the usual unilateral problem as introduced in the previous section that the whole
elastic body cannot interpenetrate some rigid obstacle and, in addition, self-penetration of
the deformed body is prohibited by a suitable inequality side condition. Except for treating
global injectivity of deformations the existence results of Ciarlet & Nečas are based on that
of Ball [2]. Since by now less restrictive assumptions are standard in the case without contact
(cf. Ball & Murat [5], Müller [14], Zhang [19]), let us formulate some general existence result
for contact problems which generalizes the previous ones.

We invoke the following hypotheses:

(A0) Ω ⊂ R3 is a bounded domain with Lipschitz boundary,

(A1) polyconvexity: there exists g : Ω× R3×3 × R3×3 × R → R ∪ {+∞} such that
g(x, ·, ·, ·) is continuous and convex for all x ∈ Ω,
g(·, F, adj F,det F ) is measurable for all F ∈ R3×3, and

W (x, F ) = g(x, F, adj F,det F ) for all (x, F ) ∈ Ω× R3×3 ,

(A2) coercivity: there are α > 0, p ≥ 2, q ≥ p
p−1 such that

W (x, F ) ≥ α
(
|F |p + |adj F |q

)
for all (x, F ) ∈ Ω× R3×3 , (3.1)

W (x, F ) = +∞ if and only if det F ≤ 0 , (3.2)

(A3) If p ≤ 3, then Ep is continuous on Lp∗(Ω) with p∗ ≡ 3p
3−p for p < 3, p∗ ≡ +∞ for p = 3.

6



(A4) ΓD ⊂ ∂Ω, ΓD 6= ∅, |ΓD| > 0 if p ≤ 3 (|ΓD| - two-dimensional Hausdorff measure),
uD ∈ W1,p(Ω) is given.

Theorem 3.3 Let (A0) – (A4) be satisfied and let E(ũ) < ∞ for some ũ ∈ W1,p satisfying
(2.8), (2.9). Then the variational problem (2.7) – (2.9) has a solution u ∈ W1,p(Ω) with
det Du > 0 a.e. on Ω.

The proof can be found in Section 3.2.

Remark 3.4
1) Notice that, in contrast to previous existence results, we impose weaker growth condi-

tions, we consider non-homogeneous materials, we allow more general boundary conditions if
p > 3, and we treat the case p ≤ 3. Furthermore we do not demand that uD(ΓD) ⊂ ∂O (as
in [8]) which is just the case excluded in Section 4.

2) In [8] it is shown that any u ∈ W1,p(Ω), p > 3, satisfying∫
Ω

det Du dx ≤ |u(Ω)| (3.5)

is globally injective up to a set of measure zero, i.e.,

card u−1(z) = 1 for a.e. z ∈ u(Ω̄)

(card - number of elements of a set; u−1 - inverse function of u). Since condition (3.5) defines
a weakly closed set in W1,p(Ω) if p > 3 (cf. [8]), Theorem 3.3 remains true for p > 3 if we add
(3.5) to our variational problem. This way we verify solutions which can have self-contact
but which do not interpenetrate itself. For global injectivity of elastic deformations see also
Ball [3].

3) The variational problem can also be studied within the space W1,1(Ω). Growth condi-
tion (3.1) however implies that merely deformations u ∈ W1,p have finite energy E(u) and,
thus, Theorem 3.3 verifies a minimizer also within the larger space W1,1(Ω).

4) We already mentioned that the Euler-Lagrange equation cannot be derived for energies
obeying (3.2). Thus a natural question is what happens if that condition fails. It can easily
be seen from the proof that if we drop (3.2), then Theorem 3.3 remains true for p 6= 3 but
without the assertion that det Du > 0 a.e. on Ω.

5) Using ideas developed in Ciarlet & Nečas [7] also the case ΓD = ∅ can be treated by
imposing additional restrictions to the obstacle O as, e.g., that R3 \ O is bounded.

Polyconvexity was introduced by Ball [2] to treat energies with the property (3.2) in
existence theory. On the other hand, even in the case without obstacles we are able to derive
the Euler-Lagrange equation merely for energies satisfying a growth restriction from above of
the form (4.1) below which excludes (3.2). Thus we cannot expect to get the Euler-Lagrange
equation in the case of contact with (3.2). But if we neglect (3.2), we can ask for existence
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results with a less restrictive convexity asssumption for W . For this reason, instead of (A1),
(A2) we consider the following hypotheses:

(A1’) quasiconvexity: let W : Ω× R3×3 → R be such that
W (x, ·) is continuous for all x,
W (·, F ) is measurable for all F , and∫

Ω̃
W (x̃, F ) dx ≤

∫
Ω̃

W (x̃, F + Dϕ(x)) dx

for all open subsets Ω̃ ⊂ Ω, a.e. x̃ ∈ Ω, and all F ∈ R3×3, ϕ ∈ C1
0(Ω).

