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Abstract

The paper verifies the existence of a sequence of eigenfunctions for the 1-Laplace
operator by showing that the corresponding variational problem has a sequence of
critical points. Since the functionals entering the variational problem are not differen-
tiable, critical points are defined by means of the weak slope.
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1 Introduction

For the eigenvalue problem of the Laplace operator

−∆u = λu on Ω , u = 0 on ∂Ω

(Ω ⊂ Rn) there is a sequence (uk)k∈N of eigenfunctions that are, for p = 2, critical points
of

E(u) :=
∫

Ω
|Du|p dx in W 1,p

0 (Ω)

subject to the constraint

G(u) :=
∫

Ω
|u|p dx = 1 .

As a natural generalization it turns out that, for each p ∈ (1,∞), there is a sequence
(uk)k∈N of critical points that solve the eigenvalue problem for the p-Laplace operator

−div |Du|p−2Du = λ|u|p−2u on Ω , u = 0 on ∂Ω .

In the limit case p = 1 we formally obtain the equation

−div
Du

|Du|
= λ

u

|u|
on Ω , u = 0 on ∂Ω (1.1)

and, typically, a minimizer of

E(u) =
∫

Ω
|Du| dx subject to G(u) =

∫
Ω
|u| dx = 1 (1.2)

is a characteristic function u = χC vanishing on a set of positive measure (cf. Fridman
& Kawohl [12]). Since such u do not belong to W 1,1

0 (Ω), the problem has to be studied
in the larger space BV (Ω) of functions of bounded variation. Moreover (1.1) is not well-
defined for such solutions and needs some appropriate interpretation. It turns out that
Du/|Du| has to be replaced with a vector field z : Ω→ Rn and u/|u| with a sign function
s : Ω→ [−1, 1] satisfying suitable coupling conditions relating z and s to u such that

−Div z = λs a.e. on Ω (1.3)

(cf. Theorem 2.8 below). Equation (1.3) (combined with the coupling conditions) is usually
considered as eigenvalue problem for the 1-Laplace operator and a minimizer u of (1.2)
corresponds to the smallest eigenvalue λ. Now the question for higher eigensolutions, which
is the subject of this paper, is natural but confronts us with fundamental difficulties.

Let us start with a closer look at (1.3) in order to clarify what an eigensolution (u, λ)
of the 1-Laplace operator should be. The sign function s is related to u by

s(x) ∈ Sgn (u(x)) a.e. on Ω (1.4)

where Sgn denotes the set valued sign function (cf. (1.5) below). As a first necessary
condition for a minimizer u of (1.2) we have that there is one sign function s satisfying
(1.4) and a vector field z ∈ L∞(Ω,Rn) (related to u) such that (1.3) is satisfied with
λ = E(u). A more refined analysis shows that for any sign function s satisfying (1.4) there
is a vector field z (which may depend on s) such that (1.3) is satisfied. Now it turns out
that the first condition with one s is too weak for a definition of eigensolutions, since it is
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satisfied by “very many” u. On the other hand, there is some analytical evidence that the
second condition, taking into account any s, might be true merely for a minimizer u of
(1.2) and, hence, it would be too strong for a definition of eigensolutions. Thus we cannot
decide for which functions s equation (1.3) should be satisfied for a higher eigenfunction
u. Consequently, we do not have a precise replacement for the formal eigenvalue problem
(1.1) as basis for a definition of higher eigensolutions.

Recall that, in the case p > 1, eigenfunctions u are critical points of E subject to
the constraint G(u) = 1, i.e., there is some λ ∈ R with E′(u) − λG′(u) = 0. However,
we cannot define critical points in that way in the limit case p = 1, since E and G are
not differentiable. But it turns out that the notion of weak slope (cf. Section 3), which
allows a definition of critical points for certain lower semicontinuous functions and which
is consistent with the usual definition in the smooth case, is applicable to our setting in
the singular case p = 1. Thus we define eigenfunctions of the 1-Laplace operator as critical
points by means of the weak slope. As in the classical smooth case we verify the existence
of a sequence (uk)k∈N of critical points of (1.2) and we show that each uk has to satisfy
the eigenvalue equation (1.3) at least for one sign function sk. In this sense we verify the
existence of a sequence of eigensolutions of the 1-Laplace operator.

In Section 2 we recall the results concerning the first eigenvalue of the 1-Laplace op-
erator. In Section 3 the notion of weak slope is introduced and we define critical points
for lower semicontinuous functions. The main results concerning critical points, that are
considered as eigenfunctions of the 1-Laplace operator, are stated in Section 4, while the
proofs are presented in Section 5.

Notation. For a set A we denote the boundary by ∂A and the closure by A. Its
indicator function IA is given by

IA(x) :=

{
0 for x ∈ A,
∞ otherwise.

Br(u) stands for the open ball with center u and radius r. We write Div u for the divergence
of a function u in the distributional sense. The set-valued sign function on R is given by

Sgnα :=


1 for α > 0,
[−1, 1] for α = 0,
−1 for α < 0.

