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Abstract

The investigation of contact interactions, such as traction and heat flux, that are exerted by
contiguous bodies across the common boundary is a fundamental issue in continuum physics.
However, the traditional theory of stress established by Cauchy and extended by Noll and his
successors is insufficient for handling the lack of regularity in continuum physics due to shocks,
corner singularities, and fracture. This paper provides a new mathematical foundation for
the treatment of contact interactions. Based on mild physically motivated postulates, which
differ essentially from those used before, the existence of a corresponding interaction tensor is
established. While in earlier treatments contact interactions are basically defined on surfaces,
here contact interactions are rigorously considered as maps on pairs of subbodies. This allows
the action exerted on a subbody to be defined not only, as usual, for sets with a sufficiently
regular boundary, but also for Borel sets (which include all open and all closed sets). In
addition to the classical representation of such interactions by means of integrals on smooth
surfaces, a general representation using the distributional divergence of the tensor is derived.
In the case where concentrations occur, this new approach allows a more precise description
of contact phenomena than before.
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1 Introduction

It is a widespread belief even today that classical mechanics is a dead
subject, that its foundations were made clear long ago, and that all that
remains to be done is to solve special problems. This is not so.

Walter Noll (1959, [37])

In continuum physics the underlying laws have to be satisfied not only for an entire body
but also for all of its parts. Typically, these laws account for interactions between contiguous
parts exerted across the common boundary involving contact forces, heat flux, entropy flux,
and electromagnetic fields. It turns out that all these phenomena have the same nature. Cauchy
discovered in 1823 that such contact interactions depend linearly on the normal field of the surface
on which they act. More precisely, there is a tensor field τ independent of the normal field such
that the interaction f(S) between two parts of the body having the common boundary S can be
represented by

f(S) =
∫

S
τ · ν da (1.1)

where ν denotes the unit normal to S and a is a suitable surface measure. This famous observation
had been fundamental not only for the understanding of contact interactions but also for the whole
theory of continuum physics (cf. [8, 9]). Contact phenomena as mentioned above are called
contact interactions in our presentation to preserve generality while it is sufficient to consider
f(S) just as a surface traction in continuum mechanics or as a heat flux in thermodynamics.
For accounts of Cauchy’s proof based on his celebrated tetrahedron argument see Antman [2],
Ciarlet [14], Gurtin [22], Truesdell [60], and Zeidler [65].

Fifty years ago Noll began his seminal effort to establish a theoretical foundation for continuum
physics that is based on simple physically motivated but mathematically precise postulates. His
sophisticated characterization of contact phenomena had to resolve two essential questions:

(1) How can the nature of contact interactions be effectively described with simple physically
motivated hypotheses?

(2) What is a body and what is an appropriate class of subbodies?

Since the advantages of Cauchy’s powerful result should not be given up, the answers to these
questions have to resolve the conflict between simple postulates and the analytical requirements
that are necessary for the derivation of the tensorial structure according to (1.1). Here regularity
assumptions on the interaction f and on the boundaries of the subbodies, reflecting the devel-
opment of analytical methods, play a central role. As it is pointed out below, these regularity
assumptions have been weakened more and more during the last decades. Nevertheless, we have
to realize that the traditional theory of stress established by Cauchy and his successors is insuf-
ficient for present needs in modern continuum physics where one has to handle singularities that
are naturally present in shocks, corners, contact of bodies, and fracture. To be able to describe
these phenomena in further detail we not only have to weaken restrictions of regularity, but
we also need a richer structure within the theory. According to Noll the decision under what
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conditions the tensorial structure of contact interactions can be derived is “perhaps the hardest
problem of the mathematical foundations of continuum physics” [40, p. 27]. Here we provide a
new approach to this task: We not only propose a completely new set of postulates characterizing
contact interactions but we also lay down the foundation for a much richer theory than before, a
theory better able to deal with singular behavior in continuum physics.

Foundations of the present theory. Let us call the parts of the entire body under con-
sideration subbodies. It would seem to be natural that an interaction between two subbodies in
contact that is exerted across the common boundary should be described by a mapping f defined
on a suitable class S of surfaces. While question (1) is related to the properties of such a mapping
f , question (2) is related to the domain on which it should be defined, since S is understood to
be a collection of parts of the boundaries of subbodies. The basic assumption that f should be
additive with respect to disjoint decompositions of its argument, i.e., f(S1 ∪S2) = f(S1) + f(S2)
whenever S1 ∩ S2 = ∅, is eminently natural by virtue of its simplicity and its agreement with
experience. Consequently, it is both conceptually and analytically reasonable to suppose that
the collection B of subbodies should be something like an algebra of sets which always contains
finite unions, finite intersections, and the complement of its elements. These simple structural
conditions are usually supplemented with requirements on the regularity of f and the boundaries
of the elements of B. During the past half century the regularity assumptions have been weakened
more and more. A further substantial structural condition is contained only in Cauchy’s famous
theorem itself with the additional postulate that contact forces in continuum mechanics should
depend on the shape of a surface merely through its normal field. While this condition caused
some speculations whether a realistic theory should take into account further properties of the
shape of the surfaces, in 1959 Noll [37, Theorem IV] derived Cauchy’s postulate essentially as
a consequence of the balance of linear momentum.

The regularity assumptions imposed on the mapping f concern essentially the representation
or estimate of f(S), S ∈ S, by means of surface densities (possibly combined with smoothness
requirements) and suitable balance laws. This should ensure the existence of a tensor field τ such
that the interaction f(S) between two subbodies having the common boundary S ∈ S can be
represented as in (1.1). The desire to have such a formula enforces the limitation of the domain
of f to sufficiently regular surfaces S that possess a normal field and, thus, B should contain only
subbodies with a correspondingly regular boundary.

The selection of a suitable class of subbodies raises an apparent conceptual difficulty. At
first glance it seems reasonable that a subbody B ∈ B should contain its boundary ∂B, since
otherwise the common surface S of two contiguous bodies, which appears to be the fundamental
object for the contact interaction, just does not exist. On the other hand, we have already argued
that B should be something like an algebra of sets and, as complements of “closed” subbodies,
we would get “open” subbodies. Then we had to decide whether “open” subbodies with common
boundaries can exert a contact interaction on each other and whether it might be the same as
that for the corresponding “closed” subbodies. If we say that it does not matter whether the
boundary belongs to B or not, then we have to clarify subsequent questions as, e.g., whether the
union of two “open” subbodies is the same as the union of the corresponding “closed” subbodies.
Notice that these difficulties are manifestations of the tacitly assumed symmetry that the role of
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the two touching subbodies should be interchangeable. Furthermore, they imply that the class
B of subbodies can merely assumed to be a Boolean algebra (cf. Sikorski [53]), which is like
an algebra of sets but where, roughly speaking, the union and the intersection are more general
operators that do not precisely account for boundary points.

Historical development. Let us now outline the development begun by Noll fifty years
ago. While the relevant results were formulated partially in terms of continuum mechanics and
of thermodynamics, the essential ideas apply to all cases where contact interactions occur. The
original idea of Noll [37] in 1959 is that subbodies of a given body correspond to sets with a
piecewise smooth boundary, that contact forces correspond to vector-valued surface measures on
the boundaries of subbodies with bounded integrable surface densities, and that all other forces
are so-called body forces corresponding to measures with bounded volume densities. Furthermore,
it was assumed that forces should be balanced, i.e., they satisfy a balance law as, e.g., the balance
of linear momentum. This implies that the resultant contact force exerted on subbodies by the
surrounding material is a measure that is also assumed to possess an integrable volume density.

In 1966 Noll [38] extended his axiomatic treatment and proposed that a system of subbodies
should have the structure of a Boolean algebra for the reasons mentioned above. Certainly a usual
algebra of sets as, e.g., the set of all Borel sets (that contains countable unions and intersections
of open and closed sets) or the set of all subsets would have this structure. But in view of
the conceptual difficulty concerning the boundary of subbodies mentioned above, these algebras
had been considered to be unreasonable for the treatment of contact forces. Taking account of
the additional analytical desideratum of having a divergence theorem available, he assumed that
subbodies correspond to closures of open sets with a piecewise smooth boundary. Unfortunately,
such a system is not closed under intersections. Moreover, neither the regular regions of Kellogg

[30] nor the standard domains of Whitney [62] have this closedness property, which is needed
in the analysis. Since the problem of defining classes of subbodies that are closed under set-
theoretic operations could not be solved for many years, a concrete example for a system of
subbodies satisfying all of Noll’s axioms had long been unavailable (cf. also Noll [39, 40]).

Based on his specific postulates for subbodies, Noll [38] also proposed that a force f should
be defined on pairs of (disjoint) subbodies where f(B,A) stands for the resultant force exerted
on B by A. Intuitively, f should be additive in both arguments at least with respect to finite
disjoint decompositions. Noll [39] called such an f an interaction to cover phenomena such as
heat and entropy flux in thermodynamics. As a fundamental hypothesis it was assumed that
only two kinds of interactions can occur: contact interactions fc and body interactions fb. Here
fc(B,A) is supposed to depend merely on the common surface S of A, B and to be bounded by
a multiple of the surface area of S. For fb the second argument is in fact considered to be a fixed
external body E and fb(·, E) is supposed to be an absolutely continuous volume measure on the
whole body. Under these conditions, the representation of a contact force by means of a tensor
as in (1.1) could be demonstrated and, analogously, the tensorial structure of the heat and the
entropy flux in thermodynamics could be derived by Gurtin & Williams in [26, 63, 27]. Some
continuity requirement on the densities of the traction field that was necessary in the treatment
of Cauchy appeared to be artificial and had often been discussed in the literature (cf. Noll

[37, 39]). This continuity condition could be replaced by a much more reasonable integrability
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condition by Gurtin, Mizel & Williams [25]. A presentation of the development at this stage
and discussions of open questions can be found in Noll [40], Gurtin [23], and in the book of
Truesdell [60].

It became increasingly clear that the understanding of contact interactions is one of the
crucial challenges in a mathematically precise approach to continuum physics. In this light the
treatment of Gurtin & Martins [24] in 1976 can be considered as an extraction of the essential
ingredients. They circumvented the difficulties with a system of subbodies by the restriction to
planar polygonal surfaces and they introduced the notion of a Cauchy flux as an additive mapping
f on surfaces such that, with a constant c > 0,

|f(S)| ≤ c area(S) , |f(∂B)| ≤ c volume(B) (1.2)

for all surfaces S and all subbodies B. In this way the total force f(S) is considered as the basic
concept (rather than its density) and the classical representation formula (1.1) could be verified
for each Cauchy flux.

The next major step in the development was the introduction of sets of finite perimeter as
a system of subbodies by Banfi & Fabrizio [4, 5] in 1979 and Ziemer [66] in 1983. These
sets seem to be an optimal choice for the treatment of contact interactions, since they possess a
normal almost everywhere on their (measure-theoretic) boundary and, thus, they allow represen-
tations as in (1.1) for all surfaces that are parts of the (measure-theoretic) boundaries of sets of
finite perimeter. Furthermore Gurtin, Williams & Ziemer [28] showed that the subclass of
normalized sets of finite perimeter (i.e., sets that coincide with their measure-theoretic interior)
form a Boolean algebra and, therefore, satisfy all of Noll’s axioms for subbodies. On the other
hand, it turned out in [24] that it is sufficient for the derivation of the tensorial structure of a
contact interaction as in (1.1) to consider the quite small class of subbodies having piecewise
planar polygonal boundaries. Noll & Virga [42] proposed the class of fit regions for subbodies
(bounded regularly open sets with finite perimeter and negligible boundary) which lies somewhere
in between the previously mentioned classes. How rich a system of subbodies should be has been
a constantly discussed question and, according to Noll & Virga [42, p. 2], it should “... include
all that can possibly be imagined by an engineer but exclude those that can be dreamt up only
by an ingenious mathematician”. Certainly there is no objective answer to this question. From
A. Einstein we learn that: “Everything should be made as simple as possible, but not simpler.”
The mathematical analysis tells us that a contact interaction considered on a very small class of
subbodies is already sufficient to derive its tensorial structure according to (1.1). But then the
representation formula (1.1) can be extended to a very rich class of subbodies, and one might even
ask for the largest class allowing such an extension. This strategy of starting with a small class
and ending up with a rich class will be adopted in the new approach to be presented in this paper.
It seems to be the only way to get additional information about the nature of contact interactions
that might be necessary for the treatment of severe singularities in modern continuum physics.
Moreover, it allows a subsequent selection of a smaller class of subbodies that is sufficient for
special needs. For a discussion of relevant problems we refer to Williams [64].

The papers of Šilhavý [54, 55] in 1985 and 1991 extended the previous results for Cauchy
fluxes f satisfying (1.2) to those for which there are Lp-functions g, h with p ≥ 1, such that f
merely satisfies
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|f(S)| ≤
∫

S
h d(area) , |f(∂B)| ≤

∫
B
g d(volume) . (1.3)

It turned out that the tensor fields τ obtained under these conditions are exactly those whose
distributional divergences are integrable. This generality means that the tensorial representation
in (1.1) might be well-defined only for “almost all surfaces”, a fact that already had been observed
by Antman & Osborn [3] (cf. also Ziemer [66]). As a byproduct of his new methods, Šilhavý
also generalized the results of [3] about the equivalence between an integral balance law and the
principle of virtual power (which corresponds to the weak form of the balance equation).

In many contact problems for elastic bodies concentrated forces occur naturally. Since such
forces are usually unknowns of the problem, they have to be assumed to correspond to a measure
in general (cf. Schuricht [45, 48, 46, 47]). But also in the presence of corners and shocks,
such a generality is necessary for a rigorous treatment. According to Noll [37, p. 281] a
theory for continuous bodies should allow the treatment of such concentrations and in 1999,
Degiovanni, Marzocchi & Musesti [15] were able to extend the theory to this generality by
replacing the absolutely continuous volume measure corresponding to g in (1.3) with an arbitrary
Radon measure (cf. also the papers of de Botton, Rodnay, and Segev mentioned below). They in
particular showed that a Cauchy flux is already determined by its knowledge on almost all planar
rectangular surfaces whose edges are parallel to the axes of a basis. However, the interesting
surfaces where concentrations occur had to be disregarded as faces of subbodies. It turned out
that the tensor fields τ whose distributional divergence is a measure have to be taken into account
for representations as in (1.1). A comprehensive investigation of this class of tensor fields can
be found in Chen & Frid [10, 11, 12], Chen & Torres [13], and Šilhavý [56]. Here the
existence of a normal trace is studied also for surfaces where concentrations may occur and, to
some extent, even tensors τ that are measures are taken into account. In a series of papers,
Marzocchi & Musesti have refined the results of [15] where the decomposition of general
interactions into a body and a contact part (in analogy to [26, 28]) and corresponding structural
properties are investigated in [31], thermodynamical aspects are treated in [32], a more general
class of bodies is studied in [34], and the treatment of boundary conditions is considered in
[35]. For the investigation of concentrated forces in the framework of linear elasticity we refer
to the papers of Boussinesq [6], Flamant [19], Kelvin [59], Sternberg & Eubanks [58],
Turteltaub & Sternberg [61], and references therein.

An alternative, but possibly less powerful approach, for the derivation of Cauchy’s theorem
by using variations of the subbodies was presented by Fosdick & Virga [20]. A completely
different treatment relying on the principle of virtual power can be found in a series of papers
by de Botton, Rodnay, and Segev [49, 51, 52, 50, 44] and by Degiovanni, Marzocchi,

and Musesti [33, 16]. While the usual theory of stress is obtained if the powers are assumed
to depend on the first derivative of the velocity field, also powers depending on higher-order
derivatives of the velocity field and leading to higher-order stresses are considered. However the
interpretation of such higher-order stresses as, e.g., edge-force densities, does not yet seem to be
completely clarified. Moreover, the theory is developed on general manifolds within a geometric
framework in [49, 51, 52, 50, 44]. The definition of subbodies in relation to fracture and to contact
of different bodies is investigated by Noll [41].
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Present problems. After this overview let us comment on some problems of the theory
at the present stage. Normalized sets of finite perimeter seem to be the class that is generally
accepted as system for subbodies today. But in the light of our previous discussion about the
selection of a suitable class of subbodies, each normalized set in fact represents a collection of
subsets differing only by boundary points and we have not yet resolved the questions raised there.
This does not matter as long as no concentrations occur. But let us consider a force exerted at
a single point of a body, a situation that is covered by the treatment of [15] to the extent that
external forces of that kind are taken into account while surfaces subject to such concentrations
are disregarded for defining traction (cf. also [56]). If we cut this body into two pieces just
through that point, then there is no criterion to decide whether this point belongs to the left or
to the right piece, i.e., the point has either to disappear or we have to count it twice. However
both possibilities are inconsistent with the additivity of forces (cf. Figure 1).

B BB

?

(a) (b)

1 2

Figure 1: (a) A concentrated force is exerted to a boundary point of the “open” body B. (b)
Body B is decomposed into two “open” subbodies B1, B2 where the cutting surface “disappears”
and one cannot decide on which part the force is exerted.

Hence we should look for a way to “take care” of each point. If we consider the tensor field
corresponding to such a singular force, then the divergence has to be a measure with a concen-
tration at the single point. For such a tensor field we can formally compute the traction that
is exerted by the surrounding material on small cones with vertices at the points of concentra-
tion. Such computations suggest that the material of such cones contributes to the balance of
the concentrated force while the contribution depends on the opening angle of the special cone
(cf. Podio-Guidugli [43] and Example 2 below). Thus we have to realize that a Cauchy flux
defined on surfaces is not capable of describing this situation in detail. For concentrated forces
the physical motivation for a condition like the first estimate in (1.3), which is assumed to hold
for almost all surfaces, also has to be called into question. Finally, we might ask whether nature
“knows” normals, i.e., whether it is natural to define contact interactions only on surfaces that
possess a normal field.

God does not care about our mathematical dificulties; He integrates empirically.

