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Abstract

Recently, a new method for computing a numerical solution of singularly per-
turbed problems, the combination method was introduced. In [1] it was shown, that
the numerical approximations using O

(
N3/2

)
degrees of freedom are comparable to

those of standard Galerkin using O
(
N2

)
degrees.

Moreover, the numerical results given in that paper indicate a supercloseness
property of the method. In this new paper we develop a postprocessing operator
that achieves superconvergence, if the supercloseness property holds.
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1 Introduction

In [1] a method is described that combines standard Galerkin solutions on different meshes.
Let uNx,Ny denote the standard Galerkin solution on a mesh with Nx cells in x-direction

and Ny cells in y-direction. Moreover, let N̂ =
√

N be integer. Then the final numerical
approximation resulting from the combination method reads

uN
N̂,N̂

= uN,N̂ + uN̂,N − uN̂,N̂ .

This method will be applied to singularly perturbed problems, thus we consider the model
problem

Lu := −ε∆u− b · ∇u + cu = f in Ω = (0, 1)2, (1a)

u = 0 on ∂Ω, (1b)

where 0 < ε � 1 is a small positive parameter and

c(x, y) +
1

2
div b(x, y) ≥ c0 > 0 on Ω̄, (2)
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where c0 is some constants. Let us assume that the functions b, c and f are sufficiently
smooth. These hypotheses ensure that (1) has a unique solution in H1

0 (Ω)∩H2(Ω) for all
f ∈ L2(Ω).
Due to the perturbation parameter, the solution exhibits layers. In order to resolve them,
we use an adapted piecewise equidistant mesh, a so called Shishkin mesh, see [1].

2 Interpolation and Postprocessing

Let V Nx,Ny be the usual space of piecewise bilinear elements on the mesh TNx,Ny and
INx,Ny the standard nodal interpolation operator into V Nx,Ny . The solution uN

N̂,N̂
lies in a

subspace of V N,N namely

uN
N̂,N̂

∈ V N
N̂,N̂

:= V N,N̂ + V N̂,N ⊂ V N,N .

The two-scale interpolation operator IN
N̂,N̂

: C(Ω̄) → V N
N̂,N̂

is defined by

IN
N̂,N̂

u = IN,N̂u + IN̂,Nu− IN̂,N̂u.

For the analysis we need the following assumption.

Assumption 2.1. Assume that

u = S + E21 + E12 + E22, (3)

where there exists a constant C such that for all (x, y) ∈ Ω and i + j = 0, 1 we have∣∣∣ ∂i+jS

∂xi∂yj
(x, y)

∣∣∣ ≤ C,
∣∣∣∂i+jE22

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−(i+j)e−(β1(1−x)+β2(1−y))/ε,∣∣∣∂i+jE21

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−ie−β1(1−x)/ε,
∣∣∣∂i+jE12

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−je−β2(1−y)/ε

and for i + j = 3, 4, 5 the L2 bounds∥∥∥∥ ∂i+jS

∂xi∂yj
(x, y)

∥∥∥∥
0

≤ C,

∥∥∥∥∂i+jE21

∂xi∂yj
(x, y)

∥∥∥∥
0

≤ Cε−i+1/2, (4a)∥∥∥∥∂i+jE12

∂xi∂yj
(x, y)

∥∥∥∥
0

≤ Cε−j+1/2,

∥∥∥∥∂i+jE22

∂xi∂yj
(x, y)

∥∥∥∥
0

≤ Cε1−i−j. (4b)

In [1] it was shown, that the difference between the nodal interpolation on the fine mesh
and the two-scale interpolation is small, i.e.

Theorem 2.2 (Theorem 2.5 in [1]). There exists a constant C such that∣∣∣∣∣∣∣∣∣IN
N̂,N̂

u− IN,Nu
∣∣∣∣∣∣∣∣∣

ε
≤ C(ε1/2N−σ + N−σ ln1/2 N + N−1).
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Figure 1: Macroelements of M N̂,N̂ constructed from T N̂,N̂ for N̂ = 8

As a corollary we have an interpolation error estimate

Corollary 2.3 (Interpolation error). Let σ ≥ 2. Then∣∣∣∣∣∣∣∣∣u− IN
N̂,N̂

u
∣∣∣∣∣∣∣∣∣

ε
≤ CN−1 ln N.

For the postprocessing operator let N̂ be divisible by two and MNx,Ny be a macro mesh,
consisting of 2 × 2 neighbouring cells from TNx,Ny , such that the transition line of the
Shishkin mesh is not crossed, see Figure 1. In order to derive a postprocessing operator,
consider for a macro M ∈ M N̂,N̂ the set

FM :=
{

(x, y) ∈ M |IN
N̂,N̂

u(x, y) = u(x, y)∀u ∈ C(M̄)
}

.

