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Abstract

We study the contact between nonlinearly elastic bodies by variational methods. After the
formulation of the mechanical problem we provide existence results based on polyconvexity and
on quasiconvexity. Then we derive the Euler-Lagrange equation as a necessary condition for
minimizers. Here Clarke’s generalized gradients are the essential tool to treat the nonsmooth
obstacle condition.
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1 Introduction

The deformation of a body in nature is always restricted by the presence of other bodies and by
the presence of itself, since matter cannot interpenetrate. Problems that focus on the associated
phenomenon of touching are called contact problems. In the literature mostly the contact between
an elastic body and a rigid obstacle is considered while the possibility of self-contact is usually
neglected. Within the general framework of nonlinear elasticity Ciarlet & Nečas [7] treated
elastic contact almost 20 years ago based on strong regularity assumptions for the deformation
such that the methods of smooth analysis became applicable. Here we study the contact between
two nonlinearly elastic bodies with a completely different approach which allows much weaker
regularity conditions. Our results can also be considered as some contribution to a general
treatment of elastic self-contact, a problem contained in J. Ball’s collection of important open
problems (cf. [5, Problem 7]).

Contact problems are typically highly nonsmooth due to the general unilateral restriction
for deformations. The geometric simplifications employed in linear elasticity cause that admissi-
ble deformations usually form a convex set and that the investigation of corresponding contact
problems is closely related to the study of variational inequalities - a tool of convex analysis.
These methods cannot be transferred to general nonlinear problems but it turned out that the
nonsmooth calculus of generalized gradients developed by F. Clarke (see [8]) is suitable for the
successful treatment of the nonsmoothness inherent in contact problems within the fully nonlinear
theory. This is carried out for the (nonlinearly) elastic contact with a rigid obstacle in Schuricht
[16], [17] and for the elastic self-contact of rods in Schuricht & v.d. Mosel [18]. In the present
paper we extend these investigations to the contact of two elastic bodies. Here we are confronted
with a number of new technical difficulties, since we have basically no information about the regu-
larity of the boundary of the deformed bodies. This has to be balanced by additional assumptions
compared with the case of rigid obstacles.

In Section 2 we formulate a general variational problem describing the contact between two
nonlinearly elastic bodies. We prevent interpenetration of the bodies by an inequality constraint
based on a signed distance function instead of an abstract set inclusion. The existence of solutions
for polyconvex and quasiconvex energies is shown by standard methods in Section 3. Here the
contact constraint can be treated similarly to the case of a rigid obstacle (cf. Schuricht [17]).
In Section 4 we derive the Euler-Lagrange equation as necessary condition for local minimizers
of the energy which is equivalent to the mechanical equilibrium condition in integral form. The
main difficulty in the proof is caused by the fact that the functional entering the inequality
constraint has bad regularity properties. In order to ensure that it is locally Lipschitz continuous
we need additional conditions (as finite dilatation) ensuring that deformations correspond to open
mappings. Instead of a usual smooth Lagrange multiplier rule, we then apply a nonsmooth one
from Clarke’s calculus of generalized gradients. In order to be able to evaluate the structure of the
Lagrange multiplier corresponding to the contact constraint we have to handle functions that are
the pointwise maximum of a class of functions. Here the key is a nonsmooth calculus rule that
we apply twice and that typically has no smooth analogue. Furthermore the characterization
of certain generalized gradients only succeeds by means of two new calculus rules provided in
Section 5. We end up with a multiplier that describes the contact forces between the elastic
bodies where the direction of the forces belongs to certain convex cones that might be interpreted
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as normal to the contact surface. However, a precise description of these cones seems to be very
difficult, since in fact no information about the regularity of the contact surface and the influence
of small perturbations on it is available. In Section 5 we first provide a brief summary of basic
properties of Clarke’s generalized gradients sufficient for our investigations. Then we extend a
chain rule from Schuricht [16] to non-reflexive spaces and we derive a characterization of the
generalized gradient ∂f(u) by the gradients ∂f(v) where f(v) 6= f(u).

Acknowledgment: The research reported here was supported by the “Deutsche Forschungsgemein-
schaft”. Moreover we are very grateful to M. Degiovanni for some helpful contributions.

Notation. By Ac, clA or Ā, intA, ∂A, convA, conv∗A, and |A| we denote the complement, the
closure, the interior, the boundary, the closed convex hull, the weak∗ closed convex hull, and the
Lebesgue measure of the set A. The distance of a point to the set A is given by distA(·). sign
α is the usual sign function for real numbers and |a| stands for the Euclidean norm in Rn. For
a matrix F ∈ R3×3 we express by |F |, detF , and adjF any fixed norm, the determinant, and
the adjugate (i.e., F adjF = detF id ). If X is a Banach space, then X∗ stands for its dual
space, 〈·, ·〉 for the duality form on X∗ × X, un → u for the strong, un ⇀ u for the weak, and
un

∗
⇀u for the weak∗ convergence. Bε(x) is the open ball of radius ε around x. By Ck(Ω) we

denote the usual space of k−times continuously differentiable functions, by Ck
0 (Ω) its subspace of

all functions with compact support, by Lp(Ω) the Lebesgue space of p−integrable functions, and
by W1,p(Ω) the Sobolev space of p-integrable functions having p-integrable weak derivatives. The
space of (positive) Radon measures on Ω is identified by R[Ω] while R1[Ω] and R≤1[Ω] refer to
the subset of probability measures and measures of total mass less than 1, respectively. (Without
danger of confusion we also write R[Ω̃] for a measure on Ω whose support is contained in Ω̃ ⊂ Ω.)
For a locally Lipschitz continuous function f : X → R Clarke’s generalized gradient is denoted
by ∂f(u) and the generalized directional derivative by f◦(u; v).

2 Formulation of the mechanical problem

We consider two elastic bodies that occupy the open bounded domains Ωi ⊂ R3, i = 1, 2, in their
reference configuration where we assume that the Ωi have disjoint closure and Lipschitz boundary.
The deformations of these elastic bodies are described by functions u ∈ X̃ := W1,p(Ω; R3) with
Ω := Ω1 ∪ Ω2 where we usually assume that p > 3 to focus on continuous deformations. Using
the notation ui := u|Ωi (i = 1, 2) we characterize the deformation of one of the bodies.

The material of the bodies is assumed to be hyperelastic, i.e., there is a density function
W : Ω × R3×3 → R such that the stored energy of the deformed configuration u ∈ W1,p(Ω) is
given by

Es(u) :=
∫

Ω
W (x,Du(x)) dx .

As usual we suppose that W (x, ·) is rank-1-convex and continuously differentiable on R3×3 for
all x ∈ Ω and that W (·, F ) is measurable on Ω for all F ∈ R3×3. All external forces acting on
the bodies may be described by a vector valued measure f ∈ R[Ω̄] corresponding to the potential
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energy

Ep(u) := −
∫

Ω̄
u(x) df(x) .

Hence
E(u) := Es(u) + Ep(u) =

∫
Ω
W (x,Du(x)) dx−

∫
Ω̄
u(x) df(x)

is the total energy assigned to a configuration u.
Let us now discuss restrictions that we may impose on admissible deformations. The me-

chanical requirement that deformations u should be locally invertible and orientation preserving
enters the theory by the condition that

detDu > 0 a.e. on Ω (2.1)

which can be ensured by
W (x, F ) = ∞ if detF ≤ 0 . (2.2)

Even for smooth deformations u condition (2.1) implies local but not global invertibility of u,
i.e., it does not prevent interpenetration of the material. An analytical condition excluding
interpenetration but allowing self-contact is given by∫

Ω
detDu(x) dx ≤ |u(Ω)| (2.3)

and was introduced by Ciarlet & Nečas [7]. It turns out that conditions like (2.2) and (2.3) can be
taken into account to verify the existence of energy minimizing configurations, but the derivation
of the corresponding Euler-Lagrange equation as necessary condition succeeds only under strong
regularity assumptions on u. The treatment of (2.3) in [7] is based on deformations u ∈ C1(Ω̄)
which, in particular, prevents “local” self-contact (i.e., touching of points that are also arbitrarily
close to each other in the reference configuration). In such cases the problem of self-contact can
be reduced to the investigation of the contact between two elastic bodies.

In this paper we treat the problem that different elastic bodies can touch but should not
penetrate each other while we neglect the possibility of self-penetration. According to our previous
discussion this can be also considered as a partial problem for the treatment of self-contact. Since
constraint (2.3) seems not to be accessible to direct regularity arguments taking into account
deformations u ∈ W1,p(Ω), we use a different approach. To prevent interpenetration of the
different bodies we have to demand that

int u1(Ω̄1) ∩ int u2(Ω̄2) = ∅

or
u1(x) ∈ R3 \ u2(Ω̄2) for all x ∈ Ω̄1 . (2.4)

The investigation of the contact between an elastic body and a rigid obstacle in Schuricht [17]
has shown that it is useful to replace an abstract set inclusion like (2.4) by an analytically more
tractable inequality condition based on a suitable distance function. Therefore we introduce the
signed distance function d : R3 ×W1,p(Ω) → R as

d(q, v)
(
= d(q, v2)

)
:=

{
distv(∂Ω2)(q) if q ∈ int v(Ω2),

−distv(∂Ω2)(q) if q /∈ int v(Ω2)
(2.5)
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(though d(q, ·) is defined on W1,p(Ω) we sometimes use the notation given in parentheses to
indicate that the function in fact only depends on v2). Then we can replace (2.4) with the
condition

g(u) := max
x∈Ω̄1

d(u1(x), u2) ≤ 0 (2.6)

where g is a real function on X̃ and we set

Ω1
c(u) := {x ∈ Ω̄1| d(u1(x), u2) = 0}

and
Ω2

c(u) := {y ∈ ∂Ω2| u2(y) = u1(x) for some x ∈ Ω̄1} .