Albert Einstein [29]

Ideas of the new approach. Previous treatments of contact interactions had always em-
ployed, at least tacitly, the usual concept that a contact interaction should be something that is
basically defined on surfaces. Notice that this concept expresses the symmetry that the role of two

8



contiguous interacting bodies should be somehow interchangeable. The essential starting point
for our effort to resolve the problems mentioned in the previous paragraph about concentrated
contact forces is that we drop this ubiquitous assumption and the corresponding symmetry! We
rigorously consider a contact interaction f as defined on pairs of subbodies. In particular we do
not assume, as usual, that their intersections contain at most boundary points or that the com-
mon “contact surfaces” have to have a normal field. While the disjoint additivity of f in both
arguments is natural from the physical point of view, σ-additivity (i.e., countable additivity)
would be desirable from the analytical point of view in order to use the powerful machinery of
measure and integration theory. However, it turns out that σ-additivity can merely be employed
for f(·, A). This manifests the fundamental asymmetry of f(B,A) that the role of the subbody
A exerting an action on B differs from that of the subbody B resisting an action from A, i.e., the
action f(·, A) of A is of a different nature than the reaction f(B, ·) of B. As a system of sub-
bodies we select the Borel sets or a suitable subalgebra thereof where unions, intersections, and
complements are understood in the usual set-theoretic sense. Thus we assign boundary points
precisely to subbodies, and the difficulties mentioned above about which of two subbodies in
contact owns the common boundary vanish. In the development given here, we have no need for
Boolean algebras that are not algebras of sets, and the previous problems appear to be artificial.

The most important question now is to construct a simple and physically natural charac-
terization of contact interactions. Clearly a contact interaction should vanish if the subbodies
do not touch (cf. Noll [40]). Furthermore, Noll’s “Principle of Local Action” [38, p. 199],
formerly called “Principle of Determinism” [36, p. 209], states that the stress at a point should
depend only on the response of the material within any arbitrarily small neighborhood of it.
While this principle had been formulated as a guiding principle for constitutive laws, we will use
it to characterize contact interactions by postulating that the action exerted on a subbody B by
a subbody A merely depends on those parts of A outside of B that lie within an arbitrarily small
neighborhood of B (cf. Figure 2).

B A

Figure 2: The action exerted on subbody B (solid line) by subbody A (dashed line) merely
depends on that material of A which corresponds to the grey region where this region can be
chosen to lie within an arbitrarily small (dotted) neighborhood of B.

This simple central condition will only be supplemented by the demand that the material corre-
sponding to a set of measure zero cannot exert a nontrivial action and that a nontrivial interaction
can be detected by the reactions of the surrounding material even if we disregard the material cor-
responding to a set of measure zero. Both conditions exclude certain singular cases. In particular,
we obtain that a single point can resist but cannot exert a nontrivial action, which again expresses
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the fundamental asymmetry of f . Combined with a natural boundedness condition these quite
mild postulates allow the derivation of a corresponding integrable tensor field τ characterizing
the contact interaction. For subsets B with a “nice” boundary the action f(B,A) exerted on B

by A can be represented in the usual way as in (1.1) as long as no concentration occurs. This
classical formula can be extended, e.g., to all closed sets B in the sense of a normal trace. But
the theory delivers the interaction f(B,A) even for B that are much “worse”, since f(B,A) is
well-defined for all Borel subsets B. For the general case we derive the new fundamental repre-
sentation formula, which can be considered as replacement for Cauchy’s classical formula (1.1),
that

f(B,A) = (div τA)(B) with τA :=

{
τ on A,
0 otherwise,

(1.4)

for all B ∈ B, A ∈ A where A ⊂ B is a suitable subalgebra and where the distributional
divergence div τA has to be understood as a measure. Note that neither surfaces nor normals
enter this formula. In the case where a single point resists a nontrivial action, we can exactly
identify the contribution of each part of the surrounding material. The foundation for contact
interacions in continuum physics presented here differs from earlier theories by giving a more
precise and general description that removes certain discrepancies.

In Section 2 different systems of subbodies are introduced, general interactions are defined, and
extensions, restrictions, and sums of interactions are discussed. The central notion of a contact
interaction is introduced in Section 3 and basic properties are stated. The central assertion that
a contact interaction can be represented by means of a tensor field can be found in Section 4.
The derived tensor field corresponds to the material or to the spatial description if the underlying
contact interaction is related to the reference configuration or to the present state, respectively.
The proof rests essentially on measure-theoretic arguments; the major difficulty is to verify some
measurability properties that are necessary for the application of disintegration arguments for
the construction of the tensor field. Section 5 shows that the distributional divergence of the
tensor field and of suitable restrictions of it are measures. This then allows the derivation of
not only the usual but also of new representation formulas for f(B,A) for suitable sets B and
the equivalence of corresponding balance laws with the principle of virtual power can readily be
seen. While in the first sections contact interactions are considered to be defined on a quite small
algebra with respect to the second argument, the extension to the much larger algebra of sets
of finite perimeter is studied in Section 6. The boundedness condition used for the existence of
the corresponding tensor field is discussed in Section 8. Though a slightly weakened boundedness
condition ensures a nice mathematical equivalence, both its physical motivation and its physical
relevance seem questionable. The Appendix collects basic properties of sets of finite perimeter
that are sufficient for understanding the results presented here. Some proofs appearing in the
body of this paper, however, use arguments of geometric measure theory going beyond these
properties. Moreover, a necessary result about the measurability of real functions is derived.

Notation. For sets A, B let Ac, A \B, χA, and distA(x) be the complement of A, the points
of A not contained in B, the characteristic function of A, and the distance of the point x from
A, respectively. Ln is the n-dimensional Lebesgue outer measure and Hk is the k-dimensional
Hausdorff outer measure on Rn. For A ⊂ Rn we write intA, clA, ∂A for its topological interior,
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closure, and boundary, respectively, and A∗, ∂∗A for its measure-theoretic interior and boundary,
respectively (cf. Appendix). A ⊂ Rn is normalized if A∗ = A and A has finite perimeter in the
open set B ⊂ Rn if Hn−1(∂∗A ∩ B) < ∞. Let νA(x) stand for the outer unit normal of A at
x ∈ ∂∗A. The open ball of radius r > 0 centered at x is denoted by Br(x). In general, we consider
a measure µ to be a signed real measure or a vector-valued measure. Let µbA be the restriction
of the measure µ to the set A and let |µ| be the total variation measure. By spt we denote the
support of a function or of a measure. densA(x) denotes the density of the set A at the point x
and ap lims↓t f(s) denotes the approximate limit from above of f at t (cf. Appendix). |x| is the
Euclidean norm on Rn, and we write

x = (x1, . . . , xj−1, ξ, xj+1, . . . , xn) = (x′, ξ)j ∈ Rn

with x′ ∈ Rn−1, ξ = xj ∈ R
(1.5)

to distinguish the jth coordinate of x ∈ Rn (taken with respect to a fixed orthonormal frame)
and let (x′, ξ)n = (x′, ξ) for notational convenience. Analogously we define (B′ ×H)j ⊂ Rn with
B′ ∈ Rn−1, H ⊂ R as the set of all (x′, ξ)j with x′ ∈ B′, ξ ∈ H and again (B′ ×H)n = (B′ ×H).
By y ·z we mean the scalar product of the vectors y, z and by Y ·y the application of the matrix Y
to the vector y. The space of (locally) p-integrable functions on C is denoted by Lp(C) (Lp

loc(C))
where, following Federer [18], Evans & Gariepy [17], et al., we distinguish functions that
differ on sets of measure zero: we do not follow the usual practice of identifying such functions as
members of the same equivalence class. C∞(C) denotes the set of infinitely differentiable functions
on C and C∞0 (C) denotes the subset of all functions having compact support on C. For further
notation we refer to Section 2 and, in particular, to the paragraphs following (2.1).

2 Bodies and interactions

Bodies. The simplest way to define subbodies of a body would be to take the system of all
subsets or a suitable subsystem of it in the usual set-theoretic sense. The literature suggests that
it is a subtle question to define subbodies. If material reactions that are exerted through the
common boundary of contiguous subbodies are considered, they are basically defined on surfaces.
The problem now is that, if we cut a body into two pieces, there is no obvious way to decide
to which part the common surface should belong. To circumvent this difficulty, normalized sets
are usually considered as subbodies (cf. [28]). Here boundary points are somehow disregarded
and each subbody in fact represents a whole class of sets. This has the effect that in some sense
the cutting surface “disappears” if a body is cut into two pieces and that a material surface is
“created” if subbodies are glued together (a comparable situation is met in the system proposed
by Noll [39, p. 92]). However, such an approach is not compatible with the additivity of forces
if concentrated forces occur (cf. Figure 1). Here we present an approach for the description of
subbodies that is based on the simple idea of taking subbodies as subsets in the set-theoretic
sense. That removes previous discrepancies and there is no need for Boolean algebras as in
previous treatments.

We assume that the material points of a body correspond to the points of a set C ⊂ RN .
In the material description the points of C correspond to the positions of the material points in
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the reference configuration and in the spatial description they correspond to the positions they
occupy at some given time. Note that our further analysis is not influenced by the special choice
we make and, thus, it is applicable to both cases. From the physical point of view it seems
reasonable to include at least the (relatively) open and closed subsets of C in a suitable collection
B of subbodies of C. Furthermore, we may assume that B should be an algebra of subbodies of
C, also called an algebra on C, so that unions, intersections, and complements of finite numbers
of sets of B belong to B:

∅, C ∈ B, B1 \B2 ∈ B,

m⋃
k=1

Bk ∈ B,

m⋂
k=1

Bk ∈ B

whenever B1, . . . , Bm ∈ B. From the analytical point of view it appears to be convenient to have
the powerful tools of measure and integration theory available and, thus, to demand that B even
be a σ-algebra on C, i.e., that B be an algebra on C that also contains countable unions and
intersections of sets of B:

∞⋃
k=1

Bk ∈ B,

∞⋂
k=1

Bk ∈ B

whenever B1, B2, . . . ∈ B. Thus, as a natural choice for our treatment, let C ⊂ RN be a Borel
set and let B be the collection of Borel subsets of C (recall that B contains any union and any
intersection of at most countably many open and closed sets). We will see, however, that the
richness of a σ-algebra is inconsistent with certain arguments concerning special forces. This
motivates us to consider also suitable subsystems of B that are merely algebras or just generators
of B. Here it is useful to have not only “small” generating systems but also rich algebras. By
A ⊂ B we always denote a subalgebra of B which is not yet specified.

Let us now introduce special subsystems of B. By Q we denote the collection of all (closed)
N-intervals (N -dimensional rectangular blocks) on C having the form

{(x1, . . . , xN ) ∈ C| ai ≤ xi ≤ bi, ai, bi ∈ R, i = 1, . . . , N} (2.1)

where the ai, bi are called the coordinates (corresponding to a fixed orthonormal frame) of the N -
interval. The algebra generated by Q (i.e., the smallest algebra containing Q), which is obviously
a subset of B, is denoted by R. The collection of N -intervals merely having coordinates ai, bi,
i = 1, . . . , N , confined to a subset H ⊂ R is denoted by Q(H). We call Qf ⊂ Q a full subsystem
of Q if Qf = Q(H f) for a subset H f ⊂ R such that L1(R \ H f) = 0. We say that Qd ⊂ Q is a
dense subsystem of Q if Qd = Q(Hd) for a dense subset Hd ⊂ R. The subsystem Qc ⊂ Q is called
countable if Qc = Q(Hc) for a countable subset Hc ⊂ R. We will use the notation Qcd = Q(Hcd)
for a countable dense subsystem of Q. Note that B is the smallest σ-algebra containing a dense
subsystem of Q. For open C we also consider the system P of sets of finite perimeter in C, i.e.,

P := {P ∩ C| P ⊂ RN has finite perimeter in C}

which is an algebra on C (cf. Appendix). Obviously, Q ⊂ R ⊂ P ⊂ B.
A property is said to hold for a.e. Q ∈ Q if it is true for a full subsystem Qf ⊂ Q. For Q ∈ Q

we denote the (closed) ε-neighborhood of Q on C with respect to the maximum norm by Qε, i.e.,
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if Q has coordinates ai, bi, then Qε ∈ Q is the (closed) N -interval on C having coordinates ai− ε,
bi + ε (cf. (2.1)). Notice that Qε depends on the set C on which Q is considered. Obviously Qε

is well defined for all ε ≥ 0 and, if intQ 6= ∅, then also for some ε < 0. For each Q ∈ Q and each
x ∈ C there is exactly one σ(x) ∈ R such that x ∈ ∂Qσ(x). By νQ(x) we denote the outer unit
normal of Qσ(x) at x which is uniquely determined up to the edges of Qσ(x).

Sometimes we use the notation BC̃ , QC̃ , etc. to indicate that the system is a collection of
corresponding subsets of C̃ instead of C. But if the index is omitted, then these systems are
always taken with respect to the “standard” set C. For an algebra A on C and a subset C̃ ⊂ C

we define the restriction of A to C̃ by A|C̃ := {A ∩ C̃|A ∈ A}, which obviously is an algebra on

C̃ and, if C̃ ∈ A, then A|C̃ ⊂ A is a subalgebra.
We also call B a system of subbodies of C. Notions of subbody, empty body, disjoint bodies,

etc., are taken in the obvious set-theoretic sense. Note that collections of subbodies previously
used in the literature are not systems of bodies in our sense. This distinguishes the present
approach from former treatments and makes the notion of Boolean algebra superfluous. It turns
out naturally in the subsequent analysis that certain arguments can be carried out for all subbodies
B ∈ B but that other arguments only work for subbodies of an algebra A that is strictly contained
in B. Therefore it does not make sense to ask for the best choice of a system of subbodies.
We rather have to look for choices appropriate to special aspects of the theory. This way we
simultaneously obtain new insights into the nature of contact interactions.

Interactions. In continuum physics, forces are often described by means of (volume, area)
densities. However, since a force can only be observed and measured by the interaction between
bodies, there is no a priori physical warrant for a general force to have, e.g., an integrable density.
It is rather reasonable to describe a force or, more generally, an interaction, by means of a mapping
(B,A) 7→ f(B,A) (that is real-valued for the heat flux and vector-valued for tractions) assigning
the resultant action exerted by body A on body B to suitable pairs (B,A). (Notice that the
force governing the motion of a falling stone is the force exerted by the earth on the stone.) It
would seem physically natural to require that interactions be additive with respect to disjoint
unions in each argument and seem mathematically convenient to demand disjoint additivity not
only for finite but also for countable unions. However, it turns out that such a requirement for
both arguments would be too restrictive, e.g., for contact forces in continuum mechanics or for
the heat flux in thermodynamics. Therefore we will demand countable additivity for the first
argument, corresponding to the body subject to the action, and merely finite additivity for the
second one.

For the analytical description of such quantities we define an interaction on C relative to an
algebra A on C as a mapping f : B×A 7→ RM such that

(A1) f(∅, A) = f(B, ∅) = 0 for all A ∈ A, B ∈ B,

(A2) f(
⋃∞

k=1Bk, A ) =
∑∞

k=1 f(Bk, A) for all countable collections of pairwise disjoint sets
B1, B2, . . . in B,

(A3) f( B,
⋃m

k=1Ak ) =
∑m

k=1 f(B,Ak) for all finite collections of pairwise disjoint sets
A1, . . . , Am in A.
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This just means that f is a measure with respect to its first argument, the body subject to the
action, and a finitely additive set function with respect to the second argument, the body produc-
ing the action. Note that (A3) does not prevent special interactions from being σ-additive with
respect to the second argument and thus can be extended to B×B. As a simple consequence of
measure theory, an interaction f is uniquely determined by its specification on a dense subsystem
Qd ⊂ Q with respect to the first argument and on a generating system of A with respect to the
second argument. We denote the total variation of the measure f(·, A), A ∈ A, which is a real
nonnegative measure on B, by |f |(·, A).

Let C, C̆ be Borel sets with C ⊂ C̆ and let A, Ă be algebras on C, C̆, respectively, with
Ă|C ⊂ A. We define the zero extension f̆ on C̆ relative to Ă of an interaction f on C relative to
A by

f̆(B,A) := f(B ∩ C,A ∩ C) for all B ∈ BC̆ , A ∈ Ă .

Obviously, f̆ is an interaction on C̆ and

f̆(B,A) = 0 if B ⊂ C̆ \ C or A ⊂ C̆ \ C . (2.2)

If A = RC or PC and Ă = RC̆ or PC̆ , respectively, then Ă|C = A and the zero extension is always
well-defined.

For an interaction f on C relative to A and a Borel subset C̆ ⊂ C with C̆ ∈ A we define the
complete restriction fC̆ of f to C̆ relative to A|C̆ by

fC̆(B,A) := f(B,A) for all B ∈ BC̆ , A ∈ A|C̆ .

and the partial restriction f(C̆) of f to C̆ relative to A by

f(C̆)(B,A) := f(B,A ∩ C̆) for all B ∈ B, A ∈ A .

Since A|C̆ ⊂ A is a subalgebra, the complete restriction fC̆ is an interaction on C̆ relative to A|C̆
and, since A ∩ C̆ ∈ A, the partial restriction f(C̆) is an interaction on C relative to A.

Now let f1, f2 be interactions on Borel sets C1, C2 relative to algebras A1, A2, respectively,
and let A be an algebra on C := C1 ∪C2 such that A|Cj

⊂ Aj , j = 1, 2. Then we define the sum
f1 + f2 on C relative to A by

(f1 + f2)(B,A) := f1(B ∩ C1, A ∩ C1) + f2(B ∩ C2, A ∩ C2)

for all B ∈ BC , A ∈ A, which is obviously an interaction on C. If A = RC or PC and Aj = RCj

or PCj (j=1,2), respectively, then A|Cj
= Aj for j = 1, 2 and the sum is well-defined.

3 Contact interactions

In continuum physics we observe interactions that act between contiguous bodies through the
common parts of their boundaries and that are caused by some material response such as forces
or heat transfer. In this section we present a new mathematical approach to such interactions as
a foundation for continuum physics.
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It is very convenient to study interactions exerted across the common part of the boundaries
of subbodies Q ∈ Q, i.e., for N -intervals, due to their simple geometry. This suggests considering
such interactions relative to an algebra A containing Q. On the other hand, it turns out that
it is not only convenient but also sufficient for the essential analytical arguments if that algebra
merely contains a full subsystem of Q. Therefore we now consider interactions f on a Borel set C
relative to an algebra A ⊂ B that contains a full subsystem Qf = Q(H f) ⊂ Q (i.e., H f ⊂ R with
L1(R \H f) = 0). Then f is called a contact interaction on C if

(C1) f(Q,A) = f(Q, (Qε \Q) ∩A) for all Q ∈ Qf , A ∈ A, ε > 0 with Qε ∈ Qf ,

(C2) f(Q,A) = 0 for all Q ∈ Qf , A ∈ A with LN (A) = 0,

(C3) f(Q,A) = ap lim
ε↓0

f(Qε \ Z,A \Qε) for all Q ∈ Qf , A ∈ A, Z ∈ B with LN (Z) = 0.