(1.5)

The space of q-integrable functions on Ω is denoted by Lq(Ω) and its dual by Lq
∗
(Ω) where

1
q + 1

q∗ = 1. The space BV (Ω) is the space of functions of bounded variation and |Du|
is the total variation measure for these functions. The k-dimensional Hausdorff measure
is denoted by Hk. For a Banach space X its dual is X∗ and 〈·, ·〉 is the duality form
on X ×X∗. We write ∂E(u) both for the subdifferential of a convex function E and for
Clarke’s generalized gradient of a locally Lipschitz continuous function E. By E0(u; v) we
denote Clarke’s generalized directional derivative of u in direction v, which coincides with
the usual directional derivative if E is convex.
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2 First Eigensolution

Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. For u ∈ BV (Ω) we consider
the functional

E(u) :=
∫

Ω
d|Du|+

∫
∂Ω
|u| dHn−1 (2.6)

under the constraint
G(u) :=

∫
Ω
|u| dx− 1 = 0 . (2.7)

The surface integral in (2.6), which we did not take into account in (1.2), is a replacement
for homogeneous boundary conditions in BV (Ω). It is known that a minimizer of (2.6),
(2.7) exists, but it is not necessarily unique (cf. Kawohl & Schuricht [13]). Moreover, any
minimizer satisfies the following Euler-Lagrange equation as necessary condition, as has
been shown in [13, Corollary 4.18].

Theorem 2.8 Let u ∈ BV (Ω) be a minimizer of (2.6), (2.7). Then for each measurable
selection s(x) ∈ Sgn (u(x)) a.e. on x ∈ Ω, there is some vector field z ∈ L∞(Ω,Rn) with

‖z‖L∞ = 1, Div z ∈ Ln(Ω) ,

E(u) = −
∫

Ω
uDiv z dx

such that
−Div z = λs a.e. on Ω, λ = E(u) .

We call (u, λ) the (first) eigensolution of the 1-Laplace operator. It is remarkable that
the Euler-Lagrange equation has to be satisfied not only for one but for any measurable
selection s, i.e. in general infinitely many Euler-Lagrange equations have to be satisfied.

Our goal is to show that higher critical points of (2.6), (2.7) exist and that they can
be considered as eigensolutions of the 1-Laplace operator. However, first we have to clairfy
what critical points of a nondifferentiable functional such as E with respect to constraint
(2.7) should be. We use a definition of critical points by means of weak slope, which works
for continuous and even some classes of lower semicontinuous functions.

3 Tools of Nonsmooth Analysis

The notion of weak slope has been introduced in Degiovanni & Marzocchi [8]. Let X be
a metric space endowed with metric m and let E : X → R be a continuous function. For
every u ∈ X we denote by |dE|(u) the supremum of all σ ∈ [0,∞) for which there exist
δ > 0 and a continuous map H : Bδ(u) × [0, δ] → X such that for all v ∈ Bδ(u) and all
t ∈ [0, δ]

m(H (v, t), v) ≤ t , (3.1)

E(H (v, t)) ≤ E(v)− σt . (3.2)

The extended real number |dE|(u) is called the weak slope of E at u. Note that for
differentiable functions the weak slope corresponds to the norm of the gradient.

Now we consider a lower semicontinuous function E : X → R ∪ {∞}. We define the
domain of E by

D(E) := {u ∈ X | E(u) <∞} (3.3)
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and the epigraph of E by

epi (E) := {(u, ξ) ∈ X × R | E(u) ≤ ξ} .

The set X × R will be endowed with the metric

m((u, ξ), (v, µ)) = (m(u, v)2 + (ξ − µ)2)1/2 (3.4)

and epi (E) with the induced metric. Using the continuos function

GE : epi (E)→ R , GE(u, ξ) = ξ , (3.5)

we define the weak slope of E at u ∈ D(E) as

|dE|(u) :=


|dGE |(u,E(u))√

1−|dGE |(u,E(u))2
for |dG|(u,E(u)) < 1,

∞ for |dG|(u,E(u)) = 1 .

When E is finite and continuous on X this definition is consistent with the definition of
the weak slope for continuous functions. Occasionally we denote the weak slope of E at u
by |dE|X(u) in order to indicate that it is taken in the metric space X. The idea of this
definition is to reduce the study of the lower semicontinuous function E to that of the
Lipschitz continuous function GE .

We say that u ∈ D(E) is a critical point of E if |dE|(u) = 0. The value c ∈ R is called
a critical value of E if there exists a critical point u ∈ D(E) of E with E(u) = c. Note
that if (u,E(u)) ∈ epi (E) is a critical point of GE then u is also a critical point of E. The
bijective correspondence between the critical points of E and those of GE is given if

inf{|dGE |(u, ξ) | E(u) < ξ} > 0 , (3.6)

cf. Canino & Degiovanni [3, Theorem 1.5.5]. If E is finite and continuous, we have
|dGE |(u, ξ) = 1 whenever E(u) < ξ. The same property holds for some important classes
of lower semicontinuous functions (cf. Canino & Perri [4], Corvellec et al. [7], Degiovanni
& Marzocchi [8]).

We are interested in critical points of E under a constraint G(u) = 0 where G : X → R
is a locally Lipschitz continuous function. We set

K := {u ∈ X |G(u) = 0} (3.7)

and call u ∈ D(E) a critical point of E with respect to K if u is a critical point of E on
the metric space K with induced metric m of X.

The following result gives us a useful characterization of critical points of E with
respect to K.

Lemma 3.8 Let E : X → R ∪ {∞} be a lower semicontinuous function and let u ∈
D(E) ∩K. Then |dE|K(u) = 0 if and only if |d(E + IK)|X(u) = 0.

Proof. For the calculation of the weak slope of E + IK on X and of E with respect to
K, we must turn to functions

GE+IK : epi (E + IK)→ R and GE : epi (E) ∩ (K × R)→ R,
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respectively, as defined in (3.5). First we observe that

epi (E + IK) = {(v, µ) ∈ X × R | (E + IK)(v) ≤ µ}
= {(v, µ) ∈ K × R | E(v) ≤ µ}
= epi (E) ∩ (K × R).

