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Abstract

We study stabilization methods for the discretization of convection-dominated
elliptic convection-diffusion problems by linear finite elements. It turns out
that there exist close relations between a new version of stabilization via local
projection and the continuous interior penalty method.
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1 Introduction

Stabilized finite element methods are formed by adding to the standard
Galerkin method terms that are mesh-dependent, in many cases (but not
necessary) consistent and numerically stabilizing. Starting with the stream-
line upwind Petrov-Galerkin (SUPG) or streamline diffusion finite element
method (SDFEM) [1] today there exist many different stabilization tech-
niques.

In the recent survey [2] the authors discuss SUPG and its variants GLS and
USFEM, the variational multiscale method and bubble enriched methods,



but they do not mention subgrid modelling [3], local projection stabilization
[4], the continuous interior penalty method [6] and discontinuous Galerkin
9].

It is well known that there exist close relations between SDFEM and varia-
tional multiscale methods, moreover, in [7] and [5] the authors verify relations
between local projection stabilizations and subgrid modelling introduced by
Guermond and the variational multiscale method. In our note we want to
show that as well a close relation between global and local projection stabi-
lization (LPS) as the continuous interior penalty method (CIP) exists.

2 A new variant of the local projection sta-
bilization
Let us consider the convection-diffusion problem

Lu: =—eAu+b-Vu+cu = finQC R?,
u = 0 ond).

We assume €2 to be polygonal, 0 < e << 1, ¢ — %V -b>~v>0andb,c, f to
be sufficiently smooth.

For simplicity we discretize the problem using the space V}, of linear finite
elements with Vj, € H}(Q). Introducing the Galerkin bilinear form

ag(w,v) = ¢(Vw, Vo) + (b- Vw + cw, v)
the local projection stabilization is characterized by
CLG(Uh, Uh) —+ S(uh, Uh) = (f, Uh) for all vy, € V}, (1)

and a special form of the stabilization term S(-,-) while we shall explain in
a minute. Remark that other stabilization techniques can also be written in
this form, for instance

e SDFEM : S(’U,h,’l}h> = Z 5k(Luh — f, b- Vvh)k
k

e continuous IP: S(up,vy) :=h*3 0. [[b- Vuy], [b- Vg, ds



Here [-]. denotes the jump over the edge e.

The local projection stabilization in the general form introduced in [7] uses
a second finite element space M), (with possibly discontinuous elements) on
a macro mesh with elements M € T,.

Based on a projection 7, : Lo — M), the stabilization term is defined by

S(uh,vh) = Z(SM (b . Vuh - 7Th(b . Vuh),b . Vvh - 7Th(b . Vvh))M . (2)

In contrast to SDFEM or continuous IP, LPS is not consistent. But never-
theless its error analysis uses standard arguments, we shall sketch the basic
ideas. Let us introduce the norm

2 2
lwlis = elwlt + [lwllg + S(w, w)

and some "interpolant” u! € Vj, from w. Then with & = u! — uy,n = u — u!
we obtain

€115 ac(€,€)
aG(U_Uh7£)+aG<uI_u7£)+5(§7£) (3)
S(un, &) + ag(u’ —u, &) + S(£,€)

CL(;(T], 5) + S(u17 5)

Based on inequality (3) and additional properties of 7, and the interpolant
u! used the choice 6y, = O(h) then leads to the typical error estimate for
every stabilization method based on linear elements on a quasi- uniform mesh

(see [7])

[ IA

||ul—uhHE < C<61/2h+h3/2+h2> lul, . (4)

To introduce our new variant of a local projection stabilization, we use the
discrete scalar product

(w,v)p, := Z %measK Z(wv)(PKj)) (5)

Here the Pk, are the three vertices of the element K.
Based on the scalar product (5) we define for a piecewise continuous function
w its projection m,w € V), by

(mpw,vy) = (w, vy for all vy, € V. (6)
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Let for a given knot x; denote by A; the index set characterizing all triangles
adjacent to z; and w;; for j € A; the value of w| k; in the point x;. Then,
the orthogonality of the nodal basis functions ¢; of Vj, with respect to the
scalar product (-,-), implies

) meask;
(mpw)(z;) = jEZA a;w; ; with a; = ZT@SJKJ-. (7)
‘ JEA;

Our new local projection stabilization method reads

CLG(Uh,Uh) + S(uh,vh) = (f, Uh) with (8)
S(uh, Uh) =0 (b : Vuh - Wh(b : Vuh), b- Vvh - 7Th<b . Uh))h .