Note that these conditions cannot be required for all Q ∈ B, since then (Qε \ Q) ∩ A or A \ Qε

might not belong to A. But Qf generates B and seems to be sufficiently large to provide the
essential properties of contact reactions as observed in continuum mechanics or thermodynamics.
Furthermore, it is essential to choose closedN -intervalsQ ∈ Qf in the first argument, since f(Q,A)
and f(intQ,A) may differ in general. Finally, Qε 6∈ Qf merely for ε on a set of L1-measure zero.

Observe that we do not require, as usual, that the contact interaction f(B,A) be defined only
for pairs of disjoint subbodies A,B. Instead we merely assume that the material of A outside of B
is responsible for the interaction. Now the most important feature of a contact interaction is the
locality condition (C1) expressing that only this material of a contiguous body can interact with
a body which belongs to an arbitrarily small neighborhood of it as observed, e.g., for traction or
heat flux (cf. Figure 3). Thus (C1) implements Noll’s “principle of local action” [38, p. 199]
as a characterizing property for contact interactions instead for corresponding constitutive laws.
Conditions (C2) and (C3) exclude certain singular cases that seem to be unphysical. (C2) says
that a body A having LN -measure 0 (i.e., having zero volume) cannot exert a nonzero contact
action, i.e., we need “thick” bodies in the second argument for nontrivial interactions. Note that
this does not prevent a subbody B ∈ B consisting of a single point from resisting a nontrivial action
exerted by some A. Hence (C2) does not imply that the measures f(·, A) have to be absolutely
continuous with respect to the LN -measure. Property (C3) seems to be the most technical one at
first glance. It gives a coupling between the measures f(·, A) for different A’s and means, roughly
speaking, that a possible concentration of the measure f(·, A) is somehow smeared around, i.e.,
an action exerted from some “thick” A on some “thin” B with HN−1-measure zero has to be
“seen” by interactions f(B̃, A \ Bε) for B̃ ⊂ ∂Bε with HN−1(B̃) > 0 and for sufficiently small
ε > 0 (cf. Example 1 below). Note that (C3) merely expresses a general limit property of the
measure f(·, A) in the case where Z = ∅, since f(Qε, A \Qε) = f(Qε, A) according to (C1).

We say that the contact interaction f on C relative to A is locally bounded if for each (bounded)
Q̆ ∈ Qf there is a constant γQ̆ > 0 such that

|f(B,Q ∩ Q̆)| ≤ γQ̆ for all B ∈ B, Q ∈ Qf .

Using the Hahn decomposition of f(·, Q∩ Q̆) we readily see that the total variation |f |(C,Q∩ Q̆)
for a locally bounded contact interaction f has to be bounded by 2γQ̆ for all Q ∈ Qf .
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Let us now provide some simple consequences for contact interactions. We readily derive from
(C1) that

f(Q,A) = 0 for all Q ∈ Qf , A ∈ A with Q ⊂ (C \ clA) ,

and, consequently,

f(B,A) = 0 for all B ∈ B, A ∈ A with B ⊂ (C \ clA) , (3.1)

i.e., the support of the measure f(·, A) is contained in the (relatively closed) set (clA) ∩ C.
Moreover, (C1) implies that

f(Q,A) = 0 for all Q ∈ Qf , A ∈ A with A ⊂ Q .

For bounded A ∈ A we always find Q ∈ Qf with A ⊂ Q and, taking into account (3.1), we find
that

f(Q,A) = f(B,A) = 0 for all B ∈ B, A ∈ A with ((clA) ∩ C) ⊂ B, A bounded.

In particular, for B = C we conclude that

0 = f(C,A) = f(B,A) + f(C \B,A) for all B ∈ B, A ∈ A, A bounded,

i.e.,
f(B,A) = −f(C \B,A) for all B ∈ B, A ∈ A, A bounded. (3.2)

It is an important observation that condition (C1) prevents a contact interaction from being
a measure with respect to the second argument. Otherwise the continuity of measures on nested
sequences would imply that

f(Q,A)
(C1)
= f(Q,A \Q) = lim

ε↓0
f(Q,A \Qε)

(3.1)
= 0 (3.3)

for any Q ∈ Qf , A ∈ A, and ε > 0 such that Qε ∈ Qf . But this is only possible in the trivial
case where f is identically zero. For this reason we require that interactions merely be finitely
additive with respect to the second argument.

According to the next result, which is proved at the end of this section, conditions (C1), (C3)
are satisfied if they are satisfied for all A of a system generating the algebra A.

Proposition 3.4 Let f be an interaction on C relative to A with Qf ⊂ A and let Ag ⊂ A be a
subsystem generating A. If f satisfies (C1), (C3) only for all A ∈ Ag, then f satisfies (C1), (C3)
also for all A ∈ A.

For given contact interactions we now ask to what extent the derived interactions as zero
extension, sum, and the restrictions are again contact interactions. Corresponding to the full
subsystem Qf = Q(H f) of Q = QC we here denote by Qf

C̆
the full subsystem of QC̆ consisting of

all closed N -intervals in C̆ having coordinates in H f .
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Proposition 3.5 (1) Let f be a contact interaction on C relative to A with Qf ⊂ A.

(a) If Ă is an algebra on C̆ ⊃ C with Qf
C̆
⊂ A and Ă|C ⊂ A, then the zero extension f̆ of f on

C̆ relative to Ă is a contact interaction on C̆.

(b) If C̆ ⊂ C with C̆ ∈ Qf , then the complete restriction fC̆ of f on C̆ relative to A|C̆ is a contact

interaction on C̆.

(c) If C̆ ⊂ C with C̆ ∈ A, then the partial restriction f(C̆) of f on C̆ is a contact interaction on
C relative to A.

(2) Let fj be contact interactions on Cj relative to Aj with Qf
Cj
⊂ Aj, j = 1, 2, and let A be an

algebra on C := C1∪C2 with Qf
C ⊂ A and A|Cj

⊂ Aj, j = 1, 2. Then the sum f1 +f2 is a contact
interaction on C relative to A.

Notice that there might be a difference between the restriction of f on a closed set C̆ and on
its interior. Before we carry out the proofs of the previous propositions, we illuminate some basic
questions by means of typical examples.

Example 1. This example illustrates the kinds of interactions ruled out by condition (C3). Let
C = (−1, 1) × (−1, 1) ⊂ R2, Qf = Q(H f) ⊂ QC with H f = R \ {0}, and define the vector-valued
measures on C

τ :=

(
H1b{(x1, x2) ∈ C|x2 = 0}

0

)
, τA := τbA for A ∈ Qf .

With A = [a1, b1]× [a2, b2] ⊂ Qf we obtain in the distributional sense that

div τ = 0 , div τA =

{
0 if 0 6∈ [a2, b2] ,
δ(a1,0) − δ(b1,0) otherwise

where δ(a,b) denotes the usual δ-distribution concentrated at the point (a, b) ∈ C (recall that
aj , bj 6= 0). Hence div τA is a measure for all A ∈ Qf and we set

f(B,A) := div τA(B) for all B ∈ B, A ∈ Qf . (3.6)

The mapping f can readily be extended to an interaction on C relative to the algebra Rf generated
by Qf . Obviously f satisfies (C1). It is important to notice that (C2) is also satisfied though all
measures f(·, A) are concentrated on a set of L2-measure zero. For the investigation of (C3) we
observe that

f( (−1, ξ]× (a, b), [ζ, 1)× (α, β) ) =

{
1 if ζ ≤ ξ and 0 ∈ (a, b) ∩ (α, β) ,
0 otherwise.

Thus, with Z = {(x1, x2) ∈ C|x2 = 0},

1 = f( (−1, ξ]× (−1, 1), [ξ, 1)× (−1, 1) )

6= ap lim
ε↓0

f( ((−1, ξ + ε]× (−1, 1)) \ Z, [ξ + ε, 1)× (−1, 1) )

= 0 for all ξ ∈ H f , (3.7)
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which contradicts (C3). We will see that (C3) prevents interactions that are defined as in (3.6)
by means of a measure-valued tensor τ that is singular with respect to LN .

Example 2. In classical continuum mechanics it is usually assumed that the contact interaction
f(B,A) merely depends on the common surface ∂B ∩ ∂A for disjoint and sufficiently regular sets
A,B and that A 7→ f(B,A), A ⊂ C \ B, defines a measure on ∂B that is absolutely continuous
with respect to the HN−1-measure (cf. Truesdell [60]). For our setting we have already seen
that a contact interaction f cannot be a measure in the second argument, but we could ask
whether A 7→ f(B,A) merely depends on A ∩ ∂B and whether it can be extended to a measure
on ∂B.

For this reason we consider the example of a planar version of the problems studied by
Boussinesq [6] in 1878 (perpendicular point load) and by Flamant [19] in 1892 (perpendicular
homogeneous line load) for a linearly elastic, isotropic body occupying a half space. More precisely,
we consider the tensor field τ ∈ L1

loc(R2,R4) given by

τ(x) :=
2x1

π|x|4

(
x2

1 x1x2

x1x2 x2
2

)
for x1 ≥ 0

and extended by zero on the half plane x1 < 0. The divergence of τ exists in the sense of
distributions (see also (5.1) below) and is given by the vector-valued measure

div τ =

(
1
0

)
δ(0,0)

where δ(0,0) denotes the scalar Dirac measure concentrated at x = (0, 0). According to our results
below we get a contact interaction on C = R2 relative to the algebra P by setting

f(Q,A) := lim
ε↓0

1
ε

∫ ε

0

∫
∂Qσ∩A

τ · νQ dH
N−1 dσ

for Q ∈ Q, A ∈ P and then extending each f(·, A) to a measure on B. Now we fix B :=
[−1, 0]× [−1, 1] and consider sets A ⊂ C \B that are sectors of a disk with corner at the origin.
Obviously A ∈ P, and a straightforward computation shows that f(B,A) depends on the opening
angle of the sector A at the corner. Moreover f(B,A) even has a non-vanishing x2-component if
A is not symmetric with respect to the x2-axis (cf. Podio-Guidugli [43] for detailed computations
and comprehensive discussions). This fact however shows that we cannot expect in general that
A 7→ f(B,A) depends only on the common surface ∂A∩ ∂B or that it even defines a measure on
∂B.

Example 3. This example demonstrates that a nontrivial contact interaction f can never be
extended consistently to the whole σ-algebra B with respect to the second argument. For this
reason let f be a contact interaction on C := (−1, 1)× (−1, 1) relative to some algebra A where
we now assume that A = B. Then the set A given by

A :=
⋃
k∈N

Ak where Ak := ( 1
3k ,

1
3k−1)× (−1, 1)
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belongs to A. With Q := (−1, 0] × (−1, 1) the continuity of a measure on a nested set implies
that

f(Q,A) = lim
ε↓0

f(Qε, A) = lim
k→∞

f(Q1/(3k−2), A)
(C1)
= 0

which is not satisfied in general for a nontrivial contact interaction f (cf. Figure 3).

AQ

Q Q

Q Q

4 2

13

Figure 3: Subbody A corresponds to the grey set of infinitely many strips. The subbodies Qk

approximate Q where the boundary of Qk on the right is dashed for the Q2k+1 and dotted for
the Q2k. Since f(Q2k, A) = 0 for all k, the sequence f(Qk, A) oscillates in general and does not
converge to f(Q,A).

More generally, let us consider any Q ∈ Q, A ∈ A such that f(Q,A) 6= 0. We construct an
Ă ⊂ A with Ă ∈ A having a structure analogous to that of A above by removing sufficiently
small neighborhoods of the boundaries ∂Q1/k, k ∈ N, from A. Then we obtain a contradiction as
before.

This example and (3.3) show that a nontrivial contact interaction f can neither be σ-additive
nor be extended to all of B with respect to the second argument.

Proof of Proposition 3.4. Assume that (C1), (C3) are satisfied for A, A1, A2 ∈ Ag. Then, by
the identities A1 ∪A2 = A1 ∪ (A2 \A1) and A1 ∩A2 = (Ac

1 ∪Ac
2)

c, it is sufficient to verify (C1),
(C3) for A1 ∪ A2 with A1 ∩ A2 = ∅ and for A2 \ A1. For Q ∈ Qf , Z ∈ B with LN (Z) = 0, and
ε > 0 with Qε ∈ Qf we have that

f(Q,A1 ∪A2) = f(Q,A1) + f(Q,A2)

= f(Q, (Qε \Q) ∩A1) + f(Q, (Qε \Q) ∩A2)

= f(Q, (Qε \Q) ∩ (A1 ∪A2)) ,

f(Q,A2 \A1) = f(Q,A2)− f(Q,A1)

= f(Q, (Qε \Q) ∩A2)− f(Q, (Qε \Q) ∩A1)

= f(Q, (Qε \Q) ∩A2 \A1) ,

f(Q,A1 ∪A2) = f(Q,A1) + f(Q,A2)

= ap lim
ε↓0

f(Qε \ Z,A1 \Qε) + ap lim
ε↓0

f(Qε \ Z,A2 \Qε)

= ap lim
ε↓0

f(Qε \ Z, (A1 ∪A2) \Qε) ,
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f(Q,A2 \A1) = f(Q,A2)− f(Q,A1)

= ap lim
ε↓0

f(Qε \ Z,A2 \Qε)− ap lim
ε↓0

f(Qε \ Z,A1 \Qε)

= ap lim
ε↓0

f(Qε \ Z, (A2 \A1) \Qε) ,

which verifies the assertion. �

Proof of Proposition 3.5. In Section 2 we have seen that the zero extension, the complete
and the partial restriction, and the sum are again interactions on the corresponding sets. Thus
we still have to check (C1)–(C3) where we tacitly assume that such ε are taken into account such
that the neighborhoods Qε belong to the corresponding full subsystems Qf .

For technical convenience we set Q́ := QRN . Then, for Q ∈ Qf
C we find some Q́ ∈ Q́ such that

Q = Q́ ∩ C and Qε = Q́ε ∩ C (notice that Qε is the ε-neighborhood of Q in C).
Now we assume that f is a contact interaction on C relative to A. First let f̆ be the zero

extension of f according to (a). For Q̆ ∈ Qf
C̆

we choose Q́ ∈ Q́ such that Q̆ = Q́ ∩ C̆. Obviously,

Ă ∩ C ∈ Ă|C ⊂ A for Ă ∈ Ă and LN (Z ∩ C) = 0 for Z ⊂ C̆ with LN (Z) = 0. Then

Q := Q̆ ∩ C = Q́ ∩ C̆ ∩ C = Q́ ∩ C ∈ Qf
C .

Hence

f̆(Q̆, Ă) = f(Q̆ ∩ C, Ă ∩ C)

= f(Q̆ ∩ C, ((Q̆ ∩ C)ε \ (Q̆ ∩ C)) ∩ Ă ∩ C)

= f(Q̆ ∩ C, ((Q́ε ∩ C) \ (Q́ ∩ C)) ∩ Ă ∩ C)

= f(Q̆ ∩ C, (Q́ε \ Q́) ∩ C̆ ∩ Ă ∩ C)

= f(Q̆ ∩ C, (Q̆ε \ Q̆) ∩ Ă ∩ C)

= f̆(Q̆, (Q̆ε \ Q̆) ∩ Ă) ,

f̆(Q̆, Ă) = f(Q̆ ∩ C, Ă ∩ C)

= ap lim
ε↓0

f((Q̆ ∩ C)ε \ (Z ∩ C), (Ă ∩ C) \ (Q̆ ∩ C)ε)

= ap lim
ε↓0

f((Q̆ε ∩ C) \ (Z ∩ C), (Ă ∩ C) \ (Q̆ε ∩ C))

= ap lim
ε↓0

f((Q̆ε \ Z) ∩ C, (Ă \ Q̆ε) ∩ C)

= ap lim
ε↓0

f̆(Q̆ε \ Z, Ă \ Q̆ε) .

Since f̆(Q̆, Ă) = f(Q̆∩C, Ă∩C) = 0 for Ă ∈ Ă with LN (Ă) = 0, we conclude that f̆ is a contact
interaction.

Let now fC̆ be the complete restriction of f on C̆ according to (b). Since C̆ ∈ Qf
C , there

is Q́? ∈ Q́ with C̆ = Q́? ∩ C. For Q̆ ∈ Qf
C̆

we choose Q́ ∈ Q́ such that Q̆ = Q́ ∩ C̆. Hence,

Q̆ = Q́∩ Q́? ∩C ∈ Qf
C . We have to distinguish between the neighborhood Q̆ε = Q́ε ∩ C̆ in C̆ and

the neighborhood Q̆C
ε := (Q́∩ Q́?)ε∩C = Q́ε∩ Q́?

ε ∩C in C. For Ă ∈ A|C̆ ⊂ A and Z̆ ∈ BC̆ ⊂ BC

20



with LN (Z̆) = 0 we obtain that

fC̆(Q̆, Ă) = f(Q̆, Ă)

= f(Q̆, (Q̆C
ε \ Q̆) ∩ Ă)

= f(Q̆, ((Q́ε ∩ Q́?
ε ∩ C) \ (Q́ ∩ Q́? ∩ C)) ∩ Ă)

= fC̆(Q̆, (Q̆ε \ Q̆) ∩ Ă) (since Ă ⊂ C̆),

fC̆(Q̆, Ă) = f(Q̆, Ă)

= ap lim
ε↓0

f(Q̆C
ε \ Z̆, Ă \ Q̆C

ε )

= ap lim
ε↓0

f((Q́ε ∩ Q́?
ε ∩ C) \ Z̆, Ă \ (Q́ε ∩ Q́?

ε ∩ C))

= ap lim
ε↓0

fC̆(Q̆ε \ Z̆, Ă \ Q̆ε)

where in the last equality we have used that Ă ⊂ C̆ and f(C \ C̆, Ă \ Q̆ε) = 0 by (3.1). For
Ă ∈ A|C̆ ⊂ A with LN (Ă) = 0 we readily find that fC̆(Q̆, Ă) = f(Q̆, Ă) = 0 and, thus, fC̆ is a

contact interaction on C̆.
Now let f(C̆) be the partial restriction of f to C̆. Choosing Q ∈ Qf

C , A ∈ A, and Z ∈ B with

LN (Z) = 0 we obtain that A ∩ C̆ ∈ A by C̆ ∈ A and, therefore,

f(C̆)(Q,A) = f(Q,A ∩ C̆)

= f(Q, (Qε \Q) ∩A ∩ C̆)

= f(C̆)(Q, (Qε \Q) ∩A) ,

f(C̆)(Q,A) = f(Q,A ∩ C̆)

= ap lim
ε↓0

f(Qε \ Z, (A ∩ C̆) \Qε)

= ap lim
ε↓0

f(Qε \ Z, (A \Qε) ∩ C̆)

= ap lim
ε↓0

f(C̆)(Qε \ Z,A \Qε) .