Thus GE+IK and GE are defined on the same metric space, since the metric m as defined
in (3.4) is the same in both cases. By definition (3.5) we have

GE+IK ≡ GE .

Hence,
|dGE+IK |(u, (E + IK)(u)) = |dGE |(u,E(u))

for each u ∈ D(E) ∩K. Therefore

|d(E + IK)|X(u) = |dE|K(u) for all u ∈ D(E) ∩K

which implies the assertion. ♦

4 Higher Eigensolutions

We intend to verify the existence of a sequence of pairs (uk,−uk)k∈N of critical points
of (2.6), (2.7) and derive an Euler-Lagrange equation as necessary condition for critical
points.

The functionals E and G according to (2.6), (2.7) are convex. If we want to characterize
their subdifferentials, which are subsets of the dual space BV (Ω)∗, we are confronted with
the difficulty that not much is known about the structure of the space BV (Ω)∗. In order to
be able to calculate the subdifferential of (2.6) and (2.7) we trivially extend the problem
to the space Lq(Ω) for any fixed 1 < q < n

n−1 . Note that this is basically done in Kawohl &
Schuricht [13] where, by formal reasons, only the case n

n−1 ≤ q <∞ is considered. However,
all corresponding results in [13] can be extended to the general case 1 < q < ∞ (cf. also
Andreu-Vaillo et al. [1]). The choice of q < n

n−1 makes sure that BV (Ω) is compactly
embedded into Lq(Ω), which will be crucial for the proof of the Palais-Smale condition.
More precisely, we consider

E(u) :=

{∫
Ω d|Du|+

∫
∂Ω |u| dH

n−1 for u ∈ BV (Ω) ,
∞ for u ∈ Lq(Ω) \BV (Ω) ,

(4.1)

and
G(u) :=

∫
Ω
|u| dx− 1 = 0 for u ∈ Lq(Ω) , (4.2)

while we identify E with its extension on Lq(Ω). Based on this setting we say that (2.6)
has a critical point under the constraint (2.7) if and only if (4.1) has a critical point under
the constraint (4.2).

Now we are able to state the main result.
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Theorem 4.3 There exists a sequence (uk,−uk)k∈N, uk ∈ BV (Ω), of pairs of critical
points of (2.6) under the constraint (2.7) with E(uk) < ∞ for all k ∈ N. Moreover, for
each critical point uk ∈ BV (Ω) and any 1 < q < n

n−1 there exists a measurable selection
sk(x) ∈ Sgn (uk(x)) for a.e. x ∈ Ω and a vector field zk ∈ L∞(Ω,Rn) with

‖zk‖L∞ = 1 , Div zk ∈ Lq
∗
(Ω) ,

E(uk) = −
∫

Ω
ukDiv zk dx

such that
−Div zk = λksk a.e. on Ω , λk = E(uk) . (4.4)

We also have λk →∞ as k →∞.

Notice that the Euler-Lagrange equation might not be satisfied for all measurable
selections sk(x) ∈ Sgn (uk(x)) as in the case of Theorem 2.8.

5 Proofs

In this section we carry out the proof of Theorem 4.3. After some preliminary considera-
tions we apply Propositon 5.2 from below, which is due to Degiovanni & Marzocchi [8], to
our setting. We claim to verify the existence of a sequence of critical points of (4.1) under
the constraint (4.2) which, by definition, are considered as critical points of (2.6) under
the constraint (2.7). According to Lemma 3.8 it is sufficient to verify critical points of the
functional E + IK on Lq(Ω). Since E + IK is merely lower semicontinuous, cf. Kawohl &
Schuricht [13, Proposition 4.23], we have to determine critical points of the corresponding
function GE+IK according to (3.5). More precisely, we show the existence of critical points
of

GE+IK : epi (E + IK)→ R , GE+IK (u, ξ) = ξ

with
epi (E + IK) = {(u, ξ) ∈ Lq(Ω)× R | u ∈ BV (Ω) ∩K, E(u) ≤ ξ}, (5.1)

where epi (E + IK) is endowed with the metric according to (3.4) that is induced by the
Lq-norm. In Lemma 5.8 below we see that (3.6) is satisfied in general and, thus, critical
points of GE+IK are also critical points of E + IK . But, before we formulate the details of
the proof, let us introduce some notions.

Let X be a metric space endowed with metric m and let A ⊂ X be a closed nonempty
set. The category of A in X, denoted by cat (A,X), is defined as the least integer k such
that A can be covered by k open subsets of X, each of which is contractible in X. If no
such integer k exists, we set cat (A,X) =∞. We also set cat (∅, X) = 0.

A metric space X is said to be weakly locally contractible if for every u ∈ X there exists
a neighborhood U of u which is contractible in X.

Let X be a topological space and A ⊂ X. Then a continuous function r : X → A
is a retraction if r(a) = a for all a ∈ A. A subspace A is called a retract of X if such a
retraction exists.

Let F : X → R∪{∞} be a lower semicontinuous function defined on a metric space X
and let c ∈ R. A sequence (uk)k∈N in D(F ), cf. (3.3), is said to be a Palais-Smale sequence
at level c for F , if

F (uk)→ c and |dF |(uk)→ 0 .
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We say that F satisfies the Palais-Smale condition at level c, if every Palais-Smale sequence
(uk)k∈N at level c for F has a convergent subsequence in X.