(A2’) coercivity: there are α, β, γ > 0, 1 < p < +∞ such that

α|F |p ≤ W (x, F ) ≤ β + γ|F |p for all (x, F ) . (3.6)

Theorem 3.7 Let (A0), (A1’), (A2’), (A3), (A4) be satisfied and let (2.8), (2.9) be fulfilled
by some ũ ∈ W1,p. Then the variational problem (2.7) – (2.9) has a solution in W1,p.

Remarks 3.4.2), 3), and 5) also apply to Theorem 3.7. Furthermore, notice that polycon-
vexity and quasiconvexity imply rank-1-convexity and, hence, the previous existence results
are consistent with condition (W1) in Section 2.

3.2 Proofs

Proof of Theorem 3.3. Since most arguments of the proof are known from the literature let
us just sketch that parts.

Let un denote a minimzing sequence of the variational problem. ‖Dv‖Lp is an equivalent
norm on the space {v ∈ W1,p(Ω)| v = uD on ΓD} by (A0), (A4) (cf. Zeidler [18, p.1032]).
Hence, by (3.1), there is a subsequence (denoted the same way) such that

un ⇀ u in W1,p(Ω) , adj Dun ⇀ A in Lq(Ω).

We have A = adj Du and det Dun ⇀ det Du in the sense of distributions (cf. Dacorogna [10,
Ch. 4, Th. 2.6]). Furthermore un → u in Lp(Ω) for p ≤ 3 and in C(Ω̄) for p > 3. Below we
show that u satisfies (2.8), (2.9), i.e., u is admissible.

For 2 ≤ p < 3 the convergence det Dun ⇀ det Du is actually in Lr with r = 2q
3 > 1

by Müller [14]. For p > 3 Hölder’s inequality implies det Dun, det Du ∈ Lp/3 and hence
det Dun ⇀ det Du in Lp/3. Then, by (A1), we can apply standard lower semicontinuity
results for convex integrands (cf. [10, Ch. 3, Th. 3.4]) to obtain

Es(u) ≤ lim inf
n→∞

Es(un) . (3.8)

Since Ep is weakly continuous by (A3), u minimizes E.
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For p = 3 we argue as in Müller [14]. By (A2), det Dun > 0 a.e. on Ω and, thus, it can
be shown that det Dun ⇀ det Du in L1(K) for every compact K ⊂ Ω. By the same lower
semicontinuity result used above and by W ≥ 0 we get∫

K
W (x,Du) dx ≤ lim inf

n→∞

∫
K

W (x,Dun) dx ≤ lim inf
n→∞

∫
Ω

W (x,Dun) dx

for all compact K ⊂ Ω. Choosing an increasing sequence of compact sets Km ⊂ Ω with
|Ω\ Km| → 0 we obtain (3.8) by the monotone convergence theorem and, hence, u minimizes
E also in that case.

It remains to show that u respects (2.8), (2.9). For p > 3 that is trivial by un → u in
C(Ω). Let now p ≤ 3 and, hence, un → u in Lp(Ω). At least for a subsequence we have
un(x) → u(x) a.e. on Ω. Suppose that

dO(u(x)) > 0 on a set Ω+ ⊂ Ω with |Ω+| > 0 . (3.9)

Hence not all of the pairwise disjoint sets Ωn ≡ {x ∈ Ω| 1
n ≤ dO(u(x)) < 1

n−1}, n ∈ N (identify
1
0 = +∞), can have measure zero. Therefore, without loss of generality, we can even assume
that

dO(u(x)) > ε on Ω+ for some ε > 0.

By Egoroff’s theorem, un → u uniformly on a subset Ω0 ⊂ Ω with |Ω \ Ω0| < |Ω+|/2.
Obviously |Ω0+| > 0 for Ω0+ ≡ Ω0 ∩ Ω+ and

dO(un(x)) >
ε

2
on Ω0+

for all n sufficiently large. But this contradicts g(un) ≤ 0 and (3.9) must be wrong. Conse-
quently u satifies (2.9). By the linearity of the trace operator u also fulfils (2.8). ♦

Proof of Theorem 3.7. Let un denote a minimizing sequence of the variational problem.
By (A0), (A4) and the left inequality in (3.6) we can argue as in the previous proof to get a
subsequence

un ⇀ u in W1,p(Ω) .