For A ∈ A with LN (A) = 0 we find that f(C̆)(Q,A) = f(Q,A∩ C̆) = 0 and, consequently, f(C̆) is
a contact interaction on C.

Finally we assume that f1, f2 are contact interactions on C1, C2 relative to A1, A2, respec-
tively, and we consider the sum f := f1 + f2 according to (2). Let Q ∈ Qf

C with Q = Q́ ∩ C for
some Q́ ∈ Q́, let A ∈ A, and let Z ∈ BC be such that LN (Z) = 0. Then Aj := A ∩ Cj ∈ Aj by
assumption and Qj := Q́ ∩ Cj ∈ Qf

Cj
, j = 1, 2. Hence

f(Q,A) =
2∑

j=1

fj(Q ∩ Cj , A ∩ Cj)

=
2∑

j=1

fj(Q́ ∩ Cj , ((Q́ε ∩ Cj) \ (Q́ ∩ Cj)) ∩Aj)
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=
2∑

j=1

fj(Q́ ∩ Cj , (Q́ε \ Q́) ∩A ∩ Cj)

= f(Q, (Qε \Q) ∩A) ,

f(Q,A) =
2∑

j=1

fj(Q ∩ Cj , A ∩ Cj)

=
2∑

j=1

ap lim
ε↓0

fj(Qj,ε \ Z,Aj \Qj,ε)

=
2∑

j=1

ap lim
ε↓0

fj((Q́ε ∩ Cj) \ Z,Aj \ (Q́ε ∩ Cj))

= ap lim
ε↓0

2∑
j=1

fj((Q́ε \ Z) ∩ Cj , (A \ Q́ε) ∩ Cj)

= ap lim
ε↓0

f(Qε \ Z,A \Qε) .

For A ∈ A with LN (A) = 0 we obtain

f(Q,A) = f1(Q ∩ C1, A ∩ C1) + f2(Q ∩ C2, A ∩ C2) = 0 ,

which implies that f = f1 + f2 is a contact interaction on C. �

4 Interaction tensor

In this section we derive the main result that a contact interaction can be represented by means
of a tensor. Notice that, for a contact interaction f relative to A, the algebra A is assumed to
contain a full subsystem Qf . If Rf denotes the algebra generated by Qf , then Rf ⊂ A, i.e., f is also
a contact interaction relative to the algebra Rf . Therefore, it is not restrictive if we first consider
contact interactions relative to Rf . It turns out that the corresponding tensor field is already
uniquely determined this way. In Section 6 below we will study how far contact interactions
relative to Rf can be extended to larger algebras A. The proof of the following theorem is carried
out later in this section.

Theorem 4.1 (Existence of the interaction tensor). Let f : B × Rf 7→ RM be a locally bounded
contact interaction on the Borel set C ⊂ RN relative to the algebra Rf that is generated by the
full system Qf ⊂ Q. Then there exists an interaction tensor τ ∈ L1

loc(C,RM×N ) such that f can
be represented by

f(Q,R) = lim
ε↓0

1
ε

∫
(Qε\Q)∩R

τ · νQ dL
N

= lim
ε↓0

1
ε

∫ ε

0

∫
∂Qσ∩R

τ · νQ dH
N−1 dσ

(4.2)

for all Q ∈ Qf , R ∈ Rf . The tensor τ is uniquely determined up to a set of LN -measure zero.
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Remark 4.3 (1) Note that the surface integrals on the right-hand side in (4.2) are well-defined
for a.e. σ ∈ (0, ε), since Q is bounded and τ ∈ L1

loc(C).
(2) If f is a locally bounded contact interaction on C relative to an algebra A larger than Rf ,

then we assign to f the interaction tensor τ corresponding to the restriction of f on B× Rf .
(3) Note that (4.2) is valid in general only for closed N -intervals Q and that we get an

analogous formula for open N -intervals but with the limit ε ↑ 0 instead of ε ↓ 0 due to (3.2),
i.e., roughly speaking, for open N -intervals Q we have to approximate from inside instead from
outside.

(4) The condition of local boundedness for f is not very restrictive. It does not imply that
the tensor τ has to be essentially bounded. In particular concentrations as in Example 2 in the
previous section are not ruled out by this condition. Its relevance is discussed in some more detail
in Section 7.

The next corollary directly follows from the proof of Theorem 4.1.

Corollary 4.4 Let f = (f i) be a contact interaction as in the previous theorem and let τ = (τ ij)
be the corresponding interaction tensor. Then there is a full set Ȟ f ⊂ R such that, for all ξ ∈ Ȟ f ,
i = 1, . . . ,M , j = 1, . . . , N , the (real) measures

B′ 7→ f i((B′ × {ξ})j ∩ C, (RN−1 × [ξ,∞))j ∩ C) ,

defined on the Borel sets B′ ⊂ RN−1, are absolutely continuous with respect to HN−1 with densities
x′ 7→ τ ij((x′, ξ)j), i.e.,

f i((B′ × {ξ})j ∩ C, (RN−1 × [ξ,∞))j ∩ C) =
∫

(B′×{ξ})j∩C
τ ij((x′, ξ)j) dHN−1(x′)

for all Borel sets B′ ⊂ RN−1.

It turns out that a contact interaction as in Theorem 4.1 is already determined if it is known
on a dense subsystem Qd of Q. While this is clear with respect to the first argument, it is not so
obvious with respect to the second argument. The proof of the next corollary can be found at
the end of this section.

Corollary 4.5 Let f be a contact interaction on C as in Theorem 4.1. Then f is uniquely
determined by its specification on Qd × Qd ⊂ B × Rf where Qd = Q(Hd) is a dense subset of Q

with Hd ⊂ H f .

Recall that a partial restriction or a zero extension of a contact interaction is again a contact
interaction under suitable compatibility conditions according to Proposition 3.5. It turns out
that the corresponding interaction tensors can be easily obtained from the interaction tensor of
the original contact interaction, as stated in the next corollary, whose proof is postponed to the
end of this section.
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Corollary 4.6 Let f : B×A 7→ RM be a locally bounded contact interaction on C ⊂ RN relative
to A with Qf ⊂ A and let τ be the corresponding interaction tensor.

(1) For A ∈ A the partial restriction f(A) of f to A is a locally bounded contact interaction on
C and τA(x) = 0 a.e. on C \ A for its interaction tensor τA ∈ L1

loc(C,RM×N ). If A ∈ Rf , then
the interaction tensor is given, up to a set of LN -measure zero, by

τA(x) =

{
τ(x) for x ∈ A ,
0 for x ∈ C \A .

(4.7)

(2) If f̆ is the zero extension of f on the Borel set C̆ ⊃ C relative to an algebra Ă on C̆ with
Qf

C̆
⊂ Ă and Ă|C ⊂ A, then f̆ is a locally bounded contact interaction on C̆ and its interaction

tensor τ̆ is given, up to a set of LN -measure zero, by

τ̆(x) =

{
τ(x) for x ∈ C ,
0 for x ∈ C̆ \ C .

Proof of Theorem 4.1. Recall that Qf = Q(H f) for some H f ⊂ R with L1(R \H f) = 0. Since
all arguments of the proof work for each component of f separately, we can restrict our attention
to the scalar case M = 1.

Let us first assume that C is an open bounded cube in RN and, without any loss of generality,
we choose C = (0, 1)N . We take Q = QC and Qf = Qf

C with respect to that C where we can
assume that 0, 1 ∈ H f , since coordinates less than 0 or larger than 1 can be readily replaced
with 0 or 1, respectively. Furthermore we set C ′ := (0, 1)N−1. Let Q′ denote the closed (N − 1)-
intervals in C ′ analogously to (2.1) and define Q′f := Q′(H f) ⊂ Q′ in analogy to Qf . We also
fix a countable subset Hcd ⊂ (H f ∩ [0, 1]) which is dense in [0, 1] and with 0, 1 ∈ Hcd. Then
Q′cd := Q′(Hcd) ⊂ Q′f denotes the set of all closed (N − 1)-intervals in C ′ having coordinates
ai, bi ∈ Hcd, i = 1, . . . , N − 1, and Q′cd0 ⊂ Q′cd denotes the set of all closed (N − 1)-intervals in C ′

with coordinates in Hcd where aj = bj for at least one index 1 ≤ j ≤ N − 1. Note that C ′ ∈ Q′cd

and recall the notation

x = (x1, . . . , xN ) = (x′, ξ) ∈ RN with x′ ∈ RN−1, ξ = xN ∈ R . (4.8)

(a) We show that there is a subset Hz ⊂ ((0, 1)∩H f) of L1-measure zero (possibly depending
on Hcd) such that

f(P ′ × {ξ}, Q′ × [ξ, 1)) = 0 for all ξ ∈ ((0, 1) ∩H f) \Hz, P ′ ∈ Q′cd0 , Q′ ∈ Q′cd . (4.9)

For this purpose we fix (N − 1)-intervals P ′ ∈ Q′cd0 and Q′ ∈ Q′cd. For any ξ ∈ ((0, 1) ∩H f)
we have, by (C3), that

f(P ′ × (0, ξ], Q′ × [ξ, 1))

= ap lim
ε↓0

f((P ′ × (0, ξ])ε, (Q′ × [ξ, 1)) \ (P ′ × (0, ξ])ε)

= ap lim
ε↓0

f((P ′ × (0, ξ])ε\(P ′ × (0, ξ + ε]), (Q′ × [ξ, 1))\(P ′ × (0, ξ])ε),
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since LN (P ′× (0, ξ+ε]) = 0. By the additivity of f in the first argument the last equality implies
that

0 = ap lim
ε↓0

f(P ′ × (0, ξ + ε], (Q′ × [ξ, 1)) \ (P ′ × (0, ξ])ε) .

Applying (C1) we get for a.e. ε > 0 that

f(P ′ × (0, ξ + ε], (Q′ × [ξ, 1)) \ (P ′ × (0, ξ])ε) = f(P ′ × (0, ξ + ε], Q′ × [ξ + ε, 1)) .

Hence

0 = ap lim
ζ↓ξ

f(P ′ × (0, ζ], Q′ × [ζ, 1))

= ap lim
ζ↓ξ

f(P ′ × {ζ}, Q′ × [ζ, 1)) for all ξ ∈ ((0, 1) ∩H f) (4.10)

(recall (3.1) for the last equality). Thus we can apply Proposition 8.1 to the real function

ϕ(ζ) := f(P ′ × {ζ}, Q′ × [ζ, 1)) for ζ ∈ ((0, 1) ∩H f) .

We obtain that ϕ is L1-measurable and that the set

H(P ′, Q′) := {ζ ∈ ((0, 1) ∩H f)| ϕ(ζ) 6= 0}

has L1-measure zero. Since Hcd is countable, Q′cd and Q′cd0 are countable, too. Hence

Hz :=
⋃

P ′∈Q′cd0 , Q′∈Q′cd

H(P ′, Q′)

is a set of L1-measure zero in (0, 1) ∩H f which verifies (4.9).

(b) We now show that the real function

ψP ′(ξ) := f(P ′ × {ξ}, C ′ × [ξ, 1)) is L1-measurable on (0, 1) ∩H f (4.11)

for all P ′ ∈ Q′cd.
For this reason we fix P ′ ∈ Q′cd, ξ ∈ ((0, 1)∩H f)\Hz, and recall that C ′ ∈ Q′cd. By additivity

we have that

f(P ′ × {ξ}, C ′ × [ξ, 1)) = f(∂P ′ × {ξ}, C ′ × [ξ, 1)) + f((intP ′)× {ξ}, C ′ × [ξ, 1)) .

Since ∂P ′ is a finite union of elements from Q′cd0 ,

f(∂P ′ × {ξ}, C ′ × [ξ, 1)) = f(∂P ′ × {ξ}, P ′ × [ξ, 1)) = 0 (4.12)

by (4.9). According to (3.1),

f((intP ′)× {ξ}, (C ′ \ P ′)× [ξ, 1)) = 0 .

Hence, by additivity,

f(P ′ × {ξ}, C ′ × [ξ, 1)) = f(∂P ′ × {ξ}, P ′ × [ξ, 1)) + f((intP ′)× {ξ}, P ′ × [ξ, 1))

= f(P ′ × {ξ}, P ′ × [ξ, 1)) .
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Applying first (3.1) and then (C1) we conclude that

f(P ′ × {ξ}, C ′ × [ξ, 1)) = f(P ′ × (0, ξ], P ′ × [ξ, 1))

= f(P ′ × (0, ξ], P ′ × (0, 1)) (4.13)

for all P ′ ∈ Q′cd, ξ ∈ ((0, 1) ∩H f) \Hz. Since f(·, P ′ × (0, 1)) is a measure, the last right term
in (4.13) is a BV-function on (0, 1) in the variable ξ and, thus, L1-measurable. This function
agrees with the function ψP ′(·) on (0, 1) ∩H f up to a set of L1-measure zero. Therefore, ψP ′(·)
is L1-measurable on (0, 1) ∩H f for all P ′ ∈ Q′cd.

(c) For each ξ ∈ (0, 1) we define a finite Radon measure on C ′ by

µξ(P ′) := f(P ′ × {ξ}, C ′ × [ξ, 1)) for P ′ ∈ BC′ , ξ ∈ ((0, 1) ∩H f) (4.14)

and we set µξ := 0 for ξ ∈ (0, 1) \H f . We show that

µ(P ) :=
∫

(0,1)

∫
C′
χP (x′, ξ) dµξ(x′) dξ for all Borel sets P ∈ BC , (4.15)

where χP denotes the characteristic function of the set P , is a well defined Radon measure on
C = C ′ × (0, 1) and that∫

C
g(x′, ξ) dµ(x′, ξ) =

∫
(0,1)

∫
C′
g(x′, ξ) dµξ(x′)dξ (4.16)

holds for any bounded Borel function g on C ′ × (0, 1).
Let us first verify that the measure-valued mapping ξ 7→ µξ is L1-measurable on (0, 1), i.e.,

that the real function
ξ 7→ µξ(P ′) is L1-measurable on (0, 1) (4.17)

for any Borel set P ′ ⊂ C ′ (cf. Ambrosio et al. [1, p. 56]). By (4.11) we know that (4.17) is
true for all P ′ ∈ Q′cd and that Q′cd obviously generates the Borel sets BC′ (note that C ′ ∈ Q′cd).
Let M′ ⊂ BC′ denote the system of all Borel sets P ′ satisfying (4.17). Using basic properties of
measurable functions we readily see that C ′ \M ′ ∈ M′ if M ′ ∈ M′. Furthermore, M ′

1 ∩M ′
2 ∈ M′

if M ′
1,M

′
2,M

′
1 ∪M ′

2 ∈ M′. Now consider a sequence

M ′
1 ⊂M ′

2 ⊂ . . . with M ′
j ∈ M′, M ′ :=

⋃
j∈N

M ′
j .

Since the contact interaction f is locally bounded, |µξ|(C ′) < ∞ for all ξ ∈ (0, 1). Thus
|µξ|(M ′ \ M ′

j) → 0 as j → ∞ and, thus, µξ(M ′
j) → µξ(M ′) for all ξ ∈ (0, 1). Consequently,

M ′ ∈ M′. Since Q′cd is closed under finite intersections and since countably many elements of
Q′cd cover C ′, we obtain that M′ contains the σ-algebra generated by Q′cd, i.e., BC′ ⊂ M′ (cf.
Ambrosio et al. [1, Proposition 1.8, Remark 1.9]). Hence (4.17) is satisfied for all Borel sets
P ′ ⊂ C ′, i.e., ξ 7→ µξ is L1-measurable and, therefore, ξ 7→ |µξ| is also L1-measurable on (0, 1)
(cf. Ambrosio et al. [1, p. 56, (2.16)]).

By Ambrosio et al. [1, Prop. 2.26],

ξ 7→
∫

C′
g(x′, ξ) dµξ(x′)
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is L1-measurable on (0, 1) for all bounded functions g : C ′ × (0, 1) 7→ R that are measurable
with respect to BC′ × Λ where Λ denotes the L1-measurable subsets of (0, 1). Using the local
boundedness of the interaction f we have that the measures |µξ| are uniformly bounded on C ′

and thus ∫ 1

0
|µξ|(C ′) dξ <∞ .

Thus the generalized product measure µ defined in (4.15) is a well defined Radon measure on
C = C ′ × (0, 1), and (4.16) is satisfied for any bounded Borel function g on C ′ × (0, 1) (cf.
Ambrosio et al. [1, p. 57]).

(d) According to the Radon-Nikodym theorem we decompose µ into the absolutely continuous
part µac and the singular part µs with respect to LN on C ⊂ RN and we show that

µs = 0 , i.e., µ = µac .

For this purpose we also decompose all µξ, ξ ∈ (0, 1), into the absolutely continuous part µac
ξ

and the singular part µs
ξ with respect to LN−1 on C ′ ⊂ RN−1. Let µs be concentrated on the set

P s ∈ BC of LN -measure zero and set P s
ξ := {x′ ∈ C ′|(x′, ξ) ∈ P s}. Clearly,

LN (P s) = 0 , LN−1(P s
ξ ) = 0 for a.e. ξ ∈ (0, 1) . (4.18)

Thus, by (4.15), we have for all Borel sets P ⊂ P s that

µ(P ) = µs(P ) =
∫

(0,1)

∫
C′
χP (x′, ξ) dµs

ξ(x
′) dξ . (4.19)

Since it is not clear whether the singular parts µs
ξ have to be concentrated in P s

ξ , we consider the
measures

µ̌s
ξ(P

′) := µs
ξ(P

′ \ P s
ξ ) for all P ′ ∈ BC′ , ξ ∈ (0, 1) (4.20)

which are either zero or singular with respect to LN−1 on C ′. For all P ∈ BC we thus have that

µac(P ) = µ(P \ P s)

=
∫

(0,1)

∫
C′
χP (x′, ξ) dµac

ξ (x′) dξ +
∫

(0,1)

∫
C′
χP (x′, ξ) dµ̌s

ξ(x
′) dξ . (4.21)

If τN ∈ L1(C) denotes the integrable density of µac, then we define measures on C ′ by

µ̌ac
ξ (P ′) :=

∫
P ′
τN (x′, ξ) dLN−1(x′) for P ′ ∈ BC′ , ξ ∈ (0, 1) , (4.22)

which are well defined and absolutely continuous with respect to LN−1 on C ′ for a.e. ξ ∈ (0, 1).
Then, Fubini’s theorem implies that

µac(P ) =
∫

(0,1)

∫
C′
χP (x′, ξ) dµ̌ac

ξ (x′) dξ for all P ∈ B . (4.23)

For fixed P ′ ∈ Q′cd we now consider (4.21) and (4.23) with P = P ′ × (a, b), (a, b) ⊂ (0, 1). The
arbitrariness of (a, b) implies the existence of a Borel set H(P ′) ⊂ (0, 1) with L1(H(P ′)) = 0 such
that ∫

P ′
dµ̌ac

ξ (x′) =
∫

P ′
d(µac

ξ + µ̌s
ξ)(x

′) (4.24)
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for all ξ ∈ (0, 1) \H(P ′) (we tacitly assume that µ̌ac
ξ is well-defined on (0, 1) \H(P ′) by (4.22)).