We impose Dirichlet boundary conditions

u(x) = uD(x) on ΓD

where ΓD := Γ1
D ∪ Γ2

D, Γi
D ⊂ ∂Ωi, Γi

D 6= ∅, i = 1, 2, and uD ∈ W1,p(Ω) is a given function
satisfying

uD(Γ2
D) ∩ uD(Γ1

D) = ∅ . (2.7)

Taking into account the discussed constraints we study the variational problem

E(u) → Min! , u ∈ W1,p(Ω) , (2.8)

u = uD on ΓD , (2.9)

g(u) ≤ 0 (2.10)

providing equilibrium configurations of pairs of non-penetrating elastic bodies. Though we are
mainly interested in the case p > 3 that ensures continuous deformations, we may allow p ≤ 3 in
the existence results. In that case, however, u ∈ W1,p(Ω) might not be continuous and we have
to be more careful with the formulation of the side conditions. While (2.9) has to be understood
in the sense of trace, we choose the precise representative of u in (2.4). This means that (2.4)
can merely be demanded a.e. on Ω̄1 and, accordingly, we have to take the essential supremum in
(2.6).

Usually one has the imagination that deformations should correspond to open mappings u.
In this case one has that ∂u(Ω) ⊂ u(∂Ω) and that Ω1

c(u) identifies the points of contact. This,
however, is not true for all u ∈ W1,p(Ω). In general u(∂Ω) might contain interior points of u(Ω)
and the preimage of ∂u(Ω̄) must not be a subset of ∂Ω. This can cause d(·, v) to be discontinuous
and there might be elements in Ω1

c(u) that do not correspond to contact points. Nevertheless it
turns out that (2.10) can be used to verify the existence of equilibrium configurations exhibiting
contact. But for the derivation of the corresponding Euler-Lagrange equation we have to restrict
our attention to deformations corresponding to open mappings.

Note. Alternatively to (2.5) we could define d(·, ·) based on ±dist∂v(Ω2)(q). While d according to (2.5) is locally

Lipschitz continuous on a suitable set of deformations (cf. Lemma 4.4 below), v → d(q, v) has much less regularity

in the other case and is discontinuous even under the restriction to open mappings v. To see this we consider an

open deformation u2 with self-contact, i.e., u2(Γ
′) = u2(Γ

′′) for disjoint parts Γ′, Γ′′ of the boundary ∂Ω2. Then

we choose a (relatively) interior point q of that contact surface which is simultaneously an interior point of u2(Ω2).
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Hence d(q, u) > 0. On the other hand we find arbitrarily small (open) perturbations v of u2 that “open” the

contact and, thus, d(q, v) ≤ 0.

Let us now look for a suitable class of Sobolev functions u such that u2 is open on Ω2. It is
known that u2 ∈ W1,p(Ω2) with p ≥ 3 is open if it has integrable dilatation, i.e.,

γ(x) :=
|Du2(x)|3

detDu2(x)
∈ Lp̃(Ω2) for some p̃ > 2 (2.11)

where we agree that (2.11) is violated in the limit case u2 = const. (cf. Villamor & Manfredi
[19]). In [12] Manfredi & Villamor provide an example of a polyconvex energy functional with

W (x, F ) →∞ as detF → 0 (2.12)

such that (2.11) is satisfied for all configurations u having finite elastic energy Es(u). On the
other hand it seems to be reasonable to demand that

W (x, F ) →∞ as
detF
|F |3

→ 0 (2.13)

instead of (2.12), since |Du(x)|3/detDu(x) somehow measures the local distortion of the body
(note that (2.13) is also compatible with (2.2)). The previous arguments justify a condition like
(2.11) in elasticity. However, for our analysis in Section 4, we need that not merely the minimizing
solution u is open but also small perturbations of it. Hence we have to restrict our considerations
there to solutions u with u2 ∈ W1,∞(Ω2) and

detDu2(x) ≥ β̃ a.e. on Ω2 (2.14)

for some β̃ > 0. In this case we get that the dilatation of u2 and of small perturbations of it in
W1,∞(Ω2) is finite, i.e., (2.11) holds with p̃ = ∞ (cf. also Reshetnyak [15] or Fonseca & Gangbo
[11, p. 151]).

3 Existence of minimizers

In this section we study the existence of solutions of the above formulated variational problem.
Results of that kind in nonlinear elasticity are based either on quasiconvexity (cf. Morrey [13])
or on polyconvexity (cf. Ball [4]) of W while conditions like (2.2) can be considered merely in
the latter case. Corresponding existence results taking into account the global injectivity of the
elastic deformation and the restriction by a rigid obstacle can be found in Ciarlet & Nečas [6],
[7], Baiocchi et al. [3], Schuricht [17]. For our variational problem we basically have to adopt
the standard arguments to the treatment of the side condition (2.10) which, however, provides
no serious difficulties.

For the first result we consider the following hypotheses:

(A0) Ωi ⊂ R3, i = 1, 2, are bounded domains with disjoint closure and Lipschitz Boundary.

(A1) Polyconvexity: There exists h : Ω× R3×3 × R3×3 × R → R ∪ {∞} such that
(a) h(x, ·, ·, ·) is continuous and convex for all x ∈ Ω,
(b) h(·, F, adjF,detF ) is measurable for all F ∈ R3×3,
(c) W (x, F ) = h(x, F, adjF,detF ) for all (x, F ) ∈ Ω× R3×3.
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(A2) Coercivity: There are constants α > 0, 2 ≤ p <∞, q ≥ p
p−1 such that

(a) W (x, F ) ≥ α (|F |p + |adjF |q) for all (x, F ) ∈ Ω× R3×3,
(b) W (x, F ) = ∞ if and only if detF ≤ 0.

(A3) If p ≤ 3, then Ep is continuous on Lp∗(Ω) with p∗ = 3p
3−p for p < 3, p∗ = +∞ for p = 3

(here we implicitly assume that f is of that kind such that Ep is well defined on Lp∗(Ω)).

(A4) Γi
D ⊂ ∂Ωi, Γi

D 6= ∅,
∣∣Γi

D

∣∣ > 0 for p ≤ 3, i = 1, 2, uD ∈ W1,p(Ω; R3) is given (| · | denotes the
two-dimensional Haussdorff measure).

Theorem 3.1 Let (A0) − (A4) be fulfilled and assume that there exists ũ ∈ W1,p(Ω) satisfy-
ing (2.9), (2.10), and E(ũ) < ∞. Then the variational problem (2.8)-(2.10) has a solution
u ∈ W1,p(Ω) with detDu > 0 a.e. on Ω.

The proof basically proceeds by standard arguments. We merely have to check that condition
(2.10) is stable under weak convergence which is carried out at the end of this section. If we
drop condition (b) in (A2), then the theorem remains true for p 6= 3 up to the statement that
detDu > 0 a.e. on Ω.

Polyconvexity was introduced by Ball [4] to handle energies with property (2.2) in existence
theory but it is still open to derive the Euler-Lagrange equation for corresponding solutions
without hypothesizing further regularity even in the case without contact and global invertibil-
ity constraints. Thus we cannot expect to obtain the Euler-Lagrange equation for solutions of
our problem. Hence it is reasonable to neglect (2.2) and to look for existence results with a
less restrictive convexity constraint. For this reason we replace (A1), (A2) with the following
hypotheses:

(A1′) Quasiconvexity: Let W : Ω× R3×3 → R be such that
(a) W (x, ·) is continuous for all x ∈ Ω,
(b) W (·, F ) is measurable for all F ∈ R3×3,
(c) for all open Ω̃ ⊂ Ω, F ∈ R3×3, ϕ ∈ C1

0(Ω̃), a.e. x̃ ∈ Ω∫
Ω̃
W (x̃, F ) dx ≤

∫
Ω̃
W (x̃, F +Dϕ) dx .

(A2′) Coercivity: The are constants α, β, γ > 0, 1 < p <∞ such that

α|F |p ≤W (x, F ) ≤ β + γ|F |p for all (x, F ) ∈ Ω× R3×3.

Theorem 3.2 Let (A0), (A1′), (A2′), (A3), (A4) be satisfied and let (2.9), (2.10) be fulfilled by
some ũ ∈ W1,p(Ω). Then the variational problem (2.8)-(2.10) has a solution in W1,p(Ω).

Proof of Theorem 3.1. Despite side condition (2.10) the proof proceeds like that of Ball [4] (cf.
also Dacorogna [9], Müller [14] for some extensions). For the convenience of the reader we sketch
these arguments.

Let {un} be a minimizing sequence of the variational problem. By (A2) and since ‖Dv‖Lp is
an equivalent norm on the space {v ∈ W1,p(Ω)|v = uD on ΓD} according to (A0), (A4), there
exists a subsequence (denoted the same way) with

un ⇀ u in W1,p(Ω), adjDun ⇀ A in Lq
(
Ω,R3×3

)
. (3.1)
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We have A = adjDu and detDun ⇀ detDu in the distributional sense (cf. Dacorogna [9, Ch. 4,
Th. 2.6]). Moreover, un → u in Lp∗(Ω) if p ≤ 3 and in C(Ω̄) if p > 3.