Also analogously as above we see that u satisfies (2.8), (2.9). Using (A1’) and the right
inequality in (3.6) we obtain the lower semicontinuity of Es by a general result of Acerbi &
Fusco [1], i.e.,

Es(u) ≤ lim inf
n→∞

Es(un) .

Since Ep is weakly continuous on W1,p(Ω) by (A3), u minimizes E. ♦
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4 Euler-Lagrange equation

4.1 Formulation of the results

In this section we formulate the weak form of the Euler-Lagrange equation for minimizers of
the variational problem (2.7) – (2.9). For this reason we impose the following hypotheses:

(B0) Ω ⊂ R3 is a bounded domain with Lipschitz boundary,
O ⊂ R3 is the closure of an open set and has Lipschitz boundary,

(B1) W (x, ·) is continuously differentiable on R3×3 for all x ∈ Ω,
W (·, F ) is measurable on Ω for all F ∈ R3×3,

(B3) there are c > 0, γ ∈ L1(Ω) such that

|DW (x, F )| ≤ c|F |p + γ(x) for all F ∈ R3×3, x ∈ Ω (4.1)

(DW - gradient of the function W (x, ·)),

(B4) we have
uD(ΓD) ∩ O = ∅ , (4.2)

i.e., Dirichlet boundary conditions are presribed at points not occupied by the obstacle.

While (B3) is a standard growth condition to ensure the differentiability of the stored
energy function on a suitable Sobolev space, we use (B4) to get normality in the Lagrange
multiplier rule in the proof of the following theorem.

Theorem 4.3 Let (B0) – (B4) be satisfied and let u ∈ W1,p(Ω; R3), p > 3, be a local mini-
mizer of the variational problem (2.7) – (2.9). Then there exist a measure µc ∈ R[Ωc(u)] and
a µc-integrable function d∗c : Ω̄ → R3 such that

d∗c(x) ∈ ∂dO(u(x)) for all x ∈ Ω̄ (4.4)

(∂dO(·) - Clarke’s generalized gradient, cf. appendix) and such that the following weak form
of the Euler-Lagrange equation is satisfied:∫

Ω
DW (x,Du(x))Dϕ(x) dx−

∫
Ω̄

ϕ(x) df(x) +
∫

Ω̄
d∗c(x)ϕ(x) dµc(x) = 0 (4.5)

for all ϕ ∈ W1,∞(Ω; R3) with ϕ = 0 on ΓD.
In particular, µc = 0 in the case where g(u) < 0, i.e., if Ωc(u) = ∅.

The proof of the theorem is given in Section 4.2.

Remark 4.6
1) The usual method to derive a variational inequality as necessary condition for con-

strained minimizers in contact problems does not work for general contact problems in non-
linear elastostatics due to loss of convexity. Note that we have derived the Euler-Lagrange
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equation (in weak form) rather than a variational inequality. This has the fundamental ad-
vantage that the Lagrange multiplier corresponding to the contact constraint occurs explicitly
and we obtain more structural information about the nature of contact forces.

2) The vector valued measure Ω̃ →
∫
Ω̃ d∗dµ on Ω̄ with support on the contact set Ωc(u)

describes the contact force exerted by the rigid obstacle O. Condition (4.4) says that it is
directed normally to the boundary of the obstacle. In the case where the boundary ∂O is
smooth, the set ∂dO(u(x)) is just the singelton containing the usual inner unit normal of O at
u(x) as long as u(x) ∈ ∂O. If the boundary ∂O is not smooth (e.g., if it has a corner), then the
right hand side in (4.4) denotes a closed convex set of generalized normals and relation (4.4)
expresses normality for the contact force in a generalized sense (cf. (A.2) in the appendix).
This way we are able to treat obstacles O with corners and edges in a general way. Notice
that a normality condition like (4.4) is usually invoked as hypothesis for frictionless contact
into the theory or it is derived under additional regularity assumptions for the solution u

which cannot be verified in general.
3) Let us emphasize that Theorem 4.3 can be applied directly to minimizers verified in

Theorem 3.3 or Theorem 3.7 without further hypothetical smoothness assumptions for u.
Hence, in contrast to previous results, we have shown rigorously that constrained minimizers
of the energy really satisfy the mechanical equilibrium conditions for frictionless contact (see
also the next remark).