The set H0 :=
⋃

P ′∈Q′cd H(P ′) has obviously L1-measure zero and (4.24) has to be true for all
P ′ ∈ Q′cd and all ξ ∈ (0, 1) \ H0. Since Q′cd generates the Borel subsets of C ′, we obtain the
identity

µ̌ac
ξ = µac

ξ + µ̌s
ξ for all ξ ∈ (0, 1) \H0 . (4.25)

Recalling that the measures µ̌ac
ξ , µac

ξ are absolutely continuous and that the µ̌s
ξ are singular or

zero, we conclude that µ̌s
ξ has to vanish for all ξ ∈ (0, 1) \H0, i.e.,

µ̌ac
ξ = µac

ξ , µ̌s
ξ = 0 , µs

ξ(C
′ \ P s

ξ ) = 0 for all ξ ∈ (0, 1) \H0. (4.26)

If we denote the densities of the µac
ξ by τN

ξ ∈ L1(C ′), ξ ∈ (0, 1), then for a.e. ξ ∈ (0, 1)

τN (x′, ξ) = τN
ξ (x′) for a.e. x′ ∈ C ′ (4.27)

by (4.22). According to (4.21) we obtain that

µac(P ) =
∫

(0,1)

∫
C′
χP (x′, ξ) dµac

ξ (x′) dξ for all P ⊂ BC .

Let P s = P s+∪P s−, P s+∩P s− = ∅, P s± ∈ BC , be a Hahn decomposition of the set P s where
the singular measure µs is concentrated (i.e., the measures ±µs are nonnegative on the disjoint
sets P s±, respectively; cf. Ambrosio et al. [1, p. 35]). Then we set

P s±
ξ := {x′ ∈ C ′|(x′, ξ) ∈ P s±} for all ξ ∈ (0, 1), i.e., P s

ξ = P s+
ξ ∪ P s−

ξ .

For fixed P ′ ∈ Q′cd and any interval (a, b) ⊂ (0, 1) we get

±µs( (P ′ × (a, b)) ∩ P s± ) = ±
∫

(a,b)

∫
P ′∩P s±

ξ

dµs
ξ(x

′) dξ ≥ 0

by (4.19). Thus ±µs
ξ(P

′ ∩ P s±
ξ ) ≥ 0 for a.e. ξ ∈ (0, 1). Since Q′cd is countable, we obtain that

±µs
ξ(P

′ ∩ P s±
ξ ) ≥ 0 for all P ′ ∈ Q′cd, ξ ∈ (0, 1) \H0

with some possibly larger set H0 ⊂ (0, 1) of L1-measure zero. Using (4.26) we see that

P s±
ξ is a Hahn decomposition for µs

ξ for all ξ ∈ (0, 1) \H0 (4.28)

and, by (4.18), we can assume that

LN−1(P s±
ξ ) = 0 for all ξ ∈ (0, 1) \H0 . (4.29)

Condition (C3) implies that

f(C ′ × {ξ}, C ′ × [ξ, 1)) = ap lim
ζ↓ξ

f(C ′ × [ξ, ζ], C ′ × [ζ, 1))

= ap lim
ζ↓ξ

f(C ′ × [ξ, ζ] \ P s±, C ′ × [ζ, 1))
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for all ξ ∈ (0, 1) ∩H f . By additivity,

0 = ap lim
ζ↓ξ

f((C ′ × [ξ, ζ]) ∩ P s±, C ′ × [ζ, 1)) for all ξ ∈ (0, 1) ∩H f .

Using (C1), (4.14), and (4.29), for ξ ∈ (0, 1) ∩H f we obtain that

f((C ′ × [ξ, ζ]) ∩ P s±, C ′ × [ζ, 1)) = f((C ′ × {ζ}) ∩ P s±, C ′ × [ζ, 1))

= f(P s±
ζ × {ζ}, C ′ × [ζ, 1))

= µζ(P s±
ζ ) for all ζ ∈ (ξ, 1) ∩H f .

Thus
0 = ap lim

ζ↓ξ
µζ(P s±

ζ ) for all ξ ∈ (0, 1) ∩H f

and, consequently,
0 = µξ(P s±

ξ ) = µs
ξ(P

s±
ξ ) for a.e. ξ ∈ (0, 1)

by Proposition 8.1 and (4.29). Hence, by (4.28),

µs
ξ = 0 for a.e. ξ ∈ (0, 1). (4.30)

Therefore µs = 0 by (4.19), i.e., µ = µac is absolutely continuous.

(e) We now distinguish ξ = xj , j = 1, . . . , N−1, instead of ξ = xN in (4.8). Using the notation
(x′, ξ)j and (P ′ × H)j (cf. (1.5)) we can argue as in the previous steps (a)–(d). In analogy to
(4.14) we define measures µj

ξ on C ′ by

µj
ξ(P

′) := f((P ′ × {ξ})j , (C ′ × [ξ, 1))j) for P ′ ∈ BC′ , ξ ∈ ((0, 1) ∩H f) , (4.31)

having the absolutely continuous part µj,ac
ξ with density τ j

ξ ∈ L1(C ′) and the singular part µj,s
ξ

with respect to LN−1 for all ξ ∈ ((0, 1)∩H f), j = 1, . . . , N . As in (4.15) we then get Borel measures
µ1, . . . , µN on C that have to be absolutely continuous with respect to LN with corresponding
densities τ1, . . . , τN ∈ L1(C). Let us verify (4.2) for the interaction tensor

τ := (τ1, . . . , τN ) ∈ L1(C,RN ) .

In analogy to (4.27), for a.e. ξ ∈ (0, 1), j = 1, . . . , N , we get that

τ j((x′, ξ)j) = τ j
ξ (x′) for a.e. x′ ∈ C ′ . (4.32)

Furthermore, µj,s
ξ = 0 for a.e. ξ ∈ (0, 1), j = 1, . . . , N , in analogy to (4.30). Setting

H := {ξ ∈ (0, 1) ∩H f | µj,s
ξ = 0 , τ j((·, ξ)j) = τ j

ξ (·) a.e. on C ′ for all j = 1, . . . , N} , (4.33)

we thus have that L1(H) = 1. Furthermore we can assume that

|f |((C ′ × {ξ})j , C) = 0 for all ξ ∈ H, j = 1, . . . , N (4.34)
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(note that LN ((C ′ × {ξ})j) = 0). Let QH := Q(H) ⊂ Q denote the set of all (closed) N -intervals
in C with coordinates ai, bi ∈ H, i = 1, . . . , N (cf. (2.1)).

Now we fix any P,Q ∈ Qf . If ai, bi, i = 1, . . . , N , are the coordinates of P , then we readily
find some set H̆ ⊂ (0, 1) (depending on P ) with L1(H̆) = 1 such that ai − ε, bi + ε ∈ H for all
ε ∈ H̆, i = 1, . . . , N , i.e., Pε ∈ QH for all ε ∈ H̆. By ∂Pε we here denote the boundary of Pε

relative to the open set C, i.e., ∂Pε ⊂ C. Then, by (C1) and (C3),

f(P,Q) = ap lim
ε↓0

f(Pε \A,Q \ Pε) = ap lim
ε↓0

f((∂Pε ∩Q) \A,Q \ Pε) (4.35)

for any A ∈ BC with LN (A) = 0. We now compute f((∂Pε ∩Q) \A,Q \ Pε) for all ε ∈ H̆ which
is sufficient for the evaluation of the limit in (4.35).

The boundary ∂P is the union of (possibly empty) planar lateral faces

Saj := {(x′, ξ)j ∈ P | ξ = aj} and

Sbj
:= {(x′, ξ)j ∈ P | ξ = bj} , j = 1, . . . , N ,

having the form
Saj = (P ′

j × {aj})j ∩ C and Sbj
= (P ′

j × {bj})j ∩ C

for suitable (N − 1)-dimensional intervals P ′
j ∈ Q′f . Then the corresponding lateral faces of Pε

for ε > 0 are

Sε
aj

:= ((P ′
j)ε × {aj − ε})j ∩ C and Sε

bj
:= ((P ′

j)ε × {bj + ε})j ∩ C .

For suitable Q′ε
aj

, Q′ε
bj
∈ {Q′ ∪ ∅} we have that

Sε
aj ,Q := Sε

aj
∩Q = (Q′ε

aj
× {aj − ε})j ,

Sε
bj ,Q := Sε

bj
∩Q = (Q′ε

bj
× {bj + ε})j ,

(4.36)

and, hence,

∂Pε ∩Q =
N⋃

j=1

(Sε
aj ,Q ∪ Sε

bj ,Q) . (4.37)

Let ∂Sε
aj ,Q denote the boundary and intSε

aj ,Q the interior of Sε
aj ,Q relative to (C ′ × {aj − ε})j ;

let ∂Sε
bj ,Q and intSε

bj ,Q be defined analogously. Using the notation

Sε
∂ :=

N⋃
j=1

(
∂Sε

aj ,Q ∪ ∂Sε
bj ,Q

)
, S∂ :=

⋃
ε>0

Sε
∂ ,

we get the decomposition

∂Pε ∩Q = Sε
∂ ∪

( N⋃
j=1

(intSε
aj ,Q ∪ intSε

bj ,Q)
)

(4.38)
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and, obviously, LN (S∂) = 0. Then (4.35) with A = S∂ implies that

f(P,Q) = ap lim
ε↓0

f((∂Pε ∩Q) \ S∂ , Q \ Pε)

= ap lim
ε↓0

f((∂Pε ∩Q) \ Sε
∂ , Q \ Pε) . (4.39)

Taking into account (4.38) and the additivity of f we have to evaluate f(intSε
aj ,Q, Q \ Pε) and

f(intSε
bj ,Q, Q \ Pε), and it is sufficient to do this for ε ∈ H̆. If intSε

aj ,Q 6= ∅, then intQ′ε
aj
6= ∅ by

(4.36) and
f(intSε

aj ,Q, Q \ Pε) = lim
σ↑0

f
(

( (Q′ε
aj

)σ × {aj − ε})j , Q \ Pε

)
(4.40)

as a basic property of measures. Analyzing the relation between the sets we conclude that

f
(
( (Q′ε

aj
)σ × {aj − ε})j , Q \ Pε

)
= f

(
( (Q′ε

aj
)σ × {aj − ε})j , (C ′ × (0, aj − ε] )j

)
for σ < 0 by (C1). The additivity of f in its second argument, (C2), and (4.34), imply that the
right-hand side of this equation equals

−f
(

( (Q′ε
aj

)σ × {aj − ε})j , (C ′ × [aj − ε, 1))j

)
for all ε ∈ H̆. Hence, by (4.31), (4.33),

f
(

( (Q′ε
aj

)σ × {aj − ε})j , Q \ Pε

)
= −µj

aj−ε( (Q′ε
aj

)σ )

= −µj,ac
aj−ε( (Q′ε

aj
)σ )

σ↑0−→ −µj,ac
aj−ε(Q

′ε
aj

) (4.41)

for ε ∈ H̆, j = 1, . . . , N . Consequently, by (4.33), (4.40),

f(intSε
aj ,Q, Q \ Pε) = −µj,ac

aj−ε(Q
′ε
aj

) = −
∫

Q′ε
aj

τ j((x′, aj − ε)j) dx′

and, analogously,

f(intSε
bj ,Q, Q \ Pε) = µj,ac

bj+ε(Q
′ε
bj

) =
∫

Q′ε
bj

τ j((x′, bj + ε)j) dx′

for all ε ∈ H̆, j = 1, . . . , N . Notice that the previous identities are also satisfied if intSε
aj ,Q = ∅

or intSε
bj ,Q = ∅. Recalling (4.38), (4.39) we obtain that

f(P,Q) = ap lim
ε↓0

f((∂Pε ∩Q) \ Sε
∂ , Q \ Pε)

= ap lim
ε↓0

N∑
j=1

(
f(intSε

aj ,Q, Q \ Pε) + f(intSε
bj ,Q, Q \ Pε)

)

= ap lim
ε↓0

N∑
j=1

(
µj,ac

bj+ε(Q
′ε
bj

)− µj,ac
aj−ε(Q

′ε
aj

)
)

(4.42)
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= ap lim
ε↓0

N∑
j=1

(∫
Q′ε

bj

τ j((x′, bj + ε)j) dx′ −
∫

Q′ε
aj

τ j((x′, aj − ε)j) dx′
)

(4.36)
= ap lim

ε↓0

N∑
j=1

(∫
Sε

bj ,Q

τ j(x) dHN−1(x)−
∫

Sε
aj,Q

τ j(x) dHN−1(x)
)

(4.37)
= ap lim

ε↓0

∫
∂Pε∩Q

τ(x) · νP (x) dHN−1(x) . (4.43)

The equality of the sum in (4.42) with the integral in (4.43), the definition of the µj
ξ, the fact

that µj
ξ = µj,ac

ξ for ξ ∈ H, and the local boundedness of f imply that the real-valued function

ψ(ε) :=
∫

∂Pε∩Q
τ(x) · νP (x) dHN−1(x)

is essentially bounded on (0, 1). Fubini’s theorem implies that ψ is L1-measurable on (0, 1). By
Proposition 8.1 we thus obtain that

f(P,Q) = lim
ε↓0

1
ε

∫ ε

0

∫
∂Pσ∩Q

τ(x) · νP (x) dHN−1(x) dσ

= lim
ε↓0

1
ε

∫
(Pε\P )∩Q

τ(x) · νP (x) dx (4.44)

for any P,Q ∈ Qf .
The previous construction readily shows that the components τ j of the interaction tensor τ

are uniquely determined up to a set of LN -measure zero. Note that τ j ∈ L1
loc(C) as densities of

the absolutely continuous measures µj , j = 1, . . . , N . This verifies (4.2) for R ∈ Qf .
Let now R ∈ Rf , Q ∈ Qf . Obviously ∂R has LN -measure zero and, thus, f(Q,R) = f(Q, clR)

by (C2). On the other hand, clR is the union of finitely many Rk ∈ Qf with pairwise disjoint
interiors and f(Q,Rk) = f(Q, intRk) again by (C2). The additivity of f(Q, ·) then readily implies
(4.2) for all R ∈ Rf . Thus the theorem is proved for the case where C is a bounded open cube.

(f) Let us now assume that C is a bounded Borel set. We cover C by an open cube C̆. By f̆ we
denote the zero extension of f on C̆ relative to Rf

C̆
. We know that f̆ is a contact interaction on C̆

relative to Rf
C̆

by Proposition 3.5. By our previous proof there is an interaction tensor τ̆ ∈ L1(C̆)

for f̆ such that (4.2) is satisfied. We now show that τ̆ has to vanish a.e. on C̃ := C̆ \ C.
Suppose that there is some j such that τ̆ j 6= 0 on a Borel subset B̃ ⊂ C̃ with LN (B̃) > 0.

Without loss of generality let us assume that τ̆ j(x) > 0 for all x ∈ B̃ and let H be the set defined
in (4.33) corresponding to f̆ . Then there exists a ξ ∈ H such that B̃′

ξ := {x′ ∈ C̆ ′| (x′, ξ)j ∈ B̃}
has positive HN−1-measure. Consequently, by (4.31),

f̆((B̃′
ξ × {ξ})j , (C̆ ′ × [ξ, 1))j) =

∫
B̃′

ξ

τ̆ j((x′, ξ)j) dx′ > 0 .

On the other hand, B̃ ∩ C = ∅ and, by (2.2), we obtain the contradiction that

f̆((B̃′
ξ × {ξ})j , (C̆ ′ × [ξ, 1))j) = 0 .
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Hence τ̆(x) = 0 a.e. on C̃. Now the assertion is readily proved with τ(x) := τ̆(x) for all x ∈ C

and, hence, the theorem is valid for any contact interaction f on a bounded Borel set C.

(g) Let us finally consider the case where C is unbounded. For technical simplicity we assume
that Z ∈ H f . We cover C with bounded closed unit cubes Ck ∈ Qf

C , k ∈ N, having coordinates
ak

j , b
k
j = ak

j + 1 ∈ Z, j = 1, . . . , N (cf. (2.1)), i.e.,

C =
⋃
k∈N

Ck , LN (Ck ∩ Cl) = 0 for k 6= l . (4.45)

By fk we denote the complete restriction of f on Ck ∈ Qf
C which is a contact interaction on the

bounded Borel set Ck relative to Rf
Ck

by Proposition (3.5) and which is obviously locally bounded.
Applying our previous proof to the fk we find interaction tensors τk ∈ L1(Ck) such that (4.2) is
satisfied for fk on Ck. We set

τ(x) := τk(x) if x ∈ Ck .

Clearly τ ∈ L1
loc(C). Fixing Q,R ∈ Qf

C , we find that Q ∩ Ck 6= ∅ only for finitely many k =
k1, . . . , kl. Thus, taking into account (C2) and (4.45), we obtain

f(Q,R) = f(Q,R ∩ C̃) +
∑

k=k1,...,kl

f(Q,R ∩ Ck) , C̃ :=
⋃
k∈N

k 6=k1,...,kl

Ck .

Since Q and the Ck are closed with respect to C, we get Qε ∩ C̃ = ∅ for some small ε > 0 and,
thus, f(Q,R ∩ C̃) = 0 by (C1). On the other hand,

f(Q,R ∩ Ck)
(3.1)
= f(Q ∩ Ck, R ∩ Ck) = fk(Q ∩ Ck, R ∩ Ck)

for k = 1, . . . , kl. Thus, by (4.2) for fk,

f(Q,R) =
∑

k=k1,...,kl

lim
ε↓0

1
ε

∫
(Qε\Q)∩R∩Ck

τk · νQ dL
N

= lim
ε↓0

1
ε

∫
(Qε\Q)∩R

τ · νQ dL
N .