Let A be a convex subset of a Banach space X and u ∈ A ∩ K with K as in (3.7).
Then A and K are said to be transversal at u, if there exist u−, u+ ∈ A such that

G0(u;u− − u) < 0 and G0(u;u− u+) < 0 .

We claim to apply the following result, which can be found in Degiovanni & Marzocchi
[8, Theorem 3.10] and which is an adaptation of a classical result to a nonsmooth setting.

Proposition 5.2 Let X be a weakly locally contractible complete metric space and let
F : X → R be a continuous function which is bounded from below and which satisfies the
Palais-Smale condition at level c for all c ∈ R. Moreover, let

sup{cat (A,X) |A ⊂ X compact} =∞ .

Then F has infinitely many critical points (uk)k∈N with critical values

ck = inf
A∈Ak

sup
u∈A

F (u), ck →∞

where
Ak = {A ⊂ X |A compact, cat (A,X) ≥ k} ,

and supX F =∞.

In order to get a nontrivial setting for the application of Proposition 5.2 we have to
reformulate our problem again. We transfer our considerations from the Banach space Y
to the projective space PY obtained from Y by identifying every u ∈ Y \ {0} with its
antipodal point −u. The relation u ∼ v, if u = v or u = −v, is an equivalence relation and
PY = (Y \ {0})/∼ is the corresponding quotient space. We denote the elements of PY by
[u] and endowe PY with the induced metric

mPY
([u], [v]) := min{m(ū, v̄) | ū ∈ [u], v̄ ∈ [v]} = min{m(u, v),m(u,−v)} .

We call a set A ⊂ Y symmetric, if for each u ∈ A also −u ∈ A. For a symmetric set
A ⊂ Y \ {0} we denote by PY (A) the corresponding set in the projective space PY .

In our case Y := Lq(Ω) and we denote the corresponding projective space by P for
simplicity. Since E and G according to (4.1), (4.2) are even functionals, we can think of
them as mappings from P to R ∪ {∞}, i.e. without danger of confusion we set E : P →
R ∪ {∞} and G : P → R ∪ {∞} as

E([u]) := E(ū) and G([u]) := G(ū)

for any representative ū ∈ [u].
We intend to apply Proposition 5.2 to the map

GE+IK ([u], ξ) = ξ

defined on

X := epi P(E + IK) := {([u], ξ) ∈ P(BV (Ω) ∩K)× R | E([u]) ≤ ξ}
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as a subset of the space P × R which is endowed with the metric

mP(([u], ξ), ([v], µ)) =
(
mP([u], [v])2 + (ξ − µ)2

)1/2
and epi P(E+IK) with the induced metric. Note that 0 6∈ BV (Ω)∩K and BV (Ω)∩K is a
symmetric set. According to the following Lemma the critical points ([u], E([u]) of GE+IK

on epi P(E + IK) correspond to pairs ( (u,E(u)), (−u,E(−u) ) of critical points of GE+IK

on epi (E + IK).

Lemma 5.3 Let Y be a Banach space with metric m, let PY be the corresponding pro-
jective space, and let F : Y → R ∪ {∞} be a lower semicontinuous even functional. If
[u] ∈ PY with u ∈ D(F ) is a critical point of F with respect to PY , then u and −u are
critical points of F with respect to Y .

Proof. It is enough to show that u is a critical point of F for any fixed representative
ū ∈ [u], since F is even. We assume first that F is continuous on Y , which implies that F
is also continuous on PY . Let us assume that

|dF |PY ([u]) = 0 and |dF |Y (ū) > 0 for any ū ∈ [u] . (5.4)

Then, by the definition of the weak slope, there exist constants σ > 0, δ > 0 and a
continuous map H : Bδ(ū)× [0, δ]→ Y such that for all v ∈ Bδ(ū) and all t ∈ [0, δ]

m(H (v, t), v) ≤ t (5.5)

and
F (H (v, t)) ≤ F (v)− σt . (5.6)

Since ū 6= 0, we achieve that dist(Bδ(ū), Bδ(−ū)) > 0 and H (v, t) 6= 0 for all v ∈ Bδ(ū)
and all t ∈ [0, δ] by choosing a smaller δ > 0 if necessary. We see that

Bδ([u]) = PY (Bδ(ū) ∪ −Bδ(ū))

is a neighborhood of [u] in PY .
Now we define a deformation H̃ : Bδ([u])× [0, δ]→ PY by

H̃ ([v], t) := [H (v̄, t)]

where the representative v̄ ∈ [v] is chosen such that v̄ ∈ Bδ(ū). We must show that
H̃ is continuous. Let ([v], t) ∈ Bδ([u]) × [0, δ] and ([vk], tk)k∈N ∈ Bδ([u]) × [0, δ]
with mPY

(([v], t), ([vk], tk)) → 0. Note that, if we pick the representatives v̄ ∈ [v],
v̄k ∈ [vk] such that v̄, v̄k ∈ Bδ(ū) we have that m((v̄, t), (v̄k, tk)) → 0, since m(v̄,−v̄k) ≥
dist(Bδ(ū), Bδ(−ū)) > 0. For v̄, v̄k ∈ Bδ(ū) and t, tk ∈ [0, δ] we get

mPY
(H̃ ([v], t), H̃ ([vk], tk)) = mPY

([H (v̄, t)], [H (v̄k, tk)])
= min{m(H (v̄, t),H (v̄k, tk)),m(H (v̄, t),−H (v̄k, tk))}
≤ m(H (v̄, t),H (v̄k, tk))→ 0

for mPY
(([v], t), ([vk], tk))→ 0, since H is continuous on Bδ(ū)× [0, δ].