For p > 3 we have that detDun, detDu ∈ Lp/3(Ω) by Hölder’s inequality and, hence,
detDun ⇀ detDu in Lp/3(Ω). If 2 ≤ p < 3, then detDun ⇀ detDu in Lr(Ω) with r = 2q

3 > 1
by Müller [14]. In both cases we can thus apply standard lower semicontinuity results for convex
integrands to Es (see [9, Ch. 3, Th. 3.4]) and, since Ep is weakly continuous by the arguments
following (3.1) and by (A3), we obtain that

E(u) ≤ lim inf
n→∞

E(un) ,

i.e., u is a solution of the variational problem if it respects (2.10).
For the remaining case p = 3 we use that detDun ≥ 0 a.e. on Ω by (A2) to prove that

detDun ⇀ detDu in L1(K) for all compact K ⊂ Ω. By the same semicontinuity result as above
and by W ≥ 0 we conclude that∫

K
W (x,Du) dx ≤ lim inf

n→∞

∫
K
W (x,Dun) dx ≤ lim inf

n→∞

∫
Ω
W (x,Dun) dx

for all compact K ⊂ Ω. Choosing an increasing sequence of compact Km ⊂ Ω exhausting Ω we
again obtain that u minimizes E (cf. Müller [14]).

Let us now investigate whether u satisfies (2.10). Obviously d(q, v) is lower semicontinuous
on R3×C(Ω̄). For p > 3 we readily verify that (2.10) is met for u, since un → u in C(Ω̄). Now we
consider the case p ≤ 3 where un → u in Lp(Ω) and, at least for a subsequence, also un(x) → u(x)
a.e. on Ω. Let us assume that

d(u1(x), u2) > 0 on a set Ω+ ⊂ Ω̄1 with |Ω+| > 0 . (3.2)

Since not all of the pairwise disjoint sets
{
x ∈ Ω̄1| 1

n ≤ d(u1(x), u2) < 1
n−1

}
, n ∈ N (take 1

0 = ∞),
can have measure zero, we can suppose that d(u1(x), u2) ≥ ε on Ω+ for some ε > 0. By Egorov’s
theorem, un → u uniformly on a subset Ω0 ⊂ Ω̄1 with |Ω̄1\Ω0| ≤ |Ω+|/2. By construction,
|Ω0+| > 0 for Ω0+ := Ω0 ∩Ω+ and d(u1,n(x), u2,n) ≥ ε/2 on Ω0+ for sufficiently large n. But this
disagrees with g(un) ≤ 0. Consequently (3.2) must be wrong and u satisfies (2.10). ♦

Proof of Theorem 3.2. Let {un} denote a minimizing sequence of the variational problem.
Similarly to the previous proof we obtain that un ⇀ u in W1,p(Ω) by (A0), (A2’), (A4) (at least
for a subsequence) and that u is admissible. Using (A1’) and (A2’) we get the lower semicontinuity
of Es by a result of Acerbi and Fusco [1]. Since Ep is weakly continuous on W1,p(Ω) by (A3), u
minimizes E. ♦

4 Euler-Lagrange equation

4.1 Formulation of the results

In this section we formulate the Euler-Lagrange equation in the weak form for minimizers of the
variational problem (2.8)-(2.10). We invoke the following hypotheses:
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(B1) Ωi ⊂ R3, i = 1, 2, are bounded domains with disjoint closure and Lipschitz boundary.

(B2) W (x, ·) is continuously differentiable on R3×3 for all x ∈ Ω,
W (·, F ) is measurable on Ω for all F ∈ R3×3.

(B3) There are c > 0, γ ∈ L1(Ω) such that

|DW (x, F )| ≤ c|F |p + γ(x) for all (x, F ) ∈ Ω× R3×3 (4.1)

(DW denotes the partial derivative with respect to F ).

(B4) The Dirichlet boundary conditions are such that uD(Γ1
D) ∩ uD(Γ2

D) = ∅.

The standard growth condition (B3) ensures differentiability of the elastic energy Es in W1,p(Ω).
As space of variations we choose the Banach space X := W1,∞(Ω) and its subspace

X0 :=
{
v ∈ W1,∞(Ω)| v = 0 on ΓD

}
. (4.2)

According to our discussion in Section 2 we here consider minimizing solutions u satisfying (2.14)
and u2 ∈ W1,∞(Ω2). This way we ensure that u and small perturbations u + v with v ∈ X are
always open on Ω2.

Since the real function g in (2.10) is not smooth on X we have to employ a nonsmooth
Lagrange multiplier rule to derive the Euler-Lagrange equation which should contain a term
describing the contact forces in the case of touching. Our experience tells us that the contact
forces should be directed normally to the surfaces of the deformed bodies, but we do not know
whether these surfaces are smooth and possess a normal. Our analysis rather yields a cone at
each contact point containing the direction of the contact force. For this reason we introduce the
following sets where q ∈ R3. For w ∈ W1,p(Ω) we define

Γ(q, w) := {y ∈ ∂Ω2 | |w2(y)− q| = d(q, w2) or |w2(y)− q| = −d(q, w2)} . (4.3)

Notice that for u ∈ W1,p(Ω) with g(u) = 0

Γ(u1(x), x) ⊂ Ω2
c(u) for all x ∈ Ω1

c(u) .

For w ∈ W1,p(Ω) with q 6∈ w2(∂Ω2) (i.e., d(q, w) 6= 0) let

d∗(q, y, w)
(
= d∗(q, y, w2)

)
:= sign d(q, w)

w(y)− q

|w(y)− q|
for y ∈ Γ(q, w) . (4.4)

For u ∈ W1,p(Ω) with q ∈ u2(∂Ω2) (i.e., d(q, u) = 0) we define

D∗(q, u)
(
= D∗(q, u2)

)
:=

⋂
σ>0

conv
( ⋃

‖v‖X≤σ

d(q,u+v) 6=0

⋃
y∈Γ(q,u+v)

d∗(q, y, u+ v)
)

(4.5)

where we identify d∗(q, y, u + v) with the set consisting of this one element. To avoid formal
difficulties we set D∗(q, u) := 0 for q 6∈ u2(∂Ω2).

Let us now formulate the Euler-Lagrange equation as the main theorem of the present paper.
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Theorem 4.1 Let (B1)−(B4) be fulfilled and let u ∈ W1,p(Ω), p > 3, be a local minimizer of the
variational problem (2.8)-(2.10) such that u2 ∈ W1,∞(Ω2) and that (2.14) is satisfied for some
β̃ > 0. Then there exist a constant λ ≥ 0, a Radon measure µc ∈ R[Ω̄1] supported on Ω1

c(u), not
both zero, Radon measures µx ∈ R[Ω̄2] supported on Γ(u1(x), u), x ∈ Ω̄1, and a mapping

(x, y) → d∗c(x, y) ∈ D∗(u1(x), u) ⊂ R3 on Ω̄1 × Ω̄2 (4.6)

such that the weak form of the Euler-Lagrange equation

0 = λ

∫
Ω
DW (x,Du(x))Dϕ(x) dx− λ

∫
Ω̄
ϕ(x) df(x)

+
∫

Ω1
c(u)

∫
Ω2

c(u)
〈d∗c(x, y), ϕ2(y)− ϕ1(x)〉 dµx(y) dµc(x) (4.7)

is satisfied for all ϕ ∈ X0 where all occurring integrals exist. In particular, µc = 0 if g(u) < 0,
i.e., if Ω1

c(u) = ∅.
We can choose λ = 1 in (4.7) if for all x̃ ∈ Ω1

c(u) there is an open neighborhood U(x̃) such
that

0 6∈ conv
⋃

x∈Ω1
c(u)∩U(x̃)

D∗(u1(x), u) . (4.8)

Remark 4.2
1) The last term in (4.7) is the Lagrange multiplier corresponding to the contact condition and

describes the contact forces between the bodies. In the case where both u1 and u2 are globally
injective on Ω̄1 and Ω̄2, respectively, the vector d∗c(x, y) provides the contact force between the
touching points u1(x) = u2(y), the measure µx is concentrated on the single point u−1

2 (u1(x)), and
the measure µ gives somehow the distribution of the contact force on the contact set Ω1

c(u) ⊂ Ω̄1.
2) The vectors in the set D∗(u1(x), u) might be considered as certain normal directions for the

contact surface u2(∂Ω2) at the point u1(x). In the case of a smooth contact surface it contains the
normal direction but it is still open whether the set is possibly larger (cf. Corollary 4.3 below).
This question is closely related with the (geometric) regularity of the boundary u2(∂Ω2) and its
behavior under small perturbations.

3) Condition (4.6) provides merely a convex set for the direction of the contact force. This
does not mean that the direction d∗c(x, y) is undetermined, but we have to realize that the precise
direction cannot be obtained from the shape of the contact surface. Notice that the definition
of D∗(u1(x), u) is based on the shape of u2(∂Ω2). Since we can apply the theorem again after
interchanging the role of Ω1 and Ω2, it might happen that one case gives a better, i.e., a more
restrictive, condition for the direction d∗c(x, y). Observe that the “best case” must not correspond
to the same Ωi for different “contact pairs” (x, y).

4) If self-contact occurs for an elastic body, then we can basically distinguish between a local
case where self-touching occurs for points that are arbitrarily close in some (e.g., stress-free)
reference configuration and a nonlocal case where parts of the body touch each other that are
far away from each other in the reference configuration. If, in the last case, we consider suitable
neighborhoods of these parts as separate bodies, then we could prescribe Dirichlet conditions on
the “cutted surfaces” and apply the previous theorem. In this sense our result allows a partial
treatment of self-contact.
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As already mentioned it is hard to give a precise description of the sets D∗(u1(x), u). The next
corollary provides a set which is always contained in D∗(u1(x), u) and which can be characterized
much easier. For O := u2(∂Ω2) we introduce the signed distance function

dO(q) :=

{
distO(q) if q ∈ u2(Ω2),

−distO(q) if q /∈ u2(Ω2),

and ∂dO(q) ⊂ R3 denotes its generalized gradient.