This finishes the proof of the Theorem 4.1. �

Proof of Corollary 4.4. The measures f i correspond to the µi
ξ defined in (4.31). The assertion

of the corollary follows, since a corresponding set H like that in (4.33) has to have full L1-measure.
Notice that we have to adopt arguments as in part (f) and (g) of the previous proof if C is not
an open cube. �

Proof of Corollary 4.5. By the same arguments as in the proof of Theorem 4.1 we can restrict
our attention to the case where M = 1 and C = (0, 1)N . Furthermore we can choose a countable
dense subset Hcd ⊂ Hd. Thus Qcd := Q(Hcd) is a countable subset of Qd.
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Let us first consider sets of the form Q = Q′ × (0, 1) with Q′ ∈ Q′cd := Q′(Hcd). Since f(·, Q)
is a measure, the real-valued function

ϕQ′(ξ) := f(Q′ × (0, ξ], Q)
(C1)
= f(Q′ × {ξ}, Q′ × [ξ, 1))

has to be continuous from the right on (0, 1). Hence each value ϕQ′(ξ) is uniquely determined
as limit of the known values ϕQ′(ζ) with ζ ∈ Hcd for all ξ ∈ (0, 1), Q′ ∈ Q′cd. According to the
proof of Theorem 4.1, there is H ⊂ (0, 1) ∩H f with L1(H) = 1 such that the measure

µN
ξ (P ′) := f(P ′ × {ξ}, C ′ × [ξ, 1))

is absolutely continuous with respect to LN−1 on C ′ for all ξ ∈ H (cf. (4.14), (4.33)). On the
other hand, we can argue as in part (a) of the proof of Theorem 4.1 and obtain that, for a possibly
smaller set H of full L1-measure,

f(P ′ × {ξ}, R′ × [ξ, 1)) = 0 for all ξ ∈ H, P ′ ∈ Q′cd0 , R′ ∈ Q′cd

where Q′cd0 denotes all elements of Q′cd with HN−1-measure zero. Thus

f(∂Q′ × {ξ}, C ′ × [ξ, 1)) = f(∂Q′ × {ξ}, Q′ × [ξ, 1)) = 0

for all ξ ∈ H, Q′ ∈ Q′cd. Consequently,

µN
ξ (Q′) = f(Q′ × {ξ}, Q′ × [ξ, 1)) = ϕQ′(ξ) for all ξ ∈ H, Q′ ∈ Q′cd ,

but these values can already considered to be known. Since Q′cd generates the Borel sets BC′ , the
absolutely continuous measures µN

ξ and their densities τN
ξ are uniquely determined for all ξ ∈ H

this way. By (4.32) the component τN of the interaction tensor τ is uniquely determined (up to
a set of LN -measure zero) by

τN (x′, ξ) = τN
ξ (x′) for a.e. x′ ∈ C ′ (4.46)

for all ξ ∈ H. We obtain the other components τ1, . . . , τN−1 by analogous arguments. Since f is
uniquely determined by its interaction tensor τ according to Theorem 4.1, the assertion is proved.

�

Proof of Corollary 4.6. (1) f(A) is a contact interaction by Proposition 3.5 and, obviously, it
is locally bounded. Thus f(A) has an interaction tensor τA ∈ L1

loc(C,RM×N ) by Theorem 4.1. We
argue in the same way as in part (f) of the proof of Theorem (4.1) to obtain that τA(x) = 0 a.e.
on C \ A. For A ∈ Rf we can first replace R with R ∩ A and then τ with τA in (4.2) to get the
corresponding representation formula for f(A). The uniqueness of the interaction tensor (up to a
set of LN -measure zero) verifies the assertion.

(2) The zero extension f̆ is a contact interaction on C̆ by Proposition 3.5 and it is clearly locally
bounded. Again Theorem 4.1 provides the existence of an interaction tensor τ̆ ∈ L1

loc(C,RM×N ).
Now we can again argue in the same way as in part (f) of the proof of Theorem (4.1) to see that
τ̆(x) = 0 a.e. on C̆ \ C. As in the previous case we obtain that τ̆ has to equal τ a.e. on C. �
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5 Tensors with divergence measure

In this section we further analyze the structure of interaction tensors of contact interactions and
first introduce an important notion. Let C ⊂ RN be open. We say that τ ∈ L1

loc(C,RM×N ) has
divergence measure if for each compact K ⊂ C there exists cK ≥ 0 such that∣∣∣∣∫

C
τ ·DϕdLN

∣∣∣∣ ≤ cK max
K

|ϕ| (5.1)

for all ϕ ∈ C∞0 (C,R) with sptϕ ⊂ K. By Riesz’s representation theorem this condition is
equivalent with the existence of a vector-valued Radon measure σ on C such that

−
∫

C
τ ·DϕdLN =

∫
C
ϕdσ (5.2)

for all Lipschitz continuous functions ϕ : C 7→ RM having compact support. In the sense of
distributions we then have that σ = div τ . Note that σ is independent of a change of τ on a set
of LN -measure zero.

We now ask to what extent interaction tensors have divergence measure. In the preceding
section we have verified the existence of an interaction tensor τ for contact interactions f on
arbitrary Borel sets C ∈ RN , but tensor fields having divergence measure are merely defined on
open sets C. On the other hand, Corollary 4.6 justifies that we can identify a contact interaction f
with its zero extension on a larger set. Therefore it is not restrictive to limit our further attention
to contact interactions that are defined on an open set C. As before Qf denotes a full subsystem
of Q, and Rf ⊂ R is the algebra generated by Qf .

Theorem 5.3 Let f : B × Rf 7→ RM be a locally bounded contact interaction on the open set
C ⊂ RN relative to Rf and let τ ∈ L1

loc(C,RM×N ) be the corresponding interaction tensor. Then
τ has divergence measure and div τ = f(·, C).

If f is a locally bounded contact interaction on C relative to some algebra A, then we know
by Corollary 4.6 that the partial restriction f(A) of f on A ∈ A is again a locally bounded contact
interaction on C corresponding to some interaction tensor τA ∈ L1

loc(C,RM×N ) while τA can be
given explicitly by (4.7) for A ∈ Rf . Thus we can apply Theorem 5.3 to all these τA.

Corollary 5.4 Let f be a locally bounded contact interaction on C relative to some algebra A

containing Rf and let τA ∈ L1
loc(C,RM×N ) denote the interaction tensor of the partial restriction

f(A) of f for A ∈ A. Then τA has divergence measure and f(·, A) = div τA.

Remark 5.5 (1) With f as in Corollary 5.4 and with the corresponding interaction tensor τ = τC
we find that for all A ∈ Rf the tensor field

τA(x) :=

{
τ(x) for x ∈ A ,
0 for x ∈ C \A ,

has divergence measure according to (4.7).
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(2) Let τ denote the interaction tensor of a locally bounded contact interaction f on the
open set C relative to some algebra A with Rf ⊂ A. With Ă := Rf

RN we have an algebra on RN

satisfying Ă|C = A. Hence the zero extension f̆ of f on RN is a contact interaction by Proposition
3.5 and the corresponding interaction tensor τ̆ is just the extension of τ on RN by zero according
to Corollary 4.6. With A = RN ∈ Ă in Corollary 5.4 we obtain that f̆(·,RN ) = div τ̆ . By (2.2)
we readily imply that |div τ̆ |(∂C) = 0 since ∂C ⊂ RN \ C.

Proof of Theorem 5.3. Except for the first part, the proof basically coincides with that
of Degiovanni, Marzocchi & Musesti [15, Theorem 5.3] though the assumptions there are
different. For the convenience of the reader we adapt these arguments to our situation.

(a) Let Et ⊂ QRN denote the closed N -interval with coordinates aj = −t, bj = t, j = 1, . . . , N ,
t > 0. We fix any point x ∈ C and set Qt

x := x+ Et. Clearly there is a t0 = t0(x) > 0 such that
Qt

x ∈ C for all t ∈ (0, t0). Using Fubini’s theorem we find that the function

α(t) :=
∫

∂Qs
x

τ · νQs
x
dHN−1

belongs to L1(0, t0). Since a.e. t ∈ (0, t0) is a Lebesgue point of α(·) and since Qt
x ∈ Qf for a.e.

t ∈ (0, t0), we obtain by (4.2) that

f(Qt
x, C) = lim

ε↓0

1
ε

∫ ε

0
α(s)ds = α(t) for a.e. t ∈ (0, t0) . (5.6)

(b) With |x|∞ := max{|x1|, . . . , |xN |} we define

%(x) :=
N + 1

2N
(1− |x|∞)+ , %m(x) := mN%(mx) for x ∈ RN

where (·)+ denotes the positive part. Notice that % is supported on E1 and that
∫
% dx = 1. Let

Km ⊂ C, m ∈ N, be an increasing sequence of compact subsets of C with C =
⋃∞

m=1 intKm and
let ϑm ∈ C∞0 (C) with ϑm(x) ∈ [0, 1] on C and ϑm(x) = 1 on Km. Then the tensor fields

τm(x) :=
∫

C
%m(x− y)ϑm(y)τ(y) dLN (y) (5.7)

belong to C1(C,RM×N ), converge to τ in L1
loc(C), and

div τm(x) =
∫

C
ϑm(y)τ(y) ·D%m(x− y) dLN (y) .

(c) We fix any open B ⊂ C with compact closure in C and now show that∣∣∣ ∫
C
τ ·DϕdLN

∣∣∣ ≤ µ(B) for all ϕ ∈ C∞0 (C) with sptϕ ⊂ B, max
B

|ϕ| ≤ 1 (5.8)

for µ := |f |(·, C), which then implies that τ has divergence measure.
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For any ϕ as in (5.8) with B̃ := sptϕ we have that∣∣∣ ∫
C
τ ·DϕdLN

∣∣∣ = lim
m→∞

∣∣∣ ∫
C
τm ·DϕdLN

∣∣∣
≤ lim inf

m→∞

∫
C
|div τm| |ϕ| dLN

≤ lim inf
m→∞

∫
B̃
|div τm| dLN . (5.9)

Setting tm := (N + 1)mN/2N we see that

{y ∈ RN | %m(x− y) > t} = x+ E
tm−t
mtm for t ∈ [0, tm) .

For sufficiently large m we ensure that B̃ + E
1
m ⊂ B and that ϑm = 1 on B̃ + E

1
m . The change

of variable formula (cf. Evans & Gariepy [17, Theorem 2, p. 117]) implies that

|div τm(x)| =
∣∣∣ ∫

x+E
1
m

τ(y) · D%m(x− y)
|D%m(x− y)|

|D%m(x− y)| dLN (y)
∣∣∣

=
∣∣∣ ∫ tm

0

∫
∂(x+E

tm−t
mtm )

τ(y) · D%m(x− y)
|D%m(x− y)|

dHN−1(y) dt
∣∣∣

(5.6)
=

∣∣∣ ∫ tm

0
f(x+ E

tm−t
mtm , C) dt

∣∣∣
≤

∫ tm

0
µ(x+ E

tm−t
mtm ) dt

= tm

∫ 1

0
µ(x+ E

s
m ) ds for x ∈ B̃ . (5.10)

Fubini’s Theorem implies that∫
B̃
|div τm(x)| dLN (x) ≤ tm

∫
B̃

∫ 1

0
µ(x+ E

s
m ) ds dLN (x)

= tm

∫ 1

0

∫
B̃

∫
B
χ

x+E
s
m

(y) dµ(y) dLN (x) ds

= tm

∫ 1

0

∫
B

∫
B̃
χ

x+E
s
m

(y) dLN (x) dµ(y) ds

= tm

∫ 1

0

∫
B

2NsN

mN
dµ(y) ds = µ(B) ,

which, together with (5.9), implies (5.8).
(d) For Q ∈ Qf we set

ϕε(x) :=


1 on Q,

0 on Qσ for σ ≥ ε ,

1− σ
ε on Qσ for σ ∈ [0, ε] .

Then, by (4.2), (5.2),

f(Q,C) = lim
ε↓0

1
ε

∫
Qε\Q

τ · νQ dL
N = − lim

ε↓0

∫
Qε\Q

τ ·Dϕε dL
N
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= − lim
ε↓0

∫
C
τ ·Dϕε dL

N = lim
ε↓0

∫
Qε

ϕε d(div τ)

= (div τ)(Q) .

Since Qf generates B, we get div τ = f(·, C). �

As in Degiovanni et al. [15, Theorem 5.4] we obtain the following formula for partial
integration. Recall that P denotes the sets of finite perimeter in the set C where C is assumed
to be open.

Proposition 5.11 Let τ ∈ L1
loc(C,RM×N ) be a tensor field with divergence measure. Then there

exists a nonnegative real-valued function h ∈ L1
loc(C,R) such that∫

P
τ ·DϕT dLN =

∫
∂∗P

ϕ τ · νP dH
N−1 −

∫
P∗

ϕd(div τ) (5.12)

for all P ∈ P with
∫
∂∗P

h dHN−1 <∞, |div τ |(∂∗P ) = 0, all locally Lipschitz continuous functions
ϕ : C 7→ RM , and such that either clP ⊂ C is compact or ϕ has compact support in C.

Proof. We briefly repeat the main steps of the proof from [15, Theorem 5.2, 5.4] both for the
convenience of the reader and for later reference, since we will extend some arguments in our
subsequent analysis.

We define a sequence τn ∈ C∞(C,RM×N ) as in (5.7) but with a nonnegative function % ∈
C∞0 (RN ) satisfying

∫
% dLN = 1. By Brezis [7, Theorem IV.9] there is a nonnegative function

h ∈ L1
loc(C,R) and a subsequence denoted the same way such that

lim
n→∞

τn = τ in L1
loc(C) , lim

n→∞
τn(x) = τ(x) for all x ∈ C with h(x) <∞ , (5.13)

|τn(x)| ≤ h(x) for all x ∈ C , n ∈ N . (5.14)

By partial integration and Fubini’s theorem we obtain for P and ϕ as in the proposition and for
n ∈ N sufficiently large that∫

P
ϕ(x) div τn(x) dLN (x) =

∫
P
ϕ(x)

(∫
C
τ(y) ·D%n(x− y) dLN (y)

)
dLN (x)

=
∫

P
ϕ(x)

(∫
C
%n(x− y) d(div τ)(y)

)
dLN (x)

=
∫

C

(∫
P
ϕ(x)%n(x− y) dLN (x)

)
d(div τ)(y) . (5.15)

The inner integral on the right-hand side converges to ϕ(y) on P∗ and to 0 on (C \ P )∗. For a
compact set K ⊂ C with either clP ⊂ intK or sptϕ ⊂ intK we have the estimate that∣∣∣ ∫

P
ϕ(x)%n(x− y) dLN (x)

∣∣∣ ≤ χK(y) max
K

|ϕ| .

Then Lebesgue’s theorem implies that

lim
n→∞

∫
P
ϕ div τn dLN =

∫
P∗

ϕd(div τ) . (5.16)
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On the other hand, ϕ is Lipschitz continuous on K and∫
P
τn ·DϕdLN =

∫
∂∗P

ϕ τn · νP dH
N−1 −

∫
P
ϕ div τn dLN . (5.17)

By (5.13), (5.14), and the assumption that
∫
∂∗P

h dHN−1 <∞ we get that
∫
∂∗P

|τ | dHN−1 <∞.
We obtain (5.12) by taking the limit in (5.17) where we apply Lebesgue’s theorem to the first
two integrals and apply (5.16) to the last one. �

Proposition 5.11 enables us to extend the representation formula (4.2) to a much larger class
of subbodies with respect to the first argument and to provide a usual representation formula by
means of surface integrals on a suitable subclass of subbodies.

First for any B ∈ RN we introduce a Lipschitz continuous function on RN by

ϕε
B(x) :=


1 if distB x = 0 ,
0 if distB x ≥ ε ,

1− 1
ε distB x if 0 < distB x < ε ,

(5.18)

and we define the outer normals of B relative to its distance function by

νd
B(x) :=

∂

∂x
distB x for a.e. x ∈ RN with distB x > 0 .

The normals νd
B(x) are unit vectors for all x ∈ RN with distB x > 0 where the gradient exists.

By Bd
ε we denote the usual open ε-neighborhood of B, i.e., all points with distB x < ε. Note that

Dϕε
B = 0 for a.e. x ∈ RN satisfying ϕε

B(x) = 0 or ϕε
B(x) = 1 (cf. Gilbarg & Trudinger [21,

Lemma 7.7]) and that εDϕε
B(x) = −νd

B(x) for a.e. x ∈ RN with 0 < distB x < ε.
We say that a property is true for almost every P ⊂ P if there exist a nonnegative real function

h ∈ L1
loc(C,R) and a nonnegative measure µ on C such that the property holds for all P ∈ P

belonging to

Phµ :=
{
P ∈ P

∣∣∣ ∫
∂∗P

h dHN−1 <∞, µ(∂∗P ) = 0
}
. (5.19)

Theorem 5.20 Let f : B × A 7→ RM be a locally bounded contact interaction on the open set
C ⊂ RN with Rf ⊂ A and let τA ∈ L1

loc(C,RM×N ) denote the interaction tensor corresponding to
the partial restriction f(A) of f on A ∈ A.

(1) For any bounded B ∈ B that is closed relatively to C and for any A ∈ A,

f(B,A) = lim
ε↓0

1
ε

∫
(Bd

ε \B)
τA · νd

B dL
N . (5.21)

(2) For any A ∈ A,

f(P,A) =
∫
∂∗P

τA · νP dH
N−1

for a.e. bounded normalized P ∈ P .
(5.22)

(3) For each A ∈ A there is a full subsystem Q̌ ⊂ Qf such that

f(Q,A) =
∫

∂Q
τA · νQ dH

N−1 for all Q ∈ Q̌ .
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The right-hand side in the previous three formulas is always called normal trace of τA on the
corresponding set B, P , or Q.

Remark 5.23 (1) Note that for each A ∈ A the value f(B,A) is well defined for all Borel
sets B ∈ B though we have a representation as some normal trace merely for “good” sets B. In
particular, this means that, in our setting, contact interactions are defined not only on sufficiently
regular surfaces.

