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Abstract

The second edition of the book [106] appeared 10 years ago and was for many
years a reliable guide into the world of numerical methods for singularly perturbed
problems. Since then many new results came into the game, we present some selected
ones and the related sources.

AMS subject classification: 65 L10, 65 L12, 65 L50, 65 N30, 65 N50

1 Introduction

Since the appearance of [106] many new results improved our understanding of the com-
plicated task to solve singularly perturbed and flow problems numerically. The survey [96]
discussed new developments in the years 2008-2012, and in a paper 2015 [105] we dis-
cussed some open problems in analysis and numerics of singularly perturbed problems.
Recently, John, Knobloch and Novo also published a survey on recent numerical methods
for convection-dominated equations and incompressible flow problems and sketched some
open problems [52].

During the BAIL-Conference in Beijing 2016 the idea was born to think about a third
version of the book, and in Glasgow 2017 we fixed a working plan for the realization of
that idea.

We planned to include some new material, for instance, on systems of singularly per-
turbed equations (see Section 2 and 4), on flux-corrected transport (see [14] and the ref-
erences given there for the history of AFC schemes and the analysis presented recently
in three papers 2015-2017 by Barrenechea, John and Knobloch), on balanced norms (see
the survey paper [98] for second-order problems and [40] for fourth-order problems, [99]
for systems), on adaptive methods and a posteriori error estimation (see Section 6) and
on pressure-robust schemes, a new aspect in the FEM analysis of incompressible flows,
discussed especially in papers initiated by Linke [2, 53, 65,67–69].

Moreover, an update of all other sections was planned, including an overview on all
kinds of layer-adapted meshes (see Section 3.1), a comment to the tailored finite point
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method reviewed in [45], hints to improved error estimates for layer-adapted meshes based
on superconvergence results on special triangulations, for instance, in [80–82, 132, 133],
a presentation of the technique to prove error estimates for finite elements on Duran-
Lombardi meshes (see Section 3.2), and some remarks on discontinuous Galerkin methods
(see Section 5).

Unfortunately, the progress made at the end of 2018 was more or less restricted to the
parts presented here. Because it is not clear, whether or not the Glasgow plan will be
fully realized in the future, I decided to present the existing material to people who are
interested to study it.

2 Systems of ordinary differential equations

Systems of ordinary differential equations are often discussed in books on asymptotic ex-
pansions for singularly perturbed problems: see, e.g., [119, Chapter 2] or [129, Chapter
7]. Nevertheless in the past relatively little attention was paid to their numerical solution,
although the papers [12] (on reaction-diffusion systems) and [1] (on convection-diffusion
systems) are worth noting. In recent years interest in this area has grown, as we now
describe.

Consider a general system of M equations:

L~u : = −ε~u′′ +B~u′ + A~u = ~f on Ω := (0, 1),(2.1a)

~u(0) = ~g0, ~u(1) = ~g1,(2.1b)

where ~u = (u1, u2, . . . , uM)T is the unknown solution while ~f = (f1, . . . , fM)T , ~g0 and ~g1

are constant column vectors, and A = (aij) and B = (bij) are M ×M matrices.
The system (2.1) is said to be weakly coupled if the convection coupling matrix B is

diagonal, i.e., the ith equation of the system is

(2.2) −εu′′i + biiu
′
i +

M∑
j=1

aijuj = fi,

so the system is coupled only through the lower-order reaction terms.
Linß [71] allows different diffusion coefficients in different equations: ε = εi in the ith

equation for i = 1, . . . ,M . Assume that bii(x) ≥ βi > 0 and aii(x) ≥ α > 0 on [0, 1] for
each i. (In [71] the weaker hypothesis |bii(x)| ≥ βi > 0 is used, which permits layers in ~u
at both ends of [0,1], but for brevity we won’t consider this here.) Rewrite (2.2) as

(2.3) −εiu′′i + biiu
′
i + aiiui = −

∑
j 6=i

aijuj + fi,

Then ‖ui‖∞ ≤ ‖(−
∑

j 6=i aijuj + fi)/aii‖∞ by a standard maximum principle argument.
Rearranging, one gets

‖ui‖∞ −
∑
j 6=i

∥∥∥∥aijaii
∥∥∥∥
∞
‖uj‖∞ ≤

∥∥∥∥ fiaii
∥∥∥∥
∞

for i = 1, . . . ,M.
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Define the M×M matrix Γ = (γij) by γii = 1, γij = −‖aij/aii‖∞ for i 6= j. Assume that Γ

is inverse-monotone, i.e., that Γ−1 ≥ 0. It follows that ‖~u‖∞ ≤ C‖~f‖∞ for some constant
C, where ‖~v‖∞ = maxi ‖vi‖∞ for ~v = (v1, . . . , vM)T . One can now apply a scalar-equation
analysis for each i and get

(2.4) |u(k)
i (x)| ≤ C

[
1 + ε−ki e−βi(1−x)/εi

]
for x ∈ [0, 1] and k = 0, 1.

Thus there is no strong interaction between the layers in the first-order derivatives
of different components ui; nevertheless the domains of these layers can overlap and this
influences the construction of numerical methods for (2.1). But for higher order derivatives
additionally weak layers come into the play. In [103] it is proved

|u′′i (x)| ≤ C

(
1 + ε−2

i e−β(1−x)/εi +
1

δ

M∑
j=i+1

ε−1
j e−β(1−δ)(1−x)/εj

)
,

here δ > 0 is arbitrary, assuming bkk ≥ β > 0. The estimate shows that the i-th component
is overlapped by weak layers generated by other components, but only these for j > i due
to the increase in diffusion ε1 < ε2 < · · · .

The system (2.1) is said to be strongly coupled if for some i ∈ {1, . . . ,M} one has bij 6= 0
for some j 6= i. Such systems do not satisfy a maximum principle of the usual type. One
now gets stronger interactions between layers even in the case εi = ε ; see [1,70,92,93,101].

We start with that case and the example

−εu′′1 − 3u′1 − 4u′2 = 1,

−εu′′2 − 4u′1 + 3u′2 = 2

and homogeneous boundary conditions at x = 0 and x = 1. Canceling of exponentially
small terms yields the asymptotic approximation

uas1 = 8/25− 11/25x− 8/25e−5x/ε + 3/25e−5(1−x)/ε,

uas2 = 4/25 + 2/25x− 4/25e−5x/ε − 6/25e−5(1−x)/ε.

Both solution components do have strong layers at x = 0 and x = 1 which correspond to
the eigenvalues of the matrix B. Moreover, the reduced solution

u0
1 = 8/25− 11/25x,

u0
2 = 4/25 + 2/25x

does not satisfy any of the given boundary conditions, but it holds

(u1 − 2u2)(0) = 0, (2u1 + u2)(1) = 0,

which corresponds to the eigenvectors of B.

3



If we assume that all eigenvalues of B do not change the sign in the given interval,
every component ui has, in general, M layers but their location depend on the sign pattern
of the eigenvalues (assuming for simplicity, that B is symmetric).

In the case that all eigenvalues have one sign, all overlapping boundary layers are
located at one boundary. Such a case is studied in [92,93] without assuming symmetry of
B. We follow [92] to derive a stability result.

