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Extended abstract

The present thesis deals with different areas concerning both the mathematical theory
and application of non-Gaussian stationary stochastic processes with special focus on
risk assessment and statistical uncertainty due to the presence of long-range corre-
lations (LRC) by an infinite sum of the autocorrelation function (acf). The topics
under consideration are

(I) Data models for non-Gaussian long-range correlated processes

(II) The theory of effective sample sizes for stationary processes

(III) Extreme value theory for stationary and especially meta-Gaussian processes

(IV) Application of the concepts (I) to (III) to empirical precipitation records

The major results listed in Chapter 10 are twofold. First, data models obtained
from nonlinear and memoryless transformations of Gaussian processes are capable of
reproducing key statistical quantities of empirical non-Gaussian LRC precipitation
records without deploying the physics of the underlying dynamics concretely. Second,
incorporating such a model into existing stochastic theory allows for specifying and
improving the impact of long-range correlations on statistical inference about empirical
data, in particular, about their sample mean and return levels of extreme events.

The introduction in Chapter 1 describes the need for a robust and parametric
modeling of non-Gaussian LRC data in general and, in particular, in applications with
precipitation time series. Such models form the basis of reliable conclusions about key
statistics listed in topic IV below and serve as an ingredient for simulations of systems
of higher complexity, for example for weather generators or global climate models.

I Modeling of non-Gaussian long-range correlated processes

Chapter 2 summarizes existing knowledge about Gaussian and non-Gaussian stochastic
processes regarding stationarity, marginal distributions and autocorrelations. In particu-
lar, autoregressive-fractionally-integrated-moving-average (ARFIMA) processes provide
discrete-time Gaussian LRC data models deploying a single parameter for describing LRC
and an arbitrary number of autoregressive (AR) and moving-average parameters for
short-range correlations (SRC). ARFIMA processes obey a power-law decaying acf that
sums up to an infinite correlation time by an exponent between negative unity and zero.

Pointwise nonlinear transformations Yt = g(Xt) of Gaussian processes Xt have been
applied to the modeling and generation of this kind of data before. Chapter 3 recaps
previous knowledge about the mathematical theory of such meta-Gaussian processes.
Chapter 6 establishes a truncated-Gaussian-power (tGp) transformation to an ARFIMA
process for the modeling of empirical non-Gaussian LRC daily precipitation amounts.
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The main challenges of meta-Gaussian ARFIMA modeling are the choice of an
appropriate transformation g along with its parametrization and a proper adjustment
of the SRC and LRC parameters such that the transformed process Yt exhibits desired
statistical properties. The Hermite expansion of square-integrable transformations g
yields an analytic formula for the acf of transformed Gaussian processes. Section 3.3
repeats this meta-Gaussian procedure for the squared and lognormal process X2

t and eXt ,
respectively, and adds a closed-form description for the acf of the absolute value ∣Xt∣
process with a Gaussian processes Xt each.

Section 3.2 elaborates in detail that the acf of the transformed process is a convex
function of the original acf independent of specific time lags. Instantaneous and memory-
less transformations g(Xt) thus decrease or at most keep the strength of autocorrelations.
The Hermite approach further yields an asymptotic power-law behavior of the acf of a
transformed Gaussian LRC process given the power-law exponent of the original acf.
Only even transformations are capable of changing the power-law asymptotics of the acf,
which is not satisfied in typical applications.

For an estimation of the LRC parameter from empirical data Chapter 4 describes
three of the existing methods for the numercial detection of LRC, namely of the Hurst
effect. Rescaled-range statistics, detrended fluctuation analysis (DFA) and the wavelet
transform obey different capabilities of detrending. Such estimates are subject to possible
bias or misinterpretation due to nonstationarities or strong SRC. Section 4.3 adds a
detailed description of the previously known sensitivity of the estimators to seasonalities,
polynomial trends or intrinsic nonstationarities.

II The theory of effective sample sizes for meta-Gaussian processes

The presence of correlations increases the uncertainty of statistical quantities by slowing
down the convergence of statistical estimators to their stochastic limit. The accuracy of
estimates for correlated data thus effectively compares to the one of a lower number of
independent and identically distributed (iid) samples. A comparison of the variance σ2

N

of the sample mean 1
N ∑

N
i=1Xi of N ∈ N identically distributed and correlated random

variates X1, . . . ,XN to the variance σ̃2
N of the sample mean of N iid samples of the

same distribution has been used for the definition of an asymptotic effective sample size
by Neff ∶= limN→∞

σ̃2
N

σ2
N

N before.
Chapter 5 determines a closed form representation of the variance of the sample mean

for LRC processes with a power-law decaying acf. Introducing a finite-size decorrelation
time establishes the notion of a finite-size effective sample size even for processes without
a characteristic time scale. The obtained closed form representation of the effective
sample size allows for a calculation of effective sample sizes not only asymptotically but
also as a finite-sample property. Section 5.2 specifies these results for meta-Gaussian
processes by combining the concepts of the Hermite expansion from Chapter 3 and
finite-size decorrelation times.
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The finite-size effective sample sizes allow for different interpretations of statistical
inference. Precise knowledge about the variance of the sample mean provides confidence
intervals of this estimator for the mean of LRC Gaussian and meta-Gaussian processes.
A comparison between the given and effective sample sizes N and Neff , respectively, gives
a quantitative impression about the impact of correlations. As an example, the sample
mean of 1000 standard Gaussian AR samples with exponentially decaying acf ek ln (0.3)

still exhibits the same variance as only 539 standard Gaussian iid samples.

III Extreme value theory for stationary and meta-Gaussian processes

Under mild conditions on the strength of the dependence among individual samples
universally the three-parameter generalized extreme value (GEV) distribution well
describes the asymptotic distribution of the maximum Mn ∶= max{X1, . . . ,Xn} of n ∈ N
samples X1, . . . ,Xn of a stationary process as the block size n →∞. By the extremal
types theorem for appropriate norming constants an ∈ R>0 and bn ∈ R, the normed
maximum an(Mn − bn) converges in distribution to one out of three extreme value
distributions (EVD) as n→∞. Chapter 7 summarizes classical EVT for iid processes as
well as EVT for stationary processes with dependencies both with particular focus on
rates of convergence in the extremal types theorem and corresponding norming constants.

The maximum Mn of Gaussian samples is a prominent example for particularly slow
convergence to an asymptotic Type-I or Gumbel EVD. Chapter 8 specifies EVT for meta-
Gaussian processes g(Xt) and derives conditions on the transformation g, so that a Taylor
expansion yields appropriate norming constants. These norming constants prove that the
maximum of tGp samples applied to precipitation amounts in Chapter 6 logarithmically
approaches an asymptotic Gumbel shape analogously to Gaussian samples.

A maximum likelihood (ML) estimate of the location, scale and shape parameters
for adjusting a GEV distribution to empirical block maxima is the usual approach to
estimating return levels for prescribed return periods. Nonstationarity, a slow conver-
gence or clustering of extremes are capable of confounding such estimates. In case
of slow convergence in the Gumbel class, full GEV estimates excel Gumbel estimates
with fixed zero shape parameter but accompanied by higher statistical uncertainty.
Chapter 9 improves the validity and statistical uncertainty of return level estimates
by incorporating outside knowledge about the distribution and depedency structure of
the individual samples if existent. Section 9.2 elaborates a procedure for comparing
estimates by EVT to estimates by modeling the marginal distribution directly. For
stationary processes with only weak SRC and LRC such alternative estimates provide
return levels with smaller confidence intervals.

For certain marginal distributions the Gumbel estimate provides valid return levels
despite a slow convergence due to the similarity of the tail of the maximum distribution
to the exponential tail of the Gumbel distribution such as for the Gamma or tGp
distribution with exponents close to two. Section 9.3 deploys this observation for further
improving the statistical uncertainty of return level estimates by comprising knowledge
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about the marginal and the limit Gumbel distribution to a modified Gumbel estimate.
There exist norming constants an and bn based on the marginal distribution which
force the tail of the distribution of an(Mn − bn) to coincide with the limit Gumbel
tail in a prescribed return level. Choosing norming constants giving coincidence in a
return level in the neighborhood of the return level with a desired return period instead
of ML-estimated norming constants yields the desired return level with less statistical
uncertainty compared to a GEV or direct estimate by the marginal distribution.