(2) By (4.7) we can replace the tensor τA with τ = τC in the representation formulas in
Theorem 5.20 for all A ∈ Rf if we then restrict the integration on the set A. In the next section
we will see that this is even true for all A ∈ A.

Proof. Let τ̆A always denote the extension of τA to RN by zero. By Corollary 4.6 we know that
this is the interaction tensor of the zero extension f̆(A) of f(A) on RN . Clearly τ̆A ∈ L1

loc(RN ).
Taking Remark 5.5.2 into account we see that the measure div τ̆A is just the extension of the
measure div τA on all Borel sets of RN by zero, i.e., |div τ̆A|(RN \ C) = 0. Hence

f(B,A) = f(A)(B,A) = div τA(B) = div τ̆A(B) = f̆(A)(B,A).

Therefore it is sufficient to verify the assertions for the interactions f̆(A) on RN and the corre-
sponding tensors τ̆A.

For the first assertion we choose some large P ∈ QRN such that clB ⊂ intP and that (5.12)
with τ̆A holds for this P . Then we evaluate (5.12) with ϕε

B. If we observe that ϕε
B vanishes on

∂P for sufficiently small ε > 0 and that Dϕε
B = 0 for a.e. x ∈ RN satisfying ϕε

B(x) = 0 or
ϕε

B(x) = 1 (cf. Gilbarg & Trudinger [21, Lemma 7.7]), then we get (5.21). For the second
assertion we choose ϕ ≡ 1 in (5.12) with τ̆A and observe that clP ⊂ RN is compact according
to our boundedness assumption. The last assertion is a direct consequence of Degiovanni et al.
[15, Theorem 7.2]. �

6 Extension of contact interactions

In our previous investigations we have occasionally considered contact interactions f that are
merely defined on B × Rf . But in Example 2 of Section 3 we have seen that in the case of
concentrations it is interesting to know the interaction f(B,A) for sets A that are cones. This
means that the algebra Rf is too small for a detailed description of concentrations. Therefore let
us consider the extent to which f can be extended to an algebra A larger than Rf with respect
to the second argument. Recall that it is impossible to extend f(B, ·) to all Borel sets B (cf.
Example 3 in Section 3). Thus we seek a rich algebra between Rf and B. It turns out that
the algebra P of sets of finite perimeter or at least a suitable subalgebra A ⊂ P is a reasonable
class. The difficulty for such an extension is that we cannot use usual approximation arguments
for measures due to the lack of σ-additivity with respect to the second argument. Furthermore,
notice that the axioms (C1)–(C3) give only a very weak information about the coupling between
the measures f(·, A) for different sets A. Hence the analysis is more sophisticated and we have
to exploit the additional information provided by the tensorial structure of contact interactions.
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If f is a locally bounded contact interaction on C relative to some algebra A, then we already
know by Corollary 4.6 that the partial restriction f(A) is again a locally bounded contact interac-
tion possessing an interaction tensor τA for any A ∈ A. By the representation formula (4.2), the
extension of f on A is uniquely described if we determine the tensors τA for all A.

Studying such extensions we in fact want to answer two different questions. First we assume
that we already have some contact interaction f on a “large” algebra A. From Theorem 4.1 we
obtain the interaction tensor τ that describes f uniquely at least on B × Rf , since τ uniquely
determines the interaction tensors τR for all R ∈ Rf according to Corollary 4.6. However, we do
not yet know how far the other tensors τA, that exist for all A ∈ A \Rf , are uniquely determined
by τ . In Theorem 6.1 below we will also see that these τA are the expected restriction of τ .
This, in particular, implies the uniqueness of extensions. Secondly we can assume that a contact
interaction f is merely given on the “small” system B × Rf . In this case we have to look for a
reasonable “large” algebra A on which f can be extended.

Let us start with the first question where we assume that a contact interaction f on C relative
to some algebra A larger than Rf is given and we want to determine the tensors τA.

Theorem 6.1 Let f be a locally bounded contact interaction on a Borel set C ⊂ RN relative
to some algebra A of Borel sets containing a full system Qf and let τ denote the corresponding
interaction tensor. Then the interaction tensor τA of the partial restriction f(A) of f on A is
given, up to a set of LN -measure zero, by

τA(x) =

{
τ(x) for x ∈ A ,
0 for x ∈ C \A

(6.2)

for all A ∈ A.

Thus the interaction tensor τA and therefore also the interaction on all of B × A is uniquely
determined by the interaction tensor τ . By Corollary 5.4 we obtain that

f(B,A) = (div τA)(B) for all B ∈ B , A ∈ A (6.3)

whith τA given by (6.2). This new fundamental representation formula completely describes the
interaction f by means of the tensor field τ . It can be considered as a replacement for Cauchy’s
classical formula (1.1). Note that (6.3) does not contain any surfaces or normal fields! Neverthe-
less we recover the classical formula in (5.22) for sufficiently regular subbodies. Moreover, since
the representation formula (4.2) is satisfied for all partial restrictions f(A) with the correspond-
ing tensor τA, it readily follows that a locally bounded contact interaction f with corresponding
interaction tensor τ satisfies the trace-like formula that

f(Q,A) = lim
ε↓0

1
ε

∫
(Qε\Q)∩A

τ · νQ dL
N

= lim
ε↓0

1
ε

∫ ε

0

∫
∂Qσ∩A

τ · νQ dH
N−1 dσ (6.4)

for all Q ∈ Qf , A ∈ A. The proof of the theorem is deferred to the end of this section.
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Let us now study the second question, i.e., we assume that a contact interaction f is given
on B × Rf and we seek a suitable algebra A larger than Rf on which f can be extended with
respect to the second argument. First let us discuss conditions that have to be satisfied by such
an algebra A. From Theorem 6.1 we know that the interaction tensors τA corresponding to the
partial restrictions f(A) must have the form (6.2) for all A ∈ A. Since all these f(A) are also locally
bounded contact interactions, all these τA must have divergence measure according to Corollary
5.4. Hence we have to seek for an algebra A such that all tensors τA, A ∈ A, of the form (6.2)
have divergence measure. We already know that this algebra A cannot contain the collection B

of all Borel sets. But, in analogy to (5.19), we consider

Ph := {P ∈ P|
∫

∂∗P
h dHN−1 <∞}

for some nonnegative h ∈ L1
loc(C,R).

Proposition 6.5 Let C ⊂ RN be open and let τ ∈ L1
loc(C,RM×N ) be a tensor field with diver-

gence measure. Then there exists a nonnegative h ∈ L1
loc(C,R) (the same as in Proposition 5.11)

such that

τP (x) =

{
τ(x) for x ∈ P ,
0 for x ∈ C \ P

(6.6)

has divergence measure for all P ∈ Ph and the system Ph is an algebra. For each P ∈ Ph there
is some gP ∈ L∞(C, |div τ |) with 0 ≤ gP (x) ≤ 1 such that

div τP = gP div τ − τ · νP HN−1b ∂∗P (6.7)

( (gP div τ)(B) :=
∫
B gP d(div τ) ) in the sense of measures and

gP (x) = densP (x) for all x ∈ C where densP (x) exists. (6.8)

The proof of this proposition is carried out at the end of this section. Note that

(div τP )b P∗ = (div τ)b P∗ , (div τP )b (C \ P )∗ = 0 (6.9)

for all P ∈ Ph by (6.7).
Proposition 6.5 provides Ph as a convenient algebra for an extension of a locally bounded

contact interaction f with corresponding interaction tensor τ . By Corollary 5.4 and Theorem 6.1
we know that an extension of f must be given by

f(B,P ) := (div τP )(B) for all B ∈ B , P ∈ Ph (6.10)

where the τP are related to the tensor τ according to (6.6). We still have to check whether this
really provides a contact interaction on B× Ph:

Theorem 6.11 Let f be a locally bounded contact interaction on the open set C relative to a full
subsystem Rf . Then there exists a nonnegative function h ∈ L1

loc(C) such that f can be uniquely
extended to a contact interaction on B× Ph by (6.10).
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Here h is the same as in Proposition 6.5. Moreover, in addition to (6.10), the representation
formula (6.4) is certainly valid for the extended contact interaction f . Note finally that Ph is
a quite rich algebra, but it is still open whether contact interactions may be extended to larger
algebras A. The proof of this theorem is given below.

Proof of Theorem 6.1. Since we can argue for each component of τ = (τ ij) separately, it is
sufficient to consider the scalar case M = 1 and to restrict attention to the component τN of
τ = (τ1, . . . , τN ). We can assume that C = RN , since otherwise we can use the corresponding
zero extension. For notational convenience we set f0 := f and τ0 := τ .

Let us fix any A ∈ A, let A∗ denote its measure-theoretic interior, and recall that Ac = C\A ∈
A. By f1 := f(A) and f2 := f(Ac) we denote the partial restrictions of f on A and Ac, respectively,
and let τ1 = τA and τ2 = τAc be the corresponding interaction tensors. Applying Corollary 4.4
to the fk, k = 0, 1, 2, we find a full set Ȟ f ⊂ R independent of k such that, with C ′ := RN−1,

fk(Q′ × {ξ}, C ′ × [ξ,∞)) =
∫

Q′
τN
k (y′, ξ) dHN−1(y′) (6.12)

for all ξ ∈ Ȟ f , Q′ ∈ Q′, k = 0, 1, 2. Let L ⊂ C denote the set of all points x ∈ C such that each
x ∈ L is a Lebesgue point for all τN

k (·) and such that all τN
k (·) are approximately continuous at

each x ∈ L (cf. Evans & Gariepy [17, p. 47]). Obviously, HN−1((C ′ × {ξ}) \ L) = 0 for all
ξ ∈ Ȟ f .

We now fix any x = (x′, ξ) ∈ A∗ ∩L∩ (C ′×{ξ}) with ξ ∈ Ȟ f . Let Q′
δ ⊂ C ′ denote the closed

cube centered at x′ with edges of length 2δ and set Qδ := Q′
δ× [ξ− δ, ξ+ δ] ⊂ C. Then, by (6.12),∫

Qδ

τN
k (y) dLN =

∫ δ

−δ

∫
Q′

δ

τN
k (y′, ζ) dHN−1(y′) dζ

=
∫ δ

−δ
fk(Q′

δ × {ζ}, C ′ × [ζ,∞)) dζ for all δ > 0 .

For ζ ∈ Ȟ f , additivity implies that

f0(Q′
δ × {ζ}, C ′ × [ζ,∞))

= f0(Q′
δ × {ζ}, C ′ × [ζ,∞) ∩A) + f0(Q′

δ × {ζ}, C ′ × [ζ,∞) ∩Ac)

= f1(Q′
δ × {ζ}, C ′ × [ζ,∞)) + f2(Q′

δ × {ζ}, C ′ × [ζ,∞)) .

Thus, ∫
Qδ

τN
0 (y) dLN =

∫
Qδ

τN
1 (y) dLN +

∫
Qδ

τN
2 (y) dLN for all δ > 0 . (6.13)

Since τ2 vanishes outside of Ac and since Ac has density 0 at x, we get that

ap lim
y→x

τN
2 (y) = 0

where ap lim denotes the approximate limit. Therefore τN
2 (x) = 0, since τN

2 (·) is approximately
continuous for all x ∈ L. Observing that x is a Lebesgue point of τN

k (·) for all k = 0, 1, 2, we

43



derive from (6.13) that

τN
0 (x) = lim

δ↓0

1
LN (Qδ)

∫
Qδ

τN
0 (y) dLN

= lim
δ↓0

1
LN (Qδ)

∫
Qδ∩A

τN
1 (y) dLN + lim

δ↓0

1
LN (Qδ)

∫
Qδ∩Ac

τN
2 (y) dLN

= τN
1 (x) . (6.14)

But this means that

τN (x) = τN
A (x) for all x = (x′, ξ) ∈ A∗ ∩ L ∩ (C ′ × {ξ}) with ξ ∈ Ȟ f . (6.15)

Since LN (A \ A∗) = 0 and since the sets L and C ′ × Ȟ f have full measure in RN , we get that
τN (x) = τN

A (x) a.e. on A. Since τA(x) = 0 for a.e. x ∈ Ac by Corollary 4.6, we have shown (6.2)
and the proof is complete. �

Proof of Proposition 6.5. The proof of the first assertion is a combination of arguments from
the proofs of Degiovanni et al. [15, Theorem 5.2, 5.4] adopted to our situation.

We define a sequence τn ∈ C∞(C,RM×N ) as in the proof of Proposition 5.11 such that (5.13),
(5.14) are satisfied with the same nonnegative h ∈ L1

loc(C). Now we choose P ∈ Ph, a compact
set K ⊂ C, and choose ϕ ∈ C∞0 (C) with sptϕ ⊂ K. Furthermore, let Bε(K) ⊂ C denote the
ε-neighborhood of K for a suitable fixed ε > 0. Then, for all n ∈ N sufficiently large,∣∣∣ ∫

P
ϕ(x) div τn(x) dLN

∣∣∣
=
∣∣∣ ∫

P∩K
ϕ(x)

(∫
C
τ(y) ·D%n(x− y) dLN (y)

)
dLN (x)

∣∣∣
=
∣∣∣ ∫

P∩K
ϕ(x)

(∫
C
%n(x− y) d(div τ)(y)

)
LN (x)

∣∣∣
=
∣∣∣ ∫

C

(∫
P∩K

ϕ(x)%n(x− y) dLN (x)
)
d(div τ)(y)

∣∣∣
≤ |div τ |(Bε(K)) max

x∈K
|ϕ(x)| . (6.16)

By (5.14) we know that τn is HN−1-integrable on ∂∗P and, thus,∫
P
τn ·DϕdLN =

∫
∂∗P

ϕ τn · νP dH
N−1 −

∫
P
ϕ div τn dLN .

Using (5.13), (5.14), and Lebesgue’s theorem we can pass to the limit in the first two integrals
and the limit of the third integral can be estimated by (6.16). Hence,∣∣∣ ∫

C
τP ·DϕdLN

∣∣∣ =
∣∣∣ ∫

P
τ ·DϕdLN

∣∣∣
≤
∣∣∣ ∫

∂∗P
ϕ τ · νP dH

N−1
∣∣∣+ |div τ |(Bε(K)) max

K
|ϕ|

≤ max
K

|ϕ|
∫

∂∗P
h dHN−1 + c̃K max

K
|ϕ|

≤ cK max
K

|ϕ| (6.17)
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for some constant cK > 0 depending only on K, i.e., τP has divergence measure.
Let us now consider the structure of Ph. We know that P is an algebra. The definition of the

measure-theoretic boundary implies that

∂∗A = ∂∗A∗ = ∂∗A
c , (A ∩B)∗ = A∗ ∩B∗

for all LN -measurable sets A,B ⊂ RN (cf. Appendix and [28, p. 3]). By Šilhavý [55, (2.4),
(2.9)] we have for normalized sets A,B ⊂ RN (i.e., A = A∗, B = B∗) that

∂∗(A ∩B) ⊂ ∂∗A ∪ ∂∗B .

Hence

∂∗(A ∩B) = ∂∗(A ∩B)∗ = ∂∗(A∗ ∩B∗) ⊂ ∂∗A∗ ∪ ∂∗B∗ = ∂∗A ∪ ∂∗B ,

∂∗(A ∪B) = ∂∗(A ∪B)c = ∂∗(Ac ∩Bc)

= ∂∗(Ac ∩Bc)∗ = ∂∗((Ac)∗ ∩ (Bc)∗)

⊂ ∂∗(Ac)∗ ∪ ∂∗(Bc)∗ = ∂∗(Ac) ∪ ∂∗(Bc) = ∂∗A ∪ ∂∗B (6.18)

for all A,B ∈ P. But this readily implies that P c, P1 ∪P2, P1 ∩P2 ∈ Ph as long as P, P1, P2 ∈ Ph

which shows that Ph is an algebra.
We now choose any P ∈ Ph and, with some modifications, we again carry out the proof of

Proposition 5.11. First we can proceed until (5.15) while we restrict our attention to the case in
which ϕ has compact support in C. Obviously,∫

P
ϕ(x)%n(x− y) dLN (x)

= ϕ(y)
∫

P
%n(x− y) dLN (x) +

∫
P
(ϕ(x)− ϕ(y)) %n(x− y) dLN (x) (6.19)

for all y ∈ C. Since ϕ has compact support, ϕ is uniformly continuous on C. Thus the rightmost
integral in (6.19) tends to zero as n→∞ for all y ∈ C. For the evaluation of the limit in (5.15)
we thus have to study the limit of ∫

C
ϕ(y)gn(y) d(div τ)(y)

with the nonnegative continuous functions

gn(y) :=
∫

P
%n(x− y) dLN (x) , y ∈ C .

Certainly {gn} is a sequence in L∞(C, |div τ |) that is bounded by 1. Hence, at least for a
subsequence denoted the same way, {gn} weakly∗ converges to some gP ∈ L∞(C, |div τ |), i.e.,
instead of (5.16),

lim
n→∞

∫
P
ϕ div τn dLN = lim

n→∞

∫
C
ϕ(y)gn(y) d(div τ)(y)

=
∫

C
ϕ(y)gP (y) d(div τ)(y) (6.20)
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for all continuous ϕ with compact support. The limit gP belongs to the closed convex hull of the
gn and, thus, 0 ≤ gP (y) ≤ 1 for all y ∈ C. Obviously,

gn(y) → densP (y) on CP ⊂ C

where CP denotes the set of all y ∈ C where densP (y) is defined. CP is a Borel set, since densP (·)
is Borel measurable. Therefore we can consider the convergence in (6.20) separatly on CP and
on C \CP instead of C. Lebesgue’s theorem and the uniqueness of the weak limit gP imply (6.8).
If we now take the limit in (5.17), then∫

P
τ ·DϕdLN =

∫
∂∗P

ϕ τ · νP dH
N−1 −

∫
C
ϕgP d(div τ) .

Since ∫
P
τ ·DϕdLN =

∫
C
τP ·DϕdLN = −

∫
C
ϕd(div τP )

for all ϕ ∈ C∞0 (C) according to (5.2), we get (6.7). �

Proof of Theorem 6.11. Let τ be the interaction tensor of f that exists by Theorem 4.1
and that has divergence measure by Theorem 5.3. By Proposition 6.5 there exists a nonnegative
function h ∈ L1

loc(C,R) such that τP according to (6.6) has divergence measure for all P ∈ Ph.
Corollary 5.4 and Theorem 6.1 imply the unique definition for an extension of f , denoted the
same way, by

f(B,P ) := div τP (B) for all B ∈ B , P ∈ Ph . (6.21)

Certainly, f(·, P ) is a measure for all P ∈ Ph.
Now let P1, P2 ∈ Ph with P1 ∩ P2 = ∅. We know by Proposition 6.5 that τP1 , τP1 , and

τP1∪P2 = τP1 + τP2 have divergence measure. Hence, by 5.2,∫
C
ϕd(div τP1 + div τP2) = −

∫
C
(τP1 + τP2) ·DϕdLN

=
∫

C
ϕd(div τP1∪P2)

for all Lipschitz continuous ϕ with compact support. Therefore,

div τP1 + div τP2 = div τP1∪P2 .