Corollary 4.3 Let the assumptions of Theorem 4.1 be satisfied. Then

−∂dO(u1(x)) ⊂ D∗(u1(x), u) for all x ∈ Ω1
c(u) . (4.9)

In particular, we conclude that D∗(u1(x), u) contains the normal direction of O if the surface
O = u2(∂Ω2) is smooth near u1(x), since dO(·) is smooth near u1(x) in that case. On the other
hand it is open whether D∗(u1(x), u) might be larger even in that case.

4.2 Proofs

Let us start with some notational convention for this section. In addition to the restrictions v1,
v2 of v introduced at the beginning of Section 2 we consider sequences {vn}. To avoid confusion
we agree that the explicit indices “1” and “2” never refer to elements of a sequence. By vi,n

(i = 1, 2) we denote the restrictions of vn.

Proof of Theorem 4.1. We present the proof in several steps where u ∈ W1,p(Ω) denotes a local
minimizer according to the theorem.

(a) Modified problem. Since we study W1,∞ perturbations of the solution u, it is convenient
to introduce the functions

Ê(v) := E(u+ v) , ĝ(v) := g(u+ v) , Ŵ (x, F ) := W (x,Du(x) + F ) .

Analogously we define Êp and Ês. With X, X0 according to (4.2) we consider the modified
variational problem

Ê(v) → Min!, v ∈ X , (4.10)

v ∈ X0 , (4.11)

ĝ(v) ≤ 0 . (4.12)

Obviously v = 0 is a local minimizer of this variational problem by the continuous imbedding
W1,∞(Ω) ↪→ W1,p(Ω). It seems to be a little artificial to include (4.11) as a side condition
instead of just replacing X with X0. But it is technically advantageous for the investigation of
the structure of the generalized gradient of ĝ to consider rigid translations of the body u2(Ω2).
This would not be possible within X0 where we had to bother ourselves with some localization
and corresponding technical cut off functions.

(b) Differentiation of the energy Ê in X. Êp is a linear continuous functional on the space of
continuous functions. Thus Êp is continuously differentiable on X and we easily get that

〈Ê′p(v), ϕ〉 = −
∫

Ω̄
ϕ(x) df(x) for all ϕ ∈ X . (4.13)

11



By standard arguments using (B3) we get that Ês is Gâteaux differentiable on X with

〈Ê′s(v), ϕ〉 =
∫

Ω
DŴ (x,Dv(x)) Dϕ(x) d(x) for all ϕ ∈ X . (4.14)

Let vn → v in X. Then there exist ϕn ∈ X, ‖ϕn‖ ≤ 1 with

‖Ê′s(v)− Ê′s(vn)‖ = sup
ϕ∈X, ‖ϕ‖≤1

|〈Ê′s(v)− Ê′s(vn), ϕ〉|

≤
∣∣∣∣∫

Ω

(
DŴ (x,Dv(x))−DŴ (x,Dvn(x))

)
Dϕn(x) dx

∣∣∣∣ +
1
n

≤
∫

Ω
|DŴ (x,Dv(x))−DŴ (x,Dvn(x))| dx+

1
n
.

Using (B3), the continuity of DW (x, ·), and the dominated convergence theorem, we obtain that
Ê′s(vn) → Ê′s(v) for n → ∞ in X∗, i.e., Ê′s(·) is continuous on X∗. Hence Ê = Ês + Êp is
continuously differentiable and, consequently,

{Ê′(0)} = ∂Ê′(0) = ∂Ê′s(0) + ∂Ê′p(0) = {Ê′s(0)}+ {Ê′p(0)}

(cf. Proposition 5.1).

(c) Generalized gradient ∂ĝ(0). Using the auxiliary function p : Ω̄1 × X → R3 × W1,p(Ω2)
given by

p(x, v) := (u1(x) + v1(x), u2 + v2)

we can rewrite ĝ as
ĝ(v) = max

x∈Ω̄1

d(p(x, v)) .

Obviously, p(·, ·) is continuous. The mapping v → p(x, v)− (u1(x), u2) is linear and bounded
and, therefore, differentiable for each x with

pv(x, v) ṽ = lim
t↘0

1
t

(
p(x, v + tṽ)− p(x, v)

)
= lim

t↘0

1
t

(
(u1(x) + v1(x) + tṽ1(x), u2 + v2 + tṽ2)− (u1(x) + v1(x), u2 + v2)

)
= (ṽ1(x), ṽ2) for all ṽ ∈ X .

If (xn, vn) → (x, v) in Ω̄1 ×X, then there are ṽn ∈ X such that

‖pv(xn, vn)− pv(x, v)‖ = sup
ṽ∈X, ‖ṽ‖≤1

‖( pv(xn, vn)− pv(x, v) ) ṽ‖

= sup
ṽ∈X, ‖ṽ‖≤1

‖(ṽ1(xn), ṽ2)− (ṽ1(x), ṽ2)‖

≤ |ṽ1,n(xn)− ṽ1,n(x)| + 1
n ≤ |xn − x| + 1

n
n→∞−→ 0

(note that ṽ1 is Lipschitz continuous), i.e., pv(·, ·) is continuous.
Since we need Lipschitz continuity of the function d near the minimizer u we introduce the

function d̂ : R3 ×X → R by
d̂(q, v) := d(q, u+ v) . (4.15)

Later in this section we verify
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Lemma 4.4 d̂ : R3 ×X → R is Lipschitz continuous on R3 ×Bε(0) for some ε > 0.

By Proposition 5.2 below we obtain that ĝ is locally Lipschitz continuous on Bε(0) ⊂ X

and that for each g∗ ∈ ∂ĝ(0) there is a Radon measure µ ∈ R[Ω̄1] supported on Ω1
c(u) and a

µ-integrable function

x→ d̂∗(x) ∈ ∂d(u1(x), u2) ⊂ (R3 ×X)∗ on Ω̄1

such that

〈g∗, ϕ〉 =
∫

Ω1
c(u)

〈d̂∗(x), pv(x, u)ϕ〉 dµ(x)

=
∫

Ω1
c(u)

〈d̂∗(x), (ϕ1(x), ϕ2)〉 dµ(x) for all ϕ ∈ X (4.16)

(notice that ϕi := ϕ|Ωi).
We now define dq(v)

(
:= dq(v2)

)
:= d̂(q, v) on X. The following lemma, which we will prove

later, puts elements of ∂d̂(u1(x), 0) ⊂ (R3 × X)∗ in relation to those of ∂du1(x)(0) ⊂ X∗ (see
Section 5 for the basic notions). Note that we occasionally identify q̃ ∈ R3 with the constant
function w(x) = q̃.

Lemma 4.5 Let q ∈ R3 and v ∈ X be fixed. Then:
(i) d̂◦((q, v); (q̃, ṽ)) = d◦q(v; ṽ − q̃) for all q̃ ∈ R3, ṽ ∈ X.
(ii) For every d̂∗ = (q∗, d∗) ∈ ∂d̂(q, v) we get d∗ ∈ ∂dq(v) and 〈q∗, q̃〉 = −〈d∗, q̃〉 for all q̃ ∈ R3.

Otherwise, every d∗ ∈ ∂dq(v) provides an element d̂∗ ∈ ∂d̂(q, v) by 〈d̂∗, (q̃, ṽ)〉 = 〈d∗, ṽ− q̃〉 for all
q̃ ∈ R3, ṽ ∈ X.

The lemma allows to rewrite (4.16) as

〈g∗, ϕ〉 =
∫

Ω1
c(u)

〈d∗(x), ϕ2 − ϕ1(x)〉 dµ(x) for all ϕ ∈ X

where d∗(x) ∈ ∂du1(x)(0) ⊂ X∗ for all x ∈ Ω1
c(u).

A characterization of ∂dq(0) is given in the next lemma which we will prove later.

Lemma 4.6 Let q = u1(x1) = u2(x̃) with x1 ∈ ∂Ω1, x̃ ∈ ∂Ω2, i.e., d̂(q, 0) = d(q, u) = 0. Then
we have that

∂dq(0) ⊂
{∫

∂Ω2

D∗(q, u) dµ(y)
∣∣ µ ∈ R≤1[Γ(q, u)]

}
, (4.17)

i.e., for each d∗ ∈ ∂dq(0) there is a Radon measure µ supported on Γ(q, u) and a function
y → δ∗(y) ∈ D∗(q, u) ⊂ R3 such that

〈d∗, ψ〉 =
∫

∂Ω2

〈δ∗(y), ψ2(y)〉 dµ(y) for all ψ ∈ X

where the integrand is always µ-integrable. If 0 6∈ D∗(q, u), then µ 6= 0.
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We thus obtain for every g∗ ∈ ∂ĝ(0) a measure µ ∈ R[Ω1
c(u)], measures µx ∈ R[Γ(u1(x), u)]

and a mapping (x, y) → d∗(x, y) ∈ D∗(u1(x), u) ⊂ R3 on Ω̄1 × Ω̄2 such that

〈g∗, ϕ〉 =
∫

Ω1
c(u)

∫
Ω2

c(u)
〈d∗(x, y), ϕ2(y)− ϕ1(x)〉 dµx(y) dµ(x) for all ϕ ∈ X . (4.18)

(d) Normal cone of X0. Note that X0 is a closed (convex) subspace of X and, thus, the
normal cone NX0(0) (in the sense of convex analysis) is obviously given by

NX0(0) = {b∗ ∈ X∗| 〈b∗, v〉 = 0 for all v ∈ X0} . (4.19)

(e) Nonsmooth Lagrange multiplier rule. Applying the Lagrange multiplier rule stated in
Proposition 5.1 below to the modified problem (4.10) - (4.12) we find λ, λ̃ ≥ 0, not both zero,
g∗ ∈ ∂ĝ(0), and b∗ ∈ NX0(0) such that

0 = λÊ′(0) + λ̃g∗ + b∗, λ̃ĝ(0) = λ̃g(u) = 0 . (4.20)

(4.13), (4.14), (4.18), and (4.19) readily imply the Euler-Lagrange equation (4.7) by d∗c(x, y) =
d∗(x, y) and µc = λ̃µ. If g(u) < 0, then λ̃ = 0 by (4.20) and, thus, µc = 0.