A closer look to the identity reveals for M = Mi,j := ([xi−1, xi] ∪ [xi, xi+1])× ([yj−1, yj] ∪
[yj, yj+1]) with

FN̂,N̂ :={(x, y) : x ∈ {xi−1, xi, xi+1}, y ∈ {yj−1, yj, yj+1}}
FN,N̂ :={(x, y) : x ∈ {xi−1 : hM/(2N̂) : xi+1}, y ∈ {yj−1, yj, yj+1}}
FN̂,N :={(x, y) : x ∈ {xi−1, xi, xi+1}, y ∈ {yj−1 : kM/(2N̂) : yj+1}}

that this set can be rewritten into

FMi,j
=FN,N̂ ∪ FN̂,N ∪ FN̂,N̂

see Figure 2. In other words, a function vN ∈ V N
N̂,N̂

is uniquely defined over a macro

element M by its function values in the points of FM .
A postprocessing operator that is consistent with the two-scale interpolation needs to use
the same degrees of freedom on the macro element. Moreover, it should be piecewise
biquadratic on MN,N . The biquadratic postprocessing operator PN,N presented in [2]
creates piecewise biquadratic functions on MN,N , but is not consistent with IN

N̂,N̂
. There-

fore, we propose an operator as combination of standard piecewise biquadratic recovery
operators. Let

PN
N̂,N̂

u := PN,N̂u + PN̂,Nu− PN̂,N̂u.
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Figure 2: The set FM for N̂ = 8 on a macro M

Theorem 2.4. The postprocessing operator PN
N̂,N̂

is consistent with IN
N̂,N̂

, i.e.

PN
N̂,N̂

u = PN
N̂,N̂

IN
N̂,N̂

u. (5)

Furthermore, we have stability in the L∞-norm of the operator

‖PN
N̂,N̂

u‖L∞(M) ≤ C‖u‖L∞(M), ∀u ∈ C(M) (6)

and its derivative, if ∇u ∈ C(M)

‖∇(PN
N̂,N̂

u)‖L∞(M) ≤ C‖∇u‖L∞(M), ∀∇u ∈ C(M). (7)

Moreover, stability the energy norm holds∣∣∣∣∣∣∣∣∣PN
N̂,N̂

uN
∣∣∣∣∣∣∣∣∣

ε
≤ C

∣∣∣∣∣∣uN
∣∣∣∣∣∣

ε
, ∀uN ∈ V N

N̂,N̂
(8)

and the interpolation error for σ ≥ 5/2 can be estimated by∣∣∣∣∣∣∣∣∣PN
N̂,N̂

u− u
∣∣∣∣∣∣∣∣∣

ε
≤ C(ε1/2N1−σ + N−2 ln2 N + ε1/2N−2 ln4 N). (9)

Proof. In order to prove (5) we only need to look at one macro element Mi,j ∈ M N̂,N̂ . On
this macro element u and IN

N̂,N̂
u coincide in FM , see Figure 2. On the other hand, PN̂,N̂

uses the values in the nine nodes of FN̂,N̂ , PN,N̂ those in FN,N̂ and PN̂,N those in FN̂,N .
Consistency (5) follows.
The stability estimates (6) and (7) follow directly from the stability of PN,N . Stability
(8) can be proven similarly as for PN,N in [2]. We start on a macro element by

‖PN
N̂,N̂

uN‖0 = 0 ⇔ uN(x, y) = 0, ∀(x, y) ∈ FM ⇔ uN ≡ 0.

Thus the mapping v → ‖PN
N̂,N̂

v‖0 is a norm on V N
N̂,N̂

. Similarly we have∣∣∣PN
N̂,N̂

uN
∣∣∣
1

= 0 ⇔ PN
N̂,N̂

uN ≡ c = const. ⇔ uN(x, y) = c, ∀(x, y) ∈ FM ⇔ uN ≡ c.
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Thus the mapping v →
∣∣∣PN

N̂,N̂
v
∣∣∣
1

is a norm on the quotient space V N
N̂,N̂

\ R. Then (8)

follows from the equivalence of norms in finite dimensional spaces.
Finally, we adapt the proof of [1, Lemma 2.3 and 2.4] to get the error estimates. We start
by ∣∣∣∣∣∣∣∣∣u− PN

N̂,N̂
u
∣∣∣∣∣∣∣∣∣

ε
≤ |||u− PN,Nu|||ε +

∣∣∣∣∣∣∣∣∣PN,Nu− PN
N̂,N̂

u
∣∣∣∣∣∣∣∣∣

ε
(10)

The first term in (10) is bounded by the interpolation error result of [2] for σ ≥ 5/2

|||u− PN,Nu|||ε ≤ C(εN1−σ + N−2 ln2 N).