For each i assume bii(x) ≥ βi > 0 and aii(x) ≥ 0 on [0, 1]. Rewrite the ith equation as

Liu := −εu′′i + biiu
′
i + aiiui = fi +

m∑
j=1
j 6=i

[
(bijuj)

′ − (b′ij + aij)uj
]
,(2.8a)

ui(0) = ui(1) = 0.(2.8b)

For the scalar problem Liv = φ and v(0) = v(1) = 0, one has – see [8,9] – the stability result
‖v‖∞ ≤ Ci‖φ‖W−1,∞ for a certain constant Ci that depends only on bii and aii. Apply this
result to (2.8) then, similarly to the analysis of (2.3), gather the ‖uj‖∞ terms to the left-
hand side. Define the M×M matrix Υ = (γij) by γii = 1, γij = −Ci[‖b′ij +aij‖L1 +‖bij‖∞]
for i 6= j. Assuming that Υ is inverse monotone, we get an a priori bound on ‖~u‖∞. Remark
that this assumption on B implies that B is strictly diagonal dominant. In the symmetric
case, then for bii > 0 the positive definitness of B follows.

Using this bound, it is shown in [92] that one can decompose each component of ~u into
smooth and layer components.

The case of eigenvalues of different sign for a symmetric matrix with a special structure
is already studied in [1], see also [101] for a system of two equations. Based on the
assumption that A + 1/2B′ is positive semidefinite, a stability result in the energy norm
allows the proof of the existence of a solution decomposition (see [101], Theorem 2.5).

For strongly coupled systems and different small parameters εi the situation is even more
complicated. For first results concerning layer structure, layer location and characterization
of the reduced problem see [90,97].

For systems of reaction-diffusion equations

L~u : = −ε2~u′′ + A~u = ~f on Ω := (0, 1),(2.9a)

~u(0) = ~g0, ~u(1) = ~g1,(2.9b)

often the assumption

(2.10) ξTAξ ≥ α2ξT ξ

with a constant α > 0 is used. Then, ~u can be decomposed into a smooth part ~v and a
layer part ~w, where the layer part satisfies

(2.11) |w(j)
i | ≤ Cε−j

(
e−dx/ε + e−d(1−x)/ε

)
with some positive constant d. This fact was already used by Bakhvalov [12] to analyse a
finite difference method for (2.9) on a special mesh.
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In [76] the authors study L∞ stability (assumption (2.10) implies stability in some
energy norm) of the system

L~u : = −E~u′′ + A~u = ~f on Ω := (0, 1),(2.12a)

~u(0) = ~g0, ~u(1) = ~g1,(2.12b)

with E := diag(ε2
1, · · · , ε2

M) and ε1 ≤ ε2 ≤ · · · ≤ εM . Assuming akk > 0, from

−ε2
ku
′′
k + akkuk = fk −

∑
m6=k

akmum

follows as above for strongly coupled systems L∞ stability if

(2.13) Γ−1 ≥ 0 with γii = 1, γij = −‖aij
aii
‖∞ for i 6= j.

Assumption (2.13) is satisfied if A is strongly diagonal dominant. In the symmetric case
then (2.10) follows.

Now let A be strongly diagonal dominant and∑
k 6=i

‖aik
aii
‖∞ < ζ < 1.

Define
κ2 := (1− ζ) min

i
min
x∈[0,1]

aii(x) and Bε(x) := e−κx/ε + e−κ(1−x)/ε.

Then (see [76], Theorem 2.4), ~u can be decomposed in ~v+ ~w, where the layer part satisfies

(2.14) |w(k)
i | ≤ C

∑
m

ε−km Bεm(x) for k = 0, 1, 2

and

(2.15) |w(k)
i | ≤ Cε2−k

i

∑
m

ε−2
m Bεm(x) for k = 3, 4.

In the case M = 2 and analytic data assuming (2.10), full asymptotic expansions that
are explicit in the perturbation parameters and the expansion order are presented in [49].

3 Special meshes and the analysis of FEM on DL-

meshes

3.1 Special meshes for problems with layers

We now present the construction of meshes suitable for a problem posed in [0, 1] with a
layer term E = exp(−γ x/ε) (of course, the layer could also be located at x = 1 or at both
endpoints of the interval).
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Our aim is to achieve uniform convergence in the discrete maximum norm; that is, the
computed solution {uNi }Ni=0 satisfies

(3.1) ‖u− uN‖∞,d := max
i=0,...,N

|ui − uNi | ≤ CN−α

for some positive constants C and α that are independent of ε and of N . A power of N is a
suitable measure of the error u−uN for the particular families of meshes that are discussed,
but a bound of this type is inappropriate for an arbitrary family of meshes; see [114].

The aim to achieve uniform convergence in the maximum norm is demanding and leads
to meshes which sometimes do not have desirable properties. Therefore, we will take into
account as well meshes where the constant C in (3.1) will weakly depend on ε. Such a
desirable property is, for example, the local quasi-uniformity of the mesh.

The simplest meshes which we discuss first are piecewise equidistant, but we also con-
sider in detail graded meshes. Because for x = µ ε

γ
ln 1

ε
the layer term is of order O(εµ),

a simple idea is to use a fine equidistant mesh in the interval [0, µ ε
γ

ln 1
ε
] and a coarse

equidistant mesh in [µ ε
γ

ln 1
ε
, 1]. But with such an so called A-mesh, in general, it is not

possible to achieve uniform convergence.
Shishkin spread the idea to choose as a transition point σ from the fine to the coarse

mesh the point defined by

(3.2) σ = min{1/2, µ ε
γ

lnN}

and to subdivide each of the intervals [0, σ] and [σ, 1] by an equidistant mesh with N/2
subintervals. Then, for small ε, one has E(σ) = N−µ, and µ is chosen in dependence of
the order of the method used.

Remark 1 It is not vital that one has exactly the same number of subintervals in [0, σ]
and [σ, 1]. All that the theory demands is that as N → ∞ the number of subintervals in
each of these two intervals is bounded below by CN for some constant C > 0. ♣

The coarse part of this Shishkin mesh has spacing H = 2(1 − σ)/N , so N−1 ≤ H ≤
2N−1. The fine part has spacing h = 2σ/N = (4/γ)εN−1 lnN , so h � ε. Thus there is a
very abrupt change in mesh size as one passes from the coarse part to the fine part. The
mesh is not locally quasi-equidistant, uniformly in ε.

Remark 2 (A key property of the Shishkin mesh) Nonequidistant meshes for convection-
diffusion problems are sometimes described as “layer-resolving” meshes. One might infer
from this terminology that wherever the derivatives of u are large, the mesh is chosen so
fine that the truncation error of the difference scheme is controlled. But the Shishkin mesh
does not fully resolve the layer: for

|u′(x)| ≈ Cε−1 exp(−γ x/ε),
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so
|u′(σ)| ≈ Cε−1 exp(−µ lnN) = Cε−1N−µ,

which can be large. That is, |u′(x)| can still be large on part of the first coarse-mesh interval
[xN/2, xN/2+1].

At first sight this incomplete resolution of the boundary layer seems like a flaw, but
it is in fact the key property of the mesh! Shishkin’s insight was that one could achieve
satisfactory theoretical and numerical results without resolving all of the layer and as a
consequence his mesh permits us to use a fixed number of mesh points that is independent
of ε. If one set out to “repair” the Shishkin mesh by constructing a two-stage piecewise-
equidistant mesh as we have done, but with the additional requirement that the mesh be fine
enough to control the local truncation error wherever the derivatives of u are very large,
then the number of mesh points required would have to grow like | ln ε| as ε→ 0. See [130]
and [38, Section 3.6].

Although the number of mesh points is fixed independently of ε, nevertheless numerical
analysis on Shishkin meshes does pay a price for the nature of the construction: typically
the trickiest part of the domain to handle is the first coarse mesh interval – because the
derivatives of u can be large there. ♣

If a method for a problem with a smooth solution has the order α, due to the fine mesh
size h = O(εN−1 lnN) in the case u(k) ≈ ε−k we can expect that the error on a Shishkin
mesh is of the order O((N−1 lnN)α). Especially for higher order methods the logarithmic
factor is not nice. An optimal mesh should generate an error of the order O(N−α).