Let us now assume that λ = 0 while (4.8) is satisfied. Then µc 6= 0, i.e., there is x̃ ∈ Ω1
c(u)

such that µc(Bε(x̃)) > 0 for all ε > 0. We choose an open neighborhood U(x̃) such that (4.8) is
satisfied and a smooth function α : Ω̄1 → [0, 1] with α(x̃) = 0 and α(x) = 1 on Ω̄1 \ U(x̃). By a
separation argument we find some b ∈ R3 and β ∈ R with

0 < β ≤ 〈b, d〉 for all d ∈M

where M denotes the set given in (4.8). Recall that µx 6= 0 for all x ∈ U(x̃) by Lemma 4.6.
Equation (4.7) with the constant function ϕ2(y) = b and with ϕ1(x) = bα(x) now gives the
contradiction that

0 =
∫

Ω1
c(u)

∫
Ω2

c(u)
〈d∗(x, y), b− bα(x)〉 dµx(y) dµc(x)

=
∫

U(x̃)

∫
Ω2

c(u)
〈d∗(x, y), b− bα(x)〉 dµx(y) dµc(x)

≥
∫

U(x̃)

∫
Ω2

c(u)
β(1− α(x))dµx(y) dµc(x)

=
∫

U(x̃)
β(1− α(x))µx(Ω̄2) dµc(x) > 0 . (4.21)

Consequently λ > 0 and, by scaling, we can always obtain that λ = 1 which completes the proof
of Theorem 4.1. ♦

Proof of Lemma 4.4. By our assumptions the solution u has finite dilatation on Ω2 and there
is a small ε > 0 such that this property is preserved for all perturbations w = u + v with
v ∈ Bε(0) ⊂ X. Hence all these perturbations w are open mappings on Ω2 and, therefore, they
satisfy ∂w(Ω̄2) ⊂ w(∂Ω2) (cf. Section 2).
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It is sufficient to prove the Lipschitz continuity of d̂ separately in each variable, since always

|d̂(q, v)− d̂(q′, v′)| ≤ |d̂(q, v)− d̂(q′, v)|+ |d̂(q′, v)− d̂(q′, v′)| .

Note that d̂(·, v) is a (signed) distance function on R3 having Lipschitz constant 1, i.e., for fixed
v ∈ X,

|d̂(q, v)− d̂(q′, v)| ≤ |q − q′| for all q, q′ ∈ R3 .

It remains to study d̂(q, ·) for fixed q ∈ R3. For v, v′ ∈ Bε(0) we set w = u+ v, w′ = u+ v′. Then
the following cases are possible:

(a) q ∈ w(Ω̄2) ∩ w′(Ω̄2) ,
(b) q /∈ w(Ω̄2) ∪ w′(Ω̄2) ,
(c) q ∈ w(Ω̄2) ∩ w′(Ω̄2)c or, symmetrically, q ∈ w(Ω̄2)c ∩ w′(Ω2) .

Let us now successively treat the different cases.
Case (a). Without loss of generality we can assume that

d(q, w) = |q − w(x)| ≥ |q′ − w′(x′)| = d(q, w′) for some x, x′ ∈ ∂Ω2 .

Then we have

|d̂(q, v)− d̂(q, v′)| = |d(q, w)− d(q, w′)| = |q − w(x)| − |q − w′(x′)|
≤

∣∣|q − w(x′)| − |q − w′(x′)|
∣∣ ≤ |w(x′)− w′(x′)|

= |v(x′)− v′(x′)| ≤ ‖v − v′‖W1,∞ .

Case (b). This can be treated analogously to (a).
Case (c). We consider the case where q /∈ w′(Ω̄2) and q = w(x̃) for some x̃ ∈ Ω̄2. Then

|d(q, w)− d(q, w′)| = distw(∂Ω2)(q) + distw′(∂Ω2)(q) = |q − w(x)|+ |q − w′(x′)|

for suitable x, x′ ∈ ∂Ω2.
Assume now that % := distw′(∂Ω2)(q) > ‖w − w′‖L∞ . Thus w(Ω̄2) ⊂ B%(w′(Ω̄2)). Since w′ is

open, ∂w′(Ω̄2) ⊂ w′(∂Ω2). But this yields the contradiction that q = w(x̃) 6∈ B%(w′(Ω̄2)). Hence

distw′(∂Ω2)(q) ≤ ‖w − w′‖L∞ .

Consequently,

distw(∂Ω2)(q) = |q − w(x)| ≤ |q − w(x′)| ≤ |q − w′(x′)|+ |w′(x′)− w(x′)| ≤ 2‖w − w′‖L∞ .

Thus we finally get that

|d̂(q, v)− d̂(q, v′)| = |d(q, w)− d(q, w′)| ≤ 3‖w − w′‖L∞ ≤ 3‖v − v′‖W1,∞

which completes the proof of the lemma. ♦

Proof of Lemma 4.5. Obviously

d̂(q, v) = d̂(q′, v + q′ − q) for any q, q′ ∈ R3 .
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Thus, for q, q̃ ∈ R3, v, ṽ ∈ X,

d̂◦((q, v); (q̃, ṽ)) = lim sup
(q′,v′)→(q,v),t↘0

d̂(q′ + tq̃, v′ + tṽ)− d̂(q′, v′)
t

= lim sup
(q′,v′)→(q,v),t↘0

d̂(q, v′ + (q − q′) + t(ṽ − q̃))− d̂(q, v′ + q − q′)
t

= lim sup
w′→v,t↘0

d̂(q, w′ + t(ṽ − q̃))− d̂(q, w′)
t

= d◦q(v; ṽ − q̃)) (4.22)

which verifies (i).
Let us now prove (ii). First we assume that d̂∗ = (q∗, d∗) ∈ ∂d̂(q, v) ⊂ R3 × X∗. For all

(q̃, ṽ) ∈ R3 ×X we have that (cf. (5.1))

〈d̂∗, (q̃, ṽ)〉 = 〈q∗, q̃〉+ 〈d∗, ṽ〉 ≤ d̂◦((q, v); (q̃, ṽ)) = d◦q(v; ṽ − q̃) .

Inserting first the constant function ṽ = q̃ and then replacing (ṽ, q̃) = (q̃, q̃) with (−q̃,−q̃), we get
that

〈q∗, q̃〉 = −〈d∗, q̃〉 for all q̃ ∈ R3

by d◦q(v; 0) = 0. Therefore,

〈d∗, ṽ − q̃〉 ≤ d◦q(v; ṽ − q̃) for all (q̃, ṽ) ∈ R3 ×X

and, hence,
〈d∗, w̃〉 ≤ d◦q(v; w̃) for all w̃ ∈ X

which proves that d∗ ∈ ∂dq(v).
Now suppose that d∗ ∈ ∂dq(v). For all (q̃, ṽ) ∈ R3 ×X we have that

〈d∗, ṽ〉 − 〈d∗, q̃〉 = 〈d∗, ṽ − q̃〉 ≤ d◦q(v; ṽ − q̃) = d̂◦((q, v); (q̃, ṽ)) .

If we define d̂∗ := (q∗, d∗) ∈ (R3 ×X)∗ by

〈d̂∗, (q̃, ṽ)〉 = 〈(q∗, d∗), (q̃, ṽ)〉 = 〈q∗, q̃〉+ 〈d∗, ṽ〉 = −〈d∗, q̃〉+ 〈d∗, ṽ〉 ,

then we obtain d̂∗ ∈ ∂d̂(q, v) and (ii) is verified. ♦

Proof of Lemma 4.6. Since u2 has finite dilatation, it is an open mapping on Ω2. Thus every
neighborhood of q contains inner and exterior points of u(Ω̄2). Hence there are arbitrarily small
constant functions v(y) = q̃ with dq(v) 6= 0, i.e., int dq(0)−1 = ∅. Therefore

∂dq(0) = conv∗
{
d∗ ∈ X∗| d∗ ∈ clust∗(d∗j ), d

∗
j ∈ ∂dq(vj), vj → 0, dq(vj) 6= 0

}
. (4.23)

by Proposition 5.3. Let now {d∗j}, {vj} be sequences as in (4.23) and set wj := u + vj . To
characterize the gradients ∂dq(vj) we choose an open neighborhood U(0) ⊂ X and define

αy(v) := −|(u+ v)(y)− q| for v ∈ U(0), y ∈ ∂Ω2 .
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Then
dq(v) = sign d(q, u+ v) min

y∈∂Ω2

−αy(v) = −sign d(q, u+ v) max
y∈∂Ω2

αy(v) .

Obviously ∂Ω2 is a compact set, y → αy(v) is continuous on ∂Ω2 for all v ∈ U(0), and v → αy(v)
is Lipschitz continuous on U(0) with Lipschitz constant 1 for all y ∈ ∂Ω2. Since q /∈ wj(∂Ω2) by
dq(vj) 6= 0, we readily verify that αy(·) is continuously differentiable at vj for all y ∈ Γ(q, wj),
j ∈ N, with

〈α′y(vj), v〉 =
q − wj(x)
|q − wj(x)|

· v(x) .