4) Often problems in elasticity are formulated as partial differential equation which is
considered as equilibrium condition. But, in our case, (4.5) implies only formally that

div DW (x,Du) + f + fc = 0 on Ω

where fc(Ω̃) ≡ −
∫
Ω̃ d∗c(x) dµc(x), Ω̃ ⊂ Ω measurable, is the measure determined by the last

term in (4.5). Here τ(x) ≡ DW (x,Du(x)) corresponds to the (first Piola-Kirchhoff) stress
tensor. Now the question arises in which sense (4.5) is related to an equilibrium condition.
From the mechanical point of view the resultant force exerted to subbodies of the elastic
body has to vanish in equilibrium, i.e.,∫

∂Ω̃
τ(x) · n(x) da +

∫
Ω̃

df +
∫

Ω̃
dfc = 0 (4.7)

for a sufficiently large class of subbodies Ω̃ ⊂ Ω (n(x) - outer unit normal of Ω̃ at x). In
classical treatments, where f , fc are assumed to have integrable volume density, (4.7) is
verified for all subbodies Ω̃ ⊂ Ω having piecewise smooth boundary. That is however too
restrictive for our general contact problems where, e.g., concentrated forces can really occur
in the case of contact at a “sharp” corner of O. But, by a result of Degiovanni, Marzocchi
& Musesti [11], (4.5) is equivalent to the validity of (4.7) for “almost all” subsets Ω̃ ⊂ Ω (for
further details see [11]).

5) If g(u) < 0, then there is no contact and, of course, there is no contact reaction. Note
that this naturally follows from µc = 0 in that case.
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The next corollary shows that the contact condition (4.4) can still be sharpend in the
case where ∂O is not smooth, i.e., where the right hand side in (4.4) is not a singleton. As
in the theorem above, let u be a local minimizer of the variational problem (2.7) – (2.9). We
define the set of obstacles Q(u) which consists of all obstacles Q (i.e., each Q is the closure
of an open set having Lipschitz boundary), with the additional property that

O ⊂ Q ⊂ cl u(Ω̄)c .

If we now replace O with any Q ∈ Q(u) in problem (2.7) – (2.9), then the admissible set
becomes smaller while u is still admissible, i.e., u remains a local minimizer of the problem.
Thus we can apply Theorem 4.3 to each such modified problem and we always obtain a
measure µQ and a mapping d∗Q such that d∗Q(x) ∈ ∂dQ(u(x)) on Ω̄ and such that the Euler-
Lagrange equation is satisfied with µQ, d∗Q instead of µc, d∗c . By (4.5) we therefore obtain
that ∫

Ω̄
d∗Qϕ dµQ =

∫
Ω̄

d∗cϕ dµc

for all test functions ϕ ∈ W1,∞(Ω) with ϕ = 0 on ΓD. Since ΓD does not belong to the
support of µQ and µc and since W1,∞(Ω) is dense in the space of continuous functions, the
Borel measures Ω̃ →

∫
Ω̃ d∗Q dµQ and Ω̃ →

∫
Ω̃ d∗c dµc are identical for all Q ∈ Q(u). This way

we get the following sharper condition for d∗.

Corollary 4.8 Theorem 4.3 remains true if we replace (4.4) with the stronger condition

d∗(x) ∈
⋂

Q∈Q(u)

cone
(
∂dO(u(x))

)
. (4.9)

Let us still explain why we have to use the intersection of the closed cone hulls instead
of merely the intersection of the generelized gradients in the previous formula. Obviously,
for two different obstacles Q1,Q2 ∈ Q we can have gradients d∗Qi

(x) ∈ ∂dQi(u(x)), i =
1, 2, pointing into the same direction but having different length. Hence the intersection
∂dQ1(u(x))∩ ∂dQ2(u(x)) may be empty and (4.9) would not make sense. On the other hand
the variation of the measures µc and µQ is not prescribed, and, thus the functions d∗c and d∗Q
may differ by a positive integrable factor in order to get the same vector-valued measures.
This makes the use of closed cone hulls in (4.9) necessary.

Remark 4.10
1) Note that the refined contact condition (4.9) provides a closed convex cone for the

direction of the contact force which can depend on the solution u. That is a new type of
contact condition which was not considered in classical treatments yet. From the mechanical
point of view such a condition seems to be reasonable, since it expresses somehow that we
can exchange the role of the rigid obstacle and of the deformed body in order to study the
contact force.
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2) If the right hand side in (4.9) merely contains the origin, then the corresponding point
x cannot belong to the support of the measure µc describing the distribution of the contact
force. This in particular means that we can have contact but no mechanical reaction at such
a point (cf. also Case 3 below).

In order to illuminate the significance of condition (4.9) let us discuss some typical situ-
ations. We assume that x0 ∈ Ωc(u) and we set q0 ≡ u(x0).