One possibility to generate an optimal mesh is to introduce a graded mesh in the fine
subinterval [0, σ] using a mesh-generating function. Assuming the function λ : [0, 1/2] 7→
[0, lnN ] to be strictly increasing, set

xi =
µε

γ
λ(i/N), i = 0, 1, · · · , N/2.

We call such meshes Shishkin-type meshes. It turns out (see the next Section) that in
error estimates for Shishkin-type meshes often the factor max |ψ′(·)| appears, here ψ is the
mesh-characterizing function defined by

ψ := e−λ : [0, 1/2] 7→ [1, 1/N ].

For the original Shishkin mesh we have max |ψ′(·)| = O(lnN). A popular optimal mesh is
the Bakhvalov-Shishkin mesh with

ψ(t) = 1− 2t(1−N−1) and max |ψ′(·)| ≤ 2.

The mesh points of the fine mesh are given by

(3.3) xi = −µε
γ

ln

(
1− 2(1−N−1)

i

N

)
, i = 0, 1, · · · , N/2.

For other possibilities to choose λ, see [100].
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Remark 3 In [41] we find a slight generalization of Shishkin-type meshes based on the
property λ(1/2) = ln(θN) with some additional parameter θ. This allows to characterize
the so called eXp-mesh as generalized Shishkin-type mesh. ♣

If one chooses the transition point from a fine to the coarse mesh by

(3.4) σ∗ = min{1/2, µ ε
γ

ln
1

ε
},

one has to use a graded fine mesh to achieve uniform convergence. Similarly as (3.3), a
Bakhvalov-type mesh is given by

(3.5) xi = −µε
γ

ln

(
1− 2(1− ε) i

N

)
, i = 0, 1, · · · , N/2.

In [σ∗, 1] the mesh is equidistant.
Bakhvalov’s original mesh [12] was a little more complicated. The mesh points near

x = 0 were defined by

q(1− exp(−γxi
µε

)) =
i

N

in some interval [0, τ ], here q is a parameter. That means, Bakhvalov proposed the mesh-
generating function

φ(t) =

{
−µε

γ
ln q−t

t
for t ∈ [0, τ ]

φ(τ) + φ′(τ)(t− τ) for t ∈ [τ, 1].

Remarkably, τ is defined by the requirement that the mesh-generating function is C1.
Thus, τ has to solve the nonlinear equation

φ′(τ) =
1− φ(τ)

1− τ
.

Bakhvalov-type meshes are simpler than the Bakhvalov meshes, the mesh-generating func-
tion is not longer C1. But both meshes are not locally quasi-equidistant. In some cases
for these meshes optimal error estimates are known, but the analysis is often more com-
plicated than for Shishkin-type meshes. In some papers Vulanović [124–127] simplified the
mesh-generating function of a Bakhvalov mesh such that the resulting equation for τ is
easy to solve.

As Linß pointed out [74], a Bakhvalov-mesh can also be generated by equidistributing
the monitor function

M(s) = max
(

1, K̃γε−1e−
γs
µε

)
.

Remark 4 In several papers (see [79] and its references) Liseikin examines the conver-
gence of finite difference methods when using mesh generating functions λ(t) of the given
independent variable that satisfy |λ′(t)| ≤ C for all t ∈ [0, 1]. This approach generates a
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graded grid of Bakhvalov type. His book [78] develops a general theory of grid generation.
The analysis in these sources is written in terms of “layer-resolving transformations”; their
relationship to mesh generating functions in a singular perturbation context is discussed
in [128]. ♣

Remark 5 In [115] we find the proposal to generate a mesh by the implicitly defined
function

(3.6) ξ(t)− e
γξ(t)
µε + 1− 2t = 0.

The mesh has the advantage that it is not necessary to use different mesh generating func-
tions in different regions. But (3.6) is not so easy to solve, however, a solution based on
the use of Lambert’s W-function is possible. Some difference schemes (and finite elements)
on that mesh can be analyzed similarly as on Bakhvalov-type meshes [107]. ♣

So far we constructed a graded fine mesh using a mesh-generating function. Alterna-
tively, it is also relatively popular to use a recursive formula.

Gartland [43] graded a mesh in the following way:

x0 = 0, x1 = εH, xi+1 = xi + hi

with

(3.7) hi = min
(
H, εHe

γxi
2ε , ehi−1.

)
The restriction hi ≤ ehi−1 ensures that the mesh is locally quasi-equidistant.

Remark 6 If simple upwinding for a convection-diffusion problem is uniformly convergent
in the sense of (3.1) for some constant α > 0, and the mesh is locally quasi-equidistant
(uniformly in ε), then the number N of mesh intervals must increase as ε→ 0. To see this,
observe that the arguments of [117] are still valid when slightly modified by considering a
limit as N → ∞ with ε ≥ h1 and i = 1; one then arrives at the conclusion of that
paper that h1 = o(ε). (There are some minor extra mesh assumptions such as existence of
limN→∞ h1/h2 and limN→∞ h2/h1.) But the mesh diameter is at least 1/N , so the locally
quasi-equidistant property implies that εKN ≥ 1/N , where K is the constant in

hi ≤ Khj for |i− j| ≤ 1.

Hence NKN ≥ 1/ε, so N ≈ logK(1/ε). ♣

Introducing the transition points x∗, x′ by

x∗ ≈ Kε ln
K

H
, x′ ≈ Kε ln

K

ε
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Gartland observed that the number of mesh points in the inner region [0, x∗] as well in
the outer region [x′, 1] is of order O(1/H), but in the transition region [x∗, x′] of order
O(ln ln H

ε
).

We call the modification of the mesh where (3.7) is replaced by

(3.8) hi = min
(
H, εHe

γxi
2ε .
)

Gartland-type mesh. The number of mesh points is now independent of ε and the mesh
allows optimal error estimates. The mesh is not locally quasi-eqidistant. Gartland-type
meshes are studied in [104], [83–85].

Much simpler is the Duran-Lombardi mesh [35] defined by

x0 = 0, xi = iκHε for 1 ≤ i ≤ 1
κH

+ 1
xi+1 = xi + κHxiε for 1

κH
+ 1 ≤ i ≤M − 2, xM = 1.

Here M is chosen such that xM−1 < 1 but xM−1 + κHxM−1 ≥ 1, assuming that the last
interval is not extremely small.

The mesh is locally quasi-equidistant and glitters by its simplicity, there is no need to
define a transition point. Uniform error estimates with respect to H are possible, but the
number of mesh-points is proportional to 1

H
ln 1

ε
. Numerical experiments show that the

mesh is more robust than other meshes with respect to the use of a mesh designed for
some given ε for larger values of the parameter.

If the mesh is given by a recursive formula, one can define a mesh-generating function
by interpolation of the values given in the mesh points. That gives also a possibility to
analyze discretization methods on such a mesh, see, for instance, [108].

Remark 7 When analyzing hp finite element methods for singularly perturbed problems it
is common to use an hp boundary layer mesh, see [89]. For such methods it is possible to
prove exponential convergence. ♣

3.2 The analysis of finite element methods on DL meshes

The analysis of finite element methods for standard convection-diffusion problems with
exponential boundary layers for Shishkin-type meshes is well known. One obtains for
linear or bilinear elements

(3.9) ‖u− uN‖ε ≤ CN−1 max |ψ′|

with the mesh characterizing function ψ introduced in the previous subsection. Conse-
quently, a Bakhvalov-Shishkin mesh or a Gartland-Shishkin mesh yield the optimal esti-
mate

(3.10) ‖u− uN‖ε ≤ CN−1.
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But for Bakhvalov meshes the proof of an optimal error estimate in 2D is an open
problem, the analysis in Roos/Schopf [102] still yields a weak dependence on ε.