Thus

∂αy(vj) =
{
− wj(y)− q

|wj(y)− q|

}
=

{
α′y(vj)

}
(4.24)

(cf. the arguments following (5.1)). Thus we can apply Clarke [8, Theorem 2.8.2] to obtain that

∂dq(vj) ⊂
{∫

∂Ω2

−sign d(q, u+ v) ∂αy(vj) dµj(y)
∣∣∣ µj ∈ R1[Γ(q, wj)]

}
(4.25)

with Γ(q, wj) as defined in (4.3). Using the notation from (4.4) we deduce that for every d∗j ∈
∂dq(vj) there is µj ∈ R1[Γ(q, wj)] such that

〈d∗j , v〉 =
∫

∂Ω2

v(y) · d∗(q, y, wj) dµj(y) for all v ∈ X (4.26)

where all integrals exist. By the unique polar decomposition the positive real measure µj , j ∈
N, coincides with the total variation |ωj | of the vector measure ωj := d∗(p, ·, wj)µj , since all
d∗(p, y, wj) are unit vectors (cf. Ambrosio et al. [2, p.14]). By the boundedness of the d∗(q, ·, wj)
and µj we find a (positive) real measure ν and a vector measure ω such that, at least for a
subsequence,

ωj
∗
⇀ω , µj

∗
⇀ν , ν ≥ |ω| (4.27)

in the sense of measures (cf.[2, p. 26, 28]). Using the polar decomposition ω = δ̄∗(·)|ω| (i.e., |ω|
is the total variation of ω and δ̄∗(·) is a |ω|-integrable function on ∂Ω2 with |δ̄∗(y)| = 1 for all y)
we obtain that

〈d∗j , v〉 =
∫

∂Ω2

v(y) ·dωj(y) →
∫

∂Ω2

v(y) ·dω(y) =
∫

∂Ω2

v(y) · δ̄∗(y) d|ω|(y) for all v ∈ X . (4.28)

Summarizing we can say that each sequence {d∗j} according to the right hand side in (4.23) has a
weak∗ convergent subsequence where the limit d∗ corresponds to a positive real measure |ω| and
a mapping δ̄∗(·) such that

〈d∗, v〉 =
∫

∂Ω2

v(y) · δ̄∗(y) d|ω|(y) for all v ∈ X . (4.29)

In addititon we can assign a measure ν to d∗ by (4.27). We have that

lim
ε↘0

ν(Bε(y))
|ω|(Bε(y))

=: η(y) ≥ 1 exists for |ω|-a.e. y ∈ supp |ω|

17



and that η(·) is |ω|-integrable (cf. [2, p. 54]). If we set

δ∗(y) :=
δ̄∗(y)
η(y)

, µ := η|ω| ,

then (4.29) becomes

〈d∗, v〉 =
∫

∂Ω2

v(y) · δ∗(y) dµ(y) for all v ∈ X . (4.30)

Moreover we have that

|ω|(Γ̃) ≤ ν(Γ̃) ≤ lim inf
j→∞

µj(Γ̃) for all (relatively) open sets Γ̃ ⊂ ∂Ω2 . (4.31)

Notice that µ equals the absolutely continuous part of ν and, thus, µ ∈ R≤1[∂Ω2] (cf. Evans &
Gariepy [10, p. 42]. We claim that

supp µ = supp |ω| ⊂ Γ(q, u) (4.32)

where the equality is obvious and for the inclusion we use the next lemma.

Lemma 4.7 For every ε > 0 there exists j0 = j0(ε) ∈ N such that for all j ≥ j0 we have

Γ(q, wj) ⊂ Bε(Γ(q, u)).

Proof of Lemma 4.7. Suppose there are ε̃ > 0 and a sequence {xj} of points xj ∈ Γ(q, wj)
such that dist(xj ,Γ(q, u)) ≥ ε̃ for all j ∈ N. Without loss of generality we can assume that
xj → x̄ ∈ ∂Ω2 \Γ(q, u). This implies that ε1 := |u(x̄)− q| > 0. By the uniform convergence of the
sequence vj we find some j1 ∈ N such that |wj(x) − u(x)| ≤ ε1/4 for all x ∈ ∂Ω2, j ≥ j1. Since
u is continuous there exists δ > 0 with u(Bδ(x̄) ∩ Ω̄2) ⊂ Bε1/4(u(x̄)). Moreover, we can choose
j2 ≥ j1 in order to get xj ∈ ∂Ω2 ∩Bδ(x̄) for all j ≥ j2. Then we obtain that

|wj(xj)− u(x̄)| ≤ |wj(xj)− u(xj)|+ |u(xj)− u(x̄)| ≤ ε1/4 + ε1/4 = ε1/2 (4.33)

and, hence,
|wj(xj)− q| ≥ |u(x̄)− q| − |wj(xj)− u(x̄)| ≥ ε1 − ε1/2 = ε1/2 (4.34)

for all j ≥ j2. On the other hand, for j ≥ j2 we know that

|wj(x̃)− q| = |wj(x̃)− u(x̃)| ≤ ε1/4 for all x̃ ∈ Γ(q, u) . (4.35)

Using (4.34), this implies that xj /∈ Γ(q, wj) which completes the proof. ♦

Let us now continue with the proof of Lemma 4.6 by supposing that (4.32) is wrong. Then
there exists y0 ∈ ∂Ω2\Γ(q, u) such that |ω|(Bε(y0)∩∂Ω2) > 0 for all ε > 0. Choose Γ̆ := Bε0(y0)∩
∂Ω2 with ε0 := dist(x0,Γ(q, u))/2 > 0. By Lemma 4.7 and (4.31) we get the contradiction that

0 < |ω|(Γ̆) ≤ lim
j→∞

µj(Γ̆) = 0 (4.36)

which verifies (4.32).

18



Let Gclust ⊂ X∗ denote the set on the right hand side in (4.23). By Glim ⊂ X∗ we denote the
set defined as Gclust but where d∗ ∈ clust∗(d∗j ) is replacecd with d∗j

∗
⇀d∗. Clearly Glim ⊂ Gclust.

Let us assume that Glim 6= Gclust. Since these weak∗ closed convex sets are uniquely determined
by their support functions on X (cf. Clarke [8, p. 29]), we find some ṽ ∈ X and d∗0 ∈ Gclust such
that

〈d∗, ṽ〉 < 〈d∗0, ṽ〉 for all d∗ ∈ Glim . (4.37)

Let d∗0 ∈ clust∗(d∗j ) according to the definition of Gclust. Then, for some subsequence, 〈d∗j′ , ṽ〉 →
〈d∗0, ṽ〉. By our previous investigations we find again a subsequence such that d∗j′′

∗
⇀d∗1 ∈ Glim

which contradicts (4.37). Hence Glim = Gclust, i.e., all elements d∗ ∈ ∂dq(0) have a structure as
given in (4.29) or, equivalently, in (4.30).

We now fix some d∗ ∈ ∂dq(0). According to our previous arguments we assign δ∗(·), µ, ν,
η(·), and sequences wj , µj such that (4.26), (4.28), and (4.30) are valid. We claim that

δ∗(y) ∈ D∗(q, u) for µ-a.e. y ∈ Γ(q, u) . (4.38)

Let us suppose the opposite, i.e, there exists a Lebesgue point y0 of δ∗ such that δ∗(y0) /∈ D∗(q, u).
Without loss of generality we can assume that y0 is also Lebesgue point of the µ-integrable function
η. Using the notation

Mσ := conv
⋃

‖v‖X≤σ

d(q,u+v) 6=0

⋃
y∈Γ(q,u+v)

d∗(q, y, u+ v) , σ > 0 , (4.39)

we thus find σ0 > 0 such that δ∗(y0) /∈ Mσ0 . Since Mσ0 is closed and convex, there are b ∈ R3

and β > 0 such that
〈b, δ∗(y0)〉 > 〈b, d∗〉+ β for all d∗ ∈Mσ0 (4.40)

by a separation argument. By wj = u+vj → u there is some j0 ∈ N with ‖vj‖ < σ0 for all j > j0.
Since µj/µj(Bε(y0)) is a probability measure on Bε(y0),∫

Bε(y0)
d∗(q, y, wj)

dµj(y)
µj(Bε(y0))

∈Mσ0 for all ε > 0, j > j0,

and, hence,

1
µj(Bε(y0))

∫
Bε(y0)

〈b, d∗(q, y, wj)〉dµj(y) < 〈b, δ∗(y0)〉 − β for all ε > 0, j > j0 . (4.41)

Since y0 is a Lebesgue point of δ∗ and η, we have that

1
µ(Bε(y0))

∫
Bε(y0))

〈b, δ∗(y)〉 dµ(y) ε→0−→ 〈b, δ∗(y0)〉 (4.42)

and

µ(Bε(y0))
ν(Bε(y0))

=
µ(Bε(y0))
|ω|(Bε(y0))

|ω|(Bε(y0))
ν(Bε(y0))

=
|ω|(Bε(y0))
ν(Bε(y0))

−
∫

Bε(y0)
η(y) d|ω|(y) ε→0−→ 1 . (4.43)

Certainly ν(∂Bε(y0)) = 0 for a.e. ε > 0 and, therefore,

1
µj(Bε(y0))

∫
Bε(y0)

〈b, d∗(q, y, wj)〉 dµj(y)
j→∞−→ 1

ν(Bε(y0))

∫
Bε(y0)

〈b, δ∗(y)〉 dµ(y) (4.44)
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by (4.27) for a.e. ε > 0 (cf. [2, p. 28]). By (4.42) and (4.43) there is ε0 > 0 such that

1
ν(Bε(y0))

∫
Bε(y0)

〈b, δ∗(y)〉 dµ(y) ≥ 〈b, δ∗(y0)〉 −
β

2

for a.e. 0 < ε < ε0. But this contradicts (4.41), (4.44) and verifies (4.38) and (4.17).
We now assume that 0 6∈ D∗(q, u) and argue similarly as in the verification of (4.38). Since

D∗(q, u) ⊂ R3 is a closed convex set, we find b ∈ R3 and β ∈ R such that

0 < β ≤ 〈b, d∗〉 for all d∗ ∈ D∗(q, u) .

