MKMECH: Problem sheet 3

Exercise 1. The Fundamental Theorem of Calculus says: Let $\Omega \subset \mathbb{R}^d$ open, $f \in L^1_{loc}(\Omega)$. Then

$$\left[\forall \eta \in C_c^{\infty}(\Omega) \, : \, \int_{\Omega} f\eta = 0 \, \right] \qquad \Rightarrow \qquad f = 0 \, fast \, sicher \, in \, \Omega.$$

- Give an elementary proof in the special case $f \in C(\Omega)$.
- Prove the statement in the case $f \in L^q(\Omega)$, $1 \le q \le \infty$, with help of the Theorem of Riesz.
- Let $\Gamma := \partial B(0;1) \cap \{x \cdot e_1 > 0\}$ and $f \in C(\partial B(0;1))$. Show that: If

$$\int_{\partial B(0;1)} f\eta \, d\mathcal{H}^{d-1} = 0 \, f \ddot{u} r \, alle \, \eta \in C^{\infty}(\overline{B(0;1)}) \, mit \, \eta = 0 \, in \, \partial B(0;1) \setminus \Gamma,$$

then f = 0 on Γ .

Definition 1.1 (Principal, normal, shear, and planar stresses). Let $T = T^{\varphi}(x^{\varphi})$ denote the Cauchy strain tensor in x^{φ} . The Eigenvectors of T are called **principal stress directions** and the associated Eigenvalues τ_i are called **principal stresses**. For a direction $\nu \in S^{d-1}$ the scalar field $T_N := T \cdot (\nu \otimes \nu) = T\nu \cdot \nu \in \mathbb{R}$ is called the **normal stress** in direction ν and the vector field $T_S := T\nu - T_N\nu \in \mathbb{R}^d$ is called **shear stress** associated with ν .

Exercise 2. • Fix $\nu \in S^{d-1}$ and let T_N and T_S denote the normal stress and shear stress in direction ν , respectively. Show that $|T\nu|^2 = T_N^2 + |T_S|^2$.

• Let d = 3 and let $\tau_1 \ge \tau_2 \ge \tau_3$ denote the principal stresses of T. Then, τ_1 (resp. τ_3) is given by the maximal (resp. minimal) normal stress $\max_{\nu \in S^2} T \cdot (\nu \otimes \nu)$ (resp. $\min_{\nu \in S^2} T \cdot (\nu \otimes \nu)$). Determine the direction ν that maximes the normal stress.

Exercise 3. For an elastic material the following are equivalent:

- (i) the material is objective,
- (ii) $\hat{T}^D(RF) = R\hat{T}^D(F)R^t$ for all $R \in SO(d)$ and $F \in GL_+(d)$
- (iii) $\hat{T}(RF) = R\hat{T}(F)$ for all $R \in SO(d)$ and $F \in GL_+(d)$
- (iv) $\hat{\Sigma}(RF) = \Sigma(F)$ for all $R \in SO(d)$ and $F \in GL_+(d)$
- (v) there exists a map $\tilde{\Sigma} : \mathbb{R}^{d \times d}_{sym} \cap GL_+(d) \to \mathbb{R}^{d \times d}_{sym}$ such that $\tilde{\Sigma}(F^tF) = \hat{\Sigma}(F)$ for all $F \in GL_+(d)$.

Exercise 2. Let d = 3 and $A \in \mathbb{R}^{3 \times 3}_{sym}$. Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of A. Prove the following relations for the principal invariants of A:

$$I_1(A) = \operatorname{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3$$

$$I_2(A) = \operatorname{trace} \operatorname{cof}(A) = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3$$

$$I_3(A) = \det A = \lambda_1 \lambda_2 \lambda_3.$$

Exercise 4. Let $d \ge 3$. Show that: An elastic material is isotropic and frame indifferent, if and only if there exist functions $\gamma_0, \ldots, \gamma_{d-1} : \mathbb{R}^d \to \mathbb{R}$ such that

$$\hat{\Sigma}(F) = \sum_{k=0}^{d-1} \gamma_k(\mathcal{I}(C)) C^k$$

where Σ denotes the response function for the second Piola-Kirchhoff stress tensor and $C = F^t F$ the right Cauchy-Green strain tensor.

Hint: The Cayley-Hamilton theorem states that any matrix A is the root of it's characteristic polynomial, i.e. $\chi_A(A) = 0$ or equivalently

$$(-A)^d + \sigma_{k=1}^d I_k(A)(-A)^{d-k}.$$