Case 1. Let cl u(Ω̄)c ∈ Q(u), let there exist a half space H ⊂ R3 with q0 ∈ ∂H and a
closed ball B0 around q0 such that(

cl u(Ω̄)c ∩B0

)
⊂

(
H ∩B0

)
,

and let −dcl u(Ω̄)c be regular at q0 in the sense of Clarke (cf. appendix). Then, at the point
x0, (4.9) is equivalent with

d∗(x0) ∈ cone
(
∂dcl u(Ω̄)c(q0)

)
,

i.e., the shape of the deformed elastic body gives the sharpest condition for the direction of
the contact force (cf. Fig. 1).

d*(x  )0

q
0

Ωu( )

H

O

Figure 1. The dashed cone, which is normal to the deformed shape of the
elastic body, provides the possible directions for the contact force d∗(x0).

Case 2. Let cl u(Ω̄)c ∈ Q(u), let there exist a half space H ⊂ R3 with q0 ∈ ∂H and a
closed ball B0 around q0 such that(

Oc ∩B0

)
⊂

(
H ∩B0

)
,

and let dO be regular at q0 in the sense of Clarke (cf. appendix). Then, at the point x0, (4.9)
is equivalent with

d∗(x0) ∈ cone
(
∂dO(q0)

)
,

13



i.e., (4.4) in Theorem 4.3, which is based on the shape of the obstacle O, already gives the
sharpest condition for d∗(x0) (cf. Fig. 2). The proof of Cases 1 and 2 is given in the next
section.

d*(x  )0

q
0

H

O

Ωu( )

Figure 2. The dashed cone, which is normal to the shape of the obstacle,
provides the possible directions for the contact force d∗(x0).

Cases 1 and 2 express the basic idea of the refined contact condition that, roughly speak-
ing, the obstacle Q ∈ Q(u) which is locally the “closest to a half-space” gives the sharpest
condition for the direction of the contact force d∗(x0). Observe, however, that if −dcl u(Ω̄)c

is not regular at q0 (e.g., if −dcl u(Ω̄)c highly oscillates), then the statement “closest to a
half-space” cannot be taken in the sense of set inclusions. Let us still mention that convex
Lipschitz continuous functions are always regular in the sense of Clarke. But for nonsmooth
concave functions this is not true in general. This explains why it is reasonable to demand
the regularity of −dcl u(Ω̄)c instead of dcl u(Ω̄)c in the first case.

Case 3. Let there exist two different half spaces H1,H2 ⊂ R3 and a closed ball B0 around
q0 such that (

O ∩B0

)
⊂

(
Hi ∩B0

)
⊂

(
cl u(Ω̄)c ∩B0

)
for i = 1, 2 .

Then either (Hi ∩B0) ∪O ∈ Q(u) or we can find Qi ∈ Q(u) which agree with Hi in a small
neighborhood of q0 (i=1,2). Hence d∗(x0) = 0 by (4.9). This means that there is contact but
no mechanical reaction at the point u(x0) (cf. Fig. 3).

While the first two cases seem to be reasonable also from the mechanical point of view,
the last one is a little surprising. Of course the solution looks quite unstable, but it cannot be
expected that the contact force has to vanish. Observe, however, that our arguments leading
to (4.9) are based on the assumption that the equilibrium state is a local minimizer of the

14



q
0

H 2

H 1

Ωu( )

O

Figure 3. The elastic body touches the obstacle, but no contact force can be
exerted.

energy, which expresses some kind of stability (recall the discussion in front of Corollary 4.8).
Without carrying out this aspect in full detail we thus can interpret the situation of Case 3
in the following way: either the solution is stable and no contact force can occur or there is
a nonvanishing contact reaction and the solution is highly unstable.

4.2 Proofs

Proof of Theorem 4.3. We present the proof in several steps.

a) Modified problem. Let us set

Ê(v) ≡ E(u + v) , ĝ(v) ≡ g(u + v) , Ŵ (x, F ) ≡ W (x,Du(x) + F ) .

Analogously we define Êp and Ês. On the Banach space

X ≡ {v ∈ W1,∞(Ω; R3)| v = 0 on ΓD}

we consider the modified variational problem:

Ê(v) → Min! , v ∈ X , (4.11)

ĝ(v) ≤ 0 . (4.12)

By the continuous embedding W1,∞ ↪→ W1,p we have that v = 0 is a local minimizer of
problem (4.11), (4.12).

b) Differentiation of Ê in X.
Êp is a linear continuous functional on the space of continuous functions and, thus, also

on W1,∞. Hence Êp is continuously differentiable on X and we readily get that

〈Ê′
p(v), ϕ〉 =

∫
Ω̄

ϕ(x) df(x) for all ϕ ∈ X . (4.13)
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Using the growth condition (4.1), we obtain by standard arguments that Ês is Gâteaux
differentiable on X with

