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ABSTRACT

MULTI - PHASEF I ELD MODELS FOR ACTIVE CELLULAR STRUCTURES

by DENNIS WENZEL

After decades of experimental investigation, the dynamics how individual cells move
or deform - perfectly orchestrated for the creation and proliferation of tissue - remain
partly unknown. In most recent years, the use of computational models, also called
in silico experiments, has become a focus of interest. Due to their flexible scaling,
compared to classical in vivo and in vitro studies, simulations can give important in-
sights in the dynamics of cellular structures.
We investigate Multi-Phasefield models for cellular structures, a versatile approach,
capable of capturing complex changes in cell shape. Furthermore, it gives large
flexibility in the modeling of cell-cell interactions and subcellular details like the
propulsion machinery. The dynamics how these motility mechanisms create com-
plex movement patterns on the tissue scale, will be a particular focus of this thesis.
We compare four essentially different ways to introduce activity in Multi-Phasefield
models, from movement driven by a random walk or the macroscopic shape of each
cell towards a description of the subcellular machinery using either a polar or a ne-
matic approach.
For the different propulsion models, we investigate a variety of phenomena. Start-
ing from the observation that the polar model creates collective motion, we observe
that the resulting alignments resemble those of passive systems, expressed in Lewis’
and Aboav-Weaire’s law. Furthermore, we study a transition between solid and liq-
uid state of the tissue, known to be important for many developmental processes.
Additionally, we analyze the occurring patterns in the cellular alignment and flow,
for systems in both confluence and confinement. Afterwards, we investigate the
alignment of cell deformations with methods known from nematic structures. This
reveals how the different propulsion mechanisms cause contractile or extensile be-
havior, classified by the movement of topological defects and the distribution of
strain in their vicinity.
At the end of this thesis, we show two extensions of the models, capable of including
growth and division of cells and generalizations towards curved manifolds as com-
putational domains. Furthermore, we give an outlook on a possible roadmap for the
future of Multi-Phasefield models in the description of cellular structures and their
potential for a better understanding of the dynamics in the creation of life.
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1| INTRODUCTION

It would mean bringing coals to Newcastle were I to describe
here the immeasurable progress which biology in all its branches
owes to the introduction of this concept of the cell concept. For
this concept is the axis around which the whole of the modern
science of life revolves.

PAUL EHRLICH
NOBEL LECTURE 1908

The creation of life, from simple molecules to highly complex organisms like the hu-
man body, is a miraculous story and cells are some of the most crucial protagonists.
Despite the enormous progress in the understanding of cellular creation and dynam-
ics over the last decades, many questions are still open. The behavior of multicel-
lular structures, for example the emergence of collective motion and the formation
of highly complex alignments, resulting from the dynamics of individual cells, is a
key to understanding some of the most important processes in modern biology and
medicine, including embryogenesis, wound healing and cancer spreading.
In recent years, aside of experimental observations in vivo and in vitro, the concept of
in silico studies has grown huge interest. A variety of mathematical models has been
proposed, based on experimental observations, in order to improve the understand-
ing of the physical processes at play. Due to the rapidly increasing computational
resources available, the in silico models provide an easily scalable experimental ap-
proach, which is likely to gain even more importance in the future.
We focus on a specific class of models, the Multi-Phasefield description, which fea-
tures a high level of detail and allows for complex shape changes on the cellular
level. In particular, we investigate how certain features of the model affect the
emerging behavior, in order to derive a deeper understanding on the dynamics in
living tissue. One important aspect is the mechanism of activity, moving the individ-
ual cells in the structure as this is still not fully understood in experimental studies.

1.1| THESIS STRUCTURE

The formulation of any mathematical model requires a solid groundwork. In Chap-
ter 2, we will give a short recap of the required preliminaries for our models. In
particular, we will review how evolution equations can be derived from energy de-
scriptions and their desire to minimize. Furthermore, we introduce some funda-
mentals about Q-tensors and their applications in liquid crystals or other systems
with nematic alignment structure.
Chapter 3 is purely devoted to the modeling aspect of the thesis. We will give a
short review on other existing models and their up- and downsides and then as-
semble the Multi-Phasefield models piece by piece. In particular, we create a set of
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modular ’components’ - for example in the description of cell movement - that can
be combined in different ways, depending on the particular setup.
Based on the modeling groundwork, we perform studies on the topological and ge-
ometrical arrangement of cells in Chapter 4. We investigate, for example, how it is
possible to create coordinated movements in the simulated tissue, a phenomenon
that is commonly known, for example in wound healing, and yet still not fully un-
derstood. Furthermore, we measure arrangements using Lewis’ law and Aboav-
Weaire’s law, known to be fulfilled in passive systems and observed also in tissue
structures.
Afterwards, in Chapter 5, we focus on different mechanisms of activity and how
they lead to the generation of shape and flow. In particular, we investigate a tran-
sition between solid and liquid state which has been observed in different cellular
structures, for example during body axis elongation in zebrafish embryos. Further-
more, we examine the occurrence of vortices in the flow of cells and even global
oscillatory behavior, depending on the geometry.
Furthermore, we investigate the spatial ordering of cellular structures, resembling
the behavior of nematic systems in Chapter 6. The groundwork for this is the deriva-
tion of a robust set of methods for detection and tracking of topological defects in
these nematic alignments. Afterwards, we use these methods to investigate the cre-
ation and movement of these topological defects and analyze occurring patterns of
the strain rate in their vicinity. The combination of these observations will classify
the overall behavior of some of the models as contractile or extensile.
Finally, in Chapter 7, we draw conclusions and give a short review on two exten-
sions, including colony growth and curved domains, that have been investigated in
student research projects. We give an extensive outlook on the rich possibilities for
this highly promising and yet still very new modeling approach.

1.2| LITERATURE LIST

Most of the results in this thesis are published in international journals. We use this
section to give an overview, which publications form the foundation of each chapter.

Chapter 3 - Model Derivation and Implementation

D. WENZEL, S. PRAETORIUS, and A. VOIGT. Topological and geometrical quantities
in active cellular structures. In: The Journal of Chemical Physics 150 (2019), p. 164108

D. WENZEL and A. VOIGT. Multiphase field models for collective cell migration. 2021.
arXiv: 2106.10552

Chapter 4 - Topological and Geometrical Quantities in Cellular Structures

D. WENZEL, S. PRAETORIUS, and A. VOIGT. Topological and geometrical quantities
in active cellular structures. In: The Journal of Chemical Physics 150 (2019), p. 164108

Chapter 5 - Cellular Shape and Flow Driven by Activity

D. WENZEL and A. VOIGT. Multiphase field models for collective cell migration. 2021.
arXiv: 2106.10552

http://arxiv.org/abs/2106.10552
http://arxiv.org/abs/2106.10552
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Chapter 6 - Cellular Structures as Active Nematics

D. WENZEL et al. Defects in Active Nematics – Algorithms for Identification and
Tracking. In: Computational Methods in Applied Mathematics 21 (2020), pp. 683 –692

D. WENZEL and A. VOIGT. Multiphase field models for collective cell migration. 2021.
arXiv: 2106.10552

Furthermore we also give a short outlook on the methods and results that have been
developed during two different student research projects that are closely related to
the topics of this thesis.

Part 7.2.1 - Growth and Division of Cells

H. P JAIN. “Phase Field Modelling of Active Interacting Cells that Grow and Di-
vide”. Masters Thesis. Technische Universität Dresden, 2021

H. P JAIN, D. WENZEL, and A. VOIGT. The impact of contact inhibition on collective cell
migration and proliferation. 2021. arXiv: 2108.04743

Part 7.2.2 - Cellular Structures on Curved Manifolds

L. HAPPEL. “Multi Phase Field Models for Cellular Structures on the Sphere”. Mas-
ters Thesis. Technische Universität Dresden, 2021

http://arxiv.org/abs/2106.10552
http://arxiv.org/abs/2108.04743
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2| PRELIMINARIES

The models considered in this thesis are given as evolution equations, derived from
energy formulations. This versatile approach allows for physically motivated de-
scriptions of complex systems, solely based on the fundamental tendency of nature
trying to attain states of minimal energy. Furthermore, we will investigate the align-
ments in cellular structures with descriptions known from liquid crystal systems,
using so-called Q-tensors.

2.1 Differential Operators and Notation . . . . . . . . . . . . . . . . . . . . 4
2.2 Variational Derivatives and Gradient Flow . . . . . . . . . . . . . . . 5

2.2.1 Variational Derivatives . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Energy Minimization and Gradient Flow . . . . . . . . . . . . 7

2.3 Q-Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Liquid Crystals and Nematic Structure . . . . . . . . . . . . . . . . . . 11

We start by giving the general mathematical framework in terms of differential oper-
ators and introduce the notation used throughout the rest of the thesis in Section 2.1.
Using this knowledge, we shortly review energy based formulations for the descrip-
tion of physical systems and the definition of evolution equations based on gradient
flow approaches in Section 2.2. Afterwards, we address the topic of Q-tensor fields
in Section 2.3 and nematic structure in Section 2.4, as required for the used methods
in analyzing cell alignment.

2.1| DIF F ERENTIAL OPERATORS AND NOTATION

The considered problems are defined on a spatial domain Ω ⊂ Rd. In particular we
will construct most methods in two dimensions, i.e. d = 2, and only in Chapter 7
give an outlook towards two-dimensional manifolds Γ ⊂ R3. In general, we assume
the domain Ω to be bounded and sufficiently smooth. Furthermore, due to the dy-
namical nature of real-world phenomena, all models are defined depending on time
with time horizon assumed to be the finite interval [0, T].
Whenever not explicitly stated otherwise, both scalar valued f : Ω× [0, T] → R, vec-
tor valued v : Ω × [0, T] → Rd and tensor valued functions Q : Ω × [0, T] → Rd×d

are assumed to depend on both time and space. However, for the sake of readabil-
ity, we use the Landau notation exclusively for derivatives with respect to spatial
variables and, as a consequence, define the following operators:

• Gradient of f : ∇ f =
!

∂ f
∂x1

, . . . , ∂ f
∂xd

"T

• Divergence of v : ∇ · v =
d
∑

i=1

∂vi
∂xi
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• Laplacian of f : ∆ f = ∇ ·∇ f =
d
∑

i=1

∂ f 2

∂x2
i

Furthermore, vectors in Rd are multiplied using the standard scalar product defined
by

u · v =
d

∑
i=1

uivi

which naturally extends to vector valued functions.
Additionally, we want to introduce the differential operators for tensor fields which
are less commonly known. Consider a tensor in matrix representation, given by

Q =

#
Q00 Q01
Q10 Q11

$

without any additional properties. Then we define (in Cartesian representation) the
following operators:

• Trace of Q: trQ = Q00 + Q11

• Divergence of Q: ∇ · Q =

#
∂xQ00 + ∂yQ01
∂xQ10 + ∂yQ11

$

• Gradient of Q: ∇Q = ∂Q
∂x

⊗ e1 +
∂Q
∂y

⊗ e2

Here, we have used the basis vectors e1 and e2 of the Cartesian coordinate system
and the outer product ⊗. For more detailed insights we refer to the widely available
literature on the topic, for example [AMR88].

2.2| VARIATIONAL DERIVATIVES AND GRADIENT FLOW

The mathematical formulation of all models introduced in this thesis starts with an
energy description of the system. Given the assumption that processes in nature
always aim towards the minimization of some energy, this results in an optimization
problem. The huge advantage of this approach is the flexibility of usage - from
simple, stationary two-phase substances to highly complex descriptions of active
multicellular systems, the essence of the model is preserved.
Given this concept, the modeling process follows always the same steps:

(i) Find an appropriate energy, describing the phenomena of interest in the con-
sidered system.

(ii) Compute a suitable type of derivative of this energy, depending on the under-
lying space.

(iii) Simulate a time-dependent energy minimization process of the given energy,
guided by the derivative computed before.

Assume that the current state of the system is described by a function φ : Ω → R,
which could for example represent the concentration of some chemical or, in our
cases, implicitly describe position and shape of a cell. Assume furthermore φ ∈ H
for some Hilbert Space of sufficient smoothness, usually a Sobolev Space of a certain
order. The energy of the system can be described by a functional E : H → R, i.e. an
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element of the dual space H∗. While the choice of the E is motivated from the specific
application and will be postponed to Chapters 4, 5 and 6, the computation of some
suitable derivative on the infinite dimensional space H∗ requires the mathematical
concept of variational derivatives which shall be introduced here.

2.2.1| VARIATIONAL DERIVATIVES

We want to briefly introduce the definition of variational derivatives, a common
generalization of classical differentiation towards spaces of functionals. Note that
the name functional derivative is also widely used. The details and full theory can
be found in a broad range of literature, for example the original work of Richard
Courant and David Hilbert in [CH89]. While it is possible to define the following
concepts in a much more general setting, we will restrict all considerations to the
case of relevance for this thesis.

Definition 1 (Variational Derivative).
Let H be a Hilbert space and E ∈ H∗. Then we call E ′ ∈ H∗ the variational derivative of
E if

%
E ′(φ), h

&
H∗×H = lim

ξ→0

1
ξ
(E(φ + ξh)− E(φ)) (2.1)

holds for all for all h ∈ H.

The definition of the variational derivative can be seen as a straight forward gener-
alization of the classical derivative towards more complex spaces. For the practical
use, it can, however, be convenient to choose a different representation.

Remark 1.
If the limit in (2.1) exists, the Riesz Representation Theorem guarantees the existence of an
element ∇E ∈ H that fulfills

〈∇E , h〉H =
%
E ′(φ), h

&
H∗×H

for all h ∈ H and the intrinsic scalar product 〈·, ·〉H of the space H.

The choice of H, which is in practical examples not always uniquely given, has a
huge influence on the definition of ∇E . We will thus, in the following, use the addi-
tional subscript ∇HE to clarify the underlying space.
A common case for the usage of variational derivatives is the space H = L2(Ω).
In this case, a slightly different notation is frequently used, which is additionally
helpful in case of multivariate functionals. Consider now

E : L2(Ω)× L2(Ω) → R, (φ, ψ) +→ E(φ, ψ),

with two arguments, which occurs for example in the description of coupled physi-
cal systems. Let ∇L2E ∈ L2(Ω) be the representative of E ′ ∈ L2(Ω)∗ with respect to
the first variable. Then we usually write

δE
δφ

:= ∇L2E ,

while accordingly the respresentative of the variational derivative with respect to
the second variable is denoted by δE

δψ .
Frequently used in this thesis, is also the variational derivative in H−1(Ω), i.e. the
dual space of H1

0(Ω) with respect to the L2 scalar product 〈·, ·〉L2 .
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Remark 2.
Let

E : H−1(Ω) → R

be a functional. Then the variational derivative in H−1(Ω) is given by

∇H−1E = −∆
δE
δφ

= −∆(∇L2E),

i.e. there is a close connection between variational derivatives in L2(Ω) and H−1(Ω).

For the sake of simplicity, we will in the following mostly use notations of the form
δE
δφ , when using variational derivatives and distinguish between L2 and H−1 deriva-
tives with the observation in Remark 2.
The systems considered in this thesis usually involve time-dependent descriptions
of the state. As a consequence a change from φ to φ + ξh is caused by changing the
time. The time derivative of the energy can then be transformed to the standard
form of a variational derivative, according to equation (2.1), using a simple Taylor
expansion and is given by

∂

∂t
E(φ(t)) = lim

ε→0

1
ε

!
E(φ(t + ε))− E(φ(t))

"

= lim
ε→0

1
ε

!
E(φ(t) + ε∂tφ(t) +O(ε2))− E(φ(t))

"

= lim
ε→0

1
ε

!
E(φ(t) + ε∂tφ(t))− E(φ(t))

"

= 〈∇HE , ∂tφ(t)〉H.

(2.2)

2.2.2| ENERGY MINIMIZATION AND GRADIENT FLOW

Having introduced a suitable concept for derivatives in the setting of energy func-
tionals, we now use this to define a corresponding evolution equation. Following the
general rule that nature always tries to minimize certain energies - a special form of
the Second Law of Thermodynamics - a simple dynamical system can be defined by
assuming the system variable φ changes according to the direction of the steepest
descent in the energy.
As a direct transfer of the concepts in Subsection 2.2.1, the choice of the underly-
ing Hilbert Space determines the definition of the energy gradient and thus also the
resulting evolution equation. At this point, we want to name the two famous ap-
proaches that will play a crucial role in the model derivation later in this thesis.
Using H = L2 as underlying space, the resulting L2 gradient flow of E is given by

∂tφ = −∇L2E = −δE
δφ

,

which is the basis for many famous differential equations.

Example 1.
Consider the space L2(Ω) for some bounded domain Ω and the energy

E : φ +→ 1
2

!

Ω
|∇φ|2.
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Then it holds
!

Ω

δE
δφ

h = lim
ξ→0

1
2ξ

(E(φ + ξh)− E(φ))

= lim
ξ→0

1
2ξ

'!

Ω
|∇φ + ξ∇h|2 −

!

Ω
|∇φ|2

(

= lim
ξ→0

1
2ξ

'!

Ω

)
|∇φ|2 + 2ξ∇φ ·∇h + ξ2|∇h|2

*
−

!

Ω
|∇φ|2

(

=
!

Ω
∇φ ·∇h

=
!

Ω
−∆φh ( + boundary terms)

and so we can conclude that the variational derivative of E is given by

δE
δφ

= −∆φ.

From this computation, we observe that the famous heat equation, given by

∂tφ(t)− ∆φ(t) = 0,

can be derived as the L2 gradient flow of the energy E .

On the other hand, if the underlying space is chosen to be H−1, the situation is
slightly different. We use the gradient descent approach

∂tφ(t) = −∇H−1E

and make use of the observation in Remark 2 to get

∂tφ(t) = ∆
δE
δφ

,

which is called the H−1 gradient flow and has entirely different dynamics, as we will
see in the following chapters.

Example 2.
Consider again

E : φ +→ 1
2

!

Ω
|∇φ|2

and remember the computation

δE
δφ

= −∆φ

that was done in example 1. The H−1 gradient flow is given by

∂tφ(t) = ∆
δE
δφ

= −∆∆φ(t),

which is a fourth-order diffusion equation.
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While the general concept of a gradient flow, regardless of the underlying space, is
intuitive, it is not obvious that this approach actually leads to an energy minimiza-
tion procedure.

Lemma 1.
Let H be a Hilbert Space and E ∈ H∗. Consider the gradient flow ∂tφ(t) = −∇HE .
Then we have

∂

∂t
E(φ(t)) ≤ 0,

so the energy of the system decays over time.

Proof. With the computation in (2.2) we have

∂

∂t
E(φ(t)) = 〈∇HE , ∂tφ(t)〉H

and then the definition of the gradient flow yields

〈∇HE , ∂tφ(t)〉H = −〈∂tφ(t), ∂tφ(t)〉H = −||∂tφ(t)||2H ≤ 0.

With the concept of energy formulations, variational derivatives and gradient flows,
we have introduced a versatile and powerful setup, applicable in a wide range of
areas. We will devote chapter 3 largely to the derivation of appropriate energies for
the description of multicellular structures and then use their respective variational
derivatives in the following chapters for the definition of evolution equations.

2.3| Q-TENSOR FIELDS

After introducing only the basic differential operators for tensor fields in Section 2.1,
we now want to focus on a special class of tensors and go into more details. Due to
their relevance for a variety of applications, especially in our case for the description
of nematic alignment structure, we introduce the Q-tensors.

Definition 2 (Q-Tensor).
Let Q be a second-order tensor with components

Q =

#
Q00 Q01
Q10 Q11

$
.

If both Q = QT and trQ = 0 hold, we call this symmetric, tracefree tensor a Q-tensor.

From Definition 2 we can conclude that for every Q-tensor both Q00 = −Q11 (trace-
free) and Q10 = Q01 (symmetric) hold. Thus, we will usually reduce the notation for
the components of Q-tensors to

Q =

#
Q0 Q1
Q1 −Q0

$
,

underlining that there are in fact only two independent components. Given this very
particular structure of the Q-tensors, additional observations can be made. The most
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relevant one for this thesis, regarding the eigenstructure, is given in the following
result.

Lemma 2.
Let Q be a Q-tensor according to Definition 2 with Q1 ∕= 0.
Then the two distinct eigenvalues of Q are given by

λ± = ±
+

Q2
0 + Q2

1

with corresponding eigenvectors

η± =

#
Q0 + λ±

Q1
1
$T

.

Proof. Let η+ and λ+ as before. Then

#
Q0 Q1
Q1 −Q0

$ #
Q0 + λ+

Q1
1
$T

=

#
Q2

0 + Q0λ+ + Q2
1

Q1
λ+

$T

= λ+

#
Q0 + λ+

Q1
λ+

$T

.

The computation for η− and λ− can be done analogously.

There is a variety of lessons we learn from Lemma 2. Aside of the comfortable situ-
ation of having an analytic description of the whole eigensystem, it even has some
helpful properties.

Remark 3.
For any Q-tensor Q ∈ R2×2 with Q1 ∕= 0 the eigenvectors form an orthogonal basis of R2.
This can be verified from the computation

η+ · η− =

#
Q0 + λ+

Q1
1
$T

·
#

Q0 + λ−

Q1
1
$T

=

'
Q0 + λ+

Q1

('
Q0 + λ−

Q1

(
+ 1

=
Q2

0 − Q0

+
Q2

0 + Q2
1 + Q0

+
Q2

0 + Q2
1 − Q2

0 − Q2
1

Q2
1

+ 1 = 0.

This property is furthermore true for any (second-order) Q-tensor in Rd and any d ∈ N.

We will use the property given in Remark 3, when describing cell shape using a
Q-tensor, for example in Subsection 3.4.2 in the definition of an elongation based
activity or in Subsection 6.2.1, to describe the overall nematic structure of the tissue
model.
While the case Q1 = 0 was formally excluded in Lemma 2 and Remark 3, this is not
excluded from the definition of Q-tensors and even plays a crucial role, for example
in the identification of topological defects, see 6.2.2. This case is however simple to
treat, keeping in mind that the structure of Q simplifies to

Q =

#
Q0 0
0 −Q0

$
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Then the euclidean basis vectors e1 and e2 form an orthogonal basis of the eigenspace
of Q with corresponding eigenvalues Q0 and −Q0.
These rather theoretical constructions will form the basis for a variety of concepts,
for example the introduction of nematic structure in the following section.

2.4| LIQUID CRYSTALS AND NEMATIC STRUCTURE

Various materials are known to have states of matter that go beyond the typical clas-
sifications solid, liquid and gaseous. One famous example are the so-called liquid
crystals, a type of material, which exhibits a hybrid state of matter with properties
of both liquids - like the existence of flowing patterns - and solids - like a crystalline
order structure.
The theoretical and experimental investigation of liquid crystals has a long history
and we only want to touch this topic here, to give a rough idea of how the concepts
can be helpful for the investigation of cellular structures. For more details we refer
to the variety of literature on the topic, e.g. [Cha92; GP93]. In liquid crystal systems,
particles typically have a rod-like shape with a specific head-tail symmetry. More
precisely, this symmetry implies that no distinction between a certain particle and
the π-rotated version of the particle is possible.

FIGURE 2.1: Schematic visualization of the different phases in liquid
crystals: nematic, smectic A and smectic C phase from left to right.

Taken and adapted from [IS13].