Next we sketch as an example for the analysis on recursively defined meshes the analysis
on Duran-Lombardi meshes. For the analysis presented it is sufficient to assume
for 0 ≤ k ≤ 2

|∂
ku

∂xk
| ≤ C(1 + ε−k exp(−β1x/ε)),

|∂
ku

∂yk
| ≤ C(1 + ε−k exp(−β2y/ε))

and

| ∂
2u

∂x∂y
| ≤ C(1 + ε−1 exp(−β1x/ε) + ε−1 exp(−β2y/ε) + ε−2 exp(−β1x/ε) exp(−β2y/ε)).

(for that analysis we consider layers located at x = 0 and at y = 0)
Consider bilinear elements on a mesh defined by

x0 = 0, x1 = κHε
xi+1 = xi + κHxi for 1 ≤ i ≤M − 2, xM = 1.

Here M is chosen such that xM−1 < 1 but xM−1 + κHxM−1 ≥ 1, assuming that the last
interval is not extremely small. Remark that this mesh was the first proposal of Duran and
Lombardi, the modification presented is characterized by an increasing mesh size and can
be analyzed similarly. As mentioned before the number of mesh points N is proportional
to H−1| ln ε|. Analogously we define the mesh points yj in the y direction.

First one obtains for the interpolation error on that mesh

‖u− uI‖0 ≤ CH2 and ε1/2|u− uI |1 ≤ CH.

Let us sketch, for instance, the proof of the estimate in the H1 semi norm. Consider an
element Kij = (xi−1, xi) × (yj−1, yj). Then the anisotropic interpolation error estimate
reads

‖(u− uI)x‖2
0,Kij

≤ C
(
h2
i ‖uxx‖2

0,Kij
+ h2

j‖uyy‖2
0,Kij

)
.

On K11 the desired estimate follows immediately because h1 = k1 = Hε.
Consider next the case i, j ≥ 2. Then, the use of the recursive formula hi = κHxi−1 allows
the estimate

‖(u− uI)x‖2
0,Kij

≤ CH2
(
‖xuxx‖2

0,Kij
+ ‖yuyy‖2

0,Kij

)
.

Now the analysis is based on the simple observation that∫ 1

0

e−x/ε = O(ε) but

∫ 1

0

xe−x/ε = O(ε2) and

∫ 1

0

x1/2e−x/ε = O(ε3/2).
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Using that observation our estimates for the derivatives of u yield, for instance,

‖uxx‖0 ≤ Cε−3/2 and ‖xuxx‖0 ≤ Cε−1/2,

similarly
‖uxy‖0 ≤ Cε−1 and ‖y1/2uxy‖0 ≤ Cε−1/2.

From these estimates the desired estimate for ‖(u− uI)x‖0 follows.
The remaining elements Kij can be handled similarly.

The error analysis follows the same lines as on Shishkin meshes, the only critical part
is to estimate

Iconv =

∫
Ω

b∇(u− uI)(uI − uH).

Introducing the subdomain Ω3 by

Ω̄3 = ∪
{
K̄ij : xi−1 ≥ cε| ln ε|, yj−1 ≥ cε| ln ε|

}
we get on Ω3

|
∫

Ω3

b∇(u− uI)(uI − uH)| ≤ CH‖uI − uh‖0

because the behavior of u implies |u− uI |1,Ω3 ≤ CH.
Consider next, for example, the strip

Ω̄1 = ∪
{
K̄ij : xi−1 < cε| ln ε|

}
.

The Poincaré-Friedrichs inequality

‖uI − uH‖0,Ω1 ≤ Cε ln
1

ε
‖ ∂
∂x

(uI − uH)‖0,Ω1

yields

|
∫

Ω1

b∇(u− uI)(uI − uH)| ≤ Cε1/2‖uI − u‖1 ln
1

ε
‖uI − uH‖ε,

resulting finally in the error estimate

‖u− uH‖ε ≤ CH ln
1

ε
.

Introducing the number of mesh points used, one has

‖u− uH‖ε ≤ CN−1(ln
1

ε
)2.

This estimate on the Duran-Lombardi mesh is not uniform in ε. But the analysis requires
only estimates for derivatives, and two further advantages of the mesh are its simplicity
(no definition of a transition point is necessary) and its robustness (a mesh defined for
some ε can also be used for larger values of the parameter).
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4 Numerical Methods for Systems

Consider again the system

L~u : = −ε~u′′ +B~u′ + A~u = ~f on Ω := (0, 1),(4.1a)

~u(0) = ~g0, ~u(1) = ~g1.(4.1b)

Based on the analytical results presented in Section 2 we now study numerical methods,
extending some results from the survey [77].

In [1] the authors consider simple and midpoint upwind on a uniform mesh in a case of
strong coupling, assuming B is symmetric and has the special structure

B =

(
B1 0
0 B2

)
.

Here, for instance, B1 is positive definite, B2 negative definite. Far from the layers error
estimates are proven, but, of course, one cannot obtain uniform convergence.

In [48] the Il’in-Allen-Southwell scheme is generalized for systems. Let us start from

−ε~u′′(xi) +B(xi)~u
′(xi) + A(xi)~u(xi) = ~f(xi)

and assume the matrix B(xi) to be symmetric with eigenvalues λij. Then, there exists a
matrix Pi which diagonalizes B(xi). Setting

~v = P−1
i ~u, ~g = P−1

i
~f

we obtain for the j-th component of ~v the equation

−εv′′j (xi) + λijv
′
j(xi) +

∑
k

a∗jkvk(xi) = gj(xi).

Next we introduce the scalar version of the Il’in-Allen-Southwell scheme:

−εσijD+D−vij + λijD
0vij +

∑
k

a∗jkv
i
k = gj(xi)

with σij =
λij h

2
coth

λij h

2ε
. Collecting the σij in a vector, the back transformation yields

(4.2) −εPiσiP−1
i
~ui +B(xi)D

0~ui + A(xi)~ui = ~f(xi).

If B is not diagonalizable one can use the Jordan canonical form, the resulting scheme is
a little more complicated. The numerical experiments in [48] promise first order uniform
convergence, but there exists no analysis.

Next we sketch error estimates for layer-adapted meshes, mostly for Shishkin meshes.
Of course, to create these meshes we need a priori information on the location of layers and
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precise estimates on the behavior of derivatives, which we discussed for systems in Section
2.

Under the assumptions formulated in that Section for weakly coupled systems, even
with different diffusion coefficients, one can analyze the upwind finite difference scheme
based on the information for the first order derivatives given in (2.4). By the transformation
x := 1−x we shift the layer to x = 0. Then, the mesh is equidistant and coarse away from
x = 0, and piecewise equidistant with successively finer meshes, as one approaches x = 0.
More precisely, we have mesh transition points τk defined by

(4.3) τM+1 = 1, τk = min

(
kτk+1

k + 1
,
σεk
β

lnN

)
and τ0 = 0.

Then, for k = 0, · · · ,M , the mesh is obtained by dividing each of the intervals [τk, τk+1]
into N/(M + 1) subintervals of equal length.