By (4.28), (4.30) with the constant function ṽ(y) = b, and by the fact that all µj are probability
measures, we obtain that

0 < β ≤ b ·
∫

∂Ω2

d∗(q, y, wj) dµj(y) = 〈d∗j , ṽ〉 → 〈d∗, ṽ〉 = b ·
∫

∂Ω2

δ∗(y) dµ(y)

which excludes that µ = 0 and finishes the proof. ♦

Proof of Corollary 4.3. The function dO(·) is Lipschitz continuous on R3. IfMd ⊂ R3 denotes the
set of all points where the gradient DdO(q) exists, then R3\Md has measure zero by Rademacher’s
theorem. For the set O = u2(∂Ω2) having measure zero we obtain that

∂dO(q) = conv
{

lim
i→∞

DdO(qi)| qi → q, qi ∈ (Md \ O)
}

(4.45)

by Clarke [8, Theorem 2.5.1]. The next lemma characterizes the gradients DdO(q).

Lemma 4.8 Let dO be differentiable in q̃ ∈ R3 \ u2(∂Ω2). Then there exists an uniquely defined
vector q′ ∈ u2(∂Ω2) such that dO(q̃) = sign

(
dO(q̃)

)
|q̃ − q′|. Moreover

DdO(q̃) = sign
(
dO(q̃)

) q̃ − q′

|q̃ − q′|
. (4.46)

Proof of Lemma 4.8. It is sufficient to consider the case dO(q̃) > 0. By the compactness of O
and the continuity of dO there is some q′ with d := dO(q̃) = |q̃ − q′|. We define z(t) := q′ + b t

with b := (q̃ − q′)/d for t ∈ [0, d]. Then dO(z(t)) = |z(t) − q′| for all t ∈ [0, d] and, hence,
〈DdO(q̃), b〉 = 1. Since b is a unit vector and since |DdO(q̃)| ≤ 1 by the Lipschitz continuity of
dO with Lipschitz constant 1, we obtain that DdO(q̃) = b which implies the uniqueness of q′ and
(4.46). ♦

Let us continue with the proof of Corollary 4.3 by verifying (4.9). We fix any x ∈ Ω1
c(u) and

set q := u1(x). Now we choose sequences {qj} ⊂ (Md \ O) and {q′j} ⊂ O = u2(∂Ω2) such that

qj → q , dO(qj) = sign
(
dO(qj)

)
|qj − q′j | , sign

(
dO(qj)

) qj − q′j
|qj − q′j |

→ d̄ . (4.47)

Note that d̄ ∈ ∂dO(q) by (4.45) and Lemma 4.8. We claim that

−d̄ ∈ D∗(q, u) (4.48)
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which would imply (4.9) by (4.45), since D∗(q, u) is a closed convex set.
Let us consider the sequence of constant functions vj(x) := q − qj that belongs to X and,

obviously, vj → 0 in X by (4.47). Furthermore we find yj ∈ ∂Ω2 with q′j = u2(yj). For simplicity
of presentation we assume that qj ∈ u2(Ω2) for all j ∈ N, i.e., dO(qj) > 0 (otherwise we have to
multiply with “-1” occasionally). Using the translated sets Oj := O + q − qj we find that

d(q, u+ vj) = distOj (q) = dO(qj) = |qj − q′j | = |qj − u2(yj)| = |q −
(
u2(yj) + vj(yj)

)
| .

Hence yj ∈ Γ(q, u+ vj) and, by (4.4), (4.47),

d∗(q, yj , u+ vj) =
u2(yj) + vj(yj)− q

|u2(yj) + vj(yj)− q|
=

q′j − qj

|q′j − qj |
→ −d̄ .

This implies (4.48) by (4.5) and finishes the proof. ♦

5 Clarke’s generalized gradient

In this section we briefly summarize basic properties of Clarke’s generalized gradients for locally
Lipschitz continuous functions and we prove some auxiliary results we had used in our previous
analysis. For a more comprehensive presentation the reader is referred to Clarke [8].

Let X be a Banach space and f : X → R a locally Lipschitz continuous function. The
generalized directional derivative f◦(u;h) of f at u in the direction v is defined as

f◦(u; v) := lim sup
w→u, t↘0

f(w + tv)− f(w)
t

.

The mapping v → f◦(u; v) is positively homogeneous, subadditive and satisfies |f◦(u; v)| ≤ lf‖v‖
on X where lf is the Lipschitz constant of f near u.

The generalized gradient ∂f(u) of f at u is given by

∂f(u) := {f∗ ∈ X∗| 〈f∗, v〉 ≤ f◦(u; v) for all v ∈ X} . (5.1)

∂f(u) is a nonempty, convex and weak∗ compact subset of X∗ and it is bounded by the Lipschitz
constant lf . If f is continuously differentiable, then ∂f(u) is the singleton {f ′(u)}, whereas for
a convex f the set ∂f(u) agrees with the subdifferential of convex analysis. The next theorem
summarizes additional properties as necessary for our investigations. Here clust∗(f∗i ) ⊂ X∗

denotes the set of all weak∗ cluster points f∗ of the sequence {f∗i } ⊂ X∗, i.e., each neighborhood
of f∗ in the weak∗ topology contains infinitely many elements of the sequence. Recall that each
bounded sequence {f∗i } ⊂ X∗ has a weak∗ cluster point.

Proposition 5.1 Let f, g, gi : X → R, i = 1, . . . , n, be Lipschitz continuous near u ∈ X. Then:

(i) ∂(αf)(u) = α∂f(u) for all α ∈ R.

(ii) ∂
∑n

i=1 gi(u) ⊂
∑n

i=1 ∂gi(u).

(iii) If {ui} ⊂ X, {f∗i } ⊂ X∗ are sequences with f∗i ∈ ∂f(ui), ui → u and if f∗ ∈ clust∗(f∗i ),
then f∗ ∈ ∂f(u).
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(iv) (Chain Rule) Let Y be a Banach space, F : X → Y continuously differentiable at u ∈ X,
and g : Y → R Lipschitz continuous near F (u). Then f := g ◦ F is Lipschitz continuous
near u and

∂f(u) ⊂ ∂g(F (u)) ◦ F ′(u) ,

i.e., for f∗ ∈ ∂f(u) there exists g∗ ∈ ∂g(F (u)) such that

〈f∗, v〉 = 〈g∗ ◦ F ′(u), v〉 = 〈g∗, F ′(u)v〉Y ∗×Y for all v ∈ X .

(v) (Lebourgs Mean Value Theorem) Let f be Lipschitz continuous on an open neighborhood of
the line segment [u, v] for u, v ∈ X. Then there is w ∈ (u, v) and f∗ ∈ ∂f(w) such that

f(v)− f(u) = 〈f∗, w〉.

(vi) (Lagrange Multiplier Rule) If u is a local minimizer of f subject to the restrictions g(v) ≤ 0,
gi(v) = 0, i = 1, . . . , n, and u ∈ C for a closed subset C ⊂ X, then there exist constants λf ,
λ ≥ 0, and λi ∈ R, not all zero, such that

0 ∈ λf∂f(u) + λ∂g(u) +
n∑

i=1

λi∂gi(u) +NC(u) and λg(u) = 0

where
NC(u) := {v∗ ∈ X∗| 〈v∗, v〉 ≤ 0 for all v with dist◦C(u; v) = 0}

is the normal cone of C at u (it agrees with the normal cone of convex analysis if C is
convex).

Let us now characterize the generalized gradient of functions of the type

g(v) := max
x∈Ω

d(p(x, v)) . (5.2)

We assume that

(a) X, Y are Banach spaces, Ω is a metrizable sequentially compact topological space, U ⊂ X,
V ⊂ Y are open,

(b) p : Ω × U → V is continuous and v → p(x, v) is differentiable for all x ∈ Ω such that the
derivative pv(·, ·) is continuous on Ω× U ,

(c) d : V → R is Lipschitz continuous.

The function g is well defined by the compactness of Ω and we introduce the nonempty closed set

Ω(v) := {x ∈ Ω| g(v) = d(p(x, v))} .

Proposition 5.2 Assume that (a)-(c) hold. Then the function g given by (5.2) is locally Lipschitz
continuous on U and

∂g(v) ⊂
{∫

Ω
∂d(p(x, v)) ◦ pv(x, v) dρ(x)

∣∣ ρ ∈ R[Ω(v)]
}

for all v ∈ U (5.3)
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where the set on the right hand side consists of all elements g∗ ∈ X∗ that correspond to a mapping
d∗ : Ω → Y ∗ with d∗(x) ∈ ∂d(p(x, v)) and a measure ρ ∈ R[Ω] supported on Ω(v) such that

x→ 〈d∗(x) ◦ pv(x, v), w〉 = 〈d∗(x), pv(x, v)w〉

is ρ-integrable for all w ∈ X and

〈g∗, w〉 =
∫

Ω
〈d∗(x), pv(x, v)w〉 dρ(x) for all w ∈ X .