The detailed ordering structure in liquid crystal systems can differ, depending on a
variety of factors, for example material composition and temperature. It is, however,
possible to identify characteristic phases in the alignment structure. The most typ-
ical configurations that occur in 2D systems are shown in Figure 2.1. The nematic
phase is characterized by a certain degree of orientational order but no positional
order, i.e. the elongated particles have a preferred direction but the centers can be
located anywhere in space. This will be of highest importance, as similar orderings
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can be observed in cellular structures, see Chapter 6. The smectic phases are char-
acterized by more ordering in the sense that particle centers are aligned in layers.
For the smectic A phase, the orientation is exactly orthogonal to the layer direction,
while this is rotated by some particular angle in the smectic C phase.
The mathematical description of liquid crystals or more general systems with ne-
matic order is not trivially given. In particular, the head-tail symmetry makes the
description difficult. Vector fields for example, with clearly distinct heads and tails,
are not suited for the task. The usual approach is to describe the system using a
Q-tensor field, where the eigenvectors represent the particle directors. In Section
2.3, we have observed that the eigensystems of these tensors have certain special
properties. In particular, the fact that the eigenvectors form an orthogonal system
and can be analytically computed from the components of the tensor. Furthermore,
eigenvectors are always invariant under scalar multiplications, perfectly resembling
the fact that head and tail of a director can be identified.
While the theory of liquid crystals and their phases is rich, we will not go into any
more details at this point and refer to the aforementioned literature. Instead we
want to focus solely on the essence of nematic order structure, namely the partial
ordering of rod-like particles with locally preferred directions and the occurrence of
topological defects in those director fields. We will use these concepts, for example,
in the construction of two different mechanisms of propulsion, in Section 3.4, and
the investigation of the alignment in tissue models, in Chapter 6.

Having introduced the general setup and notation, we have used this chapter to
review some basic concepts like the formulation of evolution equations from ener-
gies and their variational derivatives. Furthermore, we have introduced Q-tensors,
a type of second-order tensor with special properties that give rise to a use in the
description of partially ordered systems of rod-like particles, for example in liquid
crystal materials.



13

3| MODEL DERIVATION AND
IMPLEMENTATION

The derivation and investigation of computational models for cellular structures has
been a topic of scientific interest for decades. Especially in the last years, due to new
approaches in modeling and simulation of various types of physical, mechanical
or chemical systems and the rapidly increasing possibilities in high performance
computing, this topic has moved into focus more and more.

3.1 Review of Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Cellular Automata / Lattice Models . . . . . . . . . . . . . . . 15
3.1.2 Particle Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Vertex Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Whole-Cell Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Individual Cells as Deformable Droplets . . . . . . . . . . . . . . . . . 19
3.2.1 Diffuse Domain Approach . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Time Evolution of Phasefield Descriptions . . . . . . . . . . . . 20

3.3 Multi-Cellular Models and Interaction . . . . . . . . . . . . . . . . . . 22
3.3.1 Qualitative Phasefield-based Approach . . . . . . . . . . . . . . 22
3.3.2 Distance-based interaction . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Quantitative Phasefield-based Approach . . . . . . . . . . . . . 25

3.4 Mechanisms for Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Deformation-Based Nematic Force . . . . . . . . . . . . . . . . 28
3.4.3 Active Polar Gel Model . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Active Nematic Model . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

This thesis is focused on models applicable for epithelial monolayers. These systems
are characterized by an effectively two-dimensional (flat) ordering structure or, more
precisely, an area that is several times larger compared to the thickness. This gives
rise to the distinction between a well-defined top (apical), bottom (basal) and side
(lateral) of the tissue. Figure 3.1 shows the significant differences between the api-
cal and the lateral view on epithelial tissue, exemplary visualized in the Drosophila
Wing imaginal disc. In particular, the approximately polygonal packing structure in
apical perspective becomes obvious which will be a subject of interest in the follow-
ing chapters.
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FIGURE 3.1: Drosophila Wing imaginal disc from apical (left, taken
from [Sta+10]) and lateral perspective (middle, taken from [Bie+16]).
Schematic visualization of epithelial cell monolayers (right, taken

from [AGS17]).

From the point of view of in vitro experiments, epithelial cultures are usually plated
as monolayers. In order to create comparable setups and due to the high compu-
tational requirements which will be addressed later, many existent models describe
epithelial structures as two-dimensional. We will thus restrict most considerations
to these types of models and only in Chapter 7 give an outlook to curved manifolds
in three-dimensional space. The goal of this thesis is to derive and investigate a
class of Multi-Phasefield models for cellular structures, based on the following key
properties:

(i) Each cell is described as an individual, deformable object. This creates flexibil-
ity in shape changes.

(ii) Interactions between cells are defined explicitly, depending on the intercellular
distance. This allows to include both adhesion and repulsion mechanisms.

(iii) Cell activity can be included using different approaches. This gives the pos-
sibility to adjust simulations to the organism of interest or the experimental
setup.

This chapter is structured as follows: in Section 3.1, we review other existing mod-
els for cells and tissue, from a macroscopic to a microscopic scale. Afterwards, we
start with the derivation of the models for this thesis, successively building a setup
for in silico experiments fulfilling all three aforementioned key properties. In Section
3.2, we derive a description of an individual cell as a deformable object using the
famous Cahn-Hilliard energy. Afterwards, we generalize this towards multicellular
systems with cell-cell interactions in Section 3.3. The following Section 3.4 is purely
devoted to the definition of different mechanisms of activity that are capable of driv-
ing the cell out of equilibrium states. We conclude this chapter with remarks on the
boundary conditions in Section 3.5 and implementation in Section 3.6.

3.1| REVIEW OF EXISTING MODELS

A variety of different computational models was introduced for the description of
cells and tissue. The representation of these complex structures usually requires
a compromise between detail and computational effort. This results in different
scales, from a very coarse grained description (large cell numbers, no subcellular
details) using lattice models in 3.1.1 and particle models in 3.1.2 across a meso-scale
(medium cell numbers, low subcellular details) using vertex models in 3.1.3 towards
the whole-cell models in 3.1.4 (single cells, large subcellular details).
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3.1.1| CELLULAR AUTOMATA / LATTICE MODELS

Lattice models can be seen as the most minimalistic type of description for cellular
structures. They rely on an underlying polygonal tessellation of a domain, con-
structed by a set of lattices with a unique numbering. The state of the system is then
described by the cells occupying a certain lattice. Different variants of this concept
exist, depending on the number of cells that may occupy a lattice:

1. Every cell occupies exactly one lattice. Such models can be used with regular
tessellations or unstructured ones, compare Figure 3.2. It is commonly used in
cancer models to study tumor growth, see e.g. [BSD07].

2. A single lattice site can be occupied by multiple cells. This enables irregular
distributions, without the (more costly) computation of irregular lattices. On
the downside, this comes with reduced information about position and vol-
ume of individual cells. More details can be found in [Rad+09].

3. One cell can occupy multiple lattice sites. Also often denoted by cellular potts
model, this approach is capable of describing more complex cell shapes on
structured lattices. Every lattice is assigned a unique identifier, for example
the index of the respective cell. Examples can be found in [GG92] or [ACR07].

FIGURE 3.2: Construction of unstructured lattices for cellular au-
tomata. From left to right: Starting with a regular square grid and
one point randomly distributed in each cell, Delaunay triangulation
for the points and Voronoy tessellation to create the dual grid. Taken

from [Lie+15].

Furthermore, it is possible to additionally store a velocity for each cell instead of
just the position. This naturally leads to different emerging patterns in cellular flow
and can, on a large scale, even result in behavior known from incompressible Navier
Stokes equations, see e.g. [FHP86]. Even though originally introduced in a physical
context, these types of models have also been successfully applied for growth and in
particular migration of cells in large systems. Further details can be found in [DD05]
or [DDL01].
While the general approach of lattice models is very intuitive and computation-
ally efficient, even for high numbers of cells, it lacks certain features that can be
important. It is for example not possible to incorporate complex shapes of cells.
Futhermore, as all types of lattice models are describing the whole structure as one
stochastic process, there is very little flexibility in defining individual behavior or
intracellular dynamics.

3.1.2| PARTICLE MODELS

The limitations of lattice models are reached, as soon as the size of individual cells or
the distance between multiple cells is required. The class of so-called particle mod-
els goes one step further by describing each cell i of the system as a round object
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characterized by a center Xi and a radius Ri.

FIGURE 3.3: Visualization of particle-based cell models. (Left) Im-
portant quantities like radii Ri and Rj or the distance δij. (Right) Cell

division in particle based models. Taken from [Lie+15].

The first advantage of this approach is the definition of a distance between cells that
can be computed as simple as

δij = |Xi − Xj|− Ri − Rj

and gives rise to a variety of interaction mechanism, see Figure 3.3 (Left) for a vi-
sualization. From simple repulsive dynamics preventing cells from overlapping,
as performed in early work like [Vic+95], to short-range repulsion with mid-range
adhesion, inspired by Lennard-Jones type potentials in [Bas+11], a wide range of
choices is possible.
Another interesting phenomenon, that can be taken into account, is the concept of
neighboring relations and in particular contact inhibition. This means that cell i may
recognize the velocity vj of its neighbors and adjust its own velocity vi accordingly,
enforcing locally correlated movement patterns and, on a large scale, sometimes
even globally collective motion as observed in [Sep+13].
Cell growth and division can be incorporated in particle models, by simply varying
the radius and replacing a single parent cell by two children after division. This pro-
cess is visualized in Figure 3.3 (Right).
More complex approaches are even capable of incorporating moderate deforma-
tions, immediately before cell division, see for example [DH05]. Furthermore, it
is also relatively straight forward to include cell-substrate interaction as done in
[GLD05].
While particle models are a powerful extension of the lattice models and computa-
tionally still affordable, no internal structure is included. Similar to lattice models,
the approaches presented here are appropriate on a macro-scale where the individ-
ual dynamics of each cell are of minor importance.

3.1.3| VERTEX MODELS

Having introduced lattice models and particle models in Subsections 3.1.1 and 3.1.2
for macro-scale descriptions of large cell numbers with no subcellular detail, we here
want to focus on the meso-scale. In particular, we are interested in approaches for
the description of cellular structures that are capable of incorporating properties like



CHAPTER 3. MODEL DERIVATION AND IMPLEMENTATION 17

cell shape and more complex mechanisms of activity while still being computation-
ally efficient for larger colonies of cells.
One popular example for these requirements are vertex models. The epithelial struc-
ture is represented by a set of points, capturing vertices where 3 or more cells are in
contact. The cells are then described by connecting these vertices. The idea was orig-
inally introduced in the context of foams, see e.g. [WR84] and later on transferred to
biological systems, which was extensively reviewed in [AGS17].
While it is possible to define vertex models also for the lateral section of epithelium
(compare Figure 3.1) and even for three-dimensional cell packings, we want to fo-
cus on the description of two-dimensional vertex models for the apical view. The
work in [NH01] generalized the phyiscal models to cellular structures. Intercellular
interactions were introduced and compared for example in [Far+07]. This gave rise
to comparisons with different experimental setups like wound closure as done in
[NH09] or the wing development in Drosophila, see [Aig+10].
The dynamics are described purely in terms of equations of motion for the vertices.
This means that vertex position xi evolves according to the simple law

η
dxi

Dt
= Fi,

with Fi the total force acting on the vertex and η a mobility coefficient, see [Fle+14]
for more detailed descriptions of the approach. While the general form of this evolu-
tion equation is rather intuitive, the particular choice of Fi is less trivial and we will
not go into detail here.
One advantage of vertex models is the numerically unproblematic definition, involv-
ing ordinary differential equations, which allows simulations for larger numbers of
cells at moderate cost. Furthermore, changes in shape (e.g. elongation or number of
surrounding vertices) of individual cells are possible and result implicitly from the
choice of Fi.

FIGURE 3.4: Schematic images for the typical T1 (top) and T2 (bot-
tom) transitions in vertex models. If an edge becomes too short or the
cell area is too small (marked in red), the vertices are repositioned or

removed. Taken from [Fle+14].

A critical point of the approach is that numerous topological changes, such as the
typical T1 transition - a change in neighbors - or T2 transition - shrinkage and apop-
tosis - have to be enforced actively. The T1 transition for example is usually enforced
by actively repositioning vertices if a certain edge becomes too short while the T2
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transition results from removing a number of vertices if the contained cell becomes
too small, compare Figure 3.4.

3.1.4| WHOLE-CELL MODELS

More recently, new methods in computational models have enabled the study of
cells in a micro-scale description. The so-called whole-cell models try to capture as
much microstructure of each individual cell as possible. A review on this topic can
be found for example in [Szi+18].
Genetic components of cells, their influence on differentation or phenotype forma-
tion and the interplay with environmental factors are a highly complex system.
Among other modeling approaches, the use of AI-based methods has been observed
to be highly promising for the description of whole-cell models.

FIGURE 3.5: Schematic for the variety of intracellular processes and
their interplay. Taken and adapted from [Kar+12].

One of the key advantages of AI-based methods is the ability to efficiently process
large sets of experimental data and automatically adapt the model accordingly. On
the other hand, the description of individual cells on a micro-scale is complex, see
for example a schematic description for the variety of requirement components in
Figure 3.5. From a computational point of view, this is not efficiently doable for
large numbers of cells.

The models investigated in this thesis will describe cellular structures on an interme-
diate scale between microscopic and macroscopic approaches. In particular, the aim
is to derive models that are capable of describing individual cells with more detail
than the vertex models described in Subsection 3.1.3 but are less computationally
demanding compared to the whole-cell models introduced in Subsection 3.1.4. The
weaknesses of the vertex models, for example the limited flexibility in cell shapes
which are always polygonal and the need to explicitly enforce topological transi-
tions, shall be addressed.
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3.2| INDIVIDUAL CELLS AS DEFORMABLE DROPLETS

The first step on the way towards the description of cellular structures like epithe-
lium is the description of an individual cell. We want to use a Phasefield approach
as proposed for example in [MV14a] or [LZA15b], which allows cells to change their
shapes almost arbitrarily.

3.2.1| DIF FUSE DOMAIN APPROACH

Consider a two-dimensional domain Ω ⊂ R2, representing the apical perspective of
a non-curved epithelial structure (compare Figure 3.1). To generalize this, we will
in Chapter 7 give an outlook towards two-dimensional manifolds in Γ ∈ R3, repre-
senting curved monolayers.
Let the region of interest, later representing the cell, be denoted by the closed set
Ω1 ⊂ Ω with interior Ω◦

1 and boundary S = Ω1 \ Ω◦
1 . We now want to create an

implicit representation of Ω1. To do this, define a smooth function φ : Ω → [−1, 1],
such that φ ≈ 1 holds in Ω1 while φ ≈ −1 holds in Ω \ Ω1. This type of implicit rep-
resentation of an arbitrarily shaped domain Ω1 using a function φ is usually called a
diffuse domain description, while φ is called a Phasefield, motivated by the distinc-
tion between interior and exterior phase.
The transition region between φ ≈ −1 and φ ≈ 1, which requires non-vanishing
width to achieve continuity, is usually called the diffuse interface and the cross-
section diameter is denoted by ε, see Figure 3.6. The sharp interface S can be ap-
proximated by the levelset φ = 0, i.e.

S ≈ {x ∈ Ω
,,φ(x) = 0}.

FIGURE 3.6: Schematic visualization of the Phasefield derivation.
(Left) Original domain Ω1 with sharp interface S. (Right) Phasefield
function with φ ≈ −1 on the outside, φ ≈ 1 on the inside and a

smooth transition region of width ε.

Starting in Subsection 3.2.2, we want to describe the evolution of Phasefields over
time using partial differential equations. We will, however, mention at this point
how it is possible to construct them from scratch, e.g. for initial conditions. Let Ω
and Ω1 be given. A classical approach is to use a (continuos) signed distance func-
tion d : Ω → R, giving for any point x ∈ Ω the shortest distance to the surface S.
Assume that d has negative sign inside of Ω◦

1 and positive sign in Ω \ Ω1, to distin-
guish between the two regions. As a consequence, due to the continuity, d ≡ 0 holds
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in S. For certain simple geometries, for example spheres and rectangles, the signed
distance function can be derived analytically. Otherwise there exist different tech-
niques to find approximations, e.g. the Fast Marching Method originally introduced
in [Set96].
A Phasefield φ can then be derived directly from d. To do this, we introduce the
parameter ε, modeling the width of the transition region between negative and pos-
itive sign, and define

φ(x) := tanh
'

d(x)√
2ε

(
.

It can be verified that this definition of φ satisfies the requirements for a Phasefield
that have been given before. Figure 3.7 illustrates for a simple example geometry -
a circle in R2 - both the signed distance function d and the resulting Phasefield φ.
Due to the weak assumptions, this approach can cover a wide range of applications
including the description of cell geometries.
Note that the choice of the tanh profile results from the equilibrium shape that the
evolution equations introduced in Subsection 3.2.2 attain, see for example the origi-
nal work of Cahn and Hilliard in [CH58].

FIGURE 3.7: Signed distance function d (left) and resulting Phasefield
function φ with interface-width ε = 0.5 (right) for a circular geome-
try on the domain Ω = [0, 100]2. Blue and red color corresponds to

negative and positive values respectively.

3.2.2| TIME EVOLUTION OF PHASEF I ELD DESCRIPTIONS

We have introduced a diffuse domain description using Phasefields φ : Ω → [−1, 1],
capable of implicitly representing the interior of the cell as the region where φ ≈ 1
holds. This is, however, for the modeling of cellular structures only the very first
step, keeping in mind that processes in nature are usually dynamically changing
over time. In the following we will, as a consequence, always assume the Phase-
fields to depend on both time and space, i.e. φ : [0, T]× Ω → [−1, 1].
A crucial requirement for the goal of describing cellular structures, is the preserva-
tion of a clear distinction between cell interior and exterior over time. To do this,
we want to introduce energy formulations and describe the evolution of the system
using gradient flow approaches according to Section 2.2.
To ensure the distinction between interior and exterior, we transfer an energy, origi-
nally introduced by Cahn and Hilliard in [CH58] in the context of phase separation
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processes. Let

ECH(φ) =
!

Ω

ε

2
|∇φ|2 + 1

ε
W(φ)dx, (3.1)

with W(φ) = 1
4 (φ

2 − 1)2 the so-called double-well potential and ε scaling the width
of the interface region.
The second term in this energy punishes deviations from both the φ = −1 and φ = 1
phase as these are the minima of the double-well W. The first term on the other hand
punishes variations in φ and so the combination prefers piecewise constant φ with
small transition regions between φ ≈ −1 and φ ≈ 1.

Remark 4.
Assume that an explicit description of the 0-levelset

S = {x ∈ Ω
,,φ(x) = 0}

is known and consider the interface area

EA(S) =
!

S
1ds.

Then ECH(φ) → EA(S) holds for ε → 0 in the sense of Γ-convergence, see e.g. [CC92].

From Remark 4 we can conclude that the introduced Cahn-Hilliard energy ECH is an
approximation of the surface area EA.
In the remainder of this chapter, only energy formulations are described while the
actual evolution equations are given in Chapters 4, 5 and 6. We will, however, make
an exception here and derive the gradient flows of the energy ECH as they result in
famous partial differential equations.
One particular focus will be the conservation properties of the gradient flows, as this
will be relevant for the context of describing cellular structures. Precisely, if we use
the term conservation, we refer to

∂

∂t

!

Ω
φ(t, x)dx = 0,

which means that there are no changes in the total area of the domain implicitly
represented by φ.
The variational derivative of ECH in L2(Ω), see Subsection 2.2.1, is given by

δECH(φ)

δφ
= −ε∆φ +

1
ε

W ′(φ), (3.2)

where we have used the notation emphasizing the variation over φ. For a given
mobility parameter γ > 0, the L2 gradient flow is then given by

∂tφ = −γ
δECH(φ)

δφ
= −γ

'
−ε∆φ +

1
ε

W ′(φ)

(
, (3.3)

which is known as the Allen-Cahn equation. This evolution equation is not conser-
vative for φ over time and the behavior is sometimes referred to as Model A type
dynamics. This non-conservative approach, however, is not suitable for the descrip-
tion of cellular systems as this would include shrinkage and death of cells.
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Using on the other hand an H−1 gradient flow and the observation in Remark 2, one
arrives at

δtφ = γ∆
'

δECH(φ)

δφ

(
= γ∆

'
−ε∆φ +

1
ε

W ′(φ)

(
, (3.4)

which is called the Cahn-Hilliard equation or Model B type dynamics and conserves
the area of the domain represented by φ. This makes H−1 gradient flows better
suited for the implicit description of cellular structures using Phasefields.

In this section, we have derived a representation of a single, non-motile, deformable
droplet implictly described by a Phasefield φ. Furthermore, we have introduced
an energy serving as the basis for evolution equations and observed that only the
H−1 gradient flow preserves the volume, making this the approach of choice for the
Phasefield models in this thesis. The next step is a generalization towards models
involving multiple Phasefields, representing different individual particles that may
describe tissue.

3.3| MULTI-CELLULAR MODELS AND INTERACTION

In the previous section, we have derived the first important component in the model
describing cellular structures, namely implicit representations of the cell shape using
Phasefields and the corresponding Cahn-Hilliard energy as basis for the evolution
equations. The Cahn-Hilliard equation in (3.4) ensures a separation between intra-
cellular and extracellular material and preserves an approximately circular shape for
the φ ≈ 1 phase, if no external forces are applied.
The next step is the derivation of a description of multi-cellular systems. The founda-
tion for this - and another strength of the Phasefield based approach - is to consider a
set of multiple Phasefield variables {φi}N

i=1. Each φi implicitly describes exactly one
cell. The total energy of the system is then given by

ECH

-
{φi}N

i=1

.
=

N

∑
i=1

ECH(φi) =
N

∑
i=1

!

Ω

ε

2
|∇φi|2 +

1
ε

W(φi)dx, (3.5)

where we have transferred the Cahn-Hilliard energy for one Phasefield as defined
in (3.1) to the Multi-Phasefield system by summing up all individual contributions.
This, however, is not sufficient for the description of multi-cellular systems as there
exists no coupling or any intercellular forces. Practically, this would mean that any
given cell would behave as if no other cell exists.
To overcome this problem, any appropriate model should at least include repulsive
forces between the cells on short distances, in order prevent overlap. Additionally,
we also want to introduce attractive forces to gain more flexibility in model con-
struction. In the following we want to give an overview of different approaches for
interaction potentials.

3.3.1| QUALITATIVE PHASEF IELD-BASED APPROACH

The first approach, as used e.g. in [LZA15a], is defined directly in terms of the Phase-
field of neighboring cells. As a prior step, we need a rescaled version of each Phase-
field φi from value range [−1, 1] to [0, 1], as introduced in Section 3.2, using the affine
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map

φ̃i =
1
2

φi +
1
2

. (3.6)

The equivalence

{φ̃i > 0} ∩ {φ̃j > 0} = ∅ ⇔ φ̃iφ̃j ≡ 0

holds and this gives rise to the intercellular repulsive energy

E rep
INT

-
{φi}N

i=1

.
:=

N

∑
i,j=1

!

Ω
φ̃2

i φ̃2
j . (3.7)

Motivated by similar observations, an adhesive contribution to the energy can be
introduced by

E ad
INT

-
{φi}N

i=1

.
:=

N

∑
i,j=1

!