Similarly as in the scalar case now from a (‖ · ‖∞,d, ‖ · ‖−1,∞,d) stability result one can
prove for simple upwind

‖~u− ~uN‖∞,d ≤ C max
k

∫ xk

xk−1

(1 + |~u′|)dx,

and
‖~u− ~uN‖∞,d ≤ CN−1 lnN for Shishkin meshes

and first order uniform convergence for Bakhvalov meshes follows [72].
Results in the maximum norm for higher order schemes are not known. In [103] linear

finite elements are analyzed in the energy norm on a modified Shishkin mesh, but also
studied numerically in the maximum norm. It seems that the weak layers for higher
order derivatives reduce the convergence order two in the maximum norm observed on the
modified mesh if the standard Shishkin mesh is used instead.

For strongly coupled system we assume εi = ε for all i. In the case of overlapping layers
at one boundary with an analogous technique as for weakly coupled systems one can prove
for the upwind scheme on a Shishkin mesh

‖~u− ~uN‖∞,d ≤ CN−1 lnN,

see [92]. In the case M = 2, where both solution components do have layers at x = 0 and
at x = 1, linear finite elements are analyzed in [101] in some energy norm.

Consider finally a system of reaction-diffusion equations:

L~u : = −E~u′′ + A~u = ~f on Ω := (0, 1),(4.4a)

~u(0) = ~g0, ~u(1) = ~g1,(4.4b)

On a uniform mesh, in [66] a method is proposed which produces solutions without nu-
merical oscillations. The method starts with a least-squares functional

F(~u, ~p) = ‖D((~u, ~p))− F‖2
0

14



where F = [0, f ]T and

D((~u, ~p)) = [ε1(p1 −∇u1), · · · , εM(pM −∇uM),−E∇~p+ A~u]T .

A dG method is used to discretize the least-square problem with linear finite elements,
see [66].

Under the assumptions formulated in Section 2 we have bounds for derivatives of the
solution and can construct a layer adapted mesh. Consider the Shishkin mesh of the type
(4.3), now we use that mesh at x = 0 and at x = 1.

It is well known that L∞ stability is not sufficient to analyze the standard (central)
finite difference scheme on a Shishkin mesh. For a system of two equations in [75] the
maximum principle and special barrier functions are used to prove

‖~u− ~uN‖∞,d ≤ C(N−1 lnN)2.

Later in the general case [76] the authors started again with the discrete L∞ stability, but
used next a representation of the consistency error via the discrete Green’s function:

ηi,j =
∑
k

h̄kGkε
2
i (D

+D−ui − u′′i ).

A tricky manipulation of this representation which uses the properties of the discrete
Green’s function and the bounds (2.14), (2.15) leads to

‖~u− ~uN‖∞,d ≤ C

(
max
k

∫ xk

xk−1

(1 +
∑
m

ε−1
m B2εm(x))dx

)2

.

On a Shishkin mesh follows

‖~u− ~uN‖∞,d ≤ C(N−1 lnN)2.

It is also possible to obtain the corresponding slightly better results on Bakhvalov meshes.
Linear finite elements on layer-adapted meshes in the energy norm are analyzed in [73],

robust exponential convergence of hp FEM for a set of two equations in [50]. So far error
estimates for systems in a balanced norm are rare.

5 Remarks to the discontinuous Galerkin method

In [106] we presented a short introduction into the discontinuous Galerkin method because
during that time the method was still not thus popular as today. Since then five books on
dGFEM were published which proves the attractivity of the method [30,32,46,55,95].

We discussed 2008 mainly the primal formulation of dGFEM and, especially, the sym-
metric and non-symmetric method with interior penalties, SIP and NIP. In this Section
we shortly introduce the very popular local discontinuous Galerkin method LDG, hybrid
methods HdG and comment discontinuous Petrov-Galerkin methods dPG with optimal
test functions.
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5.1 The local discontinuous Galerkin method LDG

Consider the convection-diffusion problem

Lu := −ε∆u− b · ∇u+ cu = f in Ω(5.1a)

u = 0 on Γ = ∂Ω.(5.1b)

Alternatively to the primal formulation one has the flux formulation of the dGFEM, which
starts from the formulation of (5.1) as

θ = ∇u, −ε∇ · θ + cu = f.

A corresponding weak form is ∫
κ

θ · τ = −
∫
κ

u ∇ · τ +

∫
∂κ

uµκ · τ,

ε

∫
κ

θ · ∇v +

∫
κ

cuv =

∫
κ

fv +

∫
∂κ

θ · µκ v.

This generates the following discretization: find uh, θh such that∫
κ

θh · τh = −
∫
κ

uh ∇ · τh +

∫
∂κ

ûκ µκ · τh,

ε

∫
κ

θh · ∇vh +

∫
κ

cuhvh =

∫
κ

fvh +

∫
∂κ

θ̂κ · µκ vh.

Here the choice of the numerical fluxes θ̂κ and ûκ that approximate θ = ∇u and u on ∂κ is
very important. In [11] one finds a thorough discussion of 9 variants of the dGFEM that are
characterized by different choices of θ̂κ and ûκ. For each of these methods, the properties
of the associated primal formulation that is obtained by eliminating θh are discussed.

Now the very popular local discontinuous Galerkin method is characterized by the
following choice of the numerical fluxes on interior edges:

ûκ = {uh}+ C12[uh],

θ̂κ = {θh} − C12[θh]− C11[uh].

Here C12 ≥ 0, and an adequate choice of C11 ensures stability of the method. See [30],
Chapter 4.4 or [32], Chapter 3.3 for details and [135, 136] for the analysis of LDG for
convection-diffusion problems on layer-adapted meshes.

5.2 Hybrid dG (HdG)

Introducing again θ = ∇u, we start from the mixed formulation∫
Ω

θ · τ +

∫
Ω

udiv(τ) = 0 for all τ ∈ H(div,Ω),

−ε
∫

Ω

div(θ)v +

∫
Ω

cuv = (f, v) for all v ∈ L2(Ω).
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Now, instead of requiring the discrete fluxes to be in H(div,Ω), completely discontinuous
elements can be used ensuring the continuity of the normal fluxes over element interfaces
by adding appropriate constraints. The corresponding discrete problem reads:
Find (θh, uh, λh) (λh lives on the set of faces), such that∫

Ω

θh · τh +

∫
Ω

uhdiv(τh) + 〈λh, τh · n〉∂Th = 0,

−ε
∫

Ω

div(θh)vh +

∫
Ω

cuhvh = (f, v),

〈θh · n, µh〉∂Th = 0.

This method, called MH-dG [36], can alternatively be generated by the HdG method of [42]
choosing the stabilization parameter used in that method suitably, see also [22,51]. In [17]
the name discontinuous Petrov-Galerkin method was used for a hybrid technique, today
this name is mostly related to a hybrid method with optimal test functions (see next
subsection ).

Let us finally notice that the weak Galerkin method (WG) is closely related to the HdG
framework [21].

5.3 Discontinuous Petrov-Galerkin methods (dPG) with optimal
test functions

Demkowicz and Gopalakrishnan developed in the years 2009-2011 a general finite ele-
ment frame work which allows to combine discontinuous Galerkin methods with the early
methodology proposed by Morton (mentioned in Section 2.2.2 of the book in 2008) of op-
timal test functions. First pure convection was studied [27], then beginning with [19] and
several other papers [18, 91] also convection-diffusion was taken into consideration. For
reaction-diffusion in the singularly perturbed case, see [47].

Next we sketch the basic philosophy following the survey [28]. Assume that we want
to solve the following problem:
Find u ∈ U such that

(5.2) A(u, v) = f(v) for all v ∈ V.

We propose that the assumptions of the Babuska-Brezzi theory are satisfied. If Uh ⊂ U is
some finite element space, we define the test space of a Petrov-Galerkin method by Θ(Uh),
where the trial-to-test operator Θ : U 7→ V is given by

(5.3) 〈Θu, v〉 = A(u, v) for all v ∈ V.