IV Application of the concepts I to III to empirical precipitation records

Chapter 6 establishes and validates a parsimonious meta-Gaussian model for mid-
latitude daily precipitation amounts based on a tGp-transformed ARFIMA process
with an alternative methodology for the generation of prescribed correlations. The
methodology I provides this robust approach to not only simulations of precipitation
time series but also to statistical inferences about the daily mean, annual totals and
extreme events applying the developed concepts II and III, respectively.

Five parameters suffice to capture the non-Gaussianity of the data and their SRC
and LRC. Three parameters adjust the tGp model to the empirical marginal distribution
of daily amounts. A least square estimate of the model to the empirical survival function
in logarithmic scaling achieves particular focus on extreme events by discriminating small
and emphasizing large amounts. The estimation of one AR parameter introduces the
conditional probability of the occurrence of two consecutive days with a noticeable amount
of 4mm. This method for non-Gaussian processes is an alternative to previous ML
estimates of AR parameters for Gaussian models. The last parameter describes the weak
but proved significant numerically estimated LRC in the precipitation data. The tGp
transformation retains the asymptotics of the acf, so that the estimated Hurst exponent
directly transfers to the LRC parameter of the underlying ARFIMA model.

Section 6.3 deploys sample means and variances, p-p and q-q plots, waiting times
and return level estimates for a detailed assessment and comparison of the statistics of
the model and the data. For a random selection of 20 European data sets the stationary
meta-Gaussian ARFIMA model well reproduces the statistics of daily and annual total
amounts, SRC and LRC, wet and dry spells and annual maximum amounts. Assessing
the impact of LRC by the effective sample size, the tGp-transformed ARFIMA model
adjusted to precipitation amounts recorded at the “Fichtelberg” station in Germany
reveals a statistical uncertainty of the sample mean of the given 103 years of daily
measurements of effectively only about 14 years of independent daily measurements.

Section 9.2.2 and Section 9.3.4 obtain 100-year return levels of extreme precipitation
events by the comparison of return level estimates and the modified Gumbel approach.
Assured weak SRC and LRC among daily amounts yield estimates with decreased
statistical uncertainty using either directly the return level or the norming constants
obtained from tGp model for the marginal distribution.
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1. Introduction

The phenomenon of persistence of fluctuations in geophysical measurements was first
described by Hurst in the 1950’s [82, 83] and is commonly known as the Hurst effect.
Above- or below-average values then have the tendency to occur as clusters [29]. It has
been observed in data from various fields of research ever since with precipitation records
among them as one of the key indicators for construction planning in flood protection
or for adequate measures in water supply. Precipitation time series exhibit the Hurst
effect by long periods of drought or heavy rain and directly affect human life regarding
climate change (IPCC 2021 [121]).

The presence of long-range dependencies by slowly decreasing autocorrelations cru-
cially affects key statistical quantities such as sample means or return levels of extreme
events in general. Municipal regulations typically demand protection against extreme
precipitation or flooding events that occur once in a century while empirical records
mostly reach back about 60 to 120 years with at most one observation of such a rare event.
Reliable statistical inference and realistic simulations raise the need of mathematical
modeling as the basis of adequate political or economic decision making by for example
persons federally responsible and ensurance or financial service providers, respectively.
Models for precipitation serve as an ingredient of weather generators or global climate
models (GCM) and thus allow for forecasts and simulations in broader context such as
future directions of agriculture or the atmosphere itself.

Fractional Gaussian noise and autoregressive-fractionally-integrated-moving-aver-
age (ARFIMA) processes are well known data models for Gaussian long-range corre-
lated (LRC) observations. Such data driven models do not describe underlying physical
dynamics precisely but are capable of reproducing key statistics of empirical time series
and thus of reproducing realistic time series. The however non-Gaussian and LRC nature
of many observables of interest require additional model conceptions. A previously
known approach to non-Gaussian models is an appropriate nonlinear transformation of a
Gaussian process. Aiming at a parametric non-Gaussian LRC model we apply nonlinear
transformations to ARFIMA processes and elaborate how to adjust such a model to a
marginal distribution and correlation structure (Sect. 1.1) in general.

Both qualitative and quantitative assessments of statistical properties improve statis-
tical inference about LRC data. With special focus on statistical uncertainty we establish
effective sample sizes (Sect. 1.2) and extreme value theory (Sect. 1.3) for general station-
ary and especially transformed Gaussian LRC processes. Applying these concepts to the
modeling of non-Gaussian LRC precipitation records, we aim at realistic simulations of
occurrences of precipitation and improving the estimation of return levels of rare events
by incorporating our model for daily amounts into extreme value theory (Sect. 1.4).
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1. Introduction

1.1. Modeling and simulation of non-Gaussian long-range
correlated processes

Hurst established long-range dependence in time series in his seminal work on water-
runoffs when he was concerned with the plannig of the storage capacity of the Great Dam
of the river Nile [82,83]. He studied the accumulation of the difference between annual
river inflow and a hypothetical constant water outflow and repeated the remarkable
observation of persistence also for other natural phenomena like gauge heights by the
Roda (Cairo) Nilometer dated back to the year 640, thickness of treerings with records
of up to 900 years and varves for 4,000 years, along with rainfall, temperature and
pressure measurements, sunspot numbers and even wheat prices [83, Fig. 2]. Ever since,
persistent behavior has been found in data from various fields of research, not only
in geo- and atmospheric physics for, e.g., global mean temperature anomalies [119],
wind speeds [91] and air pollution [86] but also in biology and chemistry, e.g., for DNA
sequences [147], neural oscillations [71] and molecular orientation [170], and even in
computer science [103,166], economics [11] and finance [51,162]. LRC have been observed
for precipitation amounts accumulated over time windows of different lengths, such as
minutes [122,149], months [132] and years [30, 70,146]. This kind of dependency in the
data is stronger and more prominent for smaller periods of accumulation and looses
intensity for larger ones. Due to the abundance of data on daily precipitation amounts,
we concentrate on time series of 24h accumulated amounts [20].

The synthesis of non-Gaussian LRC samples typically employs elaborate numerics
with a high number of hidden parameters for obtaining both a prescribed marginal
distribution and autocorrelations. Serinaldi and Lombardo generate surrogate data by
Davies and Harte’s algorithm based on spectral properties [169]. Leland models ethernet
traffic by an aggregation of non-Gaussian variates to obtain LRC [103]. Scherrer obtains
a gamma distribution for internet traffic by the sum of the squares of independent
Gaussian LRC processes [166]. For models of precipitation amounts introducing LRC
into synthetic time series of large sample size is possible by specifying correlations on
the a larger (annual) time scale and then disaggregating the samples to a smaller (daily)
time scale [144] or by a copula-based method [145]. Hosseini et al. give an approach
to explicitly accounting for temporal dependencies on an annual time scale between
different daily rainfall amounts by considering a high number of previous amounts for
conditional probabilities [80]. They obtain gamma distributed precipitation amounts by
inserting these temporal correlations directly. The model process, however, essentially
represents a Markov process of high order. All the above methods for the numerical
generation of non-Gaussian LRC samples raise major algorithmic effort by sophisticated
algorithms along with non-interpretable model parameters. We elaborate an alternative
approach by applying a nonlinear transformation to an LRC ARFIMA model.
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1.2. Statistical uncertainty due to prominent correlations

Non-Gaussian stochastic processes Yt = g(Xt) obtained from pointwise nonlinear trans-
formations of Gaussian processes (Xt)t∈N are occasionally referred to as “meta-Gaussian”
processes amongst other terms (cp. Rem. 3.1). Commonly mononotic transforma-
tions g ∶ R Ð→ R yield non-Gaussian models since by inverse sampling the monotonic
transformation g ∶= F−1 ○Φ generates a desired marginal distribution with cumulative dis-
tribution function (cdf) F by concatenation of the corresponding quantile function F −1

and the standard Gaussian cdf Φ. For the extreme value theory of meta-Gaussian
processes the monotonicity is a crucial property since it retains the order of maximal
values among the underlying Gaussian and the transformed samples. In general, an
Hermite expansion of the transformation g provides a closed form formula of the autocor-
relation function (acf) of the transformed process given the acf of the original Gaussian
process for all square-integrable transformations g ∈ L2(R) [22,161]. As an example, the
squared process X2

t relates to financial and economic science and its acf is the square of
the original one [44,137].