Imitating the proof of [1, Lemma 2.3] gives

‖PN
N̂,N̂

u− PN,Nu‖0 ≤ C(N−σ + N̂−4(1 + ε1/2 ln2 N + ε ln4 N)).

Using the ideas of [1, Lemma 2.4] we assemble

ε1/2‖(PN
N̂,N̂

u− PN,Nu)x‖0 ≤ C(ε1/2N1−σ + N−σ ln1/2 N + N̂−4 ln N + ε1/2N̂−4 ln4 N)

and similarly for the y-derivative. Combining these estimates gives (9).

Remark 2.5. Let us assume σ ≥ 5/2 and ε ≤ CN−1 ln4 N or σ ≥ 3 and ε1/2 ln2 N ≤ C.
Then the interpolation error can be estimated by∣∣∣∣∣∣∣∣∣PN

N̂,N̂
u− u

∣∣∣∣∣∣∣∣∣
ε
≤ CN−2 ln2 N.

Application of this operator to the combination-method solution uN of (1) can now be
estimated by ∣∣∣∣∣∣∣∣∣u− PN

N̂,N̂
uN

∣∣∣∣∣∣∣∣∣
ε
≤

∣∣∣∣∣∣∣∣∣u− PN
N̂,N̂

u
∣∣∣∣∣∣∣∣∣

ε
+

∣∣∣∣∣∣∣∣∣PN
N̂,N̂

u− PN
N̂,N̂

uN
∣∣∣∣∣∣∣∣∣

ε

≤ CN−2 ln2 N + C
∣∣∣∣∣∣∣∣∣IN

N̂,N̂
u− uN

∣∣∣∣∣∣∣∣∣
ε

using (5) and (8). Thus, if a supercloseness property holds we have superconvergence.

3 Numerical results

As numerical example let us consider

−ε∆u− (2 + x)ux − (3 + y3)uy + u = f in Ω = (0, 1)2

u = 0 on ∂Ω

with f such that

u(x, y) = cos(xπ/2)[1− exp(−2x/ε)](1− y)3[1− exp(−3y/ε)].
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N̂ N
∣∣∣∣∣∣∣∣∣u− uNbN, bN

∣∣∣∣∣∣∣∣∣
ε

∣∣∣∣∣∣∣∣∣uNbN, bN − INbN, bNu
∣∣∣∣∣∣∣∣∣

ε

∣∣∣∣∣∣∣∣∣u− PNbN, bNuNbN, bN
∣∣∣∣∣∣∣∣∣

ε

∣∣∣∣∣∣∣∣∣u− PN,NuNbN, bN
∣∣∣∣∣∣∣∣∣

ε

4 16 2.951e-1 0.73 1.155e-1 1.48 1.827e-1 1.41 1.434e-1 1.43
8 64 1.070e-1 0.78 1.485e-2 1.38 2.598e-2 1.47 1.964e-2 1.29

12 144 5.673e-2 0.81 4.862e-3 1.40 7.909e-3 1.50 6.887e-3 1.27
16 256 3.556e-2 0.83 2.178e-3 1.37 3.336e-3 1.50 3.308e-3 1.27
20 400 2.457e-2 0.84 1.181e-3 1.42 1.709e-3 1.52 1.873e-3 1.31
28 784 1.393e-2 0.86 4.537e-4 1.39 6.138e-4 1.49 7.755e-4 1.32
40 1600 7.552e-3 0.87 1.684e-4 1.36 2.116e-4 1.45 3.022e-4 1.33
56 3136 4.203e-3 0.88 6.751e-5 1.33 7.974e-5 1.40 1.231e-4 1.34
80 6400 2.242e-3 0.89 2.615e-5 1.27 2.937e-5 1.80 4.718e-5 1.34

112 12544 1.231e-3 0.90 1.112e-5 1.28 8.734e-6 1.30 1.916e-5 1.35
144 20736 7.846e-4 5.840e-6 4.547e-6 9.730e-6

Table 1: Convergence, supercloseness and postprocessing of the combination method,
ε = 1e-8

In our numerical simulations the perturbation parameter is fixed at ε = 1e-8. All calcu-
lations are carried out in MATLAB, using biCGstab as solver for the linear systems with
an incomplete LU-decomposition.
Table 1 shows the errors of the combination method solution. In Column 2 convergence
of order O (N−1 ln N) can be observed as predicted in [1]. The following column shows
the supercloseness error between the numerical solution and the two-scale interpolant.
This error is of higher order than the convergence error. In column 4 the errors of the
postprocessed solution, using the introduced two-scale postprocessing operator are shown.
Clearly, we have superconvergence. As comparison the last column lists the errors for
the piecewise biquadratic postprocessing operator on the fine mesh. We see, that the
introduced operator gives better results than the standard one.
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