Moreover,

mPY
(H̃ ([v], t), [v]) = mPY

([H (v̄, t)], [v]) ≤ m(H (v̄, t), v̄) ≤ t
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by (5.5) and

F (H̃ ([v], t)) = F ([H (v̄, t)]) = F (H (v̄, t)) ≤ F (v̄)− σt

with a σ > 0 by (5.6). This contradicts (5.4). Therefore u and −u are critical points of F
on Y .

Now let us assume, that F : PY → R ∪ {∞} is merely lower semicontinuous and has
a critical point [u] ∈ PY . Then, by definition, the function GF : epi PY

(F ) → R has a
critical point ([u], F ([u])) = ([u], F (u)). Since GF is continuous, we can follow the previous
argumentation step by step in the first component of the variable of GF . Thus, GF must
also have critical points (u, F (u)) and (−u, F (u)) on epi (F ). But then F also has critical
points u and −u on Y . ♦

For the proof of Lemma 5.9 below we have to show transversality of the convex set
D(E) = BV (Ω) and K in Lq(Ω) at each u ∈ BV (Ω) ∩K. But let us first recall a charac-
terization of the subdifferential of G from Kawohl & Schuricht [13, Proposition 4.23].

Proposition 5.7 The functional G according to (4.2) is convex and Lipschitz continuous
on Lq(Ω). Moreover we have u∗G ∈ ∂G(u) for u ∈ Lq(Ω) if and only if

u∗G(x) ∈ Sgn (u(x)) a.e. on Ω .

Note that this result has been shown in [13] for u 7→
∫

Ω |u| dx but, obviously, it is also
valid for our G.

Lemma 5.8 The sets BV (Ω) and K are transversal in Lq(Ω) at each u ∈ BV (Ω) ∩K.
Moreover, (3.6) is satisfied.

Proof. Let u ∈ BV (Ω) ∩K. We define

u− := 0 and u+ := 2u.

Then u−, u+ ∈ BV (Ω) and, using Clarke [5, Proposition 2.1.2] and Proposition 5.7, we
get

G0(u;u− − u) = G0(u;u− u+) = G0(u;−u) = max
u∗G∈∂G(u)

−〈u∗G, u〉 = −G(u)− 1 = −1 ,

cf. [13, Proof of Theorem 4.6], i.e. transversality is satisfied.
By Degiovanni & Schuricht [9, Theorem 3.4] it is enough to show transversality of the

convex set D(E) = BV (Ω) and K in Lq(Ω) at each u ∈ D(E) ∩ K for (3.6), as we just
did. ♦

Now we are able to prove the following result.

Lemma 5.9 The set epi P(E+ IK) is a complete weakly locally contractible metric space.

Proof. We show the assertion for the set epi (E+IK) ⊂ Lq(Ω)×R. Since 0 6∈ epi (E+IK)
and since with (u, ξ) ∈ epi (E + IK) also (−u, ξ) ∈ epi (E + IK), we can choose the
neighborhoods of (u, ξ) and (−u, ξ) to be disjoint. Thus the result follows for epi P(E+IK).

First we show that epi (E + IK) ⊂ Lq(Ω) × R is a complete metric space. Let
(uj , ξj)j∈N ∈ epi (E + IK) with (uj , ξj) → (u, ξ) in Lq(Ω) × R. By (5.1) we have
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uj ∈ BV (Ω) ∩ K and E(uj) ≤ ξj for all j ∈ N. Since BV (Ω) ∩ K is closed and E is
lower semicontinuous on Lq(Ω), cf. [13, Proposition 4.23], we get

E(u) ≤ lim inf
j→∞

E(uj) ≤ lim
j→∞

ξj = ξ .

Then (u, ξ) ∈ epi (E + IK) and therefore epi (E + IK) is complete.
We will show that epi (E+IK) is an ANR (absolute neighborhood retract), see Borsuk

[2, p. 85] for definition. Moreover, we use [2, p. 99, Corollary 10.4], which states that for
separable metric spaces the property of being an ANR is a local property. Since epi (E+IK)
is separable, in our case it is enough to show, that every (u, ξ) ∈ epi (E + IK) has a
neighborhood in Lq(Ω)×R, which is an ANR. This will be shown below. Then, by [2, p.
28; p. 87, Corollary 3.3], the space epi (E + IK) is weakly locally contractible.

(a) First, for each u ∈ BV (Ω) ∩ K, we construct a neighborhood of u in Lq(Ω) ∩ K
which is a retract of a neighborhood of u in Lq(Ω).

We use functions u− and u+ as defined in the proof of Lemma 5.8. The directional
derivative G0(u; z) is upper semicontinuous as a function of (u, z), cf. Clarke [5, Proposition
2.1.1], therefore, using Lemma 5.8, we can find a δ > 0 such that for all v, w ∈ Bδ(u) (a
neighborhood of u in Lq(Ω))

G0(w;u− − v) < 0 and G0(w; v − u+) < 0 .

By replacing u− and u+ by u+ t0(u−−u) = (1− t0)u and u+ t0(u+−u) = (1 + t0)u for a
suitable t0 ∈ (0, 1] if necessary, we can assume that u−, u+ ∈ Bδ(u) (we keep the notation
for simplicity). Since Bδ(u) is convex, we get

G0(v + t(u− − v);u− − v) < 0 and G0(v + t(u+ − v); v − u+) < 0

for all v ∈ Bδ(u) and all t ∈ [0, 1]. By a property of the generalized directional derivative,
cf. [5, Proposition 2.1.1], we have

G0(v + t(u+ − v); v − u+) = (−G)0(v + t(u+ − v);u+ − v) ,

thus

G0(v + t(u− − v);u− − v) < 0 and (−G)0(v + t(u+ − v);u+ − v) < 0 .