Ω
∇φ̃i ·∇φ̃j, (3.8)

which essentially enforces the outer normals of both cells, represented by ∇φ̃i and
∇φ̃j, to point in opposing directions. While this approach has been successfully used
in various studies like [LZA15a; MYD19; Pey+19], it has certain downsides. Both re-
pulsion and adhesion are introduced only in a qualitative way but not depending
on the actual distance between cells. While the repulsive force is a purely numerical
contribution, in order to prevent overlap, the adhesive force is motivated by inter-
cellular bonds. On the other hand, the presented approach gives no possibilities of
controlling the distance of adhesion and repulsion, one can only balance the two
contributions. For these reasons, we will not use this approach in the studies here.

3.3.2| DISTANCE-BASED INTERACTION

Motivated by the lack of control over the adhesion and repulsion distances in the
qualitative interaction presented in Subsection 3.3.1, we want to introduce a different
approach, based completely on the distance between two cells.
The definition of a distance, however, is not clear in diffuse interface models. The
interface of cell j is given as the level-set Sj = {x ∈ Ω|φj(x) = 0}. For any point
x ∈ Ω the signed distance of x to cell j is then given by

dsharp
j (x) = −sgn(φj(x))min{|x − y|

,, y ∈ Ω, φj(y) = 0},

which is an extension of the typical definition of distance between a point in space
and a set of points. This quantity is not suited for practical applications as it is
inefficient to compute. To overcome this problem, we want to use an approximation
of the signed distance that can be computed from the Phasefield φj. According to
[CH58], the equilibrium shape of φj in the diffuse interface region is a scaled tanh
profile of the distance function, so we define

ddi f f use
j (x) := −ε

2
ln

'
1 + φj(x)
1 − φj(x)

(
(3.9)
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which involves the inversion of tanh. However, as the tanh profile is only given in
the diffuse interface region, only there ddi f f use

j approximates dsharp
j accurately enough.

Another crucial component in this approach is the definition of an interaction po-
tential w, depending on the distance dj to a particular neighbor. In a sharp interface

formulation, i.e. assuming knowledge of dsharp
j , the interaction acting on a single cell

i reads

∑
j ∕=i

!

Si

w(dsharp
j (x))dx. (3.10)

To transfer this into a more natural formulation for Phasefield models, we approxi-
mate the surface integrals using

B(φi) =
1
ε

)
φ2

i − 1
*2

.

This transfers (3.10) into a diffuse domain formulation by defining the global inter-
action energy, combining contributions from all cells, given by

E d
INT({φi}) =

N

∑
i=1

∑
j ∕=i

!

Ω
B(φi)w(ddi f f use

j (x))dx. (3.11)

This approach has the advantage of giving the flexibility to use different interac-
tion potentials w. On the other hand, the strong non-linearity of the terms in (3.11)
makes this approach computationally challenging. In the following, we will inves-
tigate different ways to choose the interaction potential and the effect on the result-
ing dynamics. Note that, in general, positive energy contributions model repulsion,
while a negative sign represents adhesion. Note furthermore that we will omit the
superscript clarifying the difference between the sharp and the diffuse notion of dis-
tance in the following. From here on out all definitions are in the diffuse interface
formulation, i.e. dj := ddi f f use

j .

Exponentially repulsive potential

Focusing only on the numerical requirement of short-range repulsion, in order to
prevent overlap, we start with the construction of a strictly positive, i.e. purely re-
pulsive, potential. In particular, we want to choose a potential with large values
close to distances dj ≈ 0 but decaying fast for growing distances. The fast decay
is required as the signed distance approximation involving the inversion of tanh is
only valid inside the diffuse interface.
We choose a Gaussian potential, i.e. exponential dependence on the distance, by
defining

wE(dj(x)) := exp(−d2
j (x)/ε2) (3.12)

as suggested for example in [MV16]. By choosing ε2 as scaling coefficient, we ob-
serve that the contributions for distances larger than ε, i.e. outside of the diffuse
interface region, are negligibly small. This potential is visualized in Figure 3.8 (Left)
and has proven to be numerically very stable. It will be extensively used in the study
of purely repulsively interacting cells in the Chapters 4, 5 and 6.
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Lennard-Jones potential

While the exponentially repulsive potential in (3.12) is well-suited to ensure the non-
overlap condition throughout the simulation, it is strictly positive and thus includes
no adhesive forces between cells. We now want to present a different approach, in-
cluding also adhesion, by using the well-known Lennard-Jones potential, originally
introduced in [Jon24] in the context of particle interaction.
Let

wLJ(dj(x)) :=

/'
ε

2dj(x)

(12

− 2
'

ε

2dj(x)

(6
0

, (3.13)

which is commonly known as the (12, 6) Lennard-Jones potential and visualized in
Figure 3.8 (Right). Note that a rescaling with ε was added, adjusting the potential to
the interface width.
One observes that wLJ is, in contrast to wE, not strictly positive, i.e. it also incorpo-
rates adhesive forces. In particular the sign is positive for 0 < dj < ε/2 and negative
for all values dj > ε/2 while decaying fast for increasing distances. While the min-
imal value of the potential is explicitly given as −1, it is not bounded from above.
In particular there is a pole at dj = 0, which can be numerically problematic. It can
thus be useful to cut off the potential values above a certain threshold.

FIGURE 3.8: (Left) Exponentially repulsive potential in (3.12) and
(Right) Lennard-Jones type potential in (3.13) for interface width

ε = 0.1 and distances up to dj = 0.5.

While the Lennard-Jones type potential is interesting from a theoretical point of
view, we have observed numerical instabilities. In particular, the distinction be-
tween adhesive and repulsive contributions, all given only inside the ε-wide diffuse
interface, requires very fine resolutions in both time and space, which is not accept-
able in practicable cases and thus the Lennard-Jones potential will not be used in the
following.

3.3.3| QUANTITATIVE PHASEF I ELD-BASED APPROACH

The last approach for an energy contribution modeling intercellular interactions can
be seen as a hybrid version of the Phasefield-based definition in Subsection 3.3.1
and the distance-based in Subsection 3.3.2. In particular, we want to combine the
positive aspects of both approaches, in order to define a versatile interaction energy
that allows for the definition of both adhesive and repulsive components.



CHAPTER 3. MODEL DERIVATION AND IMPLEMENTATION 26

The energy contribution

Eφ
INT({φi}) =

N

∑
i=1

∑
j ∕=i

!

Ω
φ̃iw(φj(x))dx (3.14)

is a tranfer from (3.11) with different individual alterations. The first step was to
remove the integral over the diffuse interface that enters with the term B(φi) and
instead integrate over the cell interior using φ̃i. This removes the numerically prob-
lematic part of the Lennard-Jones type potential that both the repulsive and the ad-
hesive regime have to act inside of the only ε-wide diffuse interface. On the other
hand, we can preserve the concept of an interaction potential w incorporating pos-
itive and negative contributions instead of the individual parts for repulsion and
adhesion as introduced in (3.7) and (3.8) which are difficult to control. In compari-
son to (3.11), the interaction potential does not depend on the approximated distance
dj but instead on the Phasefield φj itself.
When using this approach, we consider the interaction potential

wpol(φj) = 1 − (a + 1)
'

φi − 1
2

(2

+ a
'

φi − 1
2

(4

, (3.15)

which is a polynomial in φj and thus computationally unproblematic. Furthermore,
indicating the versatility of this potential, it is parametrized by just one real-valued
parameter a but still gives the possibility to include both repulsive and adhesive
forces. In particular, for the choice a = 1.0, the potential is strictly positive and thus

FIGURE 3.9: Visualization of the interaction potential in (3.15) for
purely repulsive variant a = 1.0 (blue) and adhesive-repulsive vari-
ant a = 2.0 (red). The potential is visualized depending on both the
Phasefield φj (left) and the resulting distance dj (right). In both visu-

alization the equal interface width ε = 0.1 is chosen.

models purely repulsive forces while, for a = 1.5 or a = 2.0, a negative value range
exists, which corresponds with adhesive forces. Figure 3.9 visualizes the potential
for two choices of the parameter a, depending on the Phasefield value itself (Left)
and on the resulting approximate distance dj (Right) to increase comparability with
the distance-based approaches in Subsection 3.3.2.
While this approach is strictly phenomenological and not motivated by physical in-
teraction laws, it has certain advantages. In contrast to the distance-based approach,
where only the distance between the interfaces is taken into account, the repulsive
forces grow proportional to the overlap between cells, which seems more natural.
Furthermore, aside of the versatility of changing the entire behavior depending on
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just one parameter, it can also be numerically less problematic. Especially in case of
an adhesive contribution, this approach is favorable compared to the Lennard-Jones
potential as it is more regular in different ways (no pole exists and the area of adhe-
sion is wider with a less steep descent) and thus significantly increases stability in
computations.

3.4| MECHANISMS FOR ACTIVITY

The movement or motility of cells is crucial for a variety of developmental processes,
both in vivo and in vitro. From morphogenesis to wound healing and cancer inva-
sion, it is required for cells to actively change locations [FG09; Ror09; SM16]. Even
though this has been studied for a long time, the precise mechanisms that create and
moreover even coordinate cellular motion remain partially unclear and are still a fo-
cus of current research [AE07].
The investigation of different mechanisms for activity in cellular structures and the
resulting patterns of motion is one of the main targets of this thesis. The in silico
experiments performed with the following models can be a step towards a more
complete understanding of the forces that drive cells and create the foundation of
life.
While the system energy E = ECH + EINT + ... depends on the particular choice of
the interaction mechanism and potentially other contributions according to the fol-
lowing sections, the general structure of the evolution equations for φi is always
preserved. In particular, we include activity by a first-order term which reads

∂tφi + v0(vi ·∇φi) = ∆
δE
δφi

(3.16)

for an individual propulsion vi and a real valued scaling factor v0 ∈ R, which is
constant for all cells. This section is devoted to the derivation of different possible
choices for vi.
At this point, we want to emphasize that including activity into the evolution of the
system changes the gradient flow structure. For v0 > 0 the energy minimization,
stated in Lemma 1 is no longer given.

3.4.1| RANDOM WALK

The first approach we consider here is the most simple one. Inspired by the dynam-
ics of particle systems, the direction of propulsion can be assumed to be following a
random process. Originally introduced for vertex models in [Bi+16; Gia+18; Yan+17]
this concept was most recently applied for Multi-Phasefield models in [Loe+20].
The direction of motion for the cell is represented by an angle θi that follows the
stochastic law

dθ(t) =
√

2DrdWi(t), (3.17)

where Dr is the rotational diffusivity parameter and Wi a Wiener process. The
propulsion is then given by

vran
i =

#
cos θi
sin θi

$
, (3.18)
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which corresponds to a standard transformation between polar and cartesian co-
ordinates. This means that the direction of motion at each time instance follows a
rescaled normal distribution around the direction in the previous moment. At typi-
cal example for the random propulsion field is shown in Figure 3.10.

FIGURE 3.10: Schematic vi-
sualization of the levelset
φi = 0 and a random ad-

vection field vran
i .

The major advantage of this approach is simplicity. The
definition of vran

i is numerically unproblematic and of-
fers wide possibilities for generalizations, e.g. from flat
domains to definitions on manifolds as performed in
Subsection 7.2.2. On the other hand, we observe that
this propulsion mechanism is fully decoupled from the
values of the Phasefield φi and thus the shape of the
represented cell. This contradicts the findings in var-
ious experimental studies like [MK09], where a strong
correlation between shape and motility of cells was ob-
served. Furthermore, it does not include the modeling
of any intracellular machinery like polymerization and
depolymerization of actin filaments, which also seems to
be relevant for the motility of cells as reported e.g. in
[MO96].
In the following subsections, we will define different types of propulsion mecha-
nisms that take more and more detail into account, usually at the cost of higher
computational effort.

3.4.2| DEFORMATION-BASED NEMATIC FORCE

Having introduced the most basic random type of propulsion, which does not take
the cell shape into account at all, we want to go one step further. In order to do this,
we use the ideas proposed in [MYD19] for confluent monolayers that were applied
to confined systems in [Pey+19], describing the mesoscopic shape of each cell using
a geometrical Q-tensor.
For each Phasefield φi let

Si =

#
Si,0 Si,1
Si,1 −Si,0

$
=

#!
Ω

1
2

)
(∂yφi)

2 − (∂xφi)
2* !

Ω −(∂xφi)(∂yφi)!
Ω −(∂xφi)(∂yφi)

!
Ω

1
2

)
(∂xφi)

2 − (∂yφi)
2*
$

(3.19)

which is by definition tracefree and symmetric. This geometrical Q-tensor was orig-
inally introduced in the context of flowing foams in [Asi+03] and later transferred to
Phasefield models for cellular structures. We want to address the intuition behind
this definition, in order to motivate its use in the construction of an active propulsive
contribution.
As pointed out in Section 2.3, the eigenvectors of Si form an orthonormal system
with exactly two distinct eigenvalues. In particular the eigenvalues are given by

λ±
i = ±

+
S2

i,0 + S2
i,1 (3.20)

with corresponding eigenvectors

η±
i =

#
Si,0 + λ±

i
Si,1

1
$T

. (3.21)



CHAPTER 3. MODEL DERIVATION AND IMPLEMENTATION 29

In case Si,1 = 0 the tensor simplifies to

Si =

#
Si,0 0
0 −Si,0

$

and thus λ1,2
i = ±Si,0 are eigenvalues. The eigenvectors are in this case given by

the Euclidean standard basis vectors in R2 and the distinction between positive and
negative depends on the sign of Si,0.

FIGURE 3.11: Schematic visualization of the eigenvectors η±
i of Si for

different Phasefields φi represented by the levelset φi = 0.

The eigenvectors η+
i and η−

i according to (3.21) represent the axes of largest elon-
gation and contraction, respectively, while the strength of deformation is given by
the corresponding eigenvalues λ±

i in (3.20). More precisely, the axis of elongation
is given by η+

i . This is visualized in Figure 3.11 for different exemplary Phasefield
shapes.
From this definition of the Q-tensor Si, representing the shape of each Phasefield φi,
it is possible to define the global quantity

Q = ∑
i

φ̃iSi (3.22)

using φ̃i, which results from φi by a rescaling to value range [0, 1] according to (3.6).
From this we define the tissue stress tensor

œtissue = −Q,

inspired by the work in [MYD19]. Note that the definition œtissue = −PI − Q was
used in [MYD19] with P representing a passive pressure, given by the total variation
of the system energy.

FIGURE 3.12: Schematic vi-
sualization of the levelset
φi = 0 and the elongation-
based advection field velo

i .

Using the tissue stress œtissue, the activity of the system
can be defined by

velo
i =

!

Ω
φ̃i∇ · œtissue = −1

2

!

Ω
œtissue ·∇φi. (3.23)

The first variant expresses the propulsion to be the lo-
cal force ∇ · œtissue, integrated over the cell interior, rep-
resented by the rescaled Phasefield φ̃i while the second
version models the tissue stress in outward normal di-
rection ∇φi for each cell.
The presented approach creates activity along the direc-
tion of elongation of a particular Phasefield and thus cou-
ples the motility directly to the deformation. In a sense
this macroscopic description of the cell shape as underly-
ing quantity for propulsion bridges the scales between a
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fully random advection as done in 3.4.1 and a more detailed description of the intra-
cellular dynamics as introduced in 3.4.3 and 3.4.4. Numerically, it is a compromising
way between detail and efficiency, as the computation of the global quantity Q is
more costly than a strictly local definition of a random vector but in contrast to the
models in 3.4.3 and 3.4.4 the energy only involves the Phasefields φi .
In the following, we want to introduce two different mechanisms for activity that
both try to model the subcellular machinery with an additional quantity. In 3.4.3 we
introduce a polar driven model and in 3.4.4 the approach considers active nemato-
dynamics.

3.4.3| ACTIVE POLAR GEL MODEL

The next approach for the definition of a propulsion mechanism is motivated by
polymerization and depolymerization of actin filaments inside of the cell, especially
near the cell boundaries [Bea93; MO96]. We will model this microscopic effect in an
averaged mesoscopic way by introducing an orientation field Pi for each cell, point-
ing from regions of depolymerization to regions of polymerization. Although Pi is
defined on the whole domain Ω, we will use a model that enforces Pi to vanish out-
side of the cell interior.
To include Pi in our model, we introduce an Oseen-Frank energy contribution in-
spired by the description of liquid crystals [TMC12]. This approach was originally
proposed in coupling with hydrodynamics in [MPV15]. The energy now depends
on both the Phasefields φi and the polarization fields Pi and reads

EPOL({φi, Pi}) :=
N

∑
i=1

!

Ω

1
2
(∇Pi)

2 − 1
2
|Pi|2

'
φi −

1
2
|Pi|2

(
+ βPi ·∇φidx. (3.24)

FIGURE 3.13: Schematic vi-
sualization of the levelset
φi = 0 and the polar advec-
tion field vpol

i for two exem-
plary situations.

The first term in equation (3.24) corresponds with the
typical one-constant approximation known from Oseen-
Frank descriptions of liquid crystal systems and models
stiffness and elasticity. The second term restricts Pi to
the interior of each Phasefield and ensures normaliza-
tion. More precisely, outside the cell area (φ ≈ −1), the
minimum is attained for |Pi| = 0, i.e. vanishing polar-
ization field. On the other hand, for φ ≈ 1, this forms
a double-well with two minima satisfying |Pi| = 1. The
last term couples shape and polarization. In particular,
it punishes deviations from an orthogonal direction of
Pi on the cell interface, measured by Pi · ∇φi. We will
later examine the effects of the coupling strength on the
emerging behavior. In Chapters 4, 5 and 6, we will use an
L2 gradient flow for the evolution of Pi starting from ran-
dom initializations, in order to allow for changes in the
magnitude, adjusting to the normalization term in (3.24).
Given the energy contribution for the polarization field
and the resulting variational derivatives, which we will
introduce later, the definition of propulsion is given by

vpol
i = Pi. (3.25)
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Note that vpol
i , in contrast to the previously defined vran

i and velo
i , is not constant in-

side of the cell. The onset of motility results from a splay instability in the interplay
between the outward orthogonal alignment enforced by Pi ·∇φi and the smoothing
effect of (∇Pi)

2. This results in a shape-dependent +1 defect in the polarization field
located away from the center and thus a dominating direction as visualized in Fig-
ure 3.13 for two different examples.
Compared to the random and elongation-based approach introduced in Subsections
3.4.1 and 3.4.2, it is possible to include much more detail using the non-constant
polarization field. Furthermore, the coupling between shape and polarization, ad-
justable by choosing β, is more flexible than the elongation-based approach and can
produce different phenomena, revealed for example in Chapter 4. On the other
hand, the computational effort increases drastically by adding an additional quan-
tity to the system, in particular a vector-valued function which will later on double
the number of degrees of freedom.

3.4.4| ACTIVE NEMATIC MODEL

The last approach we want to introduce in this section includes subcellular structure
like the polar model in 3.4.3 but with an active nematic description. The motivation
behind this lies in the key role of microtubules for cell motility as reviewed for ex-
ample in [GS19; EM13]. These rod-like proteins without a distinct head or tail lead
to movement in case of an asymmetric distribution inside of the cell as explained
in [KS11a]. In order to describe the elongated, thin particles, we use the Q-tensor
representation known from the description of liquid crystals. These materials with
special order structure have been shortly introduced in Section 2.4. The active ne-
matic propulsion has been used for particles given in a particle density formulation
in [KV21] and in singular Phasefield simulations in [GD14; GL17].
For each cell, we include an additional tensor field Qi, which will by definition be
tracefree and symmetric, i.e. a Q-tensor. As already mentioned in Section 2.4, the
eigenvectors of Qi give a mathematical representation of the elongated particles with
head-tail symmetry (e.g. microtubules).
The energy contribution is captured using a Landau-de Gennes type formulation
given by

ENEM({φi, Qi}) :=
N

∑
i=1

!

Ω

1
2
‖∇Qi‖2 + trQ2

i (−
1
2

φi +
1
4

trQ2
i ) + γ∇φiQi∇φi dx.

(3.26)

The structure of this energy is similar to EPOL, introduced in Subsection 3.4.3. The
first term enforces a smooth behavior, the second one restricts Qi to the interior of
the cell and the last term couples shapes and intracellular dynamics. While it is
less obvious compared to the polar case, the last term in the energy, scaled with the
parameter γ, again tries to enforce an orthogonal alignment near the cell boundary,
in this case for the eigenvectors of Qi. Similar to the polar model in 3.4.3, we will in
Chapters 5 and 6 use an L2 gradient flow starting from a random initialization for
the evolution of Qi.
The propulsion is defined similar to the elongation-based approach in Subsection
3.4.2 and given by

vnem
i = ∇ · Qi. (3.27)
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We observe in Figure 3.14 (top) that the director field, given by the eigenvectors of
Qi, resembles nematic alignments and forms two + 1

2 defects near the most elon-
gated points of the Phasefield, pointing outwards. The visualization in Figure 3.14
(bottom) shows that the advection field vnem

i points along the directors of the defects,
resulting in pulling forces which intensify elongations.

FIGURE 3.14: Schematic visual-
ization of the levelset φi = 0
with the eigenvectors of Qi (top)
and the resulting advection field

vnem
i (bottom).

Comparing the computational effort of this ap-
proach with the previously discussed propulsion
models, it may seem as the most complex choice
due to the additional tensor-valued equation for
Qi. However, due to the fact that Qi is trace-
free and symmetric, it can be represented by only
two components which makes the model simi-
lar to the polar variant in terms of computa-
tional cost. The advantages of the approach are
obvious and lie in the richness of details and
possibility to include complex subcellular dynam-
ics.

In this section we have introduced 4 different ap-
proaches to define activity in our Multi-Phasefield
models for cellular structures. Starting from a
very simple random definition, we have consid-
ered an approach based on a global nematic elon-
gation field and two variants incorporating sub-
cellular dynamics, a polar and a nematic one.
This gives rise to an extensive study of the ef-
fects of these propulsion mechanisms on the aris-
ing phenomena, which will be performed in Chap-
ters 5 and 6. Of particular interest is the rele-
vance of the single-cell dynamics on the occuring
tissue-wide patterns in both movement and align-
ment.

3.5| BOUNDARY CONDITIONS

In experimental studies on epithelial thin structure two setups dominate: either a
very large, confluent monolayer is considered or a smaller, confined tissue which is
restricted, for example, by the geometry of a petri dish or the underlying substrate.
We want to create simulation setups for both variants.
The modeling of large cellular structures in a detailed description like the Multi-
Phasefield approach is usually limited by computational resources. To ensure re-
sponsible use of those resources, we investigate all phenomena in confluence with a
limited number of cells and periodic boundary conditions. This is a common way to
imitate large-scale domains without unacceptably large computational effort.
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To model the behavior of a confined system, different approaches are possible. One
would be to be prescribe Dirichlet boundary conditions with the value −1, repre-
senting the exterior phase. Using this approach, Phasefields can freely move in-
finitesimaly close to the boundary without experiencing any repulsive forces. This
is problematic for densely packed active systems where numerical instabilities occur
as soon as cells are pushed towards to boundary.
We have, however, chosen a different approach, using the fact the all interaction po-
tentials introduced in Section 3.3 include repulsive forces. More precisely, we want
to use the repulsion dynamics used for cell-cell interactions also for cell-confinement
interactions.
Let

φcon(x) = tanh
'
||x − c||− rcon√

2ε

(
(3.28)

for c the center of the domain and rcon the designated radius of the confinement. The
choice of || · || determines the confinement shape, where || · || = || · ||∞ corresponds
to a square confinement while the Euclidean norm || · || = || · ||2 represents circular
shapes.