Remarks: (i) The new method improves the so called orthogonal subscale
stabilization proposed by Codina [8] who uses the global Ly projection onto
V), instead of our discrete version.

(ii) The method (8) is consistent if b- Vu € C(€2) because due to (7) in a
continuity point x of w it holds (zy is a knot of the triangulation as well)

(mpw)(xy) = w(xy).

Theorem 1 Assume u € Ws°(Q) and b-Vu € C(Q)). Then, for § = doh the
error of the method (8) on a quasi-uniform mesh can be estimated by

lu = wnllp < C{e/2h+ 12 + 02} Jul,, - (9)

Proof: We use the splitting

u—uh:ul—uh—iru—ul

and choose for the interpolant u! the L, projection of u onto the finite element
space. The consistency of the method allows us to start instead of (3) from

I1€l% < ag (u' —u, &) + S (v —u,€). (10)
First, using u € W5°(Q), we get

< (S (uf =l —u)) ' (S(€.€)"
< e ful, €]l

S (u' = u,€)]
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The estimate of ag (uI — u, 5) is quite standard with exception of the con-
vective term. Integrating by parts, one has to estimate (u —ul,b- Vf) . Let
b denote a piecewise linear approximation of b. Then

(=", b- VO < |(u—u', (b=b) - VE[+ |(u—u',b-VE—my(b- VE))

(because u! is the Ly projection, (u — u’,v,) = 0 for all v, € V},). Tt follows
say for b € W°(Q)) the estimate

[(u—u b VO < erh?luls|lEllo + u — u'[lo[|b- VE = 7 (b VE)lo-

Because b - V¢ is piecewise linear the norms || - |jo and || - ||, are equivalent
(the norm || - || is generated by the discrete scalar product (5)), which leads
to

[(u—u b VE)| < crh®[ula||€]lo + cah®?|ulo[S(b - VE,b- VE)]H?

Choosing b to interpolate b in the mesh points we can replace b by b in the
last estimate and obtain

(= b VO < ch*2fuly ]l ™

Let us now consider the simplest case: a one-dimensional problem with piece-
wise constant b an an equidistant mesh. If say 7, (bujy) = p; on (x;_1, ;),
then

/ Di +pz 1
(b)) = PP

Consequently,(with bv), = q)

(p—mp,q —mhg) = Z g[(p — mup)(@i-1)(q — ) (@i-1) + (p — map)(q — Taq) ()]
— S5l Phealah + Johlal).

That means we recover the continuous interior penalty method (because the
parameter § is of order dg h, the jump terms are scaled with k%, as usual).
Let us in the two-dimensional case as well assume that b is piecewise constant,
i.e., b- Vu, = p; on the triangle K;. Then, the representation

(Ta (b~ Vun))(z:) = Y a;p;

JEA;



implies
3 3
Z% meas K > (b- Vuy, — m,(b- Vuy))(z}) = Z% meas K > (pi — >, a;p;)
K K

=1

3
= Z% meas K > > aj(pz' _pj)-
K l

=1jeA;,

Introducing

pi—D; =2 [Ples
I

with [p] denoting the jump across element boundaries and the sum is taken
over the shortest "path” from element K; to element K;, we recognize that
our stabilization term (8) admits the form

S(”ha Uh) - 50 hg Z Z 5# [p]e,uds Z ﬁ,u [Q]e,uds
( w(4) w(%)
If one cancels the products of jumps of p and ¢ on different edges, we recover
the continuous interior penalty method with

S(up,vp) = 50h22/[p6] [qe]ds.

Remark: If b is piecewise constant, 7,(b - Vuy) is equal to a Clément in-
terpolant II(b - Vuy) of b - Vu,. Consequently, a modified version of (8)
reads

S(up,vp) :=0(b- Vu, —II(b - up),b- Vo, —II(b- Vug))o. (11)

The stabilization method generated by (11) is not consistent. However, the
error analysis based on (3) allows to prove the estimate (4) for u € H?(2) due
to the known properties of the Clément interpolant. We prefer the method
(8) because 7, (b - Vuy,) is easier to compute than I1(b- Vuy). [
Let us finally remark that the local projection stabilization with a discon-
tinuous finite element space M}, in our case with piecewise constants on a
coarser mesh, yields for piecewise constant b also a scheme related to the con-
tinuous interior penalty method. But for triangles the necessary macro mesh
(see [7]) requires that every triangle of the given triangulation arises from
the decomposition of a macro triangle into subtriangles with the barycenter
as a knot. In our approach we avoid this restrictive assumption.
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