Note that by [5, Proposition 2.1.2] we have

G0(v + t(u− − v);u− − v) = max{〈ζ∗, u− − v〉 | ζ∗ ∈ ∂G(v + t(u− − v))} < 0

and

(−G)0(v + t(u+ − v);u+ − v) = max{〈ζ∗, u+ − v〉 | ζ∗ ∈ ∂(−G)(v + t(u+ − v))} < 0.

Now we apply [5, p. 41, Lemma] to the Lipschitz continuous functions

g−(t) := G(v + t(u− − v)) and − g+(t) := −G(v + t(u+ − v))

and get that
∂g−(t) ⊂ {〈ζ∗, u− − v〉 | ζ∗ ∈ ∂G(v + t(u− − v))}

and
∂(−g+)(t) ⊂ {〈ζ∗, u+ − v〉 | ζ∗ ∈ ∂(−G)(v + t(u+ − v))}.
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Thus g− and −g+ are strictly decreasing on [0, 1]. In particular

g+(t) = G(v + t(u+ − v))

is strictly increasing on [0, 1]. Note that g−(1) = −t0 and g+(1) = t0. Thus, for all v ∈ Bδ(u)
with G(v) ≥ 0 there exists a unique τ−(v) ∈ [0, 1) such that

g−(τ−(v)) = G(v + τ−(v)(u− − v)) = 0

and, analogously, for all v ∈ Bδ(u) with G(v) ≤ 0 there exists a unique τ+(v) ∈ [0, 1) such
that

g+(τ+(v)) = G(v + τ+(v)(u+ − v)) = 0 .

The function

τ(v) :=

{
τ−(v) for G(v) ≥ 0
τ+(v) for G(v) ≤ 0

is continuous on Bδ(u) and if v ∈ Bδ(u) ∩ K, then τ(v) = 0. We define a function r :
Bδ(u)→ Bδ(u) ∩K in the following way

r(v) :=

{
v + τ(v)(u− − v) for G(v) ≥ 0,
v + τ(v)(u+ − v) for G(v) ≤ 0.

We observe that r is continuous and if v ∈ K then r(v) = v. Moreover, r(Bδ(u)) =
Bδ(u)∩K and Bδ(u)∩K is a neighborhood of u in Lq(Ω)∩K. Thus r : Bδ(u)→ Bδ(u)∩K
is a retraction. Note that if v ∈ BV (Ω), then also r(v) ∈ BV (Ω).

(b) Let now (u, ξ) ∈ epi (E + IK), i.e. u ∈ BV (Ω) ∩ K and E(u) ≤ ξ. We construct
a neighborhood of (u, ξ) in epi (E + IK) which is a retract of a neighborhood of (u, ξ) in
epi (E).

We consider the neighborhood (Bδ(u)×R) ∩ epi (E) of (u, ξ) in epi (E) and construct
a retraction of it onto (Bδ(u) × R) ∩ epi (E + IK). For all (v, µ) ∈ (Bδ(u) × R) ∩ epi (E)
we define the continuous function

r̃(v, µ) :=
(
r(v), (1− τ(v))µ+ τ(v)E(u+)

)
.

If v ∈ K, then τ(v) = 0 and therefore

r̃(v, µ) = (v, µ) on (Bδ(u)× R) ∩ epi (E + IK) .

We show that r̃(v, µ) ∈ epi (E+IK). By definition of r we have r(v) ∈ Bδ(u)∩BV (Ω)∩K.
Moreover, since E is 1-homogeneous, we get

E(u−) = E((1− t0)u) = (1− t0)E(u) < (1 + t0)E(u) = E((1 + t0)u) = E(u+) .

If G(v) ≥ 0 we deduce, by using convexity and 1-homogeneity of E,

E(r(v)) = E(v + τ(v)(u− − v))
= E((1− τ(v))v + τ(v)u−)
≤ (1− τ(v))E(v) + τ(v)E(u−)
≤ (1− τ(v))E(v) + τ(v)E(u+)
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and, analogously, for G(v) ≤ 0 we get

E(r(v)) ≤ (1− τ(v))E(v) + τ(v)E(u+).

Therefore
E(r(v)) ≤ (1− τ(v))µ+ τ(v)E(u+)

i.e. r̃(v, µ) ∈ epi (E + IK) and

r̃ : (Bδ(u)× R) ∩ epi (E)→ (Bδ(u)× R) ∩ epi (E + IK)

is a retraction. Thus, the neighborhood (Bδ(u)×R)∩ epi (E+ IK) of (u, ξ) in epi (E+ IK)
is a retract of the neighborhood (Bδ(u)× R) ∩ epi (E) of (u, ξ) in epi (E).

(c) Since E is convex, epi (E) is also convex. Then also (Bδ(u)×R)∩ epi (E) is convex
as intersection of convex sets and by Dugundji [10, Corollary 4.2] an ANR. Thus, by (b),
the neighborhood (Bδ(u) × R) ∩ epi (E + IK) is a retract of an ANR and by [2, p. 87,
Corollary 3.2] also an ANR. ♦

Lemma 5.10 The functional GE+IK satisfies the Palais-Smale condition at level c for any
c ∈ R as function on epi P(E + IK).