FIGURE 3.15: Visualization
of the confinement Phase-
field φcon , constructed with
|| · ||2. Blue color, repre-
senting φcon ≈ −1, mod-
els the inside of the confine-
ment and red color, visual-
izing φcon ≈ 1, represents

the outside.

Then φcon is a Phasefield type variable with φcon ≈ −1 in
the interior of the confinement and φcon ≈ 1 in the exte-
rior, which can be seen in Figure 3.15. Due to the fact that
all interaction potentials are designed to keep other cells
in the −1 phase, the sign of φcon is inverted compared to
standard Phasefield definitions.
The actual energy contribution from the confinement is
then chosen to be consistent with the intercellular inter-
action potential. In practical, this means that in case of
the distance-based interaction presented in Subsection
3.3.2, we introduce the energy

E d
CON({φi}) =

N

∑
i=1

!

Ω
B(φi)wE(dcon(x))dx (3.29)

with B the usual surface delta approximation, wE the ex-
ponentially repulsive potential and dcon the approximate
signed-distance function for the confinement Phasefield.
Using the quantitative Phasefield-based interaction from
Subsection 3.3.3 on the other hand, the confinement en-
ergy is given by

Eφ
CON({φi}) =

N

∑
i=1

!

Ω
φ̃iwpol(φcon(x))dx (3.30)

with the parameter in the polynomial interaction potential chosen as a = 1, i.e. the
purely repulsive variant.
We have introduced a modeling approach for confined systems, using the interac-
tion mechanisms presented in Section 3.3. This has many advantages, for example
similar choices of weighting parameters for interaction and confinement or the re-
pulsive forces acting on a larger distance compared to the simple Dirichlet boundary
conditions. The drawback is the necessity to resolve the grid fine enough, close to
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the confinement boundary, which is in practical cases not problematic as the grid is
already fine enough as soon as cells are actually approaching the boundary.

3.6| IMPLEMENTATION DETAILS

All simulations performed for this thesis are based on a formulation of partial dif-
ferential equations. While the particular system of equations will be given in the re-
spective chapter, assembled in a modular way from different energy contributions,
the general approach of implementation is preserved.
The models are implemented in AMDiS (Adaptive Multidimensional Simulations), a
C++ framework originally developed and permanently optimized by members of
the Institute of Scientific Computing at TU Dresden. More details on the software
can be found in [VV07b; VV07a; VW12; Wit+15] and the repository is available for
access at [Pra+].
For time discretization a typical explicit-implicit strategy is used. In particular, all
linear operators are assembled implicitly. Non-local contributions of non-linear terms,
e.g. from the interaction given in (3.11), are treated explicitly for reasons of commu-
nication efficiency in the parallel implementation, see 3.6.1. Local non-linear terms,
e.g. from the double-well potential in (3.1), are linearized using a Taylor expansion
of order 1 that reads

W ′(φnew) ≈ W ′(φold) + (φnew − φold)W ′′(φold),

applying non-linear functions exclusely to values from the old timestep. In total this
creates a linear system, enabling the use of standard linear solvers.

3.6.1| PARALLELIZATION

FIGURE 3.16: Two examples of Phasefields
with color map from red (φ ≈ 1) to blue
(φ ≈ −1) at the same time (top) alongside the

locally refined grids (bottom).

The simulation of possibly large num-
bers of Phasefield evolutions, in some
cases even coupled with additional vec-
tor or tensor fields (see 3.4.3 and 3.4.4),
is a computationally challenging task.
The grid used for the simulations, is re-
quired to resolve the diffuse interface
region of every Phasefield sufficiently
well, to ensure numerical stability of the
phases. Defining a single grid that si-
multaneously resolves all interface re-
gions fine enough, would lead to un-
acceptably large numbers of degrees of
freedom. Furthermore, including all in-
dividual contributions in one system of
equations would result in a discrete sys-
tem, scaling with the number of cells,
while actually the coupling only results
from intercellular interactions. Combin-
ing these two problems, it becomes ob-
vious that this approach is not practi-
cally doable for larger numbers of cells.
We use a cell-based parallelization approach with MPI that was originally proposed
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in [PV18]. The key idea is to consider each cell, represented by φi, individually on a
single core of the CPU, with a grid locally refined according to the interior and inter-
face of φi. This results in a local problem on each core that requires solving a small
system of equations (2 - 4, depending on the propulsion mechanism) with a moder-
ate number of degrees of freedom. In Figure 3.16, we observe that the strictly local
properties of the Phasefields, which are constant in most of the domain, transfer to
the grid structure perfectly with coarse resolution far away from the cell interior and
fine grid inside the diffuse interface.
For large cell numbers, however, the communication of the intercellular interaction
could lead to an additional bottleneck. This problem can be solved, keeping in mind
that all interactions, inspired by intercellular mechanisms in real tissue, have a very
short range. In particular, we remember Figures 3.8 and 3.9 that indicate how all ap-
proaches for interaction vanish for cellular distances in the magnitude of ε, i.e. small
compared to the domain sizes. The computation and communication of interaction
terms, as a consequence, is done only for the nearest neighbors, where the term near
is defined using a heuristic based on the centers of mass for all cells.
The combination of these two aspects - solving every system locally on a single core
of the CPU and communicating interactions only with closest neighbors - results in
a great scaling behavior with more details reported in [PV18].

3.6.2| INITIALIZATION

One huge advantage of Phasefield models, compared to simpler approaches like
particle models is the flexibility in shapes. As a consequence, much higher packing
fractions are possible. In case of volume-preserving models as used in Chapters 4, 5
and 6 it is, however, necessary to initialize the structure already with the designated
packing fraction. In all cases, we will choose initial shapes with analytically given
signed distance functions and compute the Phasefield from those. Furthermore, in
all approaches presented here we define initial conditions for a full packing and then
afterwards shrink the individual Phasefields by a constant factor to ensure that the
diffuse interfaces of different cells will not overlap.

FIGURE 3.17: Visualization of densely packed initial conditions used
in this thesis for confluent setups with periodic boundary conditions.

Each cell is represented by the levelset φi = 0.

According to the observations in Section 3.5 about the boundary conditions, we cre-
ate initial conditions for both periodic and confined settings. The setups for periodic
boundaries are shown in Figure 3.17. The most basic situation is given for equally
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sized cells in a 2D square (or potentially rectangular) domain and visualized in Fig-
ure 3.17 (Left). We use a structure inspired by brick walls where the initial shapes are
chosen rectangular with half a cell width shift in every second row. This approach
already establishes the optimal hexagonal packing and is used in Chapters 5 and 6.
For the studies performed in Chapter 4 differences in cell size are necessary. We use
a normal distribution of cell widths in each row of the brick wall while keeping the
height of the rows constant as visualized in Figure 3.17 (Right). More precisely, in a
row with N cells the first N − 1 sizes have widths according to a normal distribution
while the last one gets the remaining size to ensure full packing.

FIGURE 3.18: Visualization of densely packed initial conditions in
rectangular (Left) and circular (Right) confinement. Each cell is rep-

resented by the levelset φi = 0.

To perform studies in confinement, the initially created Phasefields should not cross
the domain boundaries. For rectangular confinements we use the setup visualized
in Figure 3.18 (Left). It is similar to the construction in Figure 3.17 (Left) but the
row-wise shift is omitted. For the circular confinement used in Chapter 5, we have
constructed an initial packing inside of the circle as shown in Figure 3.18 (Right). In
particular almost all initial shapes are curved trapezoidals, aligned in radial rings of
fixed size with one round cell in the center of the domain.

The initial conditions presented in this section involve shapes that are far from real-
ity in biological systems. Hence, it is always necessary to exclude a certain number
of timesteps after initialization from the actual observations during which the influ-
ence of the Cahn-Hilliard energy deforms the cell.
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4| TOPOLOGICAL AND GEOMETRI-
CAL QUANTITIES IN CELLULAR
STRUCTURES

The first step towards an understanding how Multi-Phasefield models can be used
for the description of cellular structures, is to analyze the topology and ordering of
the systems. This can also be seen as a prior step on the road towards experimen-
tal validation, as we will compare our findings mostly with other models and less
with biological data due to the lack of quantitative measurements for cellular sys-
tems. One particular focus will be the investigation of the influence that the induced
activity has on observables like topology and geometrical ordering.

4.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Topological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Coordinated Activity and Collective Motion . . . . . . . . . . . . . . . 40
4.4 Neighboring relations and Coordination number . . . . . . . . . . . . 43
4.5 Cellular Organisation driven by Size and Shape . . . . . . . . . . . . . 47
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Although driven and active systems are far from equilibrium, they have been shown
to share key features with passive systems. Examples are effective thermal behavior
and time correlation functions in assemblies of cells, which behave as equilibrium
glass transitions [BK13; BT09] or motility induced phase separation, which shares
properties such as coarsening laws and statistical self-similarity with classical phase
separation in binary systems [Wit+14; Spe+14]. Certain topological and geometrical
quantities are well studied for passive systems like foams and froths [Fly93; DBV11]
or Ostwald ripening of minority phase domains after a rapid temperature quench
[Voo85; MAL19]. We will here test if those quantities are also valid for in silico ex-
periments on monolayers of cells.
We will consider two empirical laws. The first one is Lewis’ law, originally proposed
in studies of the epidermis of Cucumis [Lew28], which expresses the existence of a
correlation between area and number of neighbors (coordination number q) of a
cell. The second one is Aboav-Weaire’s law, with the original aim to understand the
mechanism of growth of polycrystals [Abo70], which states that cells with high (low)
coordination number are surrounded by small (large) cells. In other words, Lewis’s
law indicates how space is most likely to be filled by cells, whereas Aboav-Weaire’s
law gives the most probable correlation between neighboring cells. Both laws for
space-filling cellular structures can be found in biological, geographical, mathemat-
ical and physical literature, see e.g. [Chi95] for a review. Such topological properties
find a rapidly growing interest in studying the interplay between mechanics and the
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collective behavior of cells on the tissue level [LM17].

The chapter is organized as follows: In Section 4.1, we assemble the considered
model from the individual components presented in Chapter 3. In particular, we
focus on the mechanism of activity, namely the polar model introduced in 3.4.3. In
Section 4.2, the model is used to analyze the occurrence of typical topological phe-
nomena like T1 transitions and rosettes. Afterwards, in Section 4.3, we investigate
the coordination of cellular movements and the creation of collective motion. In
Section 4.4, we compare geometrical properties like the distribution of coordination
numbers. In Section 4.5, we investigate the equilibrium Lewis’ and Aboav-Weaire’s
laws depending on two essential parameters, based on the observations in the pre-
vious sections. We thereby demonstrate the possibility to classify cellular systems
according to their collective behavior. In Section 4.6, we draw conclusions and give
an outlook to the following chapters.

4.1| MODEL SETUP

In this chapter, we restrict our considerations to the Multi-Phasefield model with
polar propulsion mechanism and distance-based interaction in a periodic setting.
These active polar Phasefield models have been previously investigated in [KJ00;
Kru+04; MPV15] and a similar interaction was used in [MV16].
We consider i = 1, . . . , N individual Phasefields {φi}i=1,...,N and the corresponding
polarization fields {Pi}i=1,...,N . The total energy of the system is assembled as

E ({φi, Pi}) =
1

Ca
ECH ({φi}) +

1
In

E d
INT ({φi}) +

1
Pa

EPOL ({φi, Pi}) (4.1)

with

ECH

-
{φi}N

i=1

.
=

N

∑
i=1

!

Ω

ε

2
|∇φi|2 +

1
ε

W(φi)dx

the Multi-Phasefield Cahn-Hilliard energy as introduced in (3.5),

E d
INT({φi}) =

N

∑
i=1

∑
j ∕=i

!

Ω
B(φi)wE(dj(x))dx

the distance-based interaction as defined in (3.11) using the exponentially repulsive
potential in (3.12) and

EPOL({φi, Pi}) :=
N

∑
i=1

!

Ω

1
2
(∇Pi)

2 − 1
2
|Pi|2

'
φi −

1
2
|Pi|2

(
+ βPi ·∇φidx

the polar energy introduced in (3.24). To balance the individual contributions to the
total energy, we use the dimensionless weight parameters Ca, In and Pa as moti-
vated in [MV16]. To derive the evolution equations for all φi and Pi, we use the gra-
dient flow approach presented in 2.2. In particular we use the volume-preserving
H−1 gradient flow for each Phasefield, given by

∂tφi = M∆
δE
δφi

,
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using a mobility M in combination with the polar propulsion ∇ · (φiPi). The evolu-
tion equations for φi thus read

∂tφi + v0∇ · (φiPi) = M∆µi ,

µi :=
δE
δφi

=
1

Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1

Pa

'
−1

2
‖Pi‖2 − β∇ · Pi

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
.

(4.2)

To derive the evolution equations for Pi, we use the non-preserving L2 gradient flow

∂tPi = − δE
δPi

,

in order to allow for changes in the magnitude of Pi, according to the normalizing
and restricting energy contributions in EPOL. The evolution equations read

∂tPi +
)
v0Pi ·∇

*
Pi = − 1

Pa

-
− φiPi + ‖Pi‖2Pi − ∆Pi + β∇φi

.
. (4.3)

where the non-linear self-advection term
)
v0Pi ·∇

*
Pi was added for thermodynamic

consistency, see [TMC12; MPV15; MV16] for details. We have, however, observed
that this term does not influence the qualitative behavior of the system and thus re-
move it in Chapters 5 and 6.
Both equations are defined in Ω × (0, T] for some simulation end time T > 0 and
a two-dimensional domain Ω ⊂ R2. We assume in the following periodic bound-
ary conditions for Ω, to represent a large confluent monolayer, as motivated in Sec-
tion 3.5. We solve these equations numerically, using the Finite-Element framework
AMDiS, see Section 3.6 and make use of the cell-based parallelization approach de-
scribed in Subsection 3.6.1. The local grid on each CPU process is refined according
to the individual Phasefield φi, in particular with a spacing of h ≈ 0.2ε inside the
diffuse interface while h ≤ ε in the interior region (φi ≈ 1) and h ≤ 10ε in the ex-
terior (φi ≈ −1). Due to the local refinements and recursive grid regularization, the
spacing increases for larger distances from the cell interior. After very few initial
time steps used to let the shapes relax after initialization, the time step size is chosen
to be τ = 0.1.
Previous studies of the model were concerned with dilute monodisperse systems
and the emergence of collective motion [MV16; PV18]. We here consider densely
packed disperse systems where different model parameters are varied to analyze
the effect on topological and geometric quantities of the active cellular structures.

Ω ε M Pa Ca In
[0, 100]× [0, 100] 0.15 1 1 0.025 0.05

TABLE 4.1: Numerical parameters used in all simulations throughout
Chapter 4.

For the normal distribution in the cell size, as introduced in Subsection 3.6.2, and
depicted in Figure 3.17 (Right), we use the variance σ = 3. As already mentioned,
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due to the Phasefield approach with diffuse interfaces and ε > 0, a fully space-filling
structure is not possible. We instead consider an area fraction of 0.95, achieved by a
shrinkage of each cell, which explains the visible empty space in Figures 4.1 and 4.2.
We vary the parameter β, which models the anchoring of the polarization field at the
cell boundaries, as explained in 3.4.3, and the parameter v0, which scales the strength
of self-propulsion. When studying the influence of β, we choose v0 = 2.5 and in the
study of v0, we fix β = 0.3. All other parameters are fixed over all simulations, see
Table 4.1 for the considered values.

4.2| TOPOLOGICAL PROPERTIES

For developmental processes, different types of reordering are necessary and have
been observed to occur in tissue. One example are the so-called T1 transitions, where
one pair of neighboring cells detaches, while simultaneously a new pair forms, which
has to be incorporated manually in vertex models like [FRA07]. This is problematic,
as it brings some type of externally enforced determinism into an otherwise intrin-
sically driven procedure. Multi-Phasefield models on the other hand, due to their
nature of describing each cell individually with cellular bonds only given implic-
itly, create these transitions naturally. This can be observed in Figure 4.1 and gives a
huge advantage of the models considered throughout this thesis in comparison with
other mesoscopic descriptions of cellular structures like vertex models.

FIGURE 4.1: Typical T1 transition. The color highlights the involved
cells in the topological change which are in contact with each other at

the beginning of the T1 transition.

It has been observed that points where four or more cells are in contact, the so called
rosettes, are of crucial importance for the development of tissue, as reviewed in
[HMN14]. In particular, they have been shown to play a crucial role in Drosophila
eye development as observed in [EBF07; Rob+12] and the formation of the Zebrafish
lateral line, see [HG06; HN12] for details. While rosettes also have to be enforced ar-
tificially in vertex models like [YB18], they occur naturally in Multi-Phasefield mod-
els. Figure 4.2 shows typical examples for rosettes occurring in our simulations.
More quantitative studies on the occurrence of rosettes and their relative number,
compared to vertices with 3 cells, will be performed in Chapter 5 for different mech-
anisms of propulsion.

4.3| COORDINATED ACTIVITY AND COLLECTIVE MOTION

It has been studied in a wide range of organisms, how the individual motion pat-
terns of cells correlate on a larger scale. A variety of reviewing articles exists on this
subject, for example [MV14b].
One interesting phenomenon, observed for example in bird embryos (see [Sat+10])
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FIGURE 4.2: Examples for rosettes found in the simulations. The color
highlights "vertices" with four (red) or five (green) cells.

and also lymph nodes (see [Bel+07]), is the so-called streaming in monolayers. While
on a larger scale no flocking occurs, local correlations in the movements can be ob-
served, resembling turbulent flow patterns. In Chapter 5, we will give more in-
sight into these dynamics in Multi-Phasefield models with different mechanisms of
propulsion.
On the other hand, Madine Darby Canine Kidney (MDCK) cells have been observed
to form a global flocking behavior in certain circumstances, with all cells moving
in the same direction. In [Pou+07], an experiment was performed imitating the oc-
currence of a wound by plating a confluent epithelium on a free surface without
damaging individual cells. Interestingly, the availability of surface has proven to be
sufficient for inducing collective motion on a large scale. This indicates that the in-
ternal cell machinery, in a large colony, self-enhances alignment of motion. We want
to investigate, whether this phenomenon can be reproduced in our computational
model and how it depends on the choice of model parameters.
We measure the individual movement direction in terms of the polarization field Pi
of each cell, which is the source of activity in the system. Alternatively, one could
also consider the actual direction of motion of the Phasefield φi. This approach, how-
ever, has been observed to create a much stronger noise as individual cells in densely
packed epithelium can never move freely. More precisely, we compute the average
polarization of a single cell by

Pi :=

!
Ω Pi (φi + 1)dx!

Ω (φi + 1)dx
, (4.4)

for each snapshot in time. The averaging procedure is visualized in Figure 4.3.
Shown are the zero-level lines of φi (cell boundaries of each cell). The red arrows
in the pictures left and right visualize Pi for two exemplary cells while the blue ar-
rows in the middle frame depict Pi for all shown cells.
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FIGURE 4.3: Examples of Pi (middle) as average of Pi (left,right).

We start by fixing a single set of parameters, namely β = 0.3 and v0 = 2.5 and
investigating the time-dependent evolution of the average polarization for all cells in
the epithelium. Figure 4.4 shows snapshots of the evolution of the cellular structure
with arrows indicating Pi for all cells.

FIGURE 4.4: Snapshots of the evolution for t = 60, 225, 800 from left
to right. The simulation is done with β = 0.3, v0 = 2.5 and a random
initialization of the polarization field. Shown are the φi = 0 levelsets,
superimposed with the average polarization Pi. From left to right,
we observe the time-dependent development towards a state of col-

lective motion.

From Figure 4.4, we can conclude that for the chosen parameter values for β and v0
indeed a global flocking evolves. In order to investigate this further, we introduce
the translational order parameter

θ(t) =
1
n

333∑
i

Pi(t)
333

according to [LZA15a; APV16]. It is 1 if all cells move in the same direction and 0
if all cell polarizations and thus movements are independent. We want to investi-
gate the influence of the coupling parameter β and the activity strength v0 on the
evolution of θ.
In particular, we use the threshold 0.9 < θ to classify a state of global collective
motion or flocking, see [TT98; TTR05]. Figure 4.5 shows the evolution of the or-
der parameter θ for different initial conditions and different β with fixed v0 = 2.5.
For β = 0.3, a state of collective motion is reached almost immediately, whereas for
β = 0.1 this state is never reached within the considered time T and one could con-
clude that it will probably never be reached. For β = 0.2, it takes a long time before
collective motion can be observed. Depending on the initial conditions, it might not
even be reached within the considered time. Note that both the final time and the
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FIGURE 4.5: Translational order parameter θ(t) indicating collective
motion for increasing values of β with fixed v0 = 2.5. The time is

considered in non-dimensional units.

number of performed simulations are a compromise between predictability and eco-
nomic use of computing resources.
Figure 4.6 on the other hand shows the evolution of θ with different values of v0 but
fixed β = 0.3. In comparison to v0 = 2.5, we observe that for the slightly increased
value v0 = 3.5 the system still reaches a collective state after relatively short time,
although oscillations in the translational ordering are strengthened. Upon increas-
ing the activity further to v0 = 5.0, no simulation showed collective motion in the
considered time T and oscillations in θ are increased even more. Even though in
the state of high activity no global flocking is observed, the values of θ are still sig-
nificantly larger than 0, so the system is not in a fully disordered state. A possible
explanation is the occurrence of more local correlations in the polarization fields,
which can be associated with the aforementioned phenomenon of streaming.
In conclusion, we have observed that a sufficiently strong coupling of shape and
polarization by the parameter β is necessary to ensure the occurrence of globally
collective motion. For high levels of activity, induced by increasing v0, the systems
do not evolve a stable state of flocking but instead show a more turbulent behavior
resembling the phenomenon of streaming. These findings are in qualitative agree-
ment with results obtained for more dilute systems [PV18].

4.4| NEIGHBORING RELATIONS AND COORDINATION NUMBER

The number of neighbors, i.e. cells that are close enough to form intercellular junc-
tions, is influenced by different individual factors: the cell density (packing fraction),
the tension of the cell surface (higher deformations potentially allow more neigh-
bors) and also the level of activity. We will leave the first two contributions out of
focus at this point, as we are only interested in cellular systems at a state of high
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FIGURE 4.6: Translational order parameter θ(t) indicating collective
motion for increasing values of v0 with fixed β = 0.3. For high activity
the system evolves a turbulent state. The time is considered in non-

dimensional units.

packing fraction, usually called confluency, and with approximately constant physi-
cal properties like surface tension, in our case implicitly represented by the capillary
number Ca.
While the optimal packing of equal-sized cells is known to be a honeycomb-type
structure, where each cell is approximately hexagonal in shape with exactly 6 neigh-
bors, this is not the case in most practical examples. It has, however, been observed
that usually a normal distribution with mean value of approximately 6 evolves, see
e.g. [Rup+17] for studies in Drosophila.
We investigate if our computational model shows a similar behavior and in particu-
lar how the level of activity influences this distribution. For this, we will study the
influence of varying both the shape-polarization coupling parameter β and the self-
propulsion velocity v0. While in experimental setups the identification of neighbors
is rather non-trivial and requires complex image-processing techniques, it is much
simpler in the Multi-Phasefield approach.
The short-range interaction potential wE, used in the definition of the model, auto-
matically detects if two cells are close to each other. As a consequence the criterium

!