Here 〈·〉 denotes a scalar product in V . Then, the Petrov-Galerkin method

(5.4) A(uh, vh) = f(vh) for all vh ∈ Θ(Uh)
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with uh ∈ Uh has the optimal property

‖u− uh‖E = inf
wh∈Uh

‖u− wh‖E

with respect to the norm

‖w‖E := sup
A(w, v)

‖v‖V
.

The success of this strategy depends on how easily one can compute the test functions.
To get a local, element-by-element computation discontinuous methods are used. But
still there exist many possibilities of, in general, hybrid formulations and choices of the
broken Sobolev spaces spaces U and V and corresponding broken norms [28]. So far we
described the ideal dPG method, practically one has to approximate the test functions. In
the singularly perturbed case it is open to realize that in a robust way.

Remark that there also exist close relations of ideal dPG to a method of Cohen, Dahmen,
Huang, Schwab and Welper [23,25].

6 Adaptive methods

6.1 The stationary case

In the book 2008 we described briefly four types of estimators:

• residual estimators

• estimators based on the solution of local problems

• estimators based on averaging/pre-processing of the flux

• goal-oriented estimators (or the DWR method: dual weighted residuals).

In 2008, estimators based on averaging/pre-processing of the flux were still not thus
popular, let us shortly introduce these estimators. The starting point is the introduction
of some q ∈ H(div; Ω) in the residual equation:

Res(v) = (f + div q, v)− (∇uh − q,∇v) ∀v ∈ V.(6.1)

In general, q is designed in such a way that it satisfies the equilibration condition

(6.2) div q + Pf = 0

where Pf is some projection of f . Then, for non-singularly perturbed problems the first
term in (6.1) is small and the second term generates a good estimator depending on the
concrete realization of q. In [16] the authors present five methods to define q and discuss
the estimators generated.

18



For other estimators and more detailed investigations see [4,122]; for the DWR method
see in particular [13].

From theoretical considerations it is clear that any good mesh for boundary or interior
layers must be anisotropic. Thus an adaptive procedure designed for problems with layers
should include an anisotropic refinement strategy. While several anisotropic mesh adapta-
tion strategies do exist (see [33] and its bibliography), all are more or less heuristic. We
do not know of any strategy for convection-diffusion problems in two dimensions where it
is proved that, starting from some standard mesh, the refinement strategy is guaranteed
to lead to a mesh that allows robust error estimates.

Micheletti, Perotto and others [26,39] combine SDFEM, the DWR method and anisotropic
interpolation error estimates to get an a posteriori error estimate for some target functional.
They then use this information to implement a metric-based algorithm for mesh genera-
tion [24] that creates an “optimal” mesh. The numerical results obtained are interesting
but the second step of the approach has a heuristic flavour.

Of course, strong results require an error estimator suitable for an anisotropic mesh.
Several authors use in the theoretical foundation of the estimators the alignment measure,
introduced by Kunert [63, 64], see, for instance, [44, 94, 134]. But the use of the unknown,
not computable alignment measure means that the initial mesh has more or less already
to reflect the anisotropy of the solution.

Kopteva designed different estimators ( residual [57, 58], flux equilibration [59]) for
anisotropic meshes, even in different norms (energy and maximum norm) without using
any alignment measure in proving upper error bounds.

Very important is the robustness of the estimators. In [109] Sangalli proves the ro-
bustness of a certain estimator for the residual-free bubble method applied to convection-
diffusion problems. The analysis uses the norm

(6.3) ||w||San := ‖w‖ε + ‖b · ∇w‖∗, where ‖ϕ‖∗ = sup
〈ϕ, v〉
‖v‖ε

.

Although Sangalli’s approach is devoted to residual-free bubbles, the same analysis works
for the Galerkin method and the SDFEM. For the convection-diffusion problem, the resid-
ual error estimator is robust with respect to the dual norm; see [121].

Angermann’s graph norm and the norm || · ||San above are defined only implicitly by
an infinite-dimensional variational problem and cannot be computed exactly in practice.
In [111] Sangalli pointed out that the norm (6.3) seems to be not optimal in the convection-
dominated regime. He proposes an improved estimator that is robust with respect to
his natural norm [110] for the advection-diffusion operator, but studied only the one-
dimensional case. The relation to another new improved dual norm is in detail studied
in [34].

Today the dual norm or its modification plays an important role in many papers on
robust a posteriori error estimation for convection-diffusion problems.

In [118], Tobiska and Verfürth proved in the dual norm that the same robust a posteriori
error estimator can be used for a range of stabilized methods such as streamline diffusion,
local projection schemes, subgrid-scale techniques and continuous interior penalty methods.
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Nonconforming methods are studied in [134]. Variants of discontinuous Galerkin methods
are discussed in [37, 44, 86, 112, 137]. Vohralik [123] presents a very general concept of a
posteriori error estimation based on potential and flux reconstructions.

If one avoids to use a dual norm, often additional hypothesis are necessary to prove
robustness. See, for instance, [54] for the analysis of an estimator for SDFEM in a natural
SDFEM norm.

For reaction-diffusion problems the theoretical situation is clearer than for convection-
diffusion problems. The residual-based estimator and the related estimator based on the
solution of auxiliary local problems are both robust with respect to the associated energy
norm [120]. A modification of the equilibrated residual method of Ainsworth and Babuska
is also robust for reaction-diffusion problems [3].

For the flux reconstruction technique in the singularly perturbed case equation (6.1)
corresponds to

(6.4) Res(v) = (f − cuh + div q, v)− (ε∇uh − q,∇v)

and one has carefully to estimate both terms of (6.4). With some numerical flux q con-
structed, for instance, in [20], the first term yields the residual part of the estimator

ηT,res := mT‖f − cuh + div q‖0,T

with the same weight mT as in Verfürth’s estimator. The second term generates a diffusive
flux estimator ηDF , see [20] for details. Flux equilibration is also studied in [5, 6], for
nonconforming methods see [131].

As in [134] is pointed out, the estimator of [20] is not robust on anisotropic meshes.
A modification of that estimator is presented but the proof of the upper bound uses the
alignment measure. A recent result of Kopteva [59] for flux equilibration on anisotropic
meshes avoids the use of that ingredient.

Stevenson proved in [116] the uniform convergence of a special adaptive method for the
reaction-diffusion equation in the energy norm.

It is unclear that the energy norm is a suitable norm for these problems because for
small ε it is unable to distinguish between the typical layer function of reaction-diffusion
problems and zero. It would be desirable to get robust a posteriori error estimates in a
stronger norm, for instance, some balanced norm or the L∞ norm.

The first result with respect to the maximum norm is the a posteriori error estimate of
Kopteva [56] for the standard finite difference method on an arbitrary rectangular mesh.
Next we sketch the ideas of [29] for a posteriori error estimation for finite elements of
arbitrary order on isotropic meshes in the maximum norm.

Using the Green’s function of the continuous operator with respect to a point x, the
error in that point can be represented by

e(x) = ε2(∇uh,∇G) + (cuh, G).

For some Gh ∈ Vh we obtain

e(x) = ε2(∇uh,∇(G−Gh)) + (cuh, G−Gh).
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Integration by parts yields

e(x) =
1

2

∑
T∈Th

∫
∂T

ε2(G−Gh)nT · [∇uh] +
∑
T∈Th

(cuh − f − ε24uh, G−Gh)T .