But this implies finite additivity of f(B, ·) for any B ∈ B by (6.21), i.e., the extended f is an
interaction.

We still have to verify that f is a contact interaction. For Q ∈ Qf , P ∈ Ph, ε > 0 with
Qε ∈ Qf , and ϕσ

Q according to (5.18) we have by (5.2) and (6.6) that

f(Q,P ) = div τP (Q)

= lim
σ↓0

∫
C
ϕσ

Q d(div τP ) = − lim
σ↓0

∫
C
τP ·Dϕσ

Q dL
N (6.22)

= − lim
σ↓0

∫
(Qε\Q)∩P

τ ·Dϕσ
Q dL

N
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= − lim
σ↓0

∫
C
τ(Qε\Q)∩P ·Dϕσ

Q dL
N

= lim
σ↓0

∫
C
ϕσ

Q d(div τ(Qε\Q)∩P ) = f(Q, (Qε \Q) ∩ P )

which verifies (C1). For any P ∈ Ph with LN (P ) = 0, we get from (5.2) and (6.6) that∫
C
ϕ · d(div τP ) = −

∫
P
τ ·DϕdLN = 0

for all Lipschitz continuous functions ϕ on C with compact support. Hence div τP = 0 in the sense
of measures, which implies (C2). Now we fix any P ∈ Ph, Q ∈ Qf , and Z ∈ B with LN (Z) = 0.
Then for a.e. ε > 0 we have that P \Qε ∈ Ph, |div τ |(∂Qε) = 0, and HN−1(∂Qε ∩ Z) = 0. Thus

f(Qε \ Z,P \Qε)
(C1)
= f(∂Qε \ Z,P \Qε) = (div τP\Qε

)(∂Qε \ Z)
(6.7)
= (gP\Qε

div τ)(∂Qε \ Z)

−
(
τ · νP\Qε

HN−1b∂∗(P \Qε)
)
(∂Qε \ Z)

= −
∫

(∂∗(P\Qε))∩(∂Qε\Z)
τ · νP\Qε

HN−1

= −
∫

(∂∗(P\Qε))∩∂Qε

τ · νP\Qε
HN−1

= −
(
τ · νP\Qε

HN−1b∂∗(P \Qε)
)
(∂Qε)

= (div τP\Qε
)(∂Qε) = f(∂Qε, P \Qε)

= f(Qε, P ) for a.e. ε > 0 .

Since limε→0 f(Qε, P ) = f(Q,P ) as a basic property of measures, (C3) follows and completes the
proof. �

7 Boundedness condition

In our previous investigations we have seen that locally bounded contact interactions f on C can
be described by tensor fields τ ∈ L1

loc(C) having divergence measure. Now we ask whether each
such tensor field τ provides a contact interaction.

Theorem 7.1 Let τ ∈ L1
loc(C,RM×N ) be a tensor field with divergence measure on the open set

C ⊂ RN . Then, for the nonnegative function h ∈ L1
loc(C,R) according to Proposition 6.5, there

is a contact interaction f on C relative to Ph given by

f(B,P ) := (div τP )(B) for all B ∈ B , P ∈ Ph ,

where τP is defined as in (6.6). Moreover f satisfies the representation formulas

f(Q,P ) = lim
ε↓0

1
ε

∫
Qε\Q

τP · νQ dL
N for all Q ∈ Q , P ∈ Ph , (7.2)
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and
f(Q,P ) =

∫
∂Q
τP · νQ dL

N for a.e. Q ∈ Q , P ∈ Ph . (7.3)

Proof. Proposition 6.5 tells us that all tensor fields τP with P ∈ Ph have divergence measure
and, thus, f is well defined. For the verification that f is a contact interaction we can argue
exactly as in the proof of Theorem 6.11. As in (6.22) we obtain that

f(Q,P ) = − lim
ε↓0

∫
C
τP ·Dϕε

Q dL
N = lim

ε↓0

∫
Qε\Q

τP · νQ dL
N

for any Q ∈ Q, P ∈ Ph, which verifies (7.2). Taking Proposition 5.11 with ϕ ≡ 1 and τP instead
of τ we obtain (7.3). �

This result raises the question how restrictive is the physically motivated condition of local
boundedness for contact interactions, i.e., whether it rules out certain tensor fields τ ∈ L1

loc(C)
having divergence measure. This is really the case as can be seen from the following example
(which was pointed out me by M. Šilhavý, cf. [57, Example 9.1]) providing such a tensor field τ
where the corresponding contact interaction is not locally bounded.

Example 4. Let C := (−1, 1)× (−1, 1) ⊂ R2 and set

τ(x) :=
1
|x|2

(
x2

−x1

)
for all x ∈ C .

Then τ ∈ L1
loc(C,R2) and div τ = 0 in the sense of distributions. With R := (−1, 1)× [0, 1) and

Qσ := (−1, σ)× [0, 1), formula (7.2) implies for σ > 0 that

f(Qσ, R) =
∫ 1

0

x2

σ2 + x2
2

dx2 =
1

ln(1 + σ2)− lnσ2

σ→0−→ ∞ .

But this violates the condition of local boundedness for the interaction f .

Now we may ask how restrictive the condition of local boundedness really is and whether it
possibly prevents the measures f(·, A) from having a singular part with respect to LN . For this
reason we recall the tensor field τ from Example 2 in Section 3 and let f be the corresponding
contact interaction on C = R2 relative to the algebra Ph according to Theorem 7.1. Obviously,
there is some full system Qf = Q(H f) ⊂ Ph for which we can assume that 0 6∈ H f . By (6.7) we
then have that

|f(B,Q)| ≤ |f |(C,Q) = |div τQ|(C) ≤ |div τ |(Q) + |τ · νQ|H1b ∂∗Q

for B ∈ B, Q ∈ Qf . If we fix some Q̆ ∈ Qf , then the right-hand side is uniformly bounded for all
Q ⊂ Q̆. But this means that f is a locally bounded contact interaction while f(·, C) = div τ has a
concentration at the origin, i.e., the condition of local boundedness still allows concentrations of
the measures f(·, A). Notice that both in this example and in Example 4 the values τ(x) can be
arbitrarily large. On the other hand, interactions f(B,Q) for bounded Q can also be arbitrarily
large in Example 4 while they are uniformly bounded here.
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Let us finally discuss some weaker mathematical boundedness conditions for a contact in-
teraction f . First, for Q ∈ Q with coordinates ai, bi, i = 1, . . . , N , we define Qj

[ξ,ξ] ∈ Q as the
N -interval with the same coordinates as Q for i 6= j but ξ, ξ instead of aj , bj and, analogously,
Qj

[ξ,bj ]
∈ Qf with ξ instead of aj . Then we say that f is weakly locally bounded if∫ bj

aj

|f |(Qj
[ξ,ξ], Q

j
[ξ,bj ]

) dξ <∞ for all Q ∈ Qf , j = 1, . . . , N . (7.4)

It turns out that all our arguments still work for weakly locally bounded contact interactions f
instead of locally bounded ones. In particular, this means that each such f can be represented
by a tensor field τ ∈ L1

loc(C) and, if we identify τ with its extension on RN by zero, we even get
that τ ∈ L1

loc(RN ,RM×N ). On the other hand, we readily conclude from (7.3) that each tensor
field τ ∈ L1

loc(RN ,RM×N ) defines a contact interaction f that is weakly locally bounded. Thus
we have a one-to-one correspondence between weakly locally bounded contact interactions and
tensor fields in τ ∈ L1

loc(RN ,RM×N ) with divergence measure. We easily see that now Example
4 is covered. Obviously, a requirement like

|f(Q,R)| ≤
∫

∂Q∩R
h dHN−1 for a.e. Q,R ∈ Qf (7.5)

with some suitable nonnegative h ∈ L1
loc(RN ) implies (7.4). Notice that (7.5) is the translation of

one of the fundamental assumptions for a Cauchy flux to our setting (cf. Ziemer [66], Šilhavý

[55], Degiovanni et al. [15]).
Analogously, we can get a one-to-one correspondence of locally bounded contact interactions

with tensor fields τ ∈ L1
loc(C,RM×N ) for any open C ⊂ RN if we require (7.4) only for bounded

Q ∈ Qf with clQ ∈ C. However, in this case we have to be a little careful with arguments where
the boundary of C is involved. In particular, N -intervals Q containing parts of ∂C have to be
treated with caution. Despite these technicalities this case has the disadvantage that it might be
very difficult or even impossible to treat boundary conditions in a reasonable way. Therefore we
refrain from exploring this case further.

In summary, we can say that it is a question of one’s point of view which boundedness
condition is preferred. From the physical point of view the local boundedness seems to be natural
for contact interactions while the weaker condition (7.5) has no physical motivation but provides
some mathematical equivalence.

8 Appendix

For the convenience of the reader we first summarize some material from measure theory as
necessary for our purposes (for a more comprehensive presentation we refer to Ambrosio et al.
[1], Evans & Gariepy [17], and Federer [18]). Then we verify two general results for real
functions that we need for our analysis.

For any set A ⊂ Rn the density of A at x ∈ RN is

densA(x) := lim
r↓0

Ln(Br(x) ∩A)
Ln(Br(x))

,
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if the limit exists. The measure-theoretic interior of A is given by

A∗ :=
{
x ∈ Rn

∣∣∣ densA(x) = 1
}
,

and the measure-theoretic boundary of A by

∂∗A := Rn \ (A∗ ∪ (Ac)∗) .

A∗ and ∂∗A are always Borel sets, Ln(A∗ \ A) = 0, Ln(∂∗A) = 0, and intA ⊂ A∗ ⊂ clA. If A is
Ln-measurable, then Ln(A \ A∗) = 0 and if A has a Lipschitz boundary, then ∂A = ∂∗A. The
vector ν ∈ Rn with |ν| = 1 is said to be an outer unit normal of A at x ∈ ∂∗A if

0 = lim
r↓0

Ln({y ∈ Br(x) ∩A| (y − x) · ν > 0})
Ln(Br(x))

= lim
r↓0

Ln({y ∈ Br(x) \A| (y − x) · ν < 0})
Ln(Br(x))

which is unique if it exists. For x ∈ ∂∗A we define νA(x) to be the outer unit normal of A at x if
it exists and νA(x) = 0 otherwise. νA(·) is a bounded Borel map.

We say that A ⊂ Rn has finite perimeter in the open set C ⊂ Rn if Hn−1(C ∩ ∂∗A) < ∞
or, equivalently, if the distributional derivative of the characteristic function χA on C is a Radon
measure on C. The sets of finite perimeter on C are Ln-measurable, they form an algebra, and
νA(x) 6= 0 for Hn−1-a.e. x ∈ C∩∂∗A. For each set A of finite perimeter in C the density densA(x)
is well defined for HN−1-a.e. x ∈ C and densA(x) ∈ {0, 1

2 , 1} for HN−1-a.e. x ∈ C.
For a function g : R 7→ R we say that λ ∈ R is the approximate limit from above at t, written

λ = ap lims↓t g(s), if

lim
r↓0

L1((t, t+ r) ∩ {s| |g(s)− λ| ≥ ε})
L1((t, t+ r))

= 0 for all ε > 0 .

In analogy to Evans & Gariepy [17, Theorem 2, p. 46] we obtain that this limit is unique if it
exists. Since this limit is not influenced by values of the function g(s) on a set of L1-measure zero,
we can consider this limit also for functions g that are merely defined up to a set of L1-measure
zero.

Proposition 8.1 (1) Let H ⊂ (a, b) ⊂ R be such that L1(H) = 0 and let ϕ : (a, b) \H 7→ R be a
real-valued function satisfying

ap lim
s↓t

ϕ(s) = 0 for all t ∈ (a, b) \H . (8.2)

Then ϕ is L1-measurable and the set {t ∈ (a, b)|ϕ(t) 6= 0} has L1-measure zero.
(2) Let ϕ : (a, b) 7→ R be essentially bounded and let λ = ap lims↓t ϕ(s) for t ∈ (a, b). Then

λ = lim
δ↓0

1
δ

∫ ∗

(t,t+δ)
ϕdL1

where
∫ ∗ denotes the upper integral (cf. [17, p. 18]).
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Note that (8.2) does not force ϕ to be identically zero. Consider, for example,

ϕ(m
n ) := 1

n for t = m
n ∈ Q, m, n coprime, ϕ(t) := 0 otherwise.

Proof. (1) For technical simplicity we set ϕ(s) = 0 on H and, without any loss of generality, we
can assume that

0 ≤ ϕ(s) ≤ 1 on (a, b),

since otherwise we can replace ϕ with arctan(|ϕ(·)|). The difficulty now is that ϕ might not be
L1-measurable.

In analogy to Federer [18, Theorem 2.3.3] we can represent ϕ as

ϕ(s) =
∞∑

k=1

αkχHk
(s) for all s ∈ (a, b)

where αk := 1/2k and the χIk
are the characteristic functions of the recursively defined sets

Hk := {s ∈ (a, b)|ϕ(s) ≥ αk +
∑
j<k

αjχHj (s)} .

Now we can choose L1-measurable sets H∗
k ⊂ (a, b) with Hk ⊂ H∗

k and L1(Hk) = L1(H∗
k) which

allows us to define the L1-measurable function

ϕ∗(s) :=
∞∑

k=1

αkχH∗
k
(s) for all s ∈ (a, b) .

Obviously,
0 ≤ ϕ(s) ≤ ϕ∗(s) ≤ 2 for all s ∈ (a, b) . (8.3)

Note that ϕ∗ is integrable on (a, b) and, by the monotone convergence theorem,∫
(a,b)

ϕ∗ dL1 =
∞∑

k=1

αkL
1(H∗

k) .

Moreover, the upper integral
∫ ∗
H̃ ϕdL1 (cf. Evans & Gariepy [17, p.18]) is well defined and

finite for each L1-measurable set H̃ ⊂ (a, b). In particular,∫ ∗

(a,b)
ϕdL1 =

∞∑
k=1

αkL
1(Hk) ,

since ϕ can be estimated by integrable simple functions according to

l∑
k=1

αkχHk
(s) ≤ ϕ(s) ≤

l∑
k=1

αkχHk
(s) +

1
2l
χH>l

(s) with H>l :=
⋃
k>l

Hk

for all l ∈ N. Consequently, ∫ ∗

(a,b)
ϕdL1 =

∫
(a,b)

ϕ∗ dL1 . (8.4)

51



From (8.3) and the definition of the upper integral we get for all L1-measurable sets H̃, H̃1, H̃2 ⊂
(a, b) with H̃ = H̃1 ∪ H̃2, H̃1 ∩ H̃2 = ∅ that∫ ∗

H̃
ϕdL1 ≤

∫
H̃
ϕ∗ dL1 ,

∫ ∗

H̃
ϕdL1 =

∫ ∗

H̃1

ϕdL1 +
∫ ∗

H̃2

ϕdL1 . (8.5)

Since 0 ≤ ϕ(s) ≤ ϕ∗(s) on (a, b) and (8.4), we conclude that even∫ ∗

H̃
ϕdL1 =

∫
H̃
ϕ∗ dL1 for all L1-measurable sets H̃ ⊂ (a, b) .

Hence
Φ(t) :=

∫ ∗

(a,t)
ϕdL1 =

∫
(0,t)

ϕ∗ dL1 , t ∈ (a, b) ,

is absolutely continuous on (a, b).
Now consider t ∈ (a, b) \H such that Φ′(t) exists. Then, by (8.2),

lim
δ↓0

1
δ L1(Hδ,ε) = 0 for all ε > 0

where Hδ,ε := {s ∈ (t, t+ δ)|ϕ(s) ≥ ε} .
(8.6)

We choose L1-measurable sets H∗
δ,ε with Hδ,ε ⊂ H∗

δ,ε and L1(Hδ,ε) = L1(H∗
δ,ε). Thus∫ ∗

(t,t+δ)
ϕdL1 =

∫ ∗

H∗
δ,ε

ϕdL1 +
∫ ∗

(t,t+δ)\H∗
δ,ε

ϕdL1 (8.7)

≤
∫ ∗

H∗
δ,ε

dL1 +
∫ ∗

(t,t+δ)\H∗
δ,ε

ε dL1 (8.8)

≤ L1(Hδ,ε) + εδ . (8.9)

Since ε > 0 can be chosen arbitrarily small, we conclude that, by(8.6),

Φ′(t) = lim
δ↓0

1
δ

∫ ∗

(t,t+δ)
ϕdL1 = 0 .

Consequently, Φ′(t) = 0 L1-a.e. on (a, b), which implies that Φ(t) = 0 for all t ∈ (a, b) (observe
that Φ(a) = 0). Hence, ϕ∗(s) = 0 and also ϕ(s) = 0 L1-a.e. on (a, b), which proves the assertion.

(2) We set Hδ,ε := {s ∈ (t, t + δ)| |ϕ(s) − λ| ≥ ε} and choose L1-measurable sets H∗
δ,ε with

Hδ,ε ⊂ H∗
δ,ε and L1(Hδ,ε) = L1(H∗

δ,ε). Using the additivity of the upper integral as in (8.5) we
get that∣∣∣1
δ

∫ ∗

(t,t+δ)
ϕdL1 − λ

∣∣∣ =
∣∣∣1
δ

∫ ∗

H∗
δ,ε

(ϕ− λ) dL1 +
1
δ

∫ ∗

(t,t+δ)\H∗
δ,ε

(ϕ− λ) dL1 +
1
δ

∫ ∗

(t,t+δ)
λ dL1 − λ

∣∣∣
≤ 1

δ

∫ ∗

H∗
δ,ε

|ϕ− λ| dL1 +
1
δ

∫ ∗

(t,t+δ)\H∗
δ,ε

|ϕ− λ| dL1

≤ c

δ
L1(H∗

δ,ε) + ε =
c

δ
L1(Hδ,ε) + ε

for some constant c > 0. Since we can choose ε > 0 arbitrarily small, the assertion readily follows
from the assumption. �
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