〈Ê′
s(v), ϕ〉 =

∫
Ω

DŴ (x,Dv(x))Dϕ(x) dx for all ϕ ∈ X . (4.14)

Let vn → v in X. Then there exist ϕn ∈ X, ‖ϕn‖ ≤ 1, such that

‖Ê′
s(v)− Ê′

s(vn)‖ = sup
ϕ∈X, ‖ϕ‖≤1

∣∣∣〈Ê′
s(v)− Ê′

s(vn), ϕ〉
∣∣∣

≤
∣∣∣∫

Ω

(
DŴ (x,Dv(x))−DŴ (x,Dvn(x))

)
Dϕn(x) dx

∣∣∣ +
1
n

≤
∫

Ω

∣∣∣DŴ (x,Dv(x))−DŴ (x,Dvn(x))
∣∣∣ dx +

1
n

.

By the continuity of DW (x, ·) and by (4.1), the dominated convergence theorem implies that
the right hand side approaches zero as n →∞. Therefore Ê′

s(vn) → Ê′
s(v) in X∗ which states

the continuity of Ê′
s(·) on X.

By the continuous differentiability of Ês, Êp, and thus also of Ê, we obtain that

{Ê′(0)} = ∂Ê(0) = ∂Ês(0) + ∂Êp(0) = {Ê′
s(0)}+ {Ê′

p(0)}

(cf. appendix).

c) Generalized gradient ∂ĝ(0).
We claim to apply Proposition A.3 to the functional ĝ. For this reason we define β :

X × Ω̄ → R3 by
β(v, x) ≡ u(x) + v(x) .

Thus
ĝ(v) = max

x∈Ω̄
dO(u(x) + v(x)) = max

x∈Ω̄
dO(β(v, x)) .

Let (vn, xn) → (v, x) in X × Ω̄. Oviously

|β(v, x)− β(vn, xn)| ≤ |u(x)− u(xn)|+ |v(x)− v(xn)|+ |v(xn)− vn(xn)| .

By the continuity of u, v and by vn → v in W1,∞(Ω), the right hand side approaches zero
as n → ∞. Hence β(·, ·) is continuous on X × Ω̄. Furthermore β(·, x) is linear and, thus,
differentiable on X for all x ∈ Ω̄ where

βv(v, x)ϕ = ϕ(x) for all ϕ ∈ X .

Again let (vn, xn) → (v, x) in X × Ω̄. Then there exist ϕn ∈ X, ‖ϕn‖ ≤ 1, such that

‖βv(vn, xn)− βv(v, x)‖ = sup
ϕ∈X, ‖ϕ‖≤1

∣∣∣(βv(vn, xn)− βv(v, x)
)

ϕ
∣∣∣

≤ |ϕn(xn)− ϕn(x)|+ 1
n ≤ |xn − x|+ 1

n (4.15)
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(observe that all ϕn are Lipschitz continuous with constant 1). The right-hand side tends to
zero as n →∞ and, therefore, βv(·, ·) is continuous. Since dO is globally Lipschitz continuous
with constant 1, the assumptions of Proposition A.3 are fulfilled and we can apply it to ĝ.
Thus ĝ is locally Lipschitz continuous on X and for any g∗ ∈ ĝ(0) there exist a probability
measure µ ∈ R[Ω̄] and a µ-integrable mapping

x → d∗(x) ∈ ∂dO(u(x)) (4.16)

such that
〈g∗, ϕ〉 =

∫
Ω̄
〈d∗(x), βv(0, x)ϕ〉 dµ(x) =

∫
Ω̄

d∗(x) · ϕ(x) dµ(x) (4.17)

for all ϕ ∈ X. If ĝ(0) = 0, then µ ∈ R[Ωc(u)].
Asssume now that ĝ(0) = g(u) = 0, i.e., Ωc(u) 6= ∅. We claim to show that

0 6∈ ∂ĝ(0) (4.18)

in this case. Let g∗ = g∗(d∗, µ) ∈ ∂ĝ(0). Since µ is a probability measure with support in
Ωc(u), we can find some x̃ ∈ Ωc(u) such that

µ( Ω̄ ∩Bε(x̃) ) > 0 for all ε > 0. (4.19)

Obviously q̃ ≡ u(x̃) ∈ ∂O. By (2.3) and by the convexity and compactness of ∂dO(q̃) ⊂ R3,
there is an open convex neighborhood of ∂dO(q̃) such that its closure does not contain the
origin. Hence, by Proposition A.1.3, there is a neighborhood U(q̃) of q̃ such that

0 6∈ co
⋃

q∈U(q̃)

∂dO(q) .