Ω
B(φi)w(dj) > 0

states if cells i and j are neighbors. This is computed during run-time anyways and
causes no additional computational cost.
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FIGURE 4.7: Snapshots of the cellular for t = 60, 225, 800 from left to
right. The simulation is done with β = 0.3, v0 = 2.5 and a random
initialization of the polarization field. The color coding shows the

number of neighbors of a cell.

Figure 4.7 hints that indeed a majority of cells has 6 neighbors but we can also ob-
serve that a significant amount of cells has other coordination numbers. In order to
quantify this, we introduce the empirical probability P(q) = N(q)/N, where N(q)
is the number of cells with q neighboring cells and N = ∑q N(q). Interesting quan-
tities are the mean value E[P(q)], which is predicted to be around 6, independent of
the simulation setup, and the variance µ2[P(q)] = ∑q(q − E[P(q)])2P(q). Unfortu-
nately, no quantitative data for real epithelial structures was available and hence the
simulation results in [SS95], given for passive systems, were chosen as quantitative
reference.

FIGURE 4.8: Coordination number probability for β = 0.1, 0.2, 0.3
with fixed v0 = 2.5 from left to right. Shown is the average of the
whole time evolution and all considered samples (closed symbols
and fit) and average over the time, where collective motion is already

reached (0.9 < θ) (open symbols).
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We have varied the parameter β ∈ [0.1, 0.2, 0.3] for constant v0 = 2.5 and performed
three simulations for each setup. Recalling the results in Figure 4.5, the simula-
tions for higher values of β reach a state of somewhat collective motion at a certain
time. To account for this, we have computed P(q) for all timesteps and also for
those timesteps where 0.9 < θ holds. The results in Figure 4.8 show that indeed all
setups show a mean value E[P(q)] ≈ 6 and an approximately symmetric distribu-
tion. For the variance we obtain µ2[P(q)] = ∑q(q − 6)2P(q) ≈ {1.05; 0.94; 0.76} for
β = 0.1; 0.2; 0.3, respectively. Considering for β = 0.2 only the time, where collective
motion is reached, which is identified by 0.9 < θ, we obtain µ2 = 0.75.

FIGURE 4.9: Coordination number probability for v0 = 2.5, 3.5, 5.0
with fixed β = 0.3 from left to right. Shown is the average of the
whole time evolution and all considered samples (closed symbols
and fit) and average over the time, where collective motion is already

reached (0.9 < θ) (open symbols).

On the other hand, we have varied v0 ∈ [2.5, 3.5, 5.0] for a constant value of β = 0.3
and performed again three independent simulations for each setup. The results in
Figure 4.9 show again a symmetric distribution centered at E[P(q)] ≈ 6, indepen-
dent of the parameter v0. Furthermore, we observe a slight increase in µ2[P(q)]
for increasing self-propulsion. In particular we obtain µ2 ≈ {0.76, 0.77, 0.86} for
v0 = 2.5; 3.5; 5.0, respectively.
We can conclude that the results are in general qualitative agreement with both ex-
perimental data for MDCK cells found in [Kal18] or [SG+16] (only visual results
available) and also simulation data from passive systems as reported in [SS95]. All
setups show a symmetric distribution centered at a mean value of E[P(q)] ≈ 6. If our
system is in a state of collective motion, e.g. for v0 = 2.5 and β = 0.3 as depicted in
Figure 4.8 (right), the values for the variance µ2[P(q)] are even in qualitative agree-
ment with [SS95], where µ2 = 0.64 has been reported. This indicates that, in terms
of coordination numbers and neighboring structures, a globally collectively moving
system behaves effectively passive.
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4.5| CELLULAR ORGANISATION DRIVEN BY SIZE AND SHAPE

The self-organization evolving in cellular structure like epithelium has been a topic
of huge interest for decades. The fundamental question is, whether the distributions
of cell shapes, coordination numbers and sizes are purely driven by geometry and
topology - and thus the minimization of a certain system energy - or if some higher
intercellular communication and ordering is involved. We do not claim to answer
this question but we do, however, investigate the fulfillment of geometrical laws
known for biological systems in our model.
Of particular interest for almost a century has been Lewis’s law, originally proposed
in [Lew28] based on observations in Cucumis. It reads

A(q)
A

= α(q − 6) + γ (4.5)

with A(q) the average area of q-coordinated cells, A the overall average cell area and
α and γ scalar fitting parameters. Qualitatively, this means that cells with a coordi-
nation number q = 6 tend to have a size equal to the average cell size while cells
that are larger (smaller) than the average cell size tend to have a coordination num-
ber larger (smaller) than six.
Experimental results for different organism, e.g. Drosophila, in [SG+16] have shown
that Lewis’ law is not only true for plant cells like Cucumis (original work in [Lew28])
but also holds in animal tissue. In order to identify these neighboring relations in
vitro, an identification of tissue as networks, originally proposed in [Esc+11] was
used.
While Lewis’ law originated from the context of plant cells and can intuitively be
explained easily, the relevance of the so-called Aboave-Weaire’s law is less obvi-
ous. Originally introduced in [Abo70] and [Wea74], in the context of polycrystals,
it quantifies the relation between the coordination number q of a particle and the
coordination number of its neighbors pnn(q) and reads

qpnn(q) = (6 − ζ)(q − 6) + η (4.6)

with scalar fitting parameters ζ and η. Practically, Aboav-Weaire’s law states that
cells with high coordination number are surrounded by cells with a small coordina-
tion number, with a linear dependence.
In current research, it has been observed that this law from material sciences holds
also in plant tissue, see e.g. [JB02]. More recently, experiments in Drosophila, as
done in [Esc+11] and [SG+16], have revealed that Aboav-Weaire’s law is also ful-
filled for animal tissue in certain cases.
The combination of both Lewis’s law and Aboav-Weaire’s law leads to a correla-
tion between the area of a cell, A, and the average area of its neighbors, Ann, see
Figure 4.10. Cells which are larger (smaller) than the average cell size are mostly
surrounded by neighbor cells that are smaller (larger) in size. The functional form
for this relation is given by

f (x) =
1
x

'
1 +

α2µ2 − ζα(x − 1)
6α + (x − 1)

(
(4.7)

with x = A/Ā and f (x) = Ānn/A and the fitting data α from Lewis’s law, ζ from
Aboav-Weaire’s laws and µ2 the variance of P(q) as computed in Section 4.4. The law
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results from maximum entropy theory for random two-dimensional cellular struc-
tures [PSR91; SMS94].

FIGURE 4.10: Normalized average area of neighbor cells, Ānn/A
vs. A/Ā for β = 0.1, 0.2, 0.3 with fixed v0 = 2.5 (left column) and
v0 = 2.5, 3.5, 5.0 with fixed β = 0.3 (right column) from left to right,
together with a fit according to (4.7). Inset (top) shows Ā(q)/A vs. co-
ordination number q, corresponding to Lewis’s law. The line shows
a linear fit through the data. Inset (bottom) shows the average coor-
dination number of nearest neighbor cells of q-coordinated cells vs.
coordination number q, corresponding to Aboav-Weaire’s law. The

line shows a linear fit through the data.



CHAPTER 4. TOPOLOGICAL AND GEOMETRICAL QUANTITIES IN
CELLULAR STRUCTURES

49

We have performed a numerical study to check whether Lewis’ law (4.5), Aboav-
Weaire’s law (4.6) and the derived relation in equation (4.7) holds for our models
and how these relations are influenced by two components:

1. The coupling strength of shape and activity, given by β. We set a constant
v0 = 2.5 and vary β ∈ {0.1, 0.2, 0.3}.

2. The self-propulsion velocity parameter v0 effectively scaling the strength of
activity. We set β = 0.3 and choose v0 ∈ {2.5, 3.5, 5.0}.

Furthermore, we investigate the dependence on a state of collective motion or flock-
ing, which has been shown to depend on these parameters in Section 4.3.
The results for the fitting of Lewis’ law to our simulation data are shown in the upper
insets of Figure 4.10. For fixed v0 = 2.5 and β = 0.1, 0.2, 0.3 the least-square fits for
α and γ are given in Table 4.2. On the other hand, for a constant shape-polarization
coupling of β = 0.3, the fitted values depending on v0 = 2.5, 3.5, 5.0 are given in
Table 4.3.

v0 = 2.5 β = 0.1 β = 0.2 β = 0.3
α 0.14 0.14 0.28
γ 1.05 1.05 0.97

TABLE 4.2: LS-Fits for α and γ in Lewis’s law. Self-Propulsion is con-
stant at v0 = 2.5 and β is varied. Each parameter is fitted over the

data from three independent simulations.

β = 0.3 v0 = 2.5 v0 = 3.5 v0 = 5.0
α 0.28 0.21 0.16
γ 0.97 1.02 1.02

TABLE 4.3: LS-Fits for α and γ in Lewis’s law. Shape-Polarization
coupling is constant at β = 0.3 and v0 is varied. Each parameter is

fitted over the data from three independent simulations.

If for β = 0.2 (Table 4.2, middle column) only the times, where collective motion is
already reached (0.9 < θ), are considered, we obtain (α, γ) = (0.19, 0.99). Thus, we
observe that the values for situations with collective motion are again in excellent
agreement with data in [SS95], where 0.20 ≤ α ≤ 0.25 and 0.95 ≤ γ ≤ 1.05 has been
reported.
The data collection for Aboav-Weaire’s law is shown in the lower insets of Figure
4.10 for the same simulations as before. The fitted values for the parameters ζ and η
depending on β and v0 are given in Tables 4.4 and 4.5 respectively.

v0 = 2.5 β = 0.1 β = 0.2 β = 0.3
ζ 0.36 0.32 1.18
η 35.35 34.97 36.22

TABLE 4.4: LS-Fits for ζ and η in Aboav-Weaire’s law. Self-Propulsion
is constant at v0 = 2.5 and β is varied. Each parameter is fitted over

the data from three independent simulations.
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β = 0.3 v0 = 2.5 v0 = 3.5 v0 = 5.0
ζ 1.18 0.79 0.96
η 36.2 35.76 35.62

TABLE 4.5: LS-Fits for ζ and η in Aboav-Weaire’s law. Shape-
Polarization coupling is constant at β = 0.3 and v0 is varied. Each
parameter is fitted over the data from three independent simulations.

For β = 0.2, if collective motion is already reached (0.9 < θ), we obtain the values
(ζ, η) = (1.20, 35.93). We can again observe that, if cells are close to a system of
collective motion, the simulation results are very close to those measured in passive
systems, see [SS95], where (ζ, η) = (1.10, 36.64) have been reported. The linearity of
the Aboav-Weaire’s law has also been found theoretically [GKY92] and experimen-
tally [MVD90].
To further confirm these results, we classify the whole data set (all β, all v0, all initial
conditions) according to the value of the translational order parameter θ. We classify
the chaotic regime by θ < 0.3, the intermediate regime by 0.3 ≤ θ ≤ 0.9 and the state
of collective motion if 0.9 < θ and obtain the values in Table 4.6.

Lewis’s law Aboav-Weaire’s law
µ2 α γ ζ η

θ < 0.3 0.98 0.14 1.04 0.64 35.25
0.3 ≤ θ ≤ 0.9 0.88 0.17 1.03 0.69 35.40

0.9 < θ 0.78 0.26 0.97 1.11 36.28
Sire et al. [SS95] 0.64 [0.20, 0.25] [0.95,1.05] 1.10 36.64

TABLE 4.6: Variance of coordination number probability P(q) and lin-
ear fitting parameters - α, γ for Lewis’ law and ζ, η for Aboav-Weaire’s
law - over all simulations, classified according to translational order

parameter θ.

In summary, we obtain qualitative agreement with equilibrium topological and ge-
ometrical relations widely found in passive systems, independent of the used pa-
rameters and the macroscopic state of the active cellular structure. Furthermore, we
have observed quantitative agreement with typical values for Lewis’s law, Aboav-
Weaire’s law and the combined functional form in eq. (4.7) for passive systems,
within the state of collective motion.

4.6| CONCLUSIONS

Our investigations indicate that also in active cellular structures, if they are collec-
tively moving, the cells are arranged in space to maximize the configurational en-
tropy. This could indicate that intercellular arrangements are not mainly driven by
actively organizing mechanism (e.g. the distribution of certain chemicals) but in-
stead result mostly from essential geometrical and topological order structures. This
coincides with the observations in [Kok+19] and [Vet+19] that claim surface energy
minization and angle constraints to be the reason for well-defined alignment pat-
terns like Lewis’ law and Aboav-Weaire’s law in biological systems.
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5| CELLULAR SHAPE AND FLOW
DRIVEN BY ACTIVITY

The dynamically changing structures of cells in tissue, in particular the deformation
and movement of individual cells, has been a focus of interest throughout the history
of biology and medicine. More recently, the interplay between motion and shape of
cells has also been examined, for example during organogenesis in [ET+18] or early
stage development of zebrafish embryos in [Ban+21]. While there is growing ex-
perimental evidence for connections between cell deformations and tissue motility,
the underlying dynamics are still not fully understood. The simulations performed
in the following give rise to a deeper understanding and may help in the design of
models that reproduce the behavior of nature even better.

5.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Solid-Liquid Transition in Tissue Models . . . . . . . . . . . . . . . . . 55
5.3 Shape and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Distribution of Cell Shape . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Rosette Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Flow Patterns in Cellular Structures . . . . . . . . . . . . . . . . . . . . 63
5.5 Oscillations in Confinement . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

This chapter is structured according to a variety of different experimental setups,
in order to successively gain a deeper understanding how deformations and move-
ments in Multi-Phasefield descriptions of cellular structures are connected.
We start by a definition of the models in Section 5.1, including the 4 different mech-
anisms for activity introduced in the Section 3.4. Then we investigate the occur-
rence of a transition between a solid-like and liquid-like state in a large, confluent
system, depending on the parameters of the model in Section 5.2. Having identi-
fied the liquid regime, we concentrate on the occurring patterns in cell shape and
tissue topology throughout Section 5.3. Afterwards, in Section 5.4, we investigate
the cellular structures with the measures of active flows and identify patterns like
the occurrence of vortices. At the end of the chapter, in Section 5.5, we compare the
findings for large, confluent tissue structures with the occurring patterns in confined
systems.

5.1| MODEL SETUP

In this chapter, we use 4 different modeling setups with the essential difference in
the mechanism of activity. The dynamics underlying cell motility are still not fully
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understood and, as a consequence, this is one of the most focused aspects of this
chapter and the thesis in general. To isolate the dependence on the mechanism of
activity, we have created experimental setups that are otherwise mostly identical. In
practical, this means we always consider evolution equations of the form

∂tφ + v0(vi ·∇φi) = ∆
δE
δφi

for a particular system energy E and propulsive force vi.
To define the random model and also the elongation model we use the Cahn-Hilliard
type energy introduced in (3.5) and the distance-based interaction in (3.11), which
reads

E ran,elo ({φi}) =
1

Ca
ECH ({φi}) +

1
In

E d
INT ({φi}) (5.1)

with the dimensionless weight parameters Ca and In. For the random model, activ-
ity is based on the stochastic law in (3.17), i.e. dθ(t) =

√
2DrdWi(t) and the resulting

vector

vran
i =

#
cos θi
sin θi

$

as already defined in (3.18). The evolution equation for a single Phasefield φi, ac-
cording to an H−1 gradient flow, is then given by

∂tφi + v0 (vran
i ·∇φi) = M∆µi ,

µi :=
δE ran,elo

δφi
=

1
Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2 (5.2)

with M a mobility factor. For the elongation model on the other hand, the active
force is given by

velo
i =

!

Ω
φ̃i∇ · œtissue

as introduced in (3.23) and the resulting evolution equation reads

∂tφi + v0

-
velo

i ·∇φi

.
= M∆µi ,

µi :=
δE ran,elo

δφi
=

1
Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
.

(5.3)

We emphasize at this point that the only difference between (5.2) and (5.3) lies in
the used advection term but we will later in this chapter see how significantly this
seemingly minor change affects the model behavior.
To define the polar model, the energy is assembled from the previously used compo-
nents ECH and EINT with the additional Oseen-Frank type energy defined in (3.24).
This approach now uses both a Phasefield φi and a polarization field Pi to describe
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a single cell and reads

E pol ({φi, Pi}) =
1

Ca
ECH ({φi}) +

1
In

E d
INT ({φi}) +

1
Pa

EPOL ({φi, Pi}) (5.4)

with the additional weight Pa. Note that this energy is identical to the one used in
Chapter 4 for the study of Topological and Geometrical Quantities. The propulsion
in this model is directly given by the (non-constant) polarization field and thus reads

vpol
i = Pi.

The evolution of φi follows an H−1 gradient flow while we use an L2 gradient flow
for Pi, so the whole system is described by

∂tφi + v0

-
vpol

i ·∇φi

.
= M∆µi ,

µi :=
δE pol

δφi
=

1
Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1

Pa

'
−1

2
‖Pi‖2 − β∇ · Pi

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
,

(5.5)

∂tPi = −δE pol

δPi
= − 1

Pa

-
− φiPi + ‖Pi‖2Pi − ∆Pi + β∇φi

.
. (5.6)

Note that we have, in contrast to (4.3), omitted the self-advection term in (5.6). While
it was originally included in the model for reasons of thermodynamical consistency,
we have observed no significant influence of this term on the model behavior and
thus removed it to create a setup that is easier comparable with the models without
subcellular structure.
The nematic model involves for each Phasefield φi an additional tensorfield, denoted
by Qi. In addition to the Cahn-Hilliard type energy and the interaction energy, we
use the Landau-de Gennes type energy introduced in (3.26). The total energy of the
system then reads

Enem ({φi, Qi}) =
1

Ca
ECH ({φi}) +

1
In

E d
INT ({φi}) +

1
Ne

ENEM ({φi, Qi}) (5.7)

for Ne a scalar weight parameter, as usual. The propulsion is defined as in (3.27) and
given by

vnem
i = ∇ · Qi.
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To define the evolution equations for φi and Qi, we again invoke an H−1 and L2
gradient flow, respectively and arrive at

∂tφi + v0 (vnem
i ·∇φi) = M∆µi ,

µi :=
δEnem

δφi
=

1
Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1

Ne

'
−1

2
trQ2

i + γ∇ · (Qi∇φi)

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
,

(5.8)

∂tQi = −δEnem

δQi
= − 1

Ne

-
− φiQi + trQi

2Qi − ∆Qi

+ γ
-
∇φi∇φT

i − ||∇φi||2 Id
. .

.
(5.9)

We notice similarities between this nematic model and the polar model in (5.5) and
(5.6), for example a restriction to the interior of the Phasefield. The key differences lie
in the propulsion mechanism and the different type of coupling between the Phase-
field and intracellular field Pi/Qi. Interestingly, the last term in (5.9), i.e. a source
depending on the Phasefield φi, is identical to the geometrical Q-tensor Si intro-
duced in (3.19), measuring cell elongations.
In case of confined systems, we additionally use the confinement energy introduced
in (3.29), which is independent of the mechanism of propulsion and has variational
derivative

δE d
CON

δφi
= B′(φi)wE(dcon). (5.10)

We never explicitly include the confinement in the dynamics of the intracellular
fields to keep the models more comparable. Due to the restrictive terms in both
(5.6) and (5.9), it is however implicitly enforced as Pi/Qi vanishes outside the cell
interior.
If we model confinement in our simulations, we thus add the term (5.10) to the equa-
tion for µi, scaled with a parameter Con. For example in the random model, the
evolution equations for the Phasefields φi then read

∂tφi + v0 (vnem
i ·∇φi) = γ∆µi ,

µi :=
δE ran,elo

δφi
=

1
Ca

'
−ε∆φi +

1
ε

W ′(φi)

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2

+
1

Con
B′(φi)wE(dcon),

(5.11)

and all other models are treated equivalently.
All evolution equations described here, are simulated in Ω × (0, T] for a finite end
time T > 0 and a two-dimensional domain Ω. The domain is equipped with peri-
odic boundary conditions. The partial differential equations are numerically solved
in AMDiS with the cell-based parallelization, see Section 3.6.
For the initial conditions, we choose three of the setups presented in Subsection 3.6.2
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and depicted in Figures 3.17 and 3.18, depending on the particular experiment. In
case of purely periodic systems, representing large, confluent tissue structures, as
done in Sections 5.2 - 5.4, we use the brick-wall structure in a rectangular domain.
In 5.5, however, we focus on confined systems in both rectangular and circular ge-
ometry (depending on the used norm in (3.28)). For rectangular confinements, we
simply alter the brick-wall structure by shifting every second row by half a brick-
width to prevent any boundary overlap. For circular geometries on the other hand,
we use the ring packing. More details and visualizations of the initial conditions are
found in Subsection 3.6.2.
Almost all parameters of the system are kept constant throughout the simulations
and can be chosen equal for all mechanisms of propulsion. A summary of the pa-
rameterset can be found in Table 5.1. Not listed are the self-propulsion parameter v0
and the scaling of the Cahn-Hilliard energy, namely Ca. We will observe throughout
this chapter how these two parameters, in interplay, have crucial influence on many
observables like the physical state of the system.

Ω ε M In Pa Ne Con β γ

[0, 100]× [0, 100] 0.15 1 0.025 1 1 0.004 0.01 0.1

TABLE 5.1: Numerical parameters used in all simulations throughout
Chapter 5.

To resolve the Phasefield boundaries well, without including unnecessary compu-
tational effort, we use the typical locally refined grids. In particular, we choose
h ≈ 0.2ε inside the diffuse interface, h ≤ ε in the interior and h ≤ 10ε in the ex-
terior of each Phasefield as visualized in Figure 3.16. We let the system relax for a
few small time steps and then use a constant time stepping with τ = 0.1.
We will use the rest of this chapter to investigate the influence of the propulsion
mechanism on the evolving patterns in cell shape and flow. In particular, we will
focus on the emergence of transition between a solid and liquid-type behavior as
observed in living tissue. Afterwards, we will analyze the typical shapes and inves-
tigate the flow of the cellular structure from the point of view of fluid dynamics in
turbulent systems. We conclude this chapter by changing the experimental setup to
a confinement.

5.2| SOLID-LIQUID TRANSITION IN TISSUE MODELS

Traditionally, it was a very common approach to consider tissue as purely liquid
material. This was motivated for example by experiments on the intrinsically driven
separation of two species of cells, as performed in [Ste62], strongly resembling typ-
ical phase separation behavior known from multi-liquid systems. Observations of
wetting-like phenomena, that have been investigated more recently in [DDBW12],
have strengthened this viewpoint even further.
There is, however, a variety of phenomena in living tissue that can not be explained
using the perspective of a constantly liquid state of matter. We will use the descrip-
tion of tissue as a system capable of transitioning between a solid and a liquid state.
This behavior of a so-called solid-liquid or glass transition was originally observed
in crystalline materials or polymers, see [KP61] and [SN59]. There has been grow-
ing experimental evidence that a solid-liquid transition plays a crucial role in tumor
spreading as reviewed in [Osw+17]. Furthermore it has been reported in [Mon+18]
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that a liquid-solid transition, i.e. the reversed process, happens during the body axis
elongation in Zebrafish.
At this point, we also want to clarify the connection to the physical phenomenon
jamming. Originally, the jamming transition describes the process of increasing par-
ticle density and the resulting solid-like behavior. However, it was pointed out in
[LN98] that jamming does not only depend on particle density but also on temper-
ature and activity. Keeping in mind, that in a state of confluence, resembled by
the high packing fraction in our models, the density is constant and temperature is
usually of minor importance in cellular systems, we observe that the phenomena
jamming transition and solid-liquid transition are in fact closely related.
Solid-liquid transitions have been extensively studied in vertex and voronoi mod-
els, see e.g. [Bi+14; Bi+15; Kra20]. They have been observed to depend mostly
on the strength of activity and the cell deformability. While in vertex models the
deformability is typically described using a shape index, we here follow [Loe+20]
and directly consider the surface tension, respectively the capillary number Ca. The
strength of activity is, due to the modular derivation of the models, always repre-
sented by v0.
To quantify the transition, an easily accessible structural property, the coordination
number q, i.e. the number of neighboring cells, is considered. In particular, we
measure the deviation from the hexagonal ordering, the optimal dense packing in
rectangular domains, which can be expressed by the statistic variance

µ(q) = ∑
q
(q − 6)2P(q) (5.12)

with P(q) the discrete probability distribution obtained from counting the presence
of each value q. We identify the liquid phase, if µ(q) > θP(q) holds for the variance
µ(q) and the threshold θP(q) = 0.001. Figure 5.1 shows the phase diagram for the
four models. Blue are regions where the observable indicates solid-like behaviour
and red are regions where µ(q) indicates liquid-like behaviour.