Janicki applies non-parametric inverse sampling by using the empirical quantile
function of correlated non-Gaussian small area income and poverty data to estimate
Hermite coefficients [85]. Aiming at a non-Gaussian LRC data model for precipiation
amounts based on the Hermite approach, Papalexiou approximates LRC by the Yule-
Walker equations or a finite sum of a high number of first-order autoregressive Gaussian
processes [138] and estimates the acf of the original Gaussian process directly by the
empirical acf and Hermite formula describing the acf of the transformed process. Such
an estimate is, however, subject to fluctuations around zero for large time lags. Aiming
at a parsimious, numerically convenient and robust approach to data models for non-
Gaussian LRC data with application to precipitation records, we estimate LRC based
on the Hurst exponent and incorporate them by transforming an ARFIMA process.

1.2. Statistical uncertainty due to prominent correlations

A typical approach to statistical inference about non-Gaussian data is the Box-Cox
method of power transformations to obtain Gaussianity and apply usual statistical
methods for Gaussian random variates [160]. The square root of non-Gaussian wind
speed measurements, for example, is close to Gaussianity and was modeled by ARFIMA
processes [72]. Our inverse method of transforming a Gaussian process to a process
with a non-Gaussian marginal distribution requires an accurate estimation of model
parameters regarding the transformation and the correlations of the underlying ARFIMA
process and then allows for the assessment of statistical quantities based on this model.
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1. Introduction

Correlations fall into two essential categories. Short-range correlations (SRC) typically
decay exponentially with effects on short-time scales only. LRC, however, asymptotically
vanish such slowly that the sum of the acf over all time lags becomes infinite as for
example for power-law decaying autocorrelations with an exponent between negative
unity and zero. For this power-law setting several methods for the estimation of the Hurst
exponent have been proposed [176], among them Hurst’s original rescaled-range or R/S-
statistics [82], the detrended fluctuation analysis (DFA) [147], and wavelet transforms [4].
These methods can estimate LRC more robustly than a direct estimation of the power-
law decay in a double-logarithmic plot of the empirical acf. Fluctuations of the acf
around zero, in particular, logarithms of negative values, impede reliable inferences about
the rate of the decay of the acf. Note that in real-world data the temporal horizon is
always finite, such that it is impossible to decide about the origin of persistent empirical
correlations. It may either lie in strong SRC that do not transfer beyond automatically
or in LRC that will survive [128].

The presence of correlations affects the rate of convergence of statistical quantities
and thus increases statistical uncertainty. By the central limit theorem the sample
mean of iid random variates converges in distribution to their mean at rate σ̃N ∝ N−1/2

as the sample size N increases. For SRC processes with an acf decaying faster than
any power-law an asymptotic effective sample size of Neff ∼ α̃N as N → ∞ has been
known before with the factor α̃ ∈ R>0 given by the finite correlation time of the process.
Applying the mean square displacement, previous studies have also shown that the
standard deviation of the sample mean for Gaussian LRC processes Xt with a power-
law decaying acf %X(k) ∝ k−γ , γ ∈ (0,1), as time lags k → ∞ decays at the slower
rate N−γ/2 as N → ∞. A corresponding asymptotic effective sample size is, however,
only known up to Neff ∼ αN−γ as N → ∞ with an unknown prefactor α ∈ R>0. We
aim at a quantitative description of the variance of the sample mean as a finite-sample
property of stationary Gaussian and non-Gaussian processes. The concepts of LRC
and meta-Gaussian processes serves for the modeling of fluctuations in a system and
inference about sampling errors.
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1.3. Extreme value theory for stationary processes

1.3. Extreme value theory for stationary processes

Besides expected mean values in Section 1.2, the occurrence and magnitude of extreme
events are further statistical quantities crucial for risk assessement. A value q ∈ R
satisfying F (q) = 1 − 1

m is called a return level with return period m ∈ N of a random
variable with cumulative distribution function F . Low frequency return levels are
commonly considered extreme if the exceedance probability 1

m ∈ (0,1) is less than 5%

to 1%. Extreme value theory (EVT) is a tool for statistical inference about such extremes.
The extremal types theorem states the generalized extreme value (GEV) distribution
as the universal limit distribution of the maximum of a sequence of length n ∈ N of
independent and identically distributed (iid) samples as the sample size n increases
to infinity. The tail of the marginal distribution determines the shape parameter
of the asymptotic GEV distribution among three different types of extreme value
distributions (EVD) with zero, negative or positive shape, called the Gumbel, Fréchet or
Weibull distribution, respectively. The key difference between the three types of EVDs
lies in the asymptotics of the tails of their probability density functions (pdf), that
capture the probability of the occurrence of rare extremes. The Gumbel class comprises
light- to heavy-tailed distributions with tails decaying exponentially or at least faster
than any power-law, while the Fréchet class captures fat-tailed distributions with power-
law tails. In either case, extreme events of arbitrary magnitude are possible, whereas
Weibull distributions exhibit a finite upper endpoint. The validity of these universal
results remains valid also in the presence of SRC or power-law decaying LRC [101].

Adjusting an EVD distribution to empirical block maxima yields extreme events
as return levels of an estimated GEV distribution. As an advantage this method is
always applicable even if only for example annual maximum measurements of gauge
heights or precipitation amounts are available. The presence of additional information
about the marginal distribution allows for a more detailed assessment of return level
estimates obtained from EVT. The tail of the marginal distribution provides knowledge
about which of the three types of EVDs are valid for given empirical data. At the same
time, for certain distributions in the Gumbel class, namely the Gaussian an certain
meta-Gaussian distributions [67, 68], a particular slow convergence of the maximum
distribution to a limit Gumbel shape is known such that for finite block size estimates
of for example annual return levels applying a Gumbel estimate crucially confounds
the resulting return levels. We aim at improving statistical uncertainty of return level
estimates for stationary processes in two ways. First, knowledge about the marginal
distribution and the strength of both SRC and LRC among individual samples allows
for assessing the validity of return level estimates obtained from EVT. Second, we apply
an appropriate model for the individual measurements of empirical time series to obtain
return levels directly from the marginal distribution if correlations are weak and we
incorporate such a model into EVT by defining GEV parameters based on the marginal
distribution, which are usually only estimated parameters.
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1. Introduction

1.4. Contemporary precipitation models

The occurrence and intensity of precipitation is affected by a multitude of atmospheric
processes, which evolve on many different temporal and spatial scales. Modeling ap-
proaches are either physical, purely data driven or hybdrids of the two. Data models are
a convenient choice to capture the statistical properties of the outcome of the highly com-
plex physical dynamics underlying precipitation. As an application of the meta-Gaussian
approach to the modeling of non-Gaussian LRC data based on the transformation of a
Gaussian ARFIMA process we use a truncated-Gaussian-Power transformation (tGp) to
describe the marginal distribution of daily precipitation records.

Some earlier studies [88, 159] found LRC in daily precipitation and point out that in
general this indicator of persistence is rather weak but still significant [88, 89, 159]. Mid-
latitude precipiation further shows prominent intermittency by periods of several days
of zero precipitation. These zero measurements fundamentally influence correlations.