Choosing for Gh the Scott-Zhang interpolant of G, one needs sharp estimates for G to
control the interpolation error. These are collected in Theorem 1 of [29]. Thus, one
obtains finally with lh := ln(2 + ε̃h−1) (the constant ε̃ is of order ε and h = minhT )

‖u− uh‖∞ ≤ C max
T∈Th

(min(ε̃, lhhT )‖[∇uh]‖∞,∂T(6.5a)

+ min(1, lhh
2
T ε
−2)‖cuh − f − ε24uh‖∞,T ).

On anisotropic meshes, Kopteva also derives an a posteriori error estimator in the
maximum norm [57], now for linear finite elements. Suppose that the triangulation satisfies
the maximum angle condition. Then the first result of [57] gives

‖u− uh‖∞ ≤ C lh max
z∈N

(min(ε, hz)‖[∇uh]‖∞,∂ωz(6.6a)

+ min(1, h2
zε
−2)‖cuh − f‖∞,ωz).

Here ωz is the patch of the elements surrounding some knot z of the triangulation, hz
the diameter of ωz. In a further estimator the second term of (6.6), which has isotropic
character, is replaced by a sharper result with more anisotropic nature.

To prove (6.6) two difficulties arise. First, it is necessary to use scaled trace bounds.
Moreover, instead of using the Scott-Zhang interpolant of the Green’s function (which
applicability is restricted on anisotropic meshes) Kopteva uses some standard Lagrange
interpolant for some continuous approximation of G. But the construction is based on the
following additional assumption on the mesh. Let us introduce Ω1 := {T : hT ≥ c1ε} and
Ω2 := {T : hT ≤ c2ε} with some positive c1 < c2. Then, the additional assumption requires
that the distance of Ω1 and Ω2 is at least some c3ε with c3 > 0.

The last condition excludes an too abrupt change of the mesh size, typically for Shishkin
meshes. But other layer-adapted meshes satisfy that condition, for instance, Bakhvalov
meshes or Bakhvalov-Shishkin meshes.

6.2 Time-dependent problems

We start from the problem

Lu := ut − ε∆u+ b · ∇u+ cu = f on Q,(6.7a)

with initial-boundary conditions

u(x, y, 0) = s(x, y) on Ω,(6.7b)

u(x, y, t) = 0 on ∂Ω× (0, T ],(6.7c)

assuming c− 1/2∇ · b ≥ β > 0.
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The weak form of (6.7) consists in finding u ∈ L2(0, T ;H1
0 (Ω)) such that ut ∈ L2(0, T ;H−1(Ω)),

u(·, 0) = s in L2(Ω), and for almost every t ∈ (0, T ) and v ∈ H1
0 (Ω)

(6.8) (ut, v) + ε(∇u,∇v) + (b · ∇u+ cu, v) = (f, v).

In this subsection we mainly discuss two approaches for obtaining a posteriori error
estimates: residual estimates and estimates based on elliptic reconstruction.

Let us study the discretisation of (6.7) by linear finite elements in space and backward
Euler in time. Set τn := tn − tn−1, with every intermediate time tn we associate a shape-
regular partition Th,n and a corresponding finite element space Xh,n. Additionally, some
transition condition guarantees that the mesh at t = tn is not dramatically different from
the mesh at t = tn−1.
Then, the space-time discretisation reads: Find unh ∈ Xh,n such that

(6.9) u0
h = πhs (L2 projection)

and

(
unh − un−1

h

τn
, vh) + ε(∇unh,∇vh) + (bn · ∇unh + cnunh, vh)

+
∑

K∈Th,n

δK
(unh − un−1

h

τn
− ε∆unh + bn · ∇unh + cnunh, b

n · ∇vh
)
K

= (fn, vh) +
∑

K∈Th,n

δK(fn, bn · ∇vh)K .(6.10a)

The choice δK = 0 yields standard Galerkin, otherwise we have SDFEM in space. Remark
that we follow [122], where more general the θ-scheme in time is studied (θ = 1 gives
backward Euler).

The sequence {unh} defines a function uh,τ , piecewise affine on (tn−1, tn] with uh,τ (tn) =
unh. We equip the space

X = {u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) : ut + b · ∇u ∈ L2(0, T ;H−1(Ω))}

with the norm defined by

‖v‖2
X := sup‖v(·, t)‖2

0 +

∫ T

0

‖v(·, t)‖2
εdt+

∫ T

0

‖(vt + b · ∇v)(·, t)‖2
∗dt.

As in the stationary case, residual based a posteriori error estimation uses the equivalence of
residual and error. More precisely, the norm of the residual Res(uh,τ)) ∈ L2(0, T ;H−1(Ω))
defined by

(6.11) < Res(uh,τ ), v >:= (f, v)−
(
(∂uh,τ , v) + ε(∇uh,τ ,∇v) + (b · ∇uh,τ + cuh,τ , v)

)
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is equivalent to ‖u− uh,τ‖X , see Proposition 6.14 in [122]. Here we used

∂uh,τ :=
unh − un−1

h

τn
in (tn−1, tn].

Next we split the residual into a temporal and a spatial part. For simplicity, we restrict
ourselves to time-independent data, otherwise additional a data residual is necessary. Set

< Resh(uh,τ ), v >:= (f, v)−
(
(
unh − un−1

h

τn
, v) + ε(∇unh,∇v) + (b · ∇unh + cunh, v)

)
and

< Resτ (uh,τ ), v >:= ε(∇(unh − uh,τ ),∇v) + (b · ∇(unh − uh,τ ) + (c (unh − uh,τ ), v).

Consider first the spatial residual. Analogously as in the stationary case, elementwise
residuals RK and edge residuals RE are introduced, and with the same weights αK and αE
as in the stationary case one generates the estimator

ηnh :=
{∑

K

α2
K‖RK‖2

L2(K) +
∑
E

ε−1/2α2
E‖RE‖2

L2(E)

}1/2
.

The direct estimation of the temporal residual yields the estimator

η̂nh := {‖unh − un−1
h ‖2

ε + ‖b · ∇(unh − un−1
h )‖2

∗}1/2.

Together one gets a robust estimator, with, for instance, the following bound from above
[122]:

‖u− uh,τ‖X ≤ C{‖s− πhs‖2
0 +

∑
n

τn((ηnh)2 + (η̂nh)2)}1/2.

There exist also an estimate from below.
Unfortunately, ‖ · ‖∗ is not computable, and standard approaches, for instance inverse

inequalities, lead to estimates which are not robust with respect to ε. A similar but
computable estimator in [10] is also not fully robust. Therefore, Verfürth introduces the
auxiliary problem

(6.12) (ε(∇ũnh,∇vh) + β(ũnh, vh) = (b · ∇(unh − un−1
h ), vh).

One can show [122], that finally one can replace ‖b · ∇(unh − un−1
h )‖∗ by the computable

quantity

‖ũnh‖ε + {
∑
K

α2
K‖b · ∇(unh − un−1

h ) + ε∆ũnh − βũnh‖2
0,K +

∑
E

ε−1/2αE‖[n · ∇ũnh]E‖2
0,E}1/2.

The price for the final estimator is the need to solve the discrete stationary reaction-
diffusion problem (6.12) at each time level.
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Remark that in [118] the authors study not only SDFEM but a wide range of stabiliza-
tion methods, while in [7] for semilinear equations a fully adaptive Newton-Galerkin time
stepping algorithm is designed.

Next we sketch the fundamental idea to use elliptic reconstruction operators in a pos-
teriori error estimation for parabolic problems. Instead of comparing directly the exact
solution with the numerical one, an appropriate auxiliary function Ruh,τ is defined. Then,
we decompose the error into

u− uh,τ = (u−Ruh,τ ) + (Ruh,τ − uh,τ ).