Proof. Let us first show that E + IK satisfies the Palais-Smale condition at level c as a
function on Lq(Ω). Let (uj)j∈N ⊂ BV (Ω) ∩K be any Palais-Smale sequence at level c for
E + IK , i.e.

(E + IK)(uj)→ c and |d(E + IK)|(uj)→ 0 . (5.11)

Since (uj)j∈N is bounded in BV (Ω) by (E+IK)(uj) <∞, (uj)j∈N is also bounded in Lq(Ω).
Since BV (Ω) is compactly embedded in Lq(Ω), there exists a convergent subsequence of
(uj)j∈N in Lq(Ω).

Now we show that GE+IK satisfies the Palais-Smale condition on epi (E + IK). Let
(uj , ξj) ⊂ epi (E + IK) be a Palais-Smale sequence for GE+IK at level c, i.e.

ξj = GE+IK (uj , ξj)→ c and |dGE+IK |(uj , ξj)→ 0 . (5.12)

Since (3.6) is satisfied, cf. Lemma 5.8, there exists a j0 ∈ N such that for all j ≥ j0 we
have ξj = (E + IK)(uj). Moreover, by the definition of the weak slope

|d(E + IK)|(uj) =
|dGE+IK |(uj , (E + IK)(uj))√

1− |dGE+IK |(uj , (E + IK)(uj))
→ 0

and therefore (uj)j∈N satisfies (5.11), i.e. (uj)j∈N is a Palais-Smale sequence for E+ IK at
level c. Since E+IK satisfies the Palais-Smale condition at level c, there exists a convergent
subsequence of (uj)j∈N in Lq(Ω). Since (ξj)j∈N is convergent by (5.12) in R, we deduce
that (uj , ξj)j∈N has a convergent subsequence in the complete metric space epi (E + IK).

Now we can easily transfer the result to GE+IK defined on epi P(E + IK). ♦

Lemma 5.13 We have

sup {cat (A, epi P(E + IK)) |A ⊂ epi P(E + IK) compact} =∞ .
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Proof. The idea of the proof is to construct compact subsets of epi P(E + IK) with
arbitrarily large category.

In the proof of Proposition 5.9 we have shown that epi P(E + IK) is an ANR. In this
case we can take closed covers instead of open covers in the definition of category (cf.
Cornea et al. [6, Proposition 1.10]) and, in this proof, we use the definition of category by
means of closed sets.

We fix any k ∈ N and linearly independent functions v1, . . . , vk ∈ BV (Ω). We set

Vk := span {vi | i = 1, . . . , k} ∩K.

By Sk−1 ⊂ Rk we denote the (k−1)-dimensional unit sphere and Rk shall be endowed with
the canonical basis {ei ∈ Rk |i = 1, . . . , k}. We construct a homeomorphism ψ : Sk−1 → Vk
by setting

x =
k∑
i=1

xiei 7−→
∑k

i=1 xivi

‖
∑k

i=1 xivi‖L1(Ω)

.

We have ∥∥∥ k∑
i=1

xivi

∥∥∥
L1(Ω)

≥ C > 0 , (5.14)

since not all xi = 0, sine the vi are linearly independent, and since x 7→ ‖
∑k

i=1 xivi‖L1(Ω) is
a continuous function defined on the compact set Sk−1. We see that ψ is a homeomorphism,
since its inverse ψ−1 : ψ

(
Sk−1

)
→ Sk−1 is given by

u =
k∑
i=1

ξivi 7−→
∑k

i=1 ξiei(∑k
i=1 |ξi|2

)1/2

and ψ−1 is continuous, since it is the inverse of a continuous function on a compact set.
Clearly ψ is odd, i.e. it satisfies ψ(−x) = −ψ(x), and the set ψ

(
Sk−1

)
is compact and

symmetric.
For u ∈ ψ

(
Sk−1

)
we obtain

E(u) = E

( ∑k
i=1 ξivi

‖
∑k

i=1 ξivi‖L1(Ω)

)

=
1

‖
∑k

i=1 ξivi‖L1(Ω)

E

(
k∑
i=1

ξivi

)

=
1

‖
∑k

i=1 ξivi‖L1(Ω)

(∫
Ω
d

∣∣∣∣∣D
k∑
i=1

ξivi

∣∣∣∣∣+
∫
∂Ω

∣∣∣∣∣
k∑
i=1

ξivi

∣∣∣∣∣ dHn−1

)

≤ 1

‖
∑k

i=1 ξivi‖L1(Ω)

k∑
i=1

|ξi|
(∫

Ω
d|Dvi|+

∫
∂Ω
|vi| dHn−1

)
(5.14)

≤ 1
C

k∑
i=1

|ξi|E(vi)

≤ k

C
max
i=1,...,k

E(vi) =: Ck .
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Thus
sup

u∈ψ(Sk−1)
E(u) ≤ Ck (5.15)

for a constant Ck ∈ R depending only on k.
Let us now consider the real projective space Pk−1 which is defined as the projective

space according to Rk \ {0}. By Zeidler [14, p. 347] we know that

k = cat
(
P(Sk−1),P(Sk−1)

)
. (5.16)

By a straightforward argument following from the definition of category one readily obtains
that

cat
(
P(Sk−1),P(Sk−1)

)
= cat

(
Pk−1,Pk−1

)
. (5.17)

Now we use Fadell [11, Proposition 2.10] with Sk−1 and ψ
(
Sk−1

)
as subsets of Rk \ {0}

and Lq(Ω) \ {0}, respectively, and get

cat
(
Pk−1,Pk−1

)
= cat

(
P
(
ψ
(
Sk−1

))
,P
)
. (5.18)

Note that we get equality, since ψ is a homeomorphism.
Moreover, by the defininiton of category, we get

cat
(
P
(
ψ
(
Sk−1

))
,P
)
≤ cat

(
P
(
ψ
(
Sk−1

))
,P(BV (Ω) ∩K)

)
, (5.19)

since each covering of P
(
ψ
(
Sk−1

))
by closed sets in P(BV (Ω) ∩ K) is always also a

covering of P
(
ψ
(
Sk−1

))
by closed sets in P.