A classical approach to modeling daily precipitation statistics are two-part mod-
els, in which the occurrence or absence of precipitation and its positive amounts are
generated independently [104,106,184]. Correlations between different occurrences are
commonly introduced by a Markov chain of first or second order. Recent studies explic-
itly address correlations between different precipitation amounts by modified Markov
chain approaches [34, 136].

There is ongoing discussion on the most appropriate choice of a model distribution for
daily precipitation amounts. In particular, their tail behavior is crucial for the estimation
of large precipitation events. Most global studies with focus on large amounts find
tails heavier than exponential [135,143,168]. By arguments from atmospheric physics,
Wilson and Toumi [185] deduced a stretched exponential tail with a universal shape
parameter as an approximation for the extreme regime. The geographic location and
the climatic zone have strong influence on which distribution is most realistic. Case
specific suggestions range from the light-tailed exponential, mixed-exponential or gamma
distribution [104,154] and the heavy-tailed generalized gamma [142] or lognormal [106]
distribution to fat-tailed Burr-type distributions [140] and q-exponentials [186]. As a
remark, since none of the aforementioned distributions is stable under convolution with
itself, it is also evident that the distribution will change if the period of accumulation
is changed, for example, hourly data will follow a different distribution than daily
data. Figure 1.1 shows the highly non-Gaussian empirical density of daily precipitation
recorded at the city of Potsdam in Germany from the year 1893 until 2018 [49].

6



1.4. Contemporary precipitation models

0 20 40 60 80 100

10−4

10−3

10−2

10−1

100

daily precipitation amount (mm)

em
pi
ri
ca
ld

en
si
ty

Fig. 1.1 Distribution of daily precipation amounts at the city of Potsdam, Germany.

To include dependencies between precipitation amounts also transformed Gaussian
processes have been applied before [14, 15]. As mentioned in Section 1.1 meta-Gaussian
models can generate a prescribed distribution by inverse sampling. The intermittency
that precipitation time series naturally exhibit is automatically incorporated into such a
model when applying truncated, also called mixed-type, distributions, that generate a
point mass at zero. Correlations can directly be defined by the underlying Gaussian
process, which is then transformed adequately to obtain a certain distribution. Recent
studies include also physical knowledge in the sense that the underlying (spatio-temporally
correlated) Gaussian process describes atmospheric dynamics, which are then transformed
appropriately. On that account, tGp transformations of Gaussian SRC processes have
been used to model the distribution of precipitation amounts and their dynamics [6,164,
171]. Without explicitly pointing out the property of LRC, Baxevani and Lennartsson
use an underlying Gaussian process with a temporally hyperbolically (and spatially
exponentially) decaying spatio-temporal autocorrelation function [18]. Transforming
a process, however, does not preserve its temporal correlations, so that additional
adjustments of the correlations are necessary to attain prescribed correlations.

By Section 1.1 an approach to directly estimating the acf of the underlying Gaussian
process is expanding the transformation in Hermite polynomials. A historical note on
Hermite series in precipitation modeling is given in [145]. Guillot applies this method
to the spatial behavior of rainfall events with an exponentially decaying acf and a
truncated gamma distribution for the rainfall amounts [64]. Alternatively, Papalexiou
fits a function that maps the autocorrelations of the transformed to the autocorrelations
of the underlying Gaussian process [138].

7



1. Introduction

We provide a five-parameter meta-Gaussian model for mid-latitude daily precipitation
amounts. Three parameter describe the location, scale and shape of the tGp distribution
and one parameter each describes the SRC and LRC of the underlying ARFIMA process.
Section 1.1 introduces the robust estimation of LRC by the asymptotic strength of
fluctuations on the empirical data. Box and Jenkins established a method for the identi-
fication and estimation of Gaussian SRC ARIMA models based on the acf and partial
autocorrelations in their seminal work on time series analysis [27]. Our precipitation
dataand the corresponding model, however, have a non-Gaussian, strongly asymmetric
marginal distribution, so that we formulate a different approach to the estimation of the
autoregressive parameter based on conditional probabilities of consecutive pairs of days
with at least a prescribed amount.

Typically precipitation amounts are measured by reading off the height of collected
water in a rain gauge with a precision of 0.1mm. Hence, historical records in the
range of one millimeter and below have to be treated with care, due to measurement
errors. Mainly evaporation strongly affects measurements of this magnitude. Modern
measurement instruments increase the accuracy by applying laser detection. Noticeable
drizzling rain ranges from about 0.1 to 0.5 mm/h, weak and moderate showers from
about 0.6mm/h to 12mm/h, while heavy rain and storm reach 30mm/h and more
than 50mm/h, respectively. After periods of some days of such precipitation intensities
the danger of flooding arises. Note that 1 mm = 1 l/m2 . For details on the classification
and measurement of precipitation refer to the World Meteorological Organization (WMO)
or any national weather service like the German (DWD) or British (MetOffice) Meteoro-
logical Office, respectively. Most studies estimate the marginal distribution by maximum
likelihood or method of moments approaches. As the tail is naturally represented only
poorly in empirical data, this may lead to an underestimation of extremal events [20].
Such an effect was addressed by for example entropy based parameter estimation [140].
We estimate the marginal distribution in a tail-oriented way discriminating small and
emphasizing large amounts. We validate this approach by a detailed statistical analysis
of key quantities such as daily and annual mean and variance, duration of droughts
and extreme precipitation events and derive a robust and easily applicable data model
for daily precipitation. Applying the effective sample introduced in Section 1.2, we
quantify the statistical uncertainty of daily mean and annual total amounts. Incorpo-
rating the tGp LRC model into EVT we derive and validate return levels of extreme
precipitation with improved uncertainty.
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1.4. Contemporary precipitation models

Structure of the thesis

These present thesis derives theoretical results on effective sample sizes for stationary
processes and especially meta-Gaussian processes in Chapter 5 and on extreme value
theory for meta-Gaussian processes in Chapter 8. Chapter 6 contains results on the design,
estimation and validation of a tGp LRC model for daily precipitation amounts together
with an application of the concept of effective sample sizes to empirical precipitation data.
Chapter 9 establishes a procedure for the assessment of return level estimates ontained
from EVT along with a method for incorporating meta-Gaussian models into EVT for
improving statistical uncertainty of return level estimates and applies these theoretical
results to empirical precipitation data.

The Chapters 2 to 4 and 7 provide existing knowledge on Gaussian and meta-Gaussian
processes, the numerical detection of LRC and EVT for both iid and stationary processes,
respectively, in form of mathematical theorems mainly, without proof for later application
or generalization. If the proof of a theorem is later used for deriving further results, then
these methods are introduced at least heuristically for later referencing.

Every chapter obeys a final section with closing remarks or an outlook. These sections
link the either previously known or newly derived contents of the respective chapter to
other fields of research or opens question for further research. Chaptor 10 concludes the
main findings and lists the central contributions of the present thesis

Notation

Throughout the present thesis the notation Xt contextually refers to either a stochastic
processes (Xt)t∈N≥0 or a random variable representing an indvividual component. Statis-
tical quantities belonging to a process Xt with an own symbol carry the process as an
index, for example %X denotes the acf of a process Xt. The symbols Φ and φ denote
the standard Gaussian cdf and pdf in all chapters. In the end of the thesis a list of
abbreviations and general or specific symbols is given.
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2. Gaussian and non-Gaussian
stochastic processes

Gaussian stochastic processes exhibit an outstanding importance in probability theory
and modeling applications. Not only the exceptional role of the normal distribution
by the central limit theorem but also the particular convenience of the definition of
Gaussian processes just by their first and second moments reasons their prominent
position. Nonlinear transformations of Gaussian processes transfer these advantages to
the modeling of non-Gaussian stochastic processes.