FIGURE 5.1: Phase diagram showing transition between solid (blue)
and liquid (red) state as function of the deformability parameter (cap-

illary number) Ca and the activity (self-propulsion strength) v0.

Although the qualitative behavior of the phase diagram is quite similar for all four
models and the previous studies using vertex and voronoi models like in [Bi+16],
the actual quantitative results in terms of the parameter range for v0 differ strongly.
Both the random and the polar model are driven by a normalized vector field with
a clearly preferred direction, which results in a quantitatively similar behaviour. For
the elongation and the nematic model, the driving force is computed as divergence
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of a tensor field and thus not normalized, indicating why they have a parameter
range which is different from the other two models. Especially for the nematic model
larger propulsion v0 is required to drive the system out of equilibrium, due to the
typical structure of the advection vnem

i as visualized in Figure 3.14.
The snapshots in Figure 5.2 show typical cell shapes for the four models in the liquid
and solid phase, respectively. The cell shapes are isotropic on average in the solid
phase and anisotropic in the liquid phase, leading to differences in the number of
neighbors. Also, the cell tracks significantly differ, they show dynamical arrest due
to caging in the solid phase and diffusion in the liquid phase. These tracks are ob-
tained by considering the center of mass of each cell in each time step. While the
solid phase is more or less identical in all four models, the liquid phase differs sig-
nificantly.

FIGURE 5.2: Snapshots of tissue morphology for solid phase (first
row) and liquid phase (second row), for the four models, random,
elongation, polar and nematic (from left to right). Shown are the lev-
elsets φi = 0 together with cell trajectories for some time span of the
cells in the center, indicating diffusion in the liquid phase and dynam-

ical arrest due to caging in the solid phase.

Having identified the liquid phase, we will focus most considerations on this param-
eter range. In particular, we will often fix the deformability parameter Ca = 0.0148
for all models and use three significant levels of activity strength v0, which we de-
note low, medium and high. The precise choice of v0 depends on the mechanism of
activity but is kept constant throughout the following section and can be found in
Table 5.2.

random elongation polar nematic
low 1.2 1.0 1.2 21.0

medium 2.4 2.0 2.4 24.0
high 3.6 3.0 3.6 30.0

TABLE 5.2: Chosen values for v0 classified as low, medium and high
activity for simulations in Chapter 5.

Having chosen these significant levels of activity, all in the liquid phase, we can
investigate the probability distribution P(q) for the coordination number q more in
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detail. In particular, the arising question is how mean and variance of the discrete
probability distribution P(q) depend on the strength of activity. To investigate this,
we have performed simulations for fixed Ca = 0.0148 and the three significant levels
of activity. The results in Figure 5.3 visualize P(q) as an average over all cells and
timesteps .

FIGURE 5.3: Coordination number probability P(q) for Ca = 0.0148
with low (blue), medium (orange) and high (green) values of v0. For

actual values see Table 5.2.

To also give a quantitative insight into the results depicted in Figure 5.3, we have
listed the values for both the empirical mean q = ∑q qP(q) and the previously intro-
duced variance µ(q) for all models in Tables 5.3 and 5.4, depending on the level of
activity.

q random elongation polar nematic
low 5.96 5.97 5.97 5.98

medium 5.87 5.92 5.86 5.90
high 5.81 5.88 5.80 5.87

TABLE 5.3: Empirical mean q of the coordination number for low,
medium and high activity.

µ(q) random elongation polar nematic
low 0.14 0.09 0.15 0.07

medium 0.32 0.20 0.38 0.24
high 0.50 0.32 0.54 0.33

TABLE 5.4: Empirical variance µ(q) of the coordination number for
low, medium and high activity.

In review of these results, we can conclude that the overall behavior of the mod-
els is similar. All models show empirical mean values q close to but slightly below
the value 6, corresponding with a perfect hexagonal packing. The shrinkage in the
values of q for increased activity, observable for all models, can be explained by the
typically larger crowding in certain parts of the domain that happens for high activ-
ity and the resulting free spaces in other areas, existing due to the packing fraction
slightly below 100%. Furthermore, the variance µ(q) increases for higher activity in
all models. This can be explained by larger cell deformations, see Section 5.3 for a
more detailed investigation, that may lead to a change in the number of neighbors
and also the more frequent exchanges in neighboring relations. A typical situation is
visualized in Figure 5.4 with larger areas of free space and more strongly deformed
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cells for high activity. The color coding visualizes q and emphasizes larger variance
for the high activity.

FIGURE 5.4: Typical cellular structure for low (left) and high (right)
activity in the polar model. Phasefields are visualized by the levelset

φi = 0. Color coding represents the coordination number q.

We will use the remainder of this chapter to investigate the liquid phase further,
with special focus on the occurring generic features and observables. Precisely, we
will analyze the influence of the activity mechanism on the typical cell shapes, the
evolving patterns of motion and long-range order structure.

5.3| SHAPE AND TOPOLOGY

Typical shapes of cells and corresponding alignment in tissue can vary strongly be-
tween different organisms. Even among the same type of cell, strong differences
can observed, depending for example on the age of the tissue or external factors like
mechanical stress or diseases.

5.3.1| DISTRIBUTION OF CELL SHAPE

Experimental data acquired in Human Bronchial Epithelial Cells (HBEC) in [Par+15]
for example indicates significant differences in cell elongation and shape between
asthmatic and non-asthmatic donors. On the contrary, most recent studies in [Ati+18]
indicate that the general distribution of these quantities follows a similar statistical
law, independent of the particular organism or disease.
In Section 5.2, we have already made the observation that the mechanism and strength
of activity can have a significant influence on the resulting cell shape. We will use
the beginning of this section to quantify this observation. Furthermore, we will val-
idate the universal laws given in [Ati+18] for our models and investigate resulting
topological properties like the occurrence of rosettes.
To measure the deformation of a particle cell, represented by a Phasefield φi, we use
the tensor

Si =

#
Si,0 Si,1
Si,1 −Si,0

$
=

#!
Ω
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which we have introduced in (3.19) as key component for the elongation propulsion
mechanism. As already mentioned, the eigenvalues

λ±
i = ±

+
S2

i,0 + S2
i,1

capture the strength of the deformation of φi. We will from now on restrict all con-
siderations to the positive eigenvalue λ+

i .
While the quantitative values of λ+

i depend on different modeling parameters, es-
pecially the cell area, and are thus of minor relevance, they can be compared among
different setups, given the fact that sizes are equal. We will in the following use the
notation ARi := λ+

i to clarify that we use this quantity to represent the aspect ratio
of a cell.
Similar to the studies on the coordination number q, we measure the discrete proba-
bility distribution P(AR) for all cells and timesteps in simulations with all 4 models
and the three significant levels of activity as introduced in Table 5.2. We compute
the empirical mean AR of the aspect ratio and the corresponding variance µ(AR).

AR random elongation polar nematic
low 5.88 5.39 7.49 5.97

medium 8.04 5.96 7.67 7.70
high 9.48 6.35 7.66 8.30

TABLE 5.5: Empirical mean AR of the aspect ratio for low, medium
and high activity.

µ(AR) random elongation polar nematic
low 3.04 3.38 4.18 2.96

medium 4.31 3.83 4.41 3.35
high 5.11 5.13 4.41 3.77

TABLE 5.6: Empirical variance µ(AR) of the aspect ratio for low,
medium and high activity.

In review of Tables 5.5 and 5.6, we observe in general an increase in both the av-
erage aspect ratio and the variance for higher activities. This means that cells in
more active systems are more strongly deformed and there is additionally more dif-
ferences in deformation across the tissue. This corresponds with the observations
for asthmatic HBEC cells that have been reported in [Par+15] to be more deformed
compared to non-asthmatic cells and quantifies the visual impression in Figure 5.4.
We furthermore observe differences between the models in the sense that the values
for the polar model change fewer, depending on the level of activity compared to
the random, elongation or nematic model.
Interestingly, we can also observe that the mean aspect ratio AR and the variance
µ(AR) seem to grow dependently, which coincides with the findings in [Ati+18].
There it has furthermore been proposed that the normalized aspect ratio AR

AR
follows

a universal k-Gamma distribution with probability distribution function

PDF(x, k) =
kk

Γ(k)
xk−1e−kx

where Γ(k) denotes the Legendre Gamma-function. This distribution is fully de-
scribed by the parameter k, and has a mean of unity. In [Ati+18] the normalized
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aspect ratio was investigated across a variety of organisms like Madin Darby Ca-
nine Kidney (MDCK) cells, the Drosophila embryo during ventral furrow formation
and the aforementioned Human Broncial Epithelia Cells. It has been observed that
AR
AR

follows the k-Gamma distribution for all of these organisms. Even more, the dis-
tribution parameter k has been found to always be in the range between 2 and 3.

FIGURE 5.5: Shape variability for the four models using the rescaled
parameter x = AR

AR
with low (blue), medium (orange) and high

(green) activity. Fitted values for the PDF (red) are computed us-
ing data for all three significant values of v0, resulting in kran = 3.11

,kelo = 2.59, kpol = 2.84 and knem = 3.88.

We have performed a numerical study to find out whether this general distribution
can also be found in Multi-Phasefield models for tissue. We have chosen the capil-
lary number Ca = 0.0148 and varied the activity according to the previously used
significant values in Table 5.2. The discrete probability distributions are visualized
in Figure 5.5 and the corresponding k-values for each v0 are shown in Table 5.7.

k random elongation polar nematic
low 3.18 2.68 2.82 3.23

medium 3.12 2.60 2.87 4.20
high 3.04 2.49 2.85 4.21

TABLE 5.7: k-Gamma parameter fit for all four models with low,
medium and high activity. The k-values are obtained with maximum-
likelihood-estimation fits for PDF(x, k) for one simulation run over

the whole time.
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Indeed, in accordance with the experimental results in [Ati+18], the data can be de-
scribed by a k-Gamma distribution and k does not vary strongly within each model
for the considered parameters. However, the k-values differ between the four mod-
els. While both the elongation and the polar model have values within the experi-
mentally predicted universal range between 2 and 3, both the random and the ne-
matic model are slightly above with the latter one leading to the largest values. These
larger values for k in the nematic model become evident from the construction of the
model, where active forces enhance elongation which is also apparent in Figure 3.14.
This also explains why k is growing for larger values of v0 only in the nematic model
while it stays approximately constant in all others. The larger fluctuations in the
polar and especially the nematic model can be explained by the stronger coupling
between shape changes and active forces.

5.3.2| ROSETTE FORMATION

Multicellular rosettes or higher-order vertices, where four or more cells meet, have
been found in many types of tissue [HMN14]. The importance of cellular rosettes
has been widely recognized and they have been proposed as an efficient mechanism
for tissue remodeling. Further details have already been discussed in Section 4.2,
where we have also visualized the occurrence of multi-cellular rosettes in the polar
model. This part will be devoted to a slightly more quantitative study, depending
on the mechanism of activity.
It is clear from all previous studies that the occurrence of rosettes and their ratio
among all vertices where cells meet, should not only depend on the propulsion
mechanism but also strongly on the level of activity v0. To create a setup comparable
with available experimental data, we have fixed the activity according the topolog-
ical observable µ(q) introduced earlier. In particular, we use the value µ = 0.4,
which has been reported in [Bla+06] to be the typical coordination number variance
in Drosophila embryos at an early stage of development (up to stage 7 before inter-
callation). Fixing the capillary number to Ca = 0.018, a lower value compared to the
studies on P(q) performed in Section 5.2, we have chosen v∗0 such that the observed
variance µ(q) matches the target value 0.4.

random elongation polar nematic
v∗0 1.3 0.6 1.3 19.0

TABLE 5.8: Activity levels v∗0 for the four models reproducing the
physical state µ(q) ≈ 0.4, given capillary number Ca = 0.018.

Indeed, using the values in Table 5.8, we obtain µ = 0.41, 0.40, 0.44 and 0.45 for the
random, elongation, polar and nematic model, respectively which we consider to be
physically comparable states. We have performed long-time simulations and mea-
sured the rosette ratio, i.e. the fraction of all vertices that connect more than three
cells. The results for all four models are printed in Table 5.9.

random elongation polar nematic
rosette ratio 4.8% 2.6% 5.5% 1.3%

TABLE 5.9: Rosette ratio for all four models, considered for one
simulation over the whole time for comparable physical states with

µ(q) ≈ 0.4 resulting from the choices v∗0 given in Table 5.8.
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Experimental data for the rosette ratio during the corresponding early stage of de-
velopment (up to stage 7 before intercallation) in Drosophila embryos [Bla+06] show
values between 5% and 6%, which is reproduced by the polar model. The random
model leads to a ratio which is only slightly below. The other two models lead to
significantly lower values. In later stages of development, this ratio is drastically
increased. For the Drosophila embryos, the peak fraction of cells in rosettes at a sin-
gle time point is 61% [Bla+06], but this corresponds to a different physical setting,
for which the models have not been calibrated. Other data, e.g. in Zebrafish em-
bryo [Hav+09], report a ratio of 1.8% which is closer to the values observed in the
elongation and nematic model. Even if only one physical state is considered, which
allows for a calibrated comparison with experimental data, the results strongly dif-
fer between the four models. These differences on the rosette ratio indicate a strong
dependency on the mechanism of propulsion.

5.4| FLOW PATTERNS IN CELLULAR STRUCTURES

The emergence of significant patterns in the flow of multi-cellular structures has
been widely observed in different organisms. One aspect is the phenomenon of col-
lective migration, investigated for example in [Pet+10], which we have extensively
studied and reproduced for the polar model in Section 4.3. At this point, we have
also observed that for sufficiently high activity and/or low coupling between shape
and polarization, a regime of more chaotic motion with no collective order evolves
which shall be the focus of this section.
In [BM+18] a large colony of Human Bronchial Epithelial Cells was investigated and
flow patterns reminiscent of active turbulence were observed. In models for active
liquid crystals such turbulent states emerge as a result of spontaneous defect pair
creation. In [MYD19] the velocity field is also analysed for a Multi-Phasefield model.
We here follow this approach and investigate the flow fields and vorticity patterns
for all four models.
The first step in the investigation of large scale flow in cellular structures, compared
to active turbulent systems, is the definition of a global velocity field v. We define
the velocity vi of a single cell, using the center of mass

xi(t) =

!
Ω xφ̃i(t, x)dx!
Ω φ̃i(t, x)dx

(5.13)

which involves the [0, 1]-rescaled Phasefield φ̃i previously introduced. With an ex-
plicit time-scheme, using the travelled distance between the centers of mass in two
consecutive time-instances, we can define the velocity vi of each cell.
Starting from this single cell velocity, it is possible to choose different definitions of
a global velocity field v. In [MYD19], an approach similar to the one we use for the
global deformation tensor in (3.22) is used, which reads ∑i φ̃ivi. The disadvantage
here is the discontinuity in densely packed systems, which can only be handled us-
ing a global smoothing. We use a more simple approach, involving a global linear
interpolation with the data points given by (xi, vi) onto a globally equidistant grid
with 1000× 1000 points. This has the advantage of being numerically more efficient,
compared to handling all the locally refined Phasefields φ̃i, and handles the smooth-
ing implicitly.
Figure 5.6 shows a Line Integral Convolution (LIC) visualization of the global veloc-
ity fields v for the low velocity in Table 5.2. We observe local maxima in the velocity
magnitude, visualized by dark red color and the occurrence of local vortices. The
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combination of these two observations resembles typical behavior in turbulent flow.

FIGURE 5.6: LIC visualization of large scale flow dynamics for the
four models: random, elongation, polar and nematic (from left to
right) in the low activity regime according to Table 5.2. Color rep-
resents the magnitude of the velocity with the same scaling for all

models.

Interestingly, the vortices observable in the LIC visualization in Figure 5.6 look sim-
ilar in all four models. To confirm this observation, we have computed the vorticity-
vorticity correlation function

Cω(r) =

!
Ω ω(x, r)ω(x, 0)dx!

Ω ω(x, 0)2dx

where ω(x, r) denotes the vorticity average for all points of distance r from point x.
The results are shown in Figure 5.7 for distances up to r = 50, in order to avoid any
influence from the periodic boundaries. The previous observations are confirmed by
the very similar behavior for Cω in all models. The common feature is a well-defined
length-scale at which the vorticity correlation attains negative values, corresponding
with the occurrence of vortices at a particular distance. The position and depth of
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the minimum in the polar model deviates from the other models which can be ex-
plained by the previously examined tendency to develop collective behavior.

FIGURE 5.7: Vorticity-vorticity correlation function Cω(r) depending
on the distance r for all models. The data is averaged over 3 simula-
tions with the "low" values for the self-propulsion velocity, see Table
5.2. The other values lead to qualitatively similar results. The inlet

shows the position of the minima for the other activity values.

To quantify this further, we have measured the positions of the minima for the activ-
ity levels low, medium und high and visualized those in the inset of Figure 5.7. For
the random, elongation and nematic model, the correlation length scale decreases
for higher activity as typical for turbulent systems. In the polar model, we observe a
different behavior which might again be due to collective phenomena, in our studies
only occurring for this mechanism of propulsion.
We have observed that, in a certain parameter range of the activity, all models re-
semble certain phenomena of turbulent flows, like the occurrence of vortices with a
significant length scale. While all studies in the chapter have been performed in a
system with periodic boundaries, representing a large, confluent monolayer of cells,
a variety of experimental data is available for confined systems. We will use the next
section to investigate how the geometry influences the dynamics by using a confined
setup.

5.5| OSCILLATIONS IN CONF INEMENT

The geometry is a key factor in the evolution of flow and movement patterns in a
variety of systems. In particular, for tissue, where experimental setups in vitro usu-
ally involve plating cells on a substrate with limited amount of available space, this
is of major importance.
The first Multi-Phasefield simulations of such situations consider persistent rota-
tional motion of two cells [Cam+14] on adhesive micropatterns. In this model, vi
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follows from a reaction-diffusion equation to be solved within each cell. The emerg-
ing patterns in concentration of Rho GTPase define a polarity, which determines
strength and direction of motion. For a more detailed modeling approach in this di-
rection, we refer to [MV14a] and the references therein. Already these simulations,
which consider the simplest possible collective motion, show a strong dependency
of the emerging behaviour on subcellular features and substrate geometry.

FIGURE 5.8: Cell shapes defined as the φi = 0 levelset alongside tra-
jectories for the center of mass for some individual particles in all
models with medium values of activity according to Table 5.2. Differ-

ent types of local oscillations can be observed.

Recent studies in [Pey+19], with more cells in a rectangular confinement could re-
produce sustained oscillation experimentally observed for MDCK cells, human ker-
atinocytes (HaCat) and enterocytes (CaCo2). The considered models in these studies
are related to the elongation model. Here, we have performed a similar study for all
four models in a square confinement modeled by the repulsive potential introduced
in Section 3.5 and with the initial condition visualized in Figure 3.18 (Left). The re-
sulting trajectories for the centers of mass of different cells alongside the φi = 0 lev-
elsets are depicted in Figure 5.8. We observe differences in the movement between
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the models. While the polar model shows very long ranged movements, the trajec-
tories in the random model cover shorter distances and are more strongly perturbed,
likely due to the random advection. In the elongation and nematic model trajecto-
ries are shorter and thus resulting circular movements have smaller radii. We can,
however, observe a certain type of rotational motion in all models, indicating that
this local behavior is indeed mostly guided by the geometry and not the mechanism
of propulsion.

FIGURE 5.9: Kymographs of radial and orthoradial velocity compo-
nents for the four models: random, elongation, polar and nematic,

from left to right.

Now, we focus on a slightly different experimental setup by changing the confine-
ment shape to a circle and the corresponding initial structure depicted in Figure 3.18
(Right). In particular, we compare the four models with experiments on MDCK cells
in circular confinements as performed in [Dox+13; Def+14]. The studies show that
confined epithelia exhibit collective low-frequency radial displacement modes and
rotational motion, which was partly reproduced in corresponding particle-based
simulations [HS17].
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The circular geometry allows to split the velocities vi into radial and orthoradial
components vradial

i and vortho
i , given by

vradial
i = vi · (xi − c)

vortho
i = vi × (xi − c)

for cell position xi and domain center c. The mean spatial distribution results from
an averaging over all cells with similar distance from the center.
These values are shown in Figure 5.9 for all four models. While the radial component
is qualitatively similar in all four models, the orthoradial component qualitatively
differs between the models. Only the polar model could reproduce the rotation of
the monolayer as a whole and a change in direction of the interior part, which is
assumed to be responsible to a comparable size of the confinement and the spatial
scale resulting from the vorticity-vorticity correlation in Figure 5.7. The simulations
are performed with the medium values in Table 5.2.

FIGURE 5.10: (First row) Cell morphology and number of neighbors.
(Second row) Time averaged bond number. (Third row) Coordination
number probability computed excluding cells in contact with confine-
ment. The corresponding values from Figure 5.3 without confinement

are shown for comparison (dashed curves).

To further analyze the emerging properties in the circular confinement, Figure 5.10
shows snapshots of the configuration, highlighting the cell morphology and their
neighbour relations. We also compute the bond number

Ψj
6 =

1
|Nj|

,,, ∑
k∈Nj

e6iθjk

,,,

for Nj the set of neighbors, θjk the angle between xj and xk and i the imaginary unit.
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If Ψj
6 = 1 for some cell, all neighbors are in perfect hexagonal arrangement while

the value 0 represents isolated cells, see [Loe+20]. The quantity is computed locally
and averaged over time, essentially showing a global liquid like behavior for all four
models. The coordination number probability is computed as in Figure 5.3, but ex-
cluding the cells in contact with the confinement. All four models show a decrease
in the mean value as a result of the confinement. The elongation and nematic models
also show an increase in the variance if compared with the results in Figure 5.3 and
thus indicate a shift of the solid-to-liquid transition towards lower activities in the
phase diagram.
In real systems, confinement has a tremendous effect on the emerging macroscopic
behaviour and might even induce morphogenesis-like processes. Our simulation re-
sults indicate that the emerging behavior in confinements strongly depends on sub-
cellular details and the way how activity is enforced on the cellular level in the mod-
eling approach. While the emerging local oscillations in rectangular confinements
are similar, even though the length scales differ, the emergence of global oscillations
in round confinements strongly depends on the mechanism of activity.