The previous result generalizes Schuricht [16, Proposition 6.10] so far that the reflexivity of
Y is dropped. Before we carry out the proof we still formulate a characterization of ∂f(u) by
means of the sets ∂f(v) for v with f(v) 6= f(u).

Proposition 5.3 Let f : X → R be locally Lipschitz continuous with f(u) = 0.
(a) If u 6∈ int (f−1(0)), then

∂f(u) = conv∗
{
u∗ ∈ X∗| u∗ ∈ clust∗(u∗j ), u

∗
j ∈ ∂f(uj), uj → u, f(uj) 6= 0

}
.

(b) If u ∈ int (f−1(0)), then

∂f(u) = conv∗
(
{0} ∪

{
u∗ ∈ X∗| u∗ ∈ clust∗(u∗j ), u

∗
j ∈ ∂f(uj), uj → u, f(uj) 6= 0

} )
.

Proof of Proposition 5.2. We consider the functionals

fx : X → R defined by fx(v) := d(p(x, v)) , v ∈ U ,

depending on the parameter x ∈ Ω. As in Clarke [8, Chapter 2.8] we define a generalized gradient
taking into account the parameters by

∂[Ω]fx(v) := conv∗{f∗ ∈ X∗| f∗ ∈ clust∗(f∗i ), f∗i ∈ ∂fxi(vi), vi → v, xi → x, xi ∈ Ω} . (5.4)

Since fx(·) is locally Lipschitz continuous on U for all x ∈ Ω, this gradient is well defined and we
readily get that

∂fx(v) ⊂ ∂[Ω]fx(v) for all v ∈ U .

Clarke [8, Theorem 2.8.2] implies that

∂g(v) ⊂
{∫

Ω
∂[Ω]fx(v) dρ(x)

∣∣ ρ ∈ R[Ω(v)]
}

for all v ∈ U . We claim to show that

∂[Ω]fx(v) ⊂ ∂d(p(x, v)) ◦ pv(x, v) (5.5)

which would complete the proof of the proposition.
By definition ∂[Ω]fx(v) is the weak∗ closed convex hull of the set F ∗ consisting of all f∗ ∈ X∗

such that
f∗ ∈ clust∗(f∗k ) where f∗k ∈ ∂fxk

(vk), vk → v, xk → x, xk ∈ Ω . (5.6)
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Since the generalized gradient ∂d(p(x, v)) ⊂ Y ∗ is convex and weak∗ compact, the set ∂d(p(x, v))◦
pv(x, v) ⊂ X∗ is convex and weak∗ closed. Hence (5.5) is verified if

F ∗ ⊂ ∂d(p(x, v)) ◦ pv(x, v) (5.7)

can be shown. For this reason let us assume that there is f∗ ∈ F ∗ with f∗ 6∈ ∂d(p(x, v))◦pv(x, v).
Using a convex separation argument we find some w ∈ X such that

〈f∗, w〉 < 〈d∗ ◦ pv(x, v), w〉 for all d∗ ∈ ∂d(p(x, v)) . (5.8)

Since f∗ is a weak∗ cluster point of a sequence {f∗k} based on sequences {vk}, {xk} according to
(5.6), we have that (possibly for a subsequence)

lim
k→∞

〈f∗k , w〉 = 〈f∗, w〉 .

The chain rule in Proposition 5.1 implies that

∂fx(v) ⊂ ∂d(p(x, v)) ◦ pv(x, v) for all v ∈ U, x ∈ Ω .

Hence there are d∗k ∈ ∂d(p(xk, vk)) such that

f∗k = d∗k ◦ pv(xk, vk) , k ∈ N .

The sets ∂d(p(xk, vk)) ⊂ Y ∗ are uniformly bounded, since d(·) is Lipschitz continuous by assump-
tion (c). Hence {d∗k} is bounded in Y ∗ and has a weak∗ cluster point d∗ ∈ Y ∗. Therefore we can
find a subsequence (denoted the same way) such that

lim
k→∞

〈d∗k, pv(x, v)w〉 = 〈d∗, pv(x, v)w〉 .

Using the continuity of pv(·, ·) and the boundedness of {d∗k} we obtain that

〈f∗, w〉 = lim
k→∞

〈f∗k , w〉 = lim
k→∞

〈d∗k, pv(xk, vk)w〉

= lim
k→∞

(
〈d∗k, pv(x, v)w〉+ 〈d∗k, (pv(xk, vk)− pv(x, v))w〉

)
= 〈d∗, pv(x, v)w〉 . (5.9)

By Proposition 5.1, (iii) and by the construction of d∗ we know that d∗ ∈ ∂d(p(x, v)) contradicting
(5.8). But this verifies (5.7) and finishes the proof. ♦

Proof of Proposition 5.3.
(a) We set

S(u) = conv∗
{
u∗ ∈ X∗| u∗ ∈ clust∗(u∗j ), u

∗
j ∈ ∂f(uj), uj → u, f(uj) 6= 0

}
and, obviously, S(u) ⊂ ∂f(u) by Proposition 5.1, (iii). For the opposite inclusion it is enough to
show that for each v ∈ X there is some u∗ ∈ S(u) with

f◦(u; v) ≤ 〈u∗, v〉 . (5.10)
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For that we fix v ∈ X and we choose corresponding sequences uj → u, tj ↘ 0 such that tj+1 < tj ,
j ∈ N, and

lim
j→∞

f(uj + tjv)− f(uj)
tj

= f◦(u; v) .

Below we distinguish a finite number of cases for the signs of f(uj) and f(uj + tjv), i.e., at least
one of the cases has to be met by infinitely many elements. Thus we argue for a corresponding
subsequence in each case.

(a1) Let f(uj) ≥ 0, f(uj + tjv) > 0. By τj we denote the minimal τ ∈ [0, tj) such that
f(uj + sv) > 0 for any s ∈ (τ, tj ]. By the mean value theorem (cf. Proposition 5.1) we find
sj ∈ (τj , t) and u∗j ∈ ∂f(uj + sjv) such that

f(uj + tjv)− f(uj)
tj

≤ f(uj + tjv)− f(uj + τjv)
tj − τj

= 〈u∗j , v〉 .

The sequence {u∗j} is bounded by the Lipschitz continuity of f near u and, therefore, it has a
weak∗ cluster point u∗ that clearly belongs to S(u). Then (5.10) follows in this case.

(a2) Let f(uj) < 0, f(uj + tjv) ≤ 0. Similar arguments as in (a1) apply.
(a3) Let f(uj) < 0 < f(uj + tjv). There exists τj ∈ (0, tj) such that f(uj + τjv) = 0. We have

either
f(uj + tjv)− f(uj)

tj
≤ f(uj + tjv)− f(uj + τjv)

tj − τj

or
f(uj + tjv)− f(uj)

tj
≤ f(uj + τjv)− f(uj)

τj
.

In the first case we are reduced to (a1) and in the second case to (a2).
(a4) Let f(uj) = f(uj + tjv) = 0. We choose a sequence vj = v + wj such that wj → 0 and

f(uj + 1
2 tjvj) 6= 0. This is possible, because u 6∈ int(f−1(0)). If f(uj + 1

2 tjvj) > 0 we find, as in
(a1), some u∗j ∈ ∂f(uj + sjvj) with f(uj + sjvj) 6= 0, sj ∈ (0, tj) such that

f(uj + tjv)− f(uj)
tj

≤
f(uj + 1

2 tjvj)− f(uj)
1
2 tj

= 〈u∗j , v + wj〉 .

Otherwise, if f(uj + 1
2 tjvj) < 0, we argue as in (a2) to find some u∗j ∈ ∂f(uj + sjvj) with

f(uj + sjvj) 6= 0, sj ∈ (0, tj) such that

f(uj + tjv)− f(uj)
tj

≤
f(uj + tjv)− f(uj + 1

2 tjvj)
1
2 tj

= 〈u∗j , v − wj〉 .

Now (5.10) follows as in (a1).
(a5) Let f(uj) > 0 ≥ f(uj + tjv) or f(uj) ≥ 0 > f(uj + tjv). By τ j and τ j we denote

the minimal and the maximal τ ∈ [0, tj ] such that f(uj + τv) = 0. If τ j < τ j at least for a
subsequence, then we have

f(uj + tjv)− f(uj)
tj

≤
f(uj + τ jv)− f(uj + τ jv)

τ j − τ j

and we are reduced to case (a4). Otherwise let τj := τ j = τ j for almost all elements.
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If 0 < τj < tj , we find sj ∈ (0, τj), v∗j ∈ ∂f(uj + sjv), sj ∈ (τj , tj) and w∗j ∈ ∂f(uj + sjv) such
that

f(uj + tjv)− f(uj)
tj

=
f(uj + tjv)− f(uj + τjv)

tj
+
f(uj + τjv)− f(uj)

tj
=

=
tj − τj
tj

〈v∗j , v〉+
τj
tj
〈w∗j , v〉 .

If τj = 0 or τj = tj , the argument is similar with some obvious simplifications. As before we
find weak∗ cluster points v∗, w∗ of {v∗j }, {w∗j}, respectively, and, possibly for a subsequence,
τj

tj
→ λ ∈ [0, 1] and tj−τj

tj
→ 1 − λ. Since (1 − λ)v∗ + λw∗ ∈ S(u), (5.10) follows and completes

the proof of (a).
(b) Since 0 belongs to the right hand side, it is enough to consider the case

lim
j

f(uj + tjv)− f(uj)
tj

> 0 .

Here we can apply cases (a1), (a2), (a3), where the assumption u 6∈ int(f−1(0)) is not needed. ♦
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