Let (Xt)t∈T be a stochastic process. The individual variates Xt are indexed by a fam-
ily T of indices. Typical choices of the set T are subsets of integers or reals and provide
a temporal interpretation of the order of the variates. Brownian motion or the Ornstein-
Uhlenbeck process are prominent examples of continuous-time stochastic processes
indexed by T ⊆ R. Such processes allow for the formulation of stochastic integrals and
stochastic differential equations. Discrete-time processes are considered as an approxima-
tion of continuous-time processes observed at equally-spaced points t ∈ T ⊆ Z in time [24].
Aiming at modeling daily precipitation amounts in Chapter 6, indexing by natural
numbers T = N properly captures the discrete temporal resolution of the empirical data
and is assumed in what follows. Our focus lies on stationary non-Gaussian stochastic
processes with long-range correlations that are the result of a pointwise transformation
of a Gaussian process.

Based on the textbook [137] the Sections 2.2 and 2.4 recap the general concepts
of stationarity and long-range correlations for Gaussian (Sect. 2.1) and general non-
Gaussian processes. Section 2.3 introduces a classification of distributions by means of
their tail behavior. ARFIMA models (Sect. 2.5) are a well-established approach to the
generation of discrete-time Gaussian long-range correlated data (Sect. 2.6). Nonlinear
transformations of ARFIMA processes provide models for non-Gaussian long-range
correlated processes (cp. Chap. 3) such as daily precipitation amounts (cp. Chap. 6).

2.1. Gaussian processes

The property of Gaussianity describes a Gaussian character among arbitrary parts of
a stochastic process. Not only the distribution of the process is assumed Gaussian
at any single point in time but also the joint distribution of any finite ensemble of
members of the process.

Definition (Gaussian process): A stochastic process (Xt)t∈N is called a Gaussian
process if the joint distribution of any finite number s ∈ N of variates Xt1 , . . . ,Xts at
points ti ∈ N in time with i = 1, . . . , s is a multivariate Gaussian distribution.
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2. Gaussian and non-Gaussian stochastic processes

By the definition of a multi-dimensional normal distribution Gaussian processes (Xt)t∈N
are uniquely determined yet by their first and second moments E[Xt] and Cov(Xs,Xt)
for indices s, t ∈ N, respectively. The multivariate normal distribution of subsets of a
Gaussian processes ensures that sums over such collections follow a normal distribution
as well. Model formulation is therefore particularly straightforward, for example, for
linear Gaussian processes such as the ARFIMA model introduced in Section 2.5.

2.2. Stationary processes

Stationarity describes the property of an unchanged stochastic behavior among different
parts of a stochastic process (Xt)t∈N. Denote by F(Xt1 ,...,Xts) ∶ R

s → [0,1] the joint cdf
of a finite number s ∈ N of variates Xt1 , . . . ,Xts of the process at points t1, . . . , ts ∈ N in
time, if such a cdf exists for all parts of the process.

Definition (Strict stationarity): A stochastic process (Xt)t∈N is called strictly or
strict-sense stationary if for all finite numbers s ∈ N of points t1, . . . , ts ∈ N in time
and time lags k ∈ N0 the joint distributions of the variates Xt1 , . . . ,Xts and the vari-
ates Xt1+k, . . . ,Xts+k with shifted temporal indices satisfy

P(Xt1+k ≤ x1, . . . ,Xts+k ≤ xs) = P(Xt1 ≤ x1, . . . ,Xts ≤ xs) (2.1)

for all points (x1, . . . , xs) ∈ Rs. In other words, if existent, the joint cdfs of such
ensembles satisfy

F(Xt1+k,...,Xts+k)(x1, . . . , xs) = F(Xt1 ,...,Xts)(x1, . . . , xs). (2.2)

Strict-sense stationarity considers the entire joint distribution of arbitrary parts of a
stochastic process. An alternative to this broad view involves only the first and second
moments of the process and is called weak, second-order or wide-sense stationarity.

Definition (Second-order stationarity): A stochastic process (Xt)t∈N with time-inde-
pendent mean E[Xt] =∶ µ ∈ R and variance Var(Xt) =∶ σ2 ∈ R>0 is called second-order or
wide-sense stationary if there exists an autocorrelation function (acf) %X such that

%X(k) = Cov(Xt,Xt+k)
σ2

(2.3)

for all points t ∈ N in time and time lags k ∈ N0.
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2.3. Classification of the marginal distribution

Note that in view of equation (2.3) the autocovariance function Cov(Xs,Xt) of a
second-order stationary process depends on the time lag k = ∣s − t∣ only and not on the
particular points s, t ∈ N in time. In what follows we refer to second-order stationary
processes whenever using the term “stationary”.

The simplest examples of (strictly and second-order) stationary processes are in-
dependent and identically distributed (iid) processes. Such processes are commonly
referred to as white noise processes. A stationary Gaussian process (Xt)t∈N is entirely
determined by a Gaussian marginal distribution N(µ,σ2) with constant mean µ ∈ R and
variance σ2 ∈ R>0 and a time-independent acf %X in virtue of equation (2.3). Therefore,
the stationarity and the fluctuations of Gaussian processes are directly assessable, which
provides a particularly simple approach to model formulation.

Remark 2.1: Strictly stationary processes are not necessarily weakly or second-order
stationary, since the latter property assumes finite first and second moments. For
Gaussian processes the two properties are equivalent, since given first and second
moments fully characterize all of their marginal distributions.

2.3. Classification of the marginal distribution

Joint distributions of arbitrary subsets of a stochastic process are called marginal
distributions. If the number s ∈ N of variates in such a subset is finite like in the
definitions of Gaussian (Sect. 2.1) or stationary (Sect. 2.2) processes, the related joint
distribution is commonly referred to as an s-dimensional marginal distribution. All
marginal distributions of strictly stationary processes equate to each other. For modeling
purposes the one-dimensional marginal distribution is of particular importance because
it directly describes an observed quantity, which is for example a daily precipitation
amount in our study in Chapter 6. In what follows we refer to this distribution whenever
using the term “marginal distribution”.

The tail behaviour of stochastic distributions is of special interest because it allows for
limit theorems concerning the sums of random variables (cp. Sect. 5.1) or the occurrence
of their extreme values (cp. Sect. 7.1.2). We classify distributions based on their tails
according to [48].

Definition (Heavy-tailed distributions): The distribution of a random variable X is
called heavy tailed if for all constants t ∈ R>0 the moment generating function M satisfies

M(t) ∶= E [etX] = ∞. (2.4)

13



2. Gaussian and non-Gaussian stochastic processes

If the distribution of the random variable X has a pdf fX , then equation (2.4) reads

∫
R

etxfX(x)dx = ∞. (2.5)

If there exists a constant t ∈ R>0 such that the expectation (2.4) is finite, then the
distribution is commonly called light tailed.

Distributions with an at least exponentially or faster decaying pdf are light tailed.
A distribution whose pdf decays slower than every exponential function is heavy tailed.
In the literature of applied sciences occasionally any distribution with a tail decaying
slower than the one of the Gaussian distribution is called heavy tailed. In the physics
literature power-law decaying pdfs are commonly referred to as heavy tailed. We classify
more specifically by denoting such distributions as fat tailed.

Definition (Fat-tailed distributions): A distribution with pdf f is called fat tailed if
there exists an exponent α ∈ R>1 such that

f(x) ∝ x−α (x→∞). (2.6)

The constraint α > 1 on the power-law exponent in proportionality (2.6) is necessary to
ensure integrability since pdfs integrate to unity on the entire probability space. Including
the concepts of regularly or slowly varying functions a generalization of the perception
of fat tails is possible. Further classes of heavy-tailed distribution are subexponential,
long-tailed or dominatedly varying distributions [48, Sect. 1.4.1]. In Chapter 6 we apply
a power of a truncated Gaussian distribution to the modeling of daily precipitation
amounts. The resulting truncated-Gaussian-power (tGp) distribution is heavy but not
fat-tailed (Sect. 6.1.3). Table 2.1 states some examples of light-, heavy- and fat-tailed
distributions. Note that any fat-tailed distribution is also heavy tailed.