5.6| CONCLUSIONS

We use Multi-Phasefield models with four different mechanisms of propulsion to an-
alyze confluent and confined monolayers of deformable cells. Various of the known
generic features of confluent monolayers are reproduced by all four models, high-
lighting the robustness of these features on microscopic details. This includes a
solid-to-liquid transition, which leads after appropriate calibration of parameters to
similar phase diagrams as obtained with vertex and voronoi models [Bi+16]. Other
common features are the spontaneous formation of vortices as well as the emergence
of active turbulent flows.
However, the four models also lead to different results if more quantitative measures
are considered. This becomes apparent for the deformation of cells. While the shape
variability of the cells can be described by a k-Gamma distribution over a broad
range of parameters for all four models, the narrow range of the parameter k, found
in [Ati+18] for various epithelia systems, could only be reproduced by the elonga-
tion and polar model. Not only geometrical properties of the cells, also topological
features differ between the four models. The ratio of multicellular rosettes depends
on the microscopic details. As these rosettes provide an efficient mechanism for tis-
sue remodeling, see e.g. [YB19], these differences need to be considered in further
model extensions. Simulations in confinement reveal further differences of the mod-
els. Induced global rotation, as observed in circular confinements for MDCK cells in
[Def+14; Dox+13] and reproduced by particle-based simulations [HS17] could only
be observed with the polar model.
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6| CELLULAR STRUCTURES AS
ACTIVE NEMATICS

Over the last years, it has been a growing focus of interest to investigate cellular
structures in terms of their alignment and deformation structure. To be more precise,
it has been observed that different systems resemble a behavior known from liquid
crystals, namely a long range orientational order structure and the occurrence of
topological defects.

6.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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The nematic phase is typically characterized by (partial) alignment of rod-shaped
particles, with local defects in the orientation, see Section 2.4 for more details. For
elongated bacteria or subcellular filament structures, the connection to living sys-
tems is rather obvious, see [FKF93] and [Del+18]. On the other hand, even for ep-
ithelia tissue, composed of fairly isotropic cells, a certain nematic order has been
observed, which is less obvious. The main focus of this chapter will be an inves-
tigation of the previously introduced Multi-Phasefield models in terms of arising
nematic structure, in order to elaborate their capabilities in the representation of ep-
ithelial tissue further.
One of the most common ways of investigating nematic behavior is through the
topological defects in the orientation fields. These are regions, where the nematic or-
der is lost, in order to minimize stresses. Defects are characterized by a topological
charge, in the mathematics community also sometimes called the winding number.
From theory and experiments on nematic systems, it is known that ± 1

2 defects are
energetically most favorable in two-dimensional systems, classifying them as per-
fect focus for the following investigations.
In comparison to liquid crystalline materials, however, living systems are usually
driven by active forces. Thus, we compare our findings with active nematic struc-
tures, characterized by spontaneous changes in the orientation fields, leading to gen-
eration and annihilation of topological defects. It has been proposed in [GD14] that
− 1

2 defects in active nematics are moved around passively, while + 1
2 defects behave

as self-propelled particles, with velocities proportional to activity. The latter relation
can in turn provide a way to estimate activity in living systems, by measuring the
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velocities of defects in the nematic alignment.
The motion of defects does not only allow to measure activity, it also provides a
good way of distinguishing extensile and contractile behavior in living systems. For
extensile systems, + 1

2 defects move towards their ‘head’, as has been shown exper-
imentally for microtubule (MT) bundles [San+12], human bronchial epithelial cells
[BM+18] and Madine Darby Canine Kidney (MDCK) cells [Saw+17], whereas for
contractile systems they move towards their ‘tail’, which has been observed in ex-
periments on mouse fibroblast cells [Duc+17]. In [Saw+17] it was found that near
+ 1

2 defects the rate of apoptosis of MDCK epithelial cells is higher, due to the pres-
ence of isotropic compressive stresses. In contrast, the − 1

2 defects are characterized
by tensile stresses and do not trigger apoptosis. In [KKS17], collective dynamics of
cultured murine neural progenitor cells (NPCs) are studied. At high densities, the
cells were capable of forming an aligned pattern. Rapid cell accumulation at + 1

2 de-
fects and escape from − 1

2 defects has been identified.

The structure of this chapter follows the goal of identifying and analyzing the topo-
logical defects in cellular alignments. In Section 6.2, we will introduce methods
for the identification and tracking of topological defects in the nematic structure of
Multi-Phasefield models for tissue, flexibly transferrable to experimental setups. Af-
terwards, we will test these methods, investigating the density, creation and move-
ment of topological defects in Section 6.3. From these observations and an additional
investigation of mechanical properties like velocities and derived strain rates in the
vicinity of topological defects in Section 6.4, we are able to draw conclusions on the
overall behavior of the system, depending on the mechanism of propulsion.

6.1| MODEL SETUP

In this chapter, we will use an almost identical setup compared to Chapter 5, namely
4 different mechanisms of propulsion with the common evolution equation

∂tφ + v0(vi ·∇φi) = ∆
δE
δφi

,

varying in the choice of vi and the system energy E . For the sake of readability, we
will use this section to shortly review the used models without going into detail. For
more insights into the definition of the energy contributions and the mechanisms
of activity, we refer to Section 3, while the derivation of the evolution equations is
performed more in detail in Section 5.1.
The random model is given by the evolution equation

∂tφi + v0 (vran
i ·∇φi) = M∆µi ,

µi =
1

Ca

'
−ε∆φi +

1
ε

W ′(φi)

(
+

1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2

with propulsion

vran
i =

#
cos θi
sin θi

$
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and the movement angle θi following the Wiener process dθ(t) =
√

2DrdWi(t).
The elongation model follows the partial differential equation

∂tφi + v0

-
velo

i ·∇φi

.
= M∆µi ,

µi =
1

Ca

'
−ε∆φi +

1
ε

W ′(φi)

(
+

1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
.

with

velo
i =

!

Ω
φ̃i∇ · œtissue

and œtissue = −Q the global deformation tensor defined in (3.22). For both the
random and the elongation model, the whole state of the system is represented by
the set of Phasefields {φi}.
The polar model uses both Phasefields {φi} and polarization fields {Pi} to describe
cell shapes and orientations. The evolution is given by

∂tφi + v0

-
vpol

i ·∇φi

.
= M∆µi ,

µi =
1

Ca

'
−ε∆φi +

1
ε

W ′(φi)

(
+

1
Pa

'
−1

2
‖Pi‖2 − β∇ · Pi

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
,

∂tPi = − 1
Pa

-
− φiPi + ‖Pi‖2Pi − ∆Pi + β∇φi

.
.

with propulsion defined by vpol
i = Pi.

For the nematic model, we use Phasefields {φi} and Q-tensor fields {Qi} to describe
the cell shape and intracellular dynamics. To describe the evolution, we use partial
differential equations

∂tφi + v0 (vnem
i ·∇φi) = M∆µi ,

µi =
1

Ca

'
−ε∆φi +

1
ε

W ′(φi)

(
+

1
Ne

'
−1

2
trQ2

i + γ∇ · (Qi∇φi)

(

+
1
In

1
B′(φi)∑

j ∕=i
wE(dj) + w′

E(di)d′i(φi)∑
j ∕=i

B(φj)

2
,

∂tQi = − 1
Ne

-
− φiQi + trQi

2Qi − ∆Qi + γ
-
∇φi∇φT

i − ||∇φi||2 Id
. .

and the propulsion

vnem
i = ∇ · Qi.

We simulate the evolution equations in Ω × [0, T] for a finite end time T > 0 and
a two-dimensional rectangular domain Ω. In this chapter, we only consider peri-
odic boundary conditions. For the simulation we use AMDiS with the cell-based
parallelization as explained in Section 3.6. For the initial conditions, we always use
the most simple configuration presented in Subsection 3.6.2, namely the brick-wall
structure that was depicted in Figure 3.17 (Left). Additionally, we use the typical
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setup for step size in time and space, in particular h ≈ 0.2ε in the diffuse interface,
h ≤ ε in the interior and h ≤ 10ε in the exterior while τ = 0.1 is constant after a few
relaxation steps with smaller time step. Just like in the previous chapters, we keep
the parameter set constant. The values for all parameters, except the self-propulsion
v0, can be found in Table 6.1.

Ω ε M In Pa Ne β γ Ca
[0, 100]× [0, 100] 0.15 1 0.025 1 1 0.01 0.1 0.0148/0.018

TABLE 6.1: Numerical parameters used in all simulations throughout
Chapter 6.

In particular, for the deformability parameter Ca, two different values are given as
there is a strong interplay with the activity v0, leading to the solid-liquid transition
studied in Section 5.2. For the activity levels, we choose two different general setups,
similar to Chapter 5. If a dependence on the activity is required for the experimental
setup, we again use the levels low, medium and high that have been already intro-
duced in Chapter 5 alongside Ca = 0.0148, in order to ensure a liquid state. If, on
the other hand, we require only a single level of activity with a setup as close as pos-
sible to experimental data, we use the value v∗0 derived in Subsection 5.3.2 according
to the reported values in [Bla+06] in combination with Ca = 0.018. All considered
levels of activity with their corresponding deformability parameter can be found in
Table 6.2, for the four models.

random elongation polar nematic Ca
v∗0 1.3 0.6 1.3 19.0 0.018

low 1.2 1.0 1.2 21.0
0.0148medium 2.4 2.0 2.4 24.0

high 3.6 3.0 3.6 30.0

TABLE 6.2: Activity levels v0 for the four models with their corre-
sponding deformability parameter Ca used throughout Chapter 6.

6.2| METHODS

An investigation of nematic order structure is usually an investigation of the topo-
logical defects in the orientation field. How a nematic ordering can be identified in
cellular structures and, in particular, how it is possible to identify and track defects,
is not a trivial question. We will use this chapter to present a robust set of methods,
relying solely on cell shapes - in the modeling approach of this thesis represented by
Phasefields but easily transferrable to experimental setups.

6.2.1| GLOBAL ORIENTATION FIELD

The first step in the investigation of tissue from a nematic perspective is the defi-
nition of the global orientation field, i.e. a field of rod-like particles with head-tail
symmetry. We will follow the concepts introduced in Section 2.3 and describe the
system using a Q-tensor, see Definition 2. In particular, we will use the deformation
tensor Si for each Phasefield φi that was introduced in (3.19), leading to propulsion
driven by cell shape in the elongation model.
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To define the global field Q, we use the same approach as in the elongation-based
activity mechanism, namely the smooth, piecewise combination of individual defor-
mations involving the rescaled Phasefield φ̃i given by

Q = ∑
i

φ̃iSi = ∑
i

φ̃i
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2
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,

which was already defined in (3.22). The director field is then given by the eigenvec-
tors of Q corresponding to the positive eigenvalues and denoted by η+. We observe
that this approach defines a global director field, representing alignment in the tis-
sue given by individual cell deformations.
Although this approach already creates a well-defined global quantity, it is usually
appropriate to apply a smoothing filter, e.g. of Gaussian type, to create more regular
transitions between individual cell deformations and thus also visualize topological
defects more easily. The process of defining local deformation tensors Si with eigen-
vector η+

i and the corresponding global quantities is visualized in Figure 6.1.

FIGURE 6.1: Definition of Q as continuos, smoothed combination of
Phasefields φi and local deformation tensors Si. Visualized are the
φi = 0 levelsets, the local elongation of each Phasefield φi represented
by the eigenvector η+

i (red) and the resulting global field of eigenvec-
tors η+ (blue).

Even though the approach is perfectly suited for Phasefield type descriptions and
was developed for those, it also transfers straight forward to experimental data. For
example in epithelial tissue, a pre-processing is necessary, e.g. using image segmen-
tation methods like the one proposed in [LK11] for the transformation of real cell
shapes into a Phasefield formulation.

6.2.2| IDENTIF I CATION AND TRACKING OF TOPOLOGICAL DEFECTS

To identify topological defects in the orientation fields of nematic structures, two
main components play a role, namely the position and the topological charge (wind-
ing number). We will now construct a robust method, capable of finding those topo-
logical defects and afterwards determining their topological charge.
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In order to find the positions of topological defects, it is crucial to recall [DH94] that
they are singular points of the underlying tensor field

Q =

#
Q0 Q1
Q1 −Q0

$
.

As a consequence, a method to identify defect locations, can be constructed from the
condition

Q0 = Q1 = 0,

which can be efficiently evaluated in a variety of implementations for post-processing,
e.g. the filter CONTOUR in MATPLOTLIB for PYTHON.

FIGURE 6.2: Schematic vi-
sualization of a director ro-
tating around a defect core
with + 1

2 (top) and − 1
2 (bot-

tom) charge. Taken from
[Wen+20].

Much more interesting is the identification of the topo-
logical charge q, sometimes also called winding number.
It represents the number of rotations a director performs
upon a full 2π rotation around the defect core. Defining
the orientation angle

Θ = tanh

4

5 Q0

Q1 +
+

Q2
0 + Q2

1

6

7,

the winding number ∐ is mathematically given as the
contour integral

∐ =
1

2π

"

C
dΘ

for any closed curve C around the defect core.
In Figure 6.2, the rotation of the director for the two most
common charges in two-dimensional nematic systems,
namely + 1

2 and − 1
2 , is visualized. It is, however, numer-

ically sometimes problematic as the definition of a con-
tour integral is not optimal for discrete data.
Different alternative approaches to determine the topo-
logical charge have been proposed. We have, for exam-
ple, successfully implemented and tested an algorithm
involving an artificial neural network to deal with this
problem, details can be found in [Wen+20]. For this the-
sis, we will however focus on a more physical approach
inspired by the work in [DH94]. Keeping in mind that
the defects are singular or degenerate points in the field
Q, we can compute the sign of the degeneracy by

δ =
∂Q0

∂x
∂Q1

∂y
− ∂Q0

∂y
∂Q1

∂x
(6.1)

and then use the result in [Del95] to conclude

∐ =
1
2

sign (δ) . (6.2)
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This approach has a variety of advantages, the most relevant one being the uncom-
plicated numerical realization. With this, we are able to locate the positions of defects
and also identify the topological charge, both easily computable from the compo-
nents of Q. The process of detection and identification is visualized in Figure 6.3.

FIGURE 6.3: Detection and identification of topological defects in the
alignment of Multi-Phasefield structures. Visualized are the φi = 0
levelsets, the local elongation of each Phasefield φi represented by
the eigenvector η+

i (red), the resulting global field of eigenvectors η+

(blue) and the resulting + 1
2 (green) and − 1

2 (purple) defects.

With known defect positions and charges in each time frame, we have to connect
them from frame to frame. Dozens of software tools have been developed for this
task in the context of particle tracking, see e.g. [MDS12] for a review. For a more de-
tailed comparison of these methods, we refer to [Che+14]. We here use an approach
described in [SK05]. It involves finding a set of associations between the defect lo-
cations in subsequent frames such that a cost functional is minimized. It is based
on a particle matching algorithm using a graph theory technique. We use the al-
gorithm for + 1

2 and − 1
2 defects individually, treating them as independent particle

types to avoid associations between defects of different charge. The tool is available
as a plugin for ImageJ and Fiji (www.imagej.net), see [Sch+12].

6.2.3| DEFECT-ALIGNED AVERAGING

It is common for active nematic systems to express significant patterns for different
physical quantities in the vicinity of topological defects. For example, the average
velocity fields and resulting strain rates but also the average isotropic stresses have
been observed to express significant structure close to + 1

2 and − 1
2 defects, see e.g.

[Doo+18]. These patterns are usually aligned with the orientation of the topological
defects, for example tail-to-head flow in MDCK monolayers has been observed in
[Bal+21], indicating extensile behavior.
For these investigations, it is crucial to have efficient methods for an averaging that
takes the orientation of the defect into account. In review of Figure 6.4, we recall
that + 1

2 defects have exactly one orientation while the directors form a tri-fold for
defects with − 1

2 charge. For the sake of simplicity, we will from here on out restrict
the averaging of physical properties to + 1

2 defects to overcome this difficulty.
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FIGURE 6.4: Schematic visualization of + 1
2 (left) and − 1

2 (right) de-
fects with corresponding orientations indicated by red arrows.

The orientation of each defect can then be computed from the director field, in our
case the eigenvectors η+ of Q. In particular, we define the quantity

p =
∇ · (η+ ⊗ η+)

|∇ · (η+ ⊗ η+) | .

At the position of a + 1
2 defect, and also in its vicinity, the vector p represents the

defect orientation, pointing from defect core to its tail. It is sufficient to compute this
quantity locally, in a small box around every + 1

2 defect. Given p = (p1, p2) for each
defect k, the orientation angle ρk can be computed by

ρk = arctan
'

p2

p1

(
.

The most crucial step in the design of our algorithm for the averaging procedure
with respect to every individual angle ρk, is the definition of a new coordinate sys-
tem for each defect. In a continuos formulation, the coordinate system can be seen
as rotated polar coordinates. For a point (x, y) in Cartesian coordinates, the ra-
dius variable r(x, y) = x2 + y2 is computed just as usual while the angular variable
θ̃(ρk; x, y) = tanh y

x + ρk is shifted by the angle of the current defect. The ρk-aligned
averaging of a quantity vk over N defects, given in this coordinate system, is then
simply given by

v =
1
N

N

∑
k=1

vk(r, θ̃).

To generate the discrete set of points with respect to this coordinate system, we have
chosen to use an arrangement of points in multiple circles of increasing radii while
the number of points in each circle also depends on the radius. This neglects the box
corners, but for an appropriate choice of the box, this is far enough from the defect
core.
Figure 6.5 visualizes the definition of the round coordinate for two exemplary ori-
entation angles, indicated by the red arrow in analogy with Figure 6.4. We observe
that points of equal position, with respect to the defect orientation p, have the same
color coding, i.e. the same index. For any quantity interpolated on this set of points,
the ρk-aligned averaging is then given by a simple summation.
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FIGURE 6.5: Visualization of round coordinates for a given defect ori-
entation with ρk = π

2 (left) and ρk = −π
2 (left). The arrow represents

p while the dots are the grid points. The color scheme for the dots
represents their index from dark blue to dark red.

In this section, we have derived a powerful set of methods for the efficient iden-
tification and tracking of topological defects in the nematic alignment of cellular
structures, that can also be transferred to experimental setups. Furthermore, we
have invented a simple method to compute defect-aligned averages. We will use
the rest of this chapter to apply these methods to different setups, in order to gain
a deeper understanding into the nematic structure of Multi-Phasefield models for
cellular structures. In particular, we want to analyze how the mechanism of activity
influences these alignments.

6.3| DENSITY, CREATION AND MOVEMENT OF TOPOLOGICAL

DEFECTS

Having introduced a set of methods for the location, identification and tracking of
topological defects in the nematic alignment structure of tissue, we want to inves-
tigate their dynamics. In particular, it is of interest to analyze the density and cre-
ation rates of topological defects, depending on the level of activity. Furthermore,
we want to investigate their movement speed and direction, as this can give strong
indications on the nematic structure of the system in general, e.g. if contractile or
extensile behavior dominates.
It has been observed in [Saw+17] how the defect dynamics depend on the levels of
activity in epithelial structures. In particular, a monolayer of Madine Darby Canine
Kidney (MDCK) cells was treated with blebbistatin to reduce the activity. A clear
correlation, validated by washout of the blebbistatin to increase restore wild-type
activity, between activity and the density of defects has been observed.
We compute both the density of topological defects and the related creation rate for
the three levels of activity named low, medium and high that are given in Table 6.2.
The density is defined as the average number of defects per time frame while the
creation rate measure the number of defects that occur for the first time in a given
frame. The results are shown in Figure 6.6, averaged over many timesteps. The
experimentally predicted increase in the defect density is qualitatively reproduced
by the random, elongation and polar model. The nematic model shows slight de-
viations with no consistent slope. The behavior correlates with the defect creation
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FIGURE 6.6: Average density (left) and creation rate (right) of topo-
logical defects for all four models and the levels of activity found in

Table 6.2.

rate. Comparing the absolute values, the nematic model leads to significantly larger
defect densities but lower creation rates, which indicates stronger persistence of de-
fects. On the contrary, the random model leads to significantly larger creation rates,
which might be explained by the random component of the model.
While we observe slight deviations between the mechanisms of activity in terms of
the density and creation rate of topological defects, the overall qualitative behavior
is quite similar. To isolate the dependence on mechanism of propulsion from the
level of activity, given by v0, we now go one step further and concentrate on the
significant value v∗0 given also in Table 6.2. This creates a topologically equivalent
setup for all four models based on experimental data, see Subsection 5.3.2.
We start with an examination of the velocity distributions for topological defects. To
do this, we perform long time simulations, identify and track the topological defects
with the methods presented in Section 6.2 and then analyze defect trajectories. The
velocity is then simply defined as a backward difference between the positions of a
single defect in two consecutive time frames.
In Figure 6.8, we have visualized histogram data on the defect velocities gathered
from long time simulations for all four models. We can observe similarities in the
overall distribution, for example a higher number of low velocities which is not sur-
prising. It is, however, obvious from these results that significant differences are
present, for example the average velocities which we have printed in Table 6.3 for
easier access to the quantitative results.

random elongation polar nematic
+1/2 0.975 0.748 0.635 0.276
−1/2 0.930 0.673 0.671 0.312

TABLE 6.3: Average velocities for + 1
2 and − 1

2 defects for all 4 models.
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FIGURE 6.7: Velocity distribution of + 1
2 (green) and − 1

2 (purple)
topological defects for all four models: random, elongation, polar and

nematic, from top-left to bottom-right.

While the average velocities of topological defects strongly differ between the four
models, the velocity distribution of + 1

2 and − 1
2 defects is always quite similar. This

shows a qualitative difference to coarse grained active nematodynamics and experi-
mental data, e.g. for active microtubule networks, see [DeC+15] or [OD16]. Detailed
data on the velocity distribution of + 1

2 and − 1
2 defects for epithelia cell cultures are

not separately available. However, for HBECs, [BM+18] indicates no apparent quan-
titative differences between both types of defects in terms of their trajectories on long
time scales, which might support the simulation results. However, differences be-
tween + 1

2 and − 1
2 defects become evident if the direction of the defect velocity is

correlated with the local properties of the defect. Figure 6.8 shows the distribution
of directions with respect to symmetry properties of + 1

2 and − 1
2 defects. While the

velocity of − 1
2 defects does not show any preferred orientation for all models, which

supports the passive (diffusive) role of these defects, the velocity of + 1
2 defects is

strongly correlated with the head or the tail of the defect. Only the random model
does not show this property. All other models support the active role of + 1

2 defects
in active nematic systems [Doo+18]. The elongation model shows a strong correla-
tion of the direction of movement with the head of the defect, indicating extensile
behaviour. The polar and nematic model show a stronger correlation with the tail of
the defect, indicating contractile behaviour. For a detailed discussion of these rela-
tions in active nematics we refer to [GD14].
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FIGURE 6.8: Distribution of direction of motion with respect to sym-
metry properties of + 1

2 (top, green) and − 1
2 (bottom, purple) defects

for all four models. A schematic description of the defects defines the
considered symmetry.