The elliptic reconstruction Ruh,τ is constructed in such a way that uh,τ is the finite element
solution of an elliptic problem whose exact solution isRuh,τ . Consequently,Ruh,τ−uh,τ can
be estimated by any available a posteriori error estimator for elliptic problems. Moreover,
u−Ruh,τ satisfies a variant of the original PDE with a right-hand side that can be controlled
a posteriori. Then u−Ruh,τ can be estimated using well-known a priori estimates for the
given time-dependent problem.

For simplicity let us start with the semi-discretisation of

ut + Au = f on Q,(6.13a)

with initial-boundary conditions

u(·, 0) = s on Ω,

u = 0 on ∂Ω× (0, T ]

by

(6.14) (uh)t + Ahuh = πhf.

Define the elliptic reconstruction of uh by [87]

(6.15) A(Ruh) = Ahuh.

It follows:
a(Ruh, vh) = (Ahuh, vh) = a(uh, vh).

That means: uh is the Ritz projection of Ruh.
Next we derive an equation for u−Ruh. Starting from

(u−Ruh)t + A(u−Ruh) = f − (Ruh)t − Ahuh

we get the error equation

(6.16) (u−Ruh)t + A(u−Ruh) = f − πhf + (uh −Ruh)t.

Thus, we have the two properties required: uh is the Ritz projection of Ruh, and u−Ruh
satisfies a variant of the original equation with a right-hand side which can be controlled.
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Based on available a posteriori information on uh −Ruh in certain norms, from (6.16)
we can bound u − Ruh using standard a priori estimates in energy norms or in the L2

norm or, alternatively, in the L∞ norm using estimates for the Green’s function of the
given problem.

As an example for discretisation in space and time we follow [88] and consider backward
Euler in time:

(6.17)
Un − Un−1

τn
+ AnUn = πnfn.

The continuous, piecewise linear interpolant of {UN} in time we denote by U , analogously
we define RU by the interpolate of {Rn Un}. Here

A(Rn v) = An v.

To derive the main parabolic error equation for u−RU , we start from the discrete problem
in the form

(
Un − Un−1

τn
, πnφ) + a(Un, πnφ)− (πnfn, πnφ) = 0

or

(
Un − πnUn−1

τn
+ An Un − πnfn, πnφ) = 0.

Because the quantity (U
n−πnUn−1

τn
+An Un−πnfn) lies in the finite element space, it follows

(
Un − πnUn−1

τn
+ An Un − fn, φ) = 0 ∀φ ∈ H1

0 (Ω).

Equivalently

(
Un − Un−1

τn
+ An Un − πnfn, φ)− (

πnUn−1 − Un−1

τn
, φ) = 0 ∀φ ∈ H1

0 (Ω).

Introducing the elliptic projection we can write

(6.18) (
Un − Un−1

τn
, φ) + a(RUn, φ)− (πnfn, φ)− (

πnUn−1 − Un−1

τn
, φ) = 0.

From that equation we substract the continuous problem

(ut, φ) + a(u, φ) = (f, φ)

and obtain with the notation ρ = RU − u and κ = RU − U the error equation: for all
φ ∈ H1

0 (Ω) it holds on (tn−1, tn)

(6.19) (ρt, φ) +a(ρ, φ) = (κt, φ) +a(RU −RUn, φ) + (πnfn−f, φ) + (
πnUn−1 − Un−1

τn
, φ).
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So we can repeat the statement from above:
Based on available a posteriori information on U − RU in certain norms, from (6.19) we
can bound u −RU using standard a priori estimates in energy norms or in the L2 norm,
alternatively in the L∞ norm using estimates for the Green’s function of the given problem.
See especially [60–62] for details concerning the technique described to obtain L∞ estimates
for several discretizations in time (backward Euler, Crank-Nicolson, dG). Backward Euler
in combination with discontinuous Galerkin in space is studied in [15].

Remark that a different very general framework for robust a posteriori error estimation
in unsteady problems is presented in [31]. The authors use a special error measure (which
cannot be computed easily in practice), but obtain upper and lower bounds even in the
case where the actual numerical scheme to obtain uh,τ need not to be specified. The upper
bound for the error depends on an convection-diffusion flux reconstruction and its local
space-time equilibration, the lower bound requires a local approximation property on this
flux.

Goal-oriented a posteriori error control (the DWR method) is discussed in [113]. For
SDFEM in space and discontinuous Galerkin in time the authors use the strategy first to
dualize and then to stabilize.
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[14] G. Barrenechea, V. John, P. Knobloch, and R. Rankin. A unified analysis of algebraic
flux correction schemes for convection-diffusion equations. SeMA, 75:655–685, 2018.

[15] A. Cangiani, E. H. Georgoulis, and S. Metcalfe. Adaptive discontinuous Galerkin
methods for nonstationary convection-diffusion problems. IMA J. Num. Anal.,
34:1578–1597, 2014.

[16] F. Carstensen and C. Merdon. Estimator competition for Poisson problems. J.
Comput. Math., 28:309–330, 2010.

[17] P. Causin, R. Sacco, and C.L. Bottasso. Flux-upwind stabilization of the discontin-
uous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion
problems. M2AN, 39:1087–1114, 2005.

[18] J. Chan, J. A. Evans, and W. Qiu. A dual Petrov-Galerkin finite element method for
the convection-diffusion equation. Computers Math. with Appl., 68:1513–1529, 2014.

[19] J. Chan, N. Heuer, T. Bui-Than, and L. Demkowicz. A robust DPG method for
convection-dominated problems ii. Computers Math. with Appl., 67:771–795, 2014.

[20] I. Cheddadi, R. Fucik, M. I. Prieto, and M. Vohralik. Guaranteed and robust a
posteriori error estimates for singularly perturbed reaction-diffusion problems. Math.
Modelling and Num. Anal., 43:867–888, 2009.

27



[21] G. Chen, M. Feng, and X. Xie. A robust WG method for convection-diffusion-reaction
equations. J. Comput. Appl. Math., 315:107–125, 2017.

[22] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discon-
tinuous Galerkin, mixed and continuous methods for second order elliptic problems.
SIAM J. Num. Anal., 47:1319–1365, 2009.

[23] A. Cohen, W. Dahmen, and G. Welper. Adaptivity and variational stabilization for
convection-diffusion equations. ESAIM, 46:1247–1273, 2012.

[24] F. Courty, D. Leservoisier, P. L. George, and A. Deivieux. Continuous metrics and
mesh optimization. Appl. Numer. Math., 56:117–145, 2006.

[25] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov-Galerkin meth-
ods for first order transport equations. SIAM J. Num. Anal., 50:2420–2445, 2012.

[26] L. Dede, S. Micheletti, and S. Perotto. Anisotropic error control for environmental
applications. Appl. Numer. Math., 58:1320–1339, 2008.

[27] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin
methods i. Comput. Meth. Appl. Mech. Engrg., 199:1558–1572, 2010.

[28] L. Demkowicz and J. Gopalakrishnan. Discontinuous Petrov-Galerkin (DGP)
method. ICES Report 15-20, University of Texas, 2015.

[29] A. Demlov and N. Kopteva. Maximum-norm a posteriori error estimates for sin-
gularly perturbed elliptic reaction-diffusion problems. Numer. Math., 133:707–742,
2016.

[30] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods.
Springer, Heidelberg, 2012.

[31] V. Dolejsi, A. Ern, and M. Vohralik. A framework for robust a posteriori error
control in unsteady nonlinear advection-diffusion problems. SIAM J. Num. Anal.,
51:773–793, 2013.
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