Light-tailed distributions Heavy-tailed distributions Fat-tailed distributions

Gaussian Lognormal Pareto

Exponential truncated-Gaussian power Cauchy

Gamma Beta

α-stable, α ∈ (0,2)

Table 2.1 Examples of light-, heavy- and fat-tailed distributions

Note that the notion of α-stable distributions refers to densities with tail behav-
ior ∝ x−α−1 as x → ∞ in contrast to definition (2.6). For parameters α ∈ [1,2] these
distributions exhibit an infinite variance with infinite mean for α ∈ (0,1]. Special cases
are the normal distribution with α = 2 and the Cauchy distribution with α = 1.
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2.4. Long-range correlated processes

2.4. Long-range correlated processes

The concept of long-range correlations (LRC) in time series was established by Hurst
in 1951 in his fundamental work on water storage capacities of the Great Dam of the
river Nile [82,83]. He formulated the rescaled-range analysis or R/S-statistics (Sect. 4.2.1)
for the numerical detection of LRC in empirical observations. Ever since, LRC have
been found in data sets from various fields of science (cp. Sect. 1.2). Hurst observed
that fluctuations of empirical gauge heights deviated from what uncorrelated Gaussian
in- and outflow would have generated. He identified that the increase of the range R of
the water levels normalized by the square root S of their sample variance on average
follows a power law

R

S
(s) ∝ sH (s→∞) (2.7)

as time s ∈ N increases (cp. relation (4.8)). The scaling or R/S-exponent H in relation (2.7)
is known as the Hurst exponent and a matter of current research [33,107]. See Chapter 4
and relation (4.3) for a more general perception of this exponent. While Gaussian white
noise input gives the exponent H = 1

2 in the power law (2.7) [22], Hurst detected growth
exponents 1

2 <H < 1 in the hydrological data. Suchlike deviations from uncorrelated
behavior in the R/S-exponent is known as the Hurst effect ever since [61]. Mandelbrot [116]
showed that for stationary processes the exponent H = 1

2 is robust against non-Gaussian
marginal distributions even with infinite variance. More precisely, infinite second
moments are neither necessary nor sufficient for exponents H ≠ 1

2 in relation (2.7) [115].
In fact, long-range correlations [114] and nonstationarities [33] are possible origins of
the Hurst effect as well (see Rems. 2.2 and 4.7).

Remark 2.2: Processes with infinite variance exhibit the so-called Noah effect [112]
of the occurrence of events from the far tail of the marginal distribution. The naming
originates from the bible’s story about the Noachian flood. For marginal distributions
with infinite first or second moments extreme events of such high extents feature a higher
probability of becoming real. Stochastic processes with long-range correlations show a
tendency of long periods of higher or lower values. Mandelbrot called such a behavior
the Joseph effect according to the biblic story of Joseph that describes seven years of
high precipitation followed by seven years of drought [113]. See Remark 4.7 for recent
generalizations of the Hurst exponent such as the Moses effect.
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2. Gaussian and non-Gaussian stochastic processes

The acf (2.3) provides access to the correlation structure of stationary stochastic
processes and the definition of long- and short-range correlations.

Definition: A stationary stochastic process (Xt)t∈N is said to exhibit (temporal) long-
range correlations (LRC) if its acf %X (2.3) is not absolutely summable, in other words, if

τ ∶=
∞
∑
k=0

∣%X(k)∣ = ∞. (2.8)

If the sum in (2.8) is finite, then the process is said to have short-range correlations (SRC).

Remark 2.3: An alternative denomination of long-range and short-range correlations
are the terms long- and short-memory, respectively [56, 137,163]. To obviate misleading
overlap with the notion of memory in the field of (stochastic) differential delay equa-
tions [130] we employ the terms LRC and SRC. Correlations are a statistical effect
essentially, while memory typically suggests a physical causality.

The sum (2.8) is the discrete-time analogon of the correlation time of a time-con-
tinuous stochastic process. An in continuous time t ∈ R≥0 exponentially decaying
quantity N(t) = N(0)e−

t
T , in general, features a typical mean life time T ∈ R>0 that

mimics a temporal scale in the system by N(0)
N(T ) = e. As T = ∫

∞
0 e−

t
T dt in view of purely

exponential decay, the more general equation

T ∶=
∞

∫
0

%X(h)dh (2.9)

serves as a definition of the correlation time T of a continuous-time and stationary
stochastic process (Xt)t∈R with an acf %X . As for LRC processes a finite mean correlation
time, and thus a typical temporal scaling, does not exist by equation (2.8), such processes
are called scale free or scale invariant. In Chapter 5 we incorporate correlation times in
the concept of effective samples sizes for meta-Gaussian LRC processes.

The presence of a power-law decaying acf occasionally serves as a definition of LRC
processes [46,88]. An asymptotic shape of the acf %X like

%X(k) ∝ k−γ (k →∞) (2.10)

for time lags k ∈ N and exponents 0 < γ ≤ 1 is a sufficient condition for LRC. An acf that
decays to zero more rapidly than a power law (e.g., exponentially) or is constantly zero (un-
correlated behavior), so that the correlation time (2.8) converges, yields an SRC process.
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2.5. Autoregressive-fractionally-integrated-moving-average (ARFIMA) processes

As a remark, a stochastic process with a power-law decaying acf and an exponent γ > 1

in relation (2.10) still exhibits a finite correlation time. Such correlation behavior shall be
referred to as intermediate or intermediate memory [137]. For more details on categorizing
correlations in time series including an also commonly used description by the power
spectral density [84, Sect. I.6] or by a linear decomposition of the process see [28] or [151].

2.5. Autoregressive-fractionally-integrated-moving-average
(ARFIMA) processes

For the representation of the different types of correlations described in Section 2.4
a variety of Gaussian stochastic models is available. Graves et al. [61] give a historical
overview of the most prevalent approaches suchlike. The ARFIMA, sometimes also
called FARIMA, process introduced below is one of the discrete-time LRC models among
them. Our modeling of non-Gaussian daily precipitation amounts in Chapter 6 bases on
a nonlinear transformation of an ARFIMA process.

Autoregressive-integrated-moving-average models, abbreviated as ARIMA(p, d, q) with
parameters p, q, d ∈ N≥0 allow for the modeling of certain discrete-time Gaussian SRC
processes [27]. The values p and q determine the numbers of involved autoregres-
sive (AR) and moving-average (MA) components, respectively (cp. Eq. (2.15)). The
integration parameter d describes a degree of differencing of previous values of the
process. For all values d ∈ N>0 ARIMA models are nonstationary. Special cases, however,
are the stationary autoregressive AR(p) (0 = d = q) and autoregressive-moving-aver-
age ARMA(p, q) (d = 0) models. As a common feature all these models are SRC processes
as there exists an asymptotically exponentially decaying envelope of their acfs. The
acf %X of an AR(1) process (Xt)t∈N with

Xt = ϕXt−1 + εt (2.11)

and X0 = 0, an AR parameter ϕ ∈ R such that ∣ϕ∣ < 1 and a zero-mean Gaussian white
noise process (εt)t∈N with variance σ2

ε for time lags k ∈ N0 reads

%X(k) = ϕk (2.12)

with variance

Var(Xt) =
σ2
ε

1 − ϕ2
. (2.13)
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2. Gaussian and non-Gaussian stochastic processes

Mandelbrot established the concept of fractional Brownian motion BH (fBm) with
a parameter 0 < H < 1 for the modeling of Gaussian LRC processes [112]. The fBm
is a continuous-time nonstationary Gaussian process defined by a fractional integral
of Gaussian white noise. It has a fractional nature by statistical self-similarity, in
the sense that for all scaling and temporal parameters a, t ∈ R>0 the variates BH(at)
and aHBH(t) share the same distribution. The increment process BH(t + 1) −BH(t)
is called fractional Gaussian noise (fGn) and is stationary with a power-law decaying
acf %fGn that satisfies [176]

%fGn(h) ∼H(2H − 1)h2H−2 (h→∞) (2.14)

for self-similarity parameters H ≠ 1
2 and time lags h ∈ R≥0. The symbol “∼” in rela-

tion (2.14) denotes asymptotic equivalence. For parameters 1
2 < H < 1 a fGn process

obeys positive LRC, hence, is an LRC process with 0 < γ = 2 − 2H < 1 in accordance
with definition (2.8). For further details on negative LRC consult [112].