The observation of extensile behavior in the elongation model and contractile be-
havior for polar and nematic model is in agreement with the results in Table 6.3.
In [Bal+21] the average velocity in monolayers is compared between extensile and
contractile systems at similar density, with larger velocities for the extensile system.
This is represented by the fact that the elongation model has higher average defect
velocities than the polar and nematic model. The even higher number for the ran-
dom model results from the large velocity fluctuations in this model.
The studies in this chapter have given a first deep insight into the dynamics of topo-
logical defects in the nematic alignment of cellular structures. We have observed
strong similarities in the density and creation rate and at least qualitatively similar
behavior in terms of the velocity distribution. The absolute values of the velocity
have shown significant differences between the four models, even more strongly
visible when taking the alignment with the head-tail direction of the defect into
account. The results have indicated that the elongation model produces extensile
behavior while the polar and nematic model show contractile movement patterns.
We will use the rest of this chapter to investigate this difference more in depth by
analyzing patterns in physical quantities, close to topological defects.

6.4| MECHANICAL PROPERTIES IN THE VICINITY OF TOPOLOG-
ICAL DEFECTS

On the single-cell level, contractile behavior is very common and extensively stud-
ied, e.g. in [SS02]. This property was also reproduced in computational models for
single cells, for example in [MV14a]. On the tissue scale, however, the behavior is
less clear and has only started to be a focus of interest in recent years. While fibrob-
lasts have been observed in [Duc+17] to behave as a contractile system, the results
for epithelial systems show the opposite behavior. Extensile behavior has been ob-
served for MDCK in [Saw+17], for HBEC in [BM+18] and for neural progenitor cells
in [KKS17].
The particular mechanism behind the emergence of contractile or extensile behav-
ior on the large scale is still not fully understood. However, experimental results in
[Bal+21] have strongly contributed to a deeper understanding. Occurring patterns
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in the strain and stress in the vicinity of topological defects have been measured
for two experimental setups using MDCK tissue, one with wild-type cells and the
other one using E-cadherin knockout, effectively removing intercellular forces. In-
terestingly, while the experiments in the wild-type culture have confirmed prior ob-
servations of an extensile behavior, the E-cad knockout has led to strain and stress
patterns known for contractile systems. Furthermore, the experimental results were
validated using a Phasefield model, involving essentially two different contributions
to activity, namely an elongation-based approach similar to the one used in this the-
sis and a polar force from contact inhibition with neighboring cells. In the presence
of both contributions, the simulation results have shown extensile behavior while a
contractile behavior was observed upon removal of the elongation-based activity.
We want to clarify the dependence of the emerging behavior on the underlying
mechanism of activity with the four models introduced before. For this, we con-
sider the strain rate tensor

E =
1
2
(∇v + (∇v)T), (6.3)

depending on the tissue velocity v. As before, in Section 5.4, we define v as a global
interpolant of (xi, vi) onto a globally equidistant grid with 1000× 1000 points where
xi is the center of mass and vi the individual velocity of φi, computed using a back-
ward difference.
We run simulations for the significant propulsion values v∗0 in all models over a long
time and identify the topological defects in each time instance. For the purpose of
identifying the clear patterns in the strain rate, we focus solely on defects of charge
+ 1

2 , in order to compare with the results in [Bal+21]. For every defect, we compute
the orientation p and a p-aligned coordinate system, see Section 6.2. With respect to
this coordinate system, we compute an average of v in the vicinity of the defect, over
a large number of individual defects, and the resulting average of the strain field E
defined in (6.3).
With the exception of the random model, which does not show any significant pat-
tern, the other models support our hypothesis. The elongation model leads to pat-
terns characteristic for extensile systems, while the polar and nematic model show
patterns characteristic for contractile systems. The strain rate along the tail-to-head
direction (yy-strain) shows negative (positive) values at the head indicating the pres-
ence of compression (extensional deformation). The extensile behavior of the elon-
gation model has already been found in [MYD19]. The model is constructed to elon-
gate the cell further along its long axis, see definition of velo

i and Figure 3.12. Due
to the interaction of cells, this behaviour leads to extensional deformations. Further-
more, it is the only of the four models that actively incorporates contributions from
neighboring cells into the activity, given by the global deformation tensor defined in
(3.22). For the polar model the contractile stress on the single cell level also generates
contractile behavior at the collective level. In the nematic model the behavior on the
single cell level strongly depends on the shape of the cell. However, the collective
behavior shows contractile patterns. For the random model there is neither coupling
of the activity with the individual shape nor with the neighboring cells, explaining
why no significant patterns can be observed.
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FIGURE 6.9: Average fields for both the xy component (top) and the
yy component (bottom) of the strain rate tensor E in the vicinity of + 1

2
defects for all models: random, elongation, polar, nematic from left to
right. Each plot shows a box of dimension 8× 8 centered at the defect
core. The averaged is taken over data of more than 3000 defects for

each model.

The findings are in good agreement with [Bal+21], strengthening the claim that in-
tercellular forces are required for extensile behavior while a purely local propulsion
mechanism, involving only the individual shape, propagates to a large scale contrac-
tile behavior. Furthermore, the studies are in perfect agreement with the findings in
Section 6.3 about both the movement speed and direction of the topological defects.
While for the random model large fluctuations and uncoordinated movement of de-
fects is dominating, the elongation model shows clear extensile behavior. The polar
and nematic model, on the other hand, show patterns resembling contractile sys-
tems, both in the directions of motion for topological defects and the strain rates in
their vicinity.

6.5| CONCLUSIONS

The investigation of cellular structures, in both experimental studies and simula-
tions, from the viewpoint of nematic alignment patterns, has been growing interest
over the last years. From large scale observations like flow patterns in HBEC as
investigated in [BM+18] to local phenomena like apoptosis in MDCK, as found in
[Saw+17], different phenomena have been identified to correlate with the dynamics
of topological defects in the nematic order. In [Bal+21], it has been investigated how
intercellular forces, regulated by E-Cadherins, influence the mechanical properties
of the tissue and in particular switch the overall behavior between extensile and con-
tractile.
In this chapter, we have investigated how these properties are reproduced in Multi-
Phasefield models with different sources of activity. We have observed that certain
generic features like the occurrence of topological defects can be observed in all se-
tups, given a liquid state of matter. Furthermore, both the density and creation rate
of the defects have been observed to increase with the level of activity, which is typ-
ical for active nematic structures.
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Investigating, on the other hand, the movement patterns of topological defects, we
were able to observe significant differences in both the velocities and the directions.
For the random model, large velocities and no correlations between defect orienta-
tion and movement have been observed which can be explained by the stochastic
driving mechanism. Interestingly, while the elongation model was also showing
large velocities, the direction of movement for + 1

2 defects was strongly correlated
with the defect head, indicating an extensile behavior. For both the polar and the ne-
matic model, observed velocities were lower and a preferred movement towards the
defect tail was found for + 1

2 defects, a behavior common in contractile systems. By
analyzing the emerging patterns of the strain rate in the vicinity of + 1

2 defects, these
observations were confirmed - no significant structures was visible for the random
model while the elongation model resembled extensile behavior and both polar and
nematic model have shown patterns known for contractile systems.
In conclusion, we have found that the elongation model, effectively increasing elon-
gations of individual cells, produces extensile behavior on the multicellular level.
In the polar model the contractile behavior on the single cell level carries over to
the multicellular level and also the nematic model, where the properties on the sin-
gle cell level depend on shape, leads to contractile behavior on the multicellular
level. As suggested by the experiments in [Bal+21], these observations might be
influenced by changing the cell-cell interaction potential, for example to include ad-
hesive forces.
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7| CONCLUSIONS, EXTENSIONS
AND OUTLOOK

Understanding cells, the essential building blocks in the creation of life, and their
arrangement in complex multi-cellular structures is one of the greatest puzzles of
modern time. From the question how life in its current form has developed to the
design of groundbreaking methods for therapy and treatment, a variety of fields in
modern research is circled around cells and their dynamics. While much of the mys-
tery has been revealed until today, just as much is still unknown.
Simulation methods for in silico experiments on cellular structures have been grown
in interest over the past decades, with a huge increase in most recent years, due
to rapidly increasing computational resources. These types of model based experi-
ments can give significant insight into the dynamics, as individual aspects like inter-
cellular bonds or the mechanisms for propulsion can be investigated, isolated from
other effects at very low effort. A variety of approaches has been proposed, with
individual up- and downsides, different levels of detail and varying computational
effort.

7.1| CONCLUSIONS

We have introduced a set of Multi-Phasefield methods with different mechanisms of
propulsion, in order to analyze confluent monolayers of deformable cells. The ad-
vantage of such a modeling approach has been pointed out in various recent contri-
butions like [Non12; Cam+14; Pal+15; MYD19; Loe+20]. Cell deformations and de-
tailed cell-cell interactions, as well as subcellular details to resolve the mechanochem-
ical interactions underlying cell migration, can naturally be handled. Furthermore,
topological changes, such as T1 transitions, follow naturally in a Multi-Phasefield
framework. Using an efficient, highly parallelized implementation and appropriate
computing power, we have analyzed the emerging macroscopic behavior in such
models and compared the results with known universal features of cell monolayers
and epithelia tissue.
All models follow the same methodology and only differ at microscopic details on
the incorporation of activity: The random model [Loe+20] determines the direc-
tion of motion on the single cell level by a stochastic process, the elongation model
[MYD19] aligns the direction of motion with the long axis of the cell and both the
polar [MV16] and the nematic model use subcellular details determining strength
and direction of motion for each individual cell.
Firstly, we have investigated only the polar model, which has been observed to
develop collective motion, depending on the shape-activity coupling strength. In
particular, we have analyzed the alignment structures, depending on the degree of
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orientational order. We have found that typical arrangements, for example quanti-
fied by Lewis’ law and Aboav-Weaire’s law, are fulfilled in situations where the cells
are collectively moving. The fact that these purely geometrical laws are fulfilled
in the Multi-Phasefield models, without the presence of any external guidance, e.g.
concentration gradients in certain surrounding chemicals, indicates that cellular ar-
rangement is strongly driven by geometrical and topological order structure.
Afterwards, we have concentrated all considerations on the emerging phenomena in
dependence of the propulsion mechanism, as it is still not fully understand how cell
movement is generated, an open question that was recently reviewed in [Bod+20].
We have shown that all four considered mechanisms experience a solid-liquid tran-
sition, which is relevant for example in tumor spreading, depending on activity and
deformability. The distribution of cell shapes, experimentally predicted in [Ati+18]
to be universal across a variety of organisms, was qualitatively found in all four
models, with quantitative agreement only for the polar and the elongation model.
We have found that multicellular rosettes, which have been observed to play a cru-
cial role in developmental processes like Drosophila eye development [EBF07], occur
in all models but the ratio of occurrence depends on the mechanism of propulsion.
Regarding the cell flow in the simulated tissue structure, we were able to observe the
occurrence of vortices with a significant length scale, almost identical for all models,
and oscillatory movements in confined environments as known to occur for exam-
ple for MDCK cells in [Dox+13].
Finally, we have focused on the perspective of nematic alignment in cellular struc-
tures. This viewpoint has become a stronger focus of research interest most recently,
for example driven by observations in [Saw+17], indicating that cell death and extru-
sion in MDCK monolayers correlates with the occurrence of + 1

2 topological defects.
We have found that all models show topological defects, with both density and cre-
ation rate increasing for higher activity, while the absolute values of these quantities
differ between the propulsion mechanisms. Striking differences have been found in-
vestigating the alignment of + 1

2 defect orientations and their movement directions:
strong correlations with the defect head have been found for the elongation model
and similarly clear alignment in defect tail direction were observed for the polar
model. In the nematic model, a slightly preferred movement towards the defect tail
was seen, while no patterns were observed in the random model. For − 1

2 defects all
models have shown an almost equal distribution of movement directions. In combi-
nation with the observed defect velocities and an investigation of the strain rate ten-
sor, aligned with the defect direction, we were able to conclude that the elongation
model creates extensile behavior on the large scale, while both polar and nematic
model resemble contractile systems. For the random model, no significant patterns
were found, likely due to the activity mechanism that is fully decoupled from shape
and alignment.
The comprehensive comparison of different Multi-Phasefield models for confluent
cell monolayers shows the strong effect of the single cell activity mechanism. Fur-
thermore, it highlights the importance of this modeling aspect for predictive simu-
lation results at the multicellular level, significantly influencing features like occur-
ring patterns in shape and flow or the dynamics of topological defects in the nematic
structure. However, the results also show the robustness of these models in produc-
ing generic qualitative features for cell monolayers and epithelia tissue. The flexibil-
ity of Multi-Phasefield models, not only in terms of cell deformability and topolog-
ical changes, such as T1 transitions, but also when incorporating mechanochemical
effects on a single cell level and for cell-cell interactions, gives this modeling ap-
proach a huge potential for multiscale simulations of multicellular dynamics.
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7.2| EXTENSIONS OF THE MODELS

Even though the results in this thesis give a comprehensive study of Multi-Phasefield
models for cellular structures, countless extensions are possible due to certain re-
strictions of the models. At this point, we want to focus on two particular aspects -
tissue growth and geometrical changes of the domain - that have been investigated
in student research projects during the work on this thesis. While the methods and
studies presented in both 7.2.1 and 7.2.2 have been developed in close collaboration,
the author of this thesis does by no means claim ownership of the results. However,
we want to use this section to summarize the ideas, in order to emphasize how pow-
erful the Multi-Phasefield approach in general is, but for any detailed insight into
the models and results we refer to the respective master thesis mentioned in each
subsection.

7.2.1| GROWTH AND DIVISION OF CELLS

It is well-known that tissue structures, for example epithelial monolayers, undergo
multiple changes before a state of confluence - which was a general assumption in all
previous studies of this thesis - is reached. Of crucial importance is the growth and
division of individual cells, happening multiple times, successively increasing both
cell number and density. How this can be included in a Multi-Phasefield model was
investigated by Harish P Jain during his time as student researcher at the Institute
of Scientific Computing, which led to the writing of his master thesis [Jai21] and a
joint publication [JWV21].
The approach is, for the sake of simplicity, based on the random model used through-
out this thesis. The evolution equation for each Phasefield φi is, in strong resem-
blance of (5.2), given by

∂tφi + v0 (vran
i ·∇φi) = M∆

δE
δφi

+ ki(φi + 1) (7.1)

where vran
i is the usual advection vector following the random walk and

E =
1

Ca
EDCH{φi}) +

1
In

Eφ
INT{φi}) +

1
Con

Eφ
CON{φi})

with EDCH a degenerate Cahn-Hilliard energy resulting from (3.5) by adding a sta-
bilizing degeneracy according to [SVW20], Eφ

INT the quantitative Phasefield-based
interaction defined in (3.14) and Eφ

CON the confinement energy given in (3.30). For
the interaction now the quantitative Phasefield-based approach introduced in 3.3.3
is used, with the parameter a = 1.5 in the interaction potential chosen such that ad-
hesive forces are included.
The most striking difference, compared to the random model used before is, how-
ever, given by the reactive term ki(φi + 1), actively adding cellular mass to each
Phasefield. The growth factor ki is chosen according to a normal distribution

ki ∼ N (rg fiηi, rg fiηi)

where rg is constant. The inhibition factors fi ∈ [0, 1] and ξi ∈ [0, 1] are introduced to
inhibit contact with other cells or the confinement. This limits cell growth to regions
of free space, which is a well-known phenomenon, usually called contact inhibition of
proliferation, see [Abe70] for details.
In order to reproduce the behavior of real tissue better, it is not sufficient to include
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only growth, but a mechanism for cell division is also required. This is, however, a
highly complex mechanism which requires several simplification steps. For exam-
ple, we have used the axis of contraction for the division, as indicated in [Wya+15].
In terms of the numerical treatment with the Multi-Phasefield model, an additional
difficulty is given by the changing number of equations after a new cell was created.
The process is summarized by the following steps:

1. Consider a Multi-Phasefield {φi}N
i=1 and assume φi crosses a certain volume

threshold Vmax > 0

2. Compute the axis of contraction, given by the eigenvector η−
i , corresponding

with the negative eigenvalue, of the elongation tensor Si introduced in (3.19).
Divide φi into two equal sized daughter Phasefields φd1, φd2, separated by η−

i .

3. Replace φi := φd1 and assign a new variable φN+1 := φd2.

In practical, we have found that it is recommended to remove some material close to
the cutting edge, in order to have large enough distances between the two daughter
cells. Furthermore, due to the parallelization approach similar to the one presented
in Subsection 3.6.1, computational resources have to be reserved for possible cell di-
vision events and thus a sophisticated system of assigning new Phasefields to CPU
cores is required. We will not go into any details here and simply refer to the work
in [Jai21].

FIGURE 7.1: Visualization of a growing cell colony in the Multi-
Phasefield description. From left to right (increasing time) the num-
ber of cells and as a consequence the size of the tissue grows. Taken

and adapted from [Jai21].

In Figure 7.1 a typical evolution of the tissue in round confinement is shown. Start-
ing with a single cell, a series of multiple divisions leads to an eventual space filling
of the whole confinement area.
In [Jai21], many interesting features were observed. T1 transitions and rosettes occur
naturally, similar to the previous simulations in confluent setups. The influence of
both activity and inhibition strength on the colony growth was investigated, indi-
cating in general a linear growth of the colony radius over time. Furthermore, the
probability distribution of the coordination number has revealed similar results to
the studies on confined systems in Section 5.5 and the emergence of a confluent state
can be observed, as initially high velocities converge towards a fixed, parameter-
independent value as the density increases.
The possibility to include cellular growth - and shrinkage / apoptosis which can be
modeled in the same way - in Multi-Phasefield models offers the possibility to rep-
resent a much wider range of phenomena, for example the evolution of the tissue
towards the confluent state. Furthermore, it underlines the huge flexibility of the
general modeling approach, as these features can be added or removed on request.
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7.2.2| CELLULAR STRUCTURES ON CURVED MANIFOLDS

Biological tissue, even though many important structures like epithelium are com-
parably thin, is in general three-dimensional and every 2D method is just an ap-
proximation to the real geometry. One of the goals in future modeling of cellular
structures, is the extension towards full 3D descriptions, usually limited by compu-
tational resources.
A first step in this direction, is to generalize the computational domain from flat ge-
ometries towards curved 2D manifolds Γ ⊂ R3. This case of semi-threedimensional
cellular structures plays crucial role during a variety of morphogenetic processes,
as reported for example in [Dav12] and [KS11b]. The extension of Multi-Phasefield
models towards curved surfaces was performed by Lea Happel during her time as
student researcher at the Institute of Scientific Computing and is explained in detail
in her master thesis [Hap21].
The generalization of partial differential equations to curved surfaces features differ-
ent mathematical and numerical challenges. To keep things simple, we have started
with the random model, effectively circumventing vector- and tensor-valued differ-
ential equations, as required for the intracellular dynamics in the polar or nematic
model. The evolution equation for φi is given by

∂tφi + v0

-
vran,Γ

i ·∇Γφi

.
= M∆Γ

δE
δφi

(7.2)

with surface gradient ∇Γ and surface Laplacian ∆Γ. Note that, in the case of scalar-
valued functions, no distinction between the different surface differential operators
is required. The energy of the system is given by

E =
1

Ca
EDCH,Γ{φi}) +

1
In

Eφ
INT,Γ{φi})

with EDCH,Γ a degenerate Cahn-Hilliard energy resulting from (3.5) by including
the stabilization proposed in [SVW20] and Eφ

INT,Γ the quantitative Phasefield-based
interaction defined in (3.14), where have introduced the additional subscript Γ to
underline that the computational domain is the manifold Γ.
The definition of the advection vector vran,Γ

i is slightly more complicated, compared
to flat structures. vran,Γ

i should be chosen in the tangent plane of the computational
domain, which could be realized by simply choosing a random vector in R3 and
projecting afterwards. This does, however, cause different numerical problems, es-
pecially if the random vector is (almost) normal and thus the projection would have
magnitude close to 0. We have introduced the more sophisticated approach

!
vran,Γ

i

"

new
= cos α

!
vran,Γ

i

"

old
+ sin αb

with α ∼ ηN (0, 1) and b chosen such that
8!

vran,Γ
i

"

old
, b

9

forms an orthonormal basis of the tangent plane. This differs from typical definitions
of a random walk but ensures sufficiently small changes in each timestep, indepen-
dent of changing tangent spaces.
All studies in [Hap21] are performed for the surface of the sphere, i.e. a closed sur-
face with constant positive curvature. A Surface Finite Element Method is used with



CHAPTER 7. CONCLUSIONS, EXTENSIONS AND OUTLOOK 90

an explicit surface grid. The parallelization approach is very similar to the one intro-
duced in Subsection 3.6.1. For the initialization a dense packing, similar to the one
for circular confinements introduced in Subsection 3.6.2, was developed.

FIGURE 7.2: Visualization of Multi-Phasefield model on the sphere
surface. Shown are the φi = 0 contours with (Left) color according
to coordination number, (Middle) rosettes with 4/5 cells highlighted
with blue/green color and (Right) LIC visualization of tissue velocity
with color according to vorticity. Taken and adapted from [Hap21].

One important aspect of the study is inspired by the visualization in Figure 7.2 (Left),
regarding the coordination number probability that we have studied extensively in
Section 5.2. Depending on the number of cells, the energetically optimal packing -
closely related to the solution of the Thomson problem - includes different numbers
of neighboring cells. Furthermore, it was studied how the occurrence of rosettes de-
pends on the level of activity and the chosen interaction potential - purely repulsive
or also adhesive, represented by the choice of the parameter a in the definition of the
interaction energy Eφ

INT,Γ. Additionally, the flow behavior was investigated similar
to Section 5.4, identifying vortices in the tissue velocity field.
The generalization of the Multi-Phasefield model towards curved surfaces marks an
important first step towards more complex computational domains, even closer to
biological systems. Furthermore, it emphasizes the versatility of the model, capable
of including significant generalizations with just minor adaptions.

7.3| OUTLOOK

Even though this thesis was devoted to a detailed investigation of Multi-Phasefield
models for cellular structures, many aspects are still open.
For the future research, a very important goal would be to fit the model parameters
more closely to experimental data for living tissue, in order to make the model more
easily usable in applications. This is not trivial and requires a set of observables that
can be handled for both experimental systems and simulation results, like that stan-
dard deviation of the coordination number distribution used to create equivalent
setups for all four models in Subsection 5.3.2.
Furthermore, it would be interesting to include the topological defects, observed in
the nematic alignment in Chapter 6, as contributions to the evolution of the system.
One example would be to force apoptosis in the vicinity of + 1

2 defects, as indicated
by the findings in [Saw+17]. Also the strain rate patterns observed in Section 6.4
could contribute to a deformation of the surface, using the generalized geometry
setting introduced in Subsection 7.2.2.



CHAPTER 7. CONCLUSIONS, EXTENSIONS AND OUTLOOK 91

The occurrence of multicellular rosettes was observed for both the flat geometry and
the curved surfaces, but has not been included in the dynamics of the tissue evolu-
tion. They have, however, been observed to play a crucial role in organogenesis, for
example in the Drosophila eye development as investigated in [EBF07] and could
thus be coupled more closely into the system dynamics, for example to deform the
geometry of the domain.
In general, the extension of the models to more complex domains, either deformable
manifolds or possibly also three-dimensional geometries, is desirable. In order to
describe the early stage developmental processes like organogenesis in a variety of
organisms, it is required for cells to form complex 3D structures, which can not be
captured with the current state of the models.
Due to the high level of flexibility that the Multi-Phasefield approach provides, high-
lighted for example by the extensions in Section 7.2, it offers incredible potential as
an important tool in the future of biomathematical modeling. The field of research
and in particular this type of model is still in the earliest stages, yet still observably
powerful and so it may one day give even more significant contributions on the way
to understanding life.
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