With the constant Ck as defined in (5.15) we now assume that

cat
(
P
(
ψ
(
Sk−1

))
× {Ck}, epi P(E + IK)

)
= m

for some m ∈ N, i.e. there exists a covering of the form

P
(
ψ
(
Sk−1

))
× {Ck} ⊂

m⋃
i=1

P(Bk,i)× {Ck}

with closed, symmetric, and contractible sets Bk,i ⊂ BV (Ω) ∩K such that

P(Bk,i)× {Ck} ⊂ epi P(E + IK) .

Note that {Ck} is a covering of itself and contractible in itself. But then we also have

P
(
ψ
(
Sk−1

))
⊂

m⋃
i=1

P(Bk,i)

and therefore

cat
(
P
(
ψ
(
Sk−1

))
,P(BV (Ω) ∩K)

)
≤ cat

(
P
(
ψ
(
Sk−1

))
× {Ck}, epi P(E + IK)

)
. (5.20)

By analogous arguments we even get equality.
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Combining equations (5.16), (5.17), (5.18), (5.19), and (5.20), we get

k = cat
(
P(Sk−1),P(Sk−1)

)
= cat

(
Pk−1,Pk−1

)
= cat

(
P
(
ψ
(
Sk−1

))
,P
)

≤ cat
(
P
(
ψ
(
Sk−1

))
,P(BV (Ω) ∩K)

)
= cat

(
P
(
ψ
(
Sk−1

))
× {Ck}, epi P(E + IK)

)
.

Since k ∈ N can be chosen arbitrarily large and since P
(
ψ
(
Sk−1

))
× {Ck} ⊂ epi (E +

IK) by (5.15), we have thus shown that epi P(E+ IK) contains compact sets of arbitrarily
large category. ♦

For the derivation of equation (4.4) in Theorem 4.3 we use a suitable Lagrange multi-
plier rule derived in Degiovanni & Schuricht [9, Corollary 3.6] and the characterization of
the subdifferential of E given in Kawohl & Schuricht [13, Proposition 4.23].

Proposition 5.21 Let E : X → R be a lower semicontinuous convex function and let
G : X → R be locally Lipschitz continuous. Let u ∈ D(E) ∩ K be a critical point of E
under the constraint K. If D(E) and K are transversal at u in Lq(Ω), then ∂E(u) 6= ∅
and there exist

u∗E ∈ ∂E(u), u∗G ∈ ∂G(u), λ ∈ R

such that
u∗E + λu∗G = 0 .

Proposition 5.22 The functional E is convex and lower semicontinuous on Lq(Ω). More-
over, u∗E ∈ ∂E(u) for u ∈ Lq(Ω) if and only if there exists a vector field z ∈ L∞(Ω,Rn)
with

‖z‖L∞ ≤ 1 , u∗E = −Div z ∈ Lq∗(Ω) ,

E(u) = 〈u∗E , u〉 = −
∫

Ω
uDiv z dx .

If E(u) > 0, then ‖z‖L∞ = 1.

Now we combine the provided tools in the final proof.

Proof of Theorem 4.3. We use Lemma 5.9, 5.10 and 5.13 and Proposition 5.2 in order
to get the existence of infinitely many critical points ([u]k, ξk)k∈N of GE+IK on the space
epi P(E + IK). Note that GE+IK is bounded from below by E(u) ≥ 0.

By going back to epi (E + IK) we thus have the existence of infinitely many pairs(
(uk, ξk), (−uk, ξk)

)
k∈N of critical points for GE+IK on epi (E + IK) by Lemma 5.3. By

Lemma 5.8 we know that GE+IK satisfies (3.6) and, therefore, the critical points of GE+IK

are in fact
(

(uk, E(uk)), (−uk, E(uk))
)
k∈N and thus (uk,−uk)k∈N are critical points of

E + IK . Since uk ∈ BV (Ω) ∩K for each k ∈ N, we also get E(uk) <∞.
Now, since BV (Ω) and K are transversal by Lemma 5.8, we may apply Proposition 5.21

by using Propositions 5.22 and 5.7. Then, for each critical point uk ∈ BV (Ω) there exists a
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measurable selection sk(x) ∈ Sgn (uk(x)) for a. e. x ∈ Ω and a vector field zk ∈ L∞(Ω,Rn)
with

‖zk‖L∞ = 1 , Div zk ∈ Lq
∗
(Ω) ,

E(uk) = −
∫

Ω
ukDiv zk dx

such that
−Div zk = λksk a.e. on Ω .

Moreover, by multiplying this equation with uk and integrating over Ω we get

E(uk) = −
∫

Ω
ukDiv zk dx = λk

∫
Ω
uksk dx = λk .

Going back to Proposition 5.2 and using that λk = E(uk) = GE+IK (uk, E(uk)) we
deduce that λk →∞ as k →∞.

♦
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