Hosking [78] and Granger and Joyeux [60] extended the toolbox of Gaussian mod-
els by autoregressive-fractionally-integrated-moving-average processes ARFIMA(p, d, q)
with parameters p, q ∈ N≥0 and d ∈ (0, 1

2
) to get hands on discrete-time stationary

Gaussian LRC processes. As a generalization of the aforementioned ARIMA models AR-
FIMA processes still allow for the modeling of SRC effects by including p autoregressive
and q moving-average components. Such SRC are not explicitly inherent to fGn [78].
Using the notion of a backshift operator BXt ∶= Xt−1 for time indices t ∈ N, an ARFI-
MA(p, d, q) process is defined as the solution (Xt)t∈N to the fractional difference equation

Φ(B)Xt = Θ(B)(1 −B)−dεt, (2.15)

where (εt)t∈Z is a zero-mean Gaussian white noise process with variance σ2
ε ∈ R>0. The

functions Φ(B) ∶= 1−ϕ1B− . . .−ϕpBp and Θ(B) ∶= 1− θ1B− . . .− θqBq in equation (2.15)
denote polynomial autoregressive and moving-average operators, respectively. The coef-
ficients ϕ1, . . . , ϕp, θ1, . . . , θq ∈ R are such that Φ and Θ do not have common roots [137].

Remark 2.4 (Rem. 3.2 in [137]): Under appropriate assumptions the solution to
equation (2.15) is unique. This is not necessarily the case if the process is defined
by the equation

Φ(B)(1 −B)dXt = Θ(B)εt. (2.16)

If a process Xt solves equation (2.16) with d > 0, then for all random variables V with
finite variance the process Xt + V is a solution, too.
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2.5. Autoregressive-fractionally-integrated-moving-average (ARFIMA) processes

By a binomial expansion the fractional difference operator in definition (2.15) reads

(1 −B)−d ∶=
∞
∑
j=0

ψjB
j with ψj ∶=

Γ(d + j)
Γ(d)Γ(1 + j)

. (2.17)

An ARFIMA(0, d,0) process (Xt)t∈N0 has the infinite moving-average representation

Xt =
∞
∑
j=0

ψjεt−j . (2.18)

One can show that the coefficients ψj , j ∈ N0, satisfy ψj ∼ jd−1

Γ(d) as j →∞ [78]. Hence,
the sum (2.18) converges in the space L2 with Var(Xt) = σ2

ε ∑∞
j=0ψ

2
j < ∞ and

Var(Xt) =
Γ(1 − 2d)
Γ(1 − d)2

. (2.19)

The moving-average representation (2.18) serves as a direct approach to the numeri-
cal generation of synthetic ARFIMA time series recapped in Section 2.6. We apply
this method in Section 6.2.4 and Section 6.3 for the validation of our model of daily
precipitation amounts and the generation of confidence intervals, respectively.

Irrespective of the values of the AR and MA parameters p and q, the acf %X of
an ARFIMA(p, d, q) process asymptotically behaves like

%X(k) ∝ k2d−1 (k →∞). (2.20)

For every d ∈ (0, 1
2
) under mild conditions (i.e., all roots of the operators Φ and Θ in

equation (2.15) lie outside the closed unit disc in the complex plane) the ARFIMA(p, d, q)
process is stationary, causal and invertible [137, Thm. 3.4] and obeys positive LRC.
With 0 < γ = 1 − 2d < 1 it is an LRC process in the sense of definition (2.8). The
parameters p and q account for SRC effects that decay exponentially while the parameter d
describes the power-law decay (2.20) of the acf %X [78].

In Chapter 6 we apply an ARFIMA(1, d,0) process with LRC parameters 0 < d < 1
2 .

For details on the existence of solutions of equation (2.15), more general conditions on
the parameter d for negative LRC and on the polynomials Φ and Θ, and for further
properties of the ARFIMA(p, d, q) process see [27], [78] and [137]. By equation (2.15)
an ARFIMA(1, d,0) process given by (1 − ϕB)Xt = (1 −B)−dεt can be represented by

Xt = ϕXt−1 + X̃t (2.21)

with an ARFIMA(0, d,0) process (X̃t)t∈N0 . The latter process satisfies X̃t = (1 −B)−dεt
and equation (2.18). The AR and LRC parameters in equation (2.21) are chosen
such that ϕ ∈ R with ∣ϕ∣ < 1 and 0 < d < 1

2 , respectively, to ensure stationarity and
invertibility. Therefore, an ARFIMA(1, d,0) process is a first-order autoregression
with ARFIMA(0, d,0) perturbations [78].
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2. Gaussian and non-Gaussian stochastic processes

○ iid
○ AR(1)
○ ARFIMA(0, d,0)
○ ARFIMA(1, d,0)

with d = 0.3 and ϕ = 0.5
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Fig. 2.1 Theoretical (solid lines) and empirical (circles) acfs of a sample time se-
ries X1, . . . ,XN of length N = 36,500 of an iid, an AR(1), an ARFIMA(0, d, 0) and an AR-
FIMA(1, d, 0) process with standard Gaussian marginal distribution. The solid lines are
linear interpolations of the analytically known values of the acfs at time lags k ∈ N0.

The acf %X̃ of an ARFIMA(0, d,0) process X̃t and %X of an ARFIMA(1, d,0) pro-
cess Xt are analytically known [78] and read

%X̃(k) = Γ(1 − d)
Γ(d)

⋅ Γ(k + d)
Γ(k − d + 1)

and (2.22)

%X(k) = %X̃(k) ⋅ 2F1(1, d + k,1 − d + k;ϕ) + 2F1(1, d − k,1 − d − k;ϕ) − 1

(1 − ϕ) 2F1(1,1 + d,1 − d;ϕ)
(2.23)

for time lags k ∈ N0 with

%X(1) = (1 + ϕ2) 2F1(1, d,1 − d;ϕ) − 1

ϕ ( 2F1(1, d,1 − d;ϕ) − 1 )
(2.24)

for unity time lag k = 1. Therein, the function 2F1 is the hypergeometric function. In
Section 6.2.3 we use the lag-1 acf (2.24) for the fit of the SRC parameter of our model
for daily precipitation amounts. Asymptotically, the acf (2.22) and (2.23) satisfy

%X̃(k) ∼ Γ(1 − d)
Γ(d)

k2d−1 (k →∞) and (2.25)

%X(k) ∼ 1 + ϕ
(1 − ϕ)2

⋅ 1

2F1(1,1 + d,1 − d;ϕ)
⋅ %X̃(k) (k →∞). (2.26)

Figure 2.1 shows the analytical and empirical acfs in linear scaling for four of the
prototypes of discrete-time stationary Gaussian processes, namely of an iid, an AR(1),
an ARFIMA(0, d, 0) and an ARFIMA(1, d, 0) process with AR and LRC parameter ϕ = 0.5

and d = 0.3, respectively. The sample time series are generated by the algorithm described
in Section 2.6 and the acfs are estimated by the sample acf (4.1) recapped in Section 4.1.
For semi- and double-logarithmic visualizations see Figure 4.2. Chapter 4 provides
comments on the numerical estimation of the strength correlations in stochastic processes.
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2.6. Numerical generation of ARFIMA time series

2.6. Numerical generation of ARFIMA time series

When numerically generating synthetic time series obtaining prescribed SRC and LRC
accurately is a particular challenge. Several methods for this purpose have been pro-
posed [180, Sect. 3.3], such as an approximative moving-average method, the method
by McLeod and Hipel, the Durbin-Levinson algorithm or methods based on the Yule-
Walker equations [139] or the FFT power spectrum [39]. In early years of computational
studies smaller computing power required a direct generation of prescribed correlations
to ensure that already short time series exhibit the correct correlations. Contemporary
computing devises allow for an as accurate representation of given correlations also by
approximate methods.