Separation arguments for convex sets imply the existence of a vector b ∈ R3 such that

b · b∗ > 0 for all b∗ ∈ ∂dO(q), q ∈ U(q̃) . (4.20)

By the continuity of u we can choose some small ε̃ > 0 such that

u( Ω̄ ∩Bε̃(x̃) ) ⊂ U(q̃) = U(u(x̃)) . (4.21)

With Ω̃ ≡ Ω̄ \Bε̃(x̃) we clearly have that, for x ∈ Ω̄,

ϕ̃(x) ≡ b distΩ̃x ∈ X = W1,∞(Ω; R3)

(note that W1,∞ is just the space of Lipschitz continuous functions). Using (4.17), (4.19),
(4.20), (4.21) and by d∗(x) ∈ ∂dO(u(x)), we readily obtain that

〈g∗, ϕ̃〉 =
∫

Ω̄
d∗(x) · ϕ̃(x) dµ(x)

=
∫

Ω̄∩Bε̃(x̃)
d∗(x) · b distΩ̃x dµ(x) > 0 . (4.22)
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Hence g∗ 6= 0 and, since g∗ ∈ ĝ(0) was chosen arbitrarily, (4.18) is verified.

d) Nonsmooth Lagrange multiplier rule.
We now apply the Lagrange multiplier rule stated in Proposition A.1 to the modified

variational problem (4.11), (4.12). Hence there exist λ0, λ1 ≥ 0, not both zero, and a gradient
g∗ ∈ ∂ĝ(0) such that

0 = λ0Ê
′(0) + λ1g

∗

or, equivalently,
0 = λ0〈Ê′(0), ϕ〉+ λ1〈g∗, ϕ〉 for all ϕ ∈ X

and, in addition,
λ1ĝ(0) = λ1g(u) = 0 .

Assume now that λ0 = 0. Then λ1 > 0, g∗ = 0, and g(u) = 0 which contradicts (4.18).
Thus, without lost of generality, we can choose λ0 = 1 and we get λ1 = 0 in the case where
g(0) < 0. According to part c) of the proof, the gradient g∗ corresponds to a probability
measure µ1 ∈ R[Ω̄] and a µ1-integrable mapping d∗ satisfying (4.16), while µ1 ∈ R[Ωc(u)] in
the case of g(u) = 0. Using (4.13), (4.14), (4.17) and taking µ ≡ λ1µ1 we finally obtain the
assertion of Theorem 4.3. ♦

Proof of Cases 1 and 2. In Case 1 we obviously have that dcl u(Ω̄)c(q) ≥ dQ(q) on B0 for
any Q ∈ Q(u). Thus for any w ∈ R3 and any Q ∈ Q(u)(

−dcl u(Ω̄)c

)0
(q0;w) = lim

t↓0

−dcl u(Ω̄)c(q0 + tw)
t

≤ lim inf
t↓0

−dQ(q0 + tw)
t

≤
(
−dQ

)0
(q0;w) .

This readily implies that

∂
(
−dcl u(Ω̄)c

)
(q0) ⊂ ∂

(
−dQ

)
(q0) for all Q ∈ Q(u) .

By Proposition A.1 we can take out the minus and, since cl u(Ω̄)c ∈ Q(u), we obtain the
assertion.

In Case 2 we use that dO(q) ≤ dQ(q) on B0 for any Q ∈ Q(u) and we argue analogously
as above to get

∂dO(q0) ⊂ ∂dQ(q0) for all Q ∈ Q(u) ,

which implies the assertion. ♦
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Appendix

A short introduction to Clarke’s generalized gradients for locally Lipschitz continuous func-
tionals, which is sufficient for our purposes, is given in this appendix. This calculus is a
fundamental tool for handling nonsmooth problems. A comprehensive exposition can be
found in Clarke [9].

Let X be a Banach space and f : X 7→ R a locally Lipschitz continuous functional. The
generalized directional derivative f0(u;h) of f at u in the direction h is given by

f0(u;h) := lim sup
v∈X, v→u, t→+0

f(v + th)− f(v)
t

.

The mapping h → f0(u;h) is positively homogeneous and subadditive. If l0 is a local Lipschitz
constant of f near u, then |f0(u;h)| ≤ l0‖h‖ for all h ∈ X.

We define the generalized gradient ∂f(u) of f at u as the set

∂f(u) := {f∗ ∈ X∗| 〈f∗, h〉 ≤ f0(u;h) for all h ∈ X}.

∂f(u) is a nonempty, bounded, convex and weak∗-compact subset of X∗. If f is continuously
differentiable, then ∂f(u) is the singleton {f ′(u)}. For convex functionals, f0(u;h) is the
usual one-sided directional derivative and ∂f(u) is the subdifferential of convex analysis.

Let us summerize some additional properties of the generalized gradient for our analysis
(cf. Clarke [9]).

Proposition A.1 Let f be Lipschitz continuous near u ∈ X and let l0 be its Lipschitz
constant near u.

1) ‖f∗‖ ≤ l0 for all f∗ ∈ ∂f(u).

2.1) ∂(αf)(u) = α∂f(u) for all α ∈ R.

2.2) ∂
∑n

i=1 fi(u) ⊂
∑n

i=1 ∂fi(u) for locally Lipschitz continuous functionals fi.

3) If {ui} ⊂ X and {f∗i } ⊂ X∗ are sequences with f∗i ∈ ∂f(ui), ui → u and f∗i
∗
⇀ f∗ for

some f∗ ∈ X∗, then f∗ ∈ ∂f(u).

4.1) (Minimum). If f attains a local minimum (or maximum) at the point u, then 0 ∈ ∂f(u).

4.2) (Lagrange Multiplier Rule). Assume that g0, g1, . . . , gn : X 7→ R are locally Lipschitz
continuous. If u is a local minimizer of f subject to the restrictions g0(v) ≤ 0 and
gi(v) = 0, i = 1, . . . , n, then there exist constants λf , λ0 ≥ 0, and λi ∈ R, not all zero,
such that

0 ∈ λf∂f(u) + λ0∂g0(u) +
n∑

i=1

λi∂gi(u)

and λ0g0(u) = 0.
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The function f is called regular at u ∈ X (in the sense of Clarke), if the usual one-sided
directional derivative f ′(u;h) exists for each h ∈ X and if it equals the generalized directional
derivative, i.e., f0(u;h) = f ′(u;h) for all h ∈ X. In particular, each Lipschitz continuous
convex function f is regular at any point.

For any nonempty subset A ⊂ X the normal cone of A at u ∈ A is given by

NA(u) := cl∗
( ⋃

λ≥0

λ∂ distA(u)
)

where cl∗ denotes the weak∗-closure. If A is convex, then NA(u) coincides with the cone of
normals as defined in the convex analysis. If A ≡ {v ∈ X| f(v) ≤ f(u)} for some u ∈ X with
0 6∈ ∂f(u), then

NA(u) ⊂
( ⋃

λ≥0

λ∂f(u)
)

. (A.2)

Equality holds under certain regularity. In the case where f is the signed distance of A (cf.
(2.2)) and u ∈ ∂A the right hand side of (A.2) can also be interpreted as some normal cone
of A at u.

We now consider functionals of the following type

g(v) ≡ max
ξ∈Ω

d(β(v, ξ)) .

Let us assume that

(i) X, Y are Banach spaces where Y is supposed to be reflexive and Ω is a metrizable
sequentially compact topological space,

(ii) β : X × Ω → Y is continuous and v → β(v, ξ) is differentiable for all ξ ∈ Ω such that
the derivative βv(·, ·) is continuous on X × Ω,

(iii) d : Y → R is Lipschitz continuous.

Since Ω is compact, g is well defined and Ω(v) ≡ {ξ ∈ Ω|g(v) = d(β(v, ξ))} is a nonempty
closed subset of Ω. Let us denote the set of all regular probability Borel measures on Ω
supported on Ω̆ ⊂ Ω by R[Ω̆]. We now can describe the generalized gradient of g as a
composition of ∂d(·) and βv(·, ·).

Proposition A.3 Suppose that (i)–(iii) hold. Then g is locally Lipschitz continuous on X

and
∂g(v) ⊂

{∫
Ω

∂d(β(v, ξ)) ◦ βv(v, ξ) dρ(ξ)
∣∣∣ ρ ∈ R[Ω(v)]

}
for v ∈ X,

where the term on the right-hand side describes the subset of X∗ with the property that every
element g∗ of this set corresponds to a mapping d∗ : Ω → Y ∗ with d∗(ξ) ∈ ∂d(β(v, ξ)) (∂ with
respect to d(·)) and to a probability measure ρ ∈ R[Ω(v)] such that

ξ → 〈d∗(ξ) ◦ βv(v, ξ), w〉X∗×X = 〈d∗(ξ), βv(v, ξ) w〉Y ∗×Y
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is ρ-integrable for all w ∈ X and that

〈g∗, w〉 =
∫

Ω
〈d∗(ξ), βv(v, ξ) w〉 dρ(ξ) for all w ∈ X.

The proof of the proposition can be found in Schuricht [15, Prop. 6.10].
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