For synthesizing ARFIMA(1, d,0) model time series for specific values of the AR
and LRC parameter ϕ and d, respectively, we follow an algorithm formulated by
Hosking [79] based on equation (2.21). An ARFIMA(1, d,0) time series (Xt)N−1

t=0 of
length N ∈ N is directly obtained by equation (2.21) as follows.

1. Generation of an ARFIMA(0, d,0) time series (X̃t)N−1
t=−L by truncating the sum in

its moving-average representation (2.18), starting with X̃−L = 0 for a number L ∈ N

2. Execution of Ñ ∶= N + L auto-regressions starting with X−L to obtain a time
series (Xt)N−1

t=−L of length Ñ by using the fractionally differenced noise X̃t as an
input for equation (2.21)

3. Ensuring accomplishment also of the desired SRC by omission of the L tran-
sients X−L, . . . ,X−1

Aiming at an ARFIMA(1, d,0) process with AR parameter ϕ, Hosking proposes
the choice ∣ϕ∣L ≤ ε = 0.01 for the number L ∈ N of transients. We employ a smaller
tolerance of ε = 0.001 to further increase accuracy and make use of available computing
power. For generating a member X̃t of the ARFIMA(0, d,0) time series we include 2Ñ

values of a white noise process (εt)Ñ−1
t=−2Ñ−1

. Hence, every value X̃t and so Xt carries
information about at least N noises εt in the past and reflects the given LRC. Applying a
pseudo-random number generator1, we obtain the Gaussian white noise by the Mersenne
Twister. Reducing the above procedure for the generation of ARFIMA(1, d, 0) time series
to the ARFIMA(0, d, 0) or AR part, respectively, provides an algorithm for synthezising
suchlike processes as well (cp. Fig. 2.1).

Figure 2.2 visualizes a sample time series for each of the four aforementioned processes
in Figure 2.1 with the same AR and LRC parameters ϕ = 0.5 and d = 0.3. In dependence
of the correlation structure the different characteristics of these processes become visible.
The iid process exhibits a purely random behavior without any apparent relation between
the values of the process. By relation (2.12) the autocorrelations of the AR(1) process
decay exponentially. Consecutive values of such processes show a tendency of being close
to each other. Pretty soon, though, the white noise pertubations take over and yield a

1from the software environment MATLAB R2018b 21



2. Gaussian and non-Gaussian stochastic processes

steady alternation between positive and negative values. The LRC in the ARFIMA(0, d, 0)
time series imply noticeable dependencies among its values. Longer periods of values
below or above the average zero value are observable. This behavior is even more
prominent for the ARFIMA(1, d,0) time series. Due to the positive AR parameter in
this example, the process does not only stay positive or negative, respectively, for long
periods but also bears a tendency of keeping its directions along the way.
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Fig. 2.2 Sample time series X1, . . . ,XN of length N = 350 of an iid, an AR(1), an AR-
FIMA(0, d,0) and an ARFIMA(1, d,0) process (from top to bottom) with standard
Gaussian marginal distribution each.
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3. Meta-Gaussian stochastic processes

In the context of bivariate distributions Kelly and Krzysztofowicz [92] coined the
phrase “meta-Gaussian” for distributions of monotonic transformations of (multivariately)
normally distributed random variables. Meta-Gaussian models allow for discontinuous
marginal distributions, which have been widely used in hydrometeorological modeling [63].
The truncated-Gaussian-power distribution that we use for modeling daily precipitation
amounts in Chapter 6 is such a discontinuous distribution due to a point mass at the
zero value. Section 1.4 and Section 6.1.3 provide details on precipitation modeling in
general and our application of this specific distribution, respectively.

Definition (Meta-Gaussian process): Let (Xt)t∈N be a Gaussian process. A stochastic
process (Yt)t∈N is called ameta-Gaussian process if there exists a nondecreasing monotonic
function g ∶ RÐ→ R such that

Yt = g(Xt) (3.1)

pointwise for all indices t ∈ N.

A variety of marginal distributions involving any kind of tail behaviour (cp. Sect. 2.3)
results from nonlinear transformations of Gaussian variates. Any desired distribution
can be generated by inverse sampling based on the probability integral transform as
follows. For every random variable X with cdf FX the random variable F (X) follows
a standard uniform distribution. Then the random variable Y ∶= F −1

Y (FX(X)) obeys
any prescribed cdf FY with quantile function F−1

Y . Note that by the monotonicity of the
two functions the concatenation F −1

Y ○ FX of any quantile function F −1
Y and any cdf FX

yields a nondecreasing transformation in equation (3.1). Models based on the inverse
sampling idea are popular in hydrologolical and geophysical modeling (see Sect. 1.4)
because of the convenience of Gaussian processes (see Sect. 2.1) and the straightforward
access to models with non-Gaussian distributions by pointwise transformations.

Remark 3.1: The usage of the phrase “meta-Gaussian” and its definition is not consis-
tent across scientific disciplines. In the geophysical literature we also find the term “parent-
Gaussian” [141] without demanding monotonic increase in definition (3.1) explicitly.
In physics, mathematics or computer science we also find phrases like “MNLT” (mem-
oryless nonlinear transformations) [178], special cases of “Gaussian subordinate” pro-
cesses [1, 22,56] or usage of the concept without a specific denotation [39]. See Section 1.1
for a clarification of the term “meta-Gaussian”.
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3. Meta-Gaussian stochastic processes

Some authors refer to pointwise transformations of stochastic processes as mem-
oryless [39, 73, 178] since processes defined by equation (3.1) do not gain additional
dependencies among the different values of the process. In contrast, Section 3.4.3
states a transformation of a Gaussian process which is not considered memoryless. The
correlations of a stochastic process nevertheless cannot be expected invariant under
nonlinear pointwise transformation. Depending on the particular transformation the
correlations of the transformed process are a function of the original correlations. For
transformations of Gaussian processes, in particular, for meta-Gaussian processes the
relation between these two acfs is analytically known as recapped in Section 3.1. Based
on these insights Section 3.2 draws inference about the properties of the correlations of
the transformed process. In Section 3.3 we study the resulting marginal distributions
and acfs for some example transformations. The closing remarks in Section 3.4 broaden
the scope of correlations of transformed Gaussian processes to more general settings.

3.1. Hermite polynomial approach to correlations

A nonlinear transformation (3.1) presumably changes the mean and the variance of the
marginal distribution of a stationary stochastic process. Also the acf is thus expected to
change even under a memoryless transformation of the process as both quantities affect
correlations. Note that affine linear transformations yield affine linear changing of the
mean and standard deviation of the process’ marginal distribution, so that by its very
definition the acf remains unchanged then. How the acf of an original Gaussian process
changes precisely under a nonlinear transformation can be determined by an Hermite
polynomial approach [22,161]. This method is valid for square-integrable transformations,
which extends its applicability beyond meta-Gaussian to processes generated by also
non-monotonic transformations.

Let (Xt)t∈N be a stationary and centered (i.e., zero-mean) Gaussian process with
standard deviation σ ∈ R>0, acf %X and marginal pdf

fX(x) ∶= 1

σ
φ(x

σ
) = 1√

2πσ2
e−

x2

2σ2 (3.2)

for values x ∈ R. Unless specified otherwise, in what follows, the symbol fX accom-
panied by the symbol FX denote the pdf (3.2) and cdf, respectively, of a zero-mean
Gaussian N(0, σ2) variate with arbitrary standard deviation (cp. Tab. B.1).

Denote by L2 ∶= L2(R, µfX ) the Hilbert space of all with respect to the mea-
sure µfX (A) ∶= ∫A fX(x)dx on Borel sets A ⊆ R square-integrable functions on the
real space R. The space L2 features the standard scalar product

⟨g, h⟩ ∶= ∫
R
g(x)h(x)fX(x)dx (3.3)
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3.1. Hermite polynomial approach to correlations

for functions g, h ∈ L2. Consider a pointwise nonlinear L2-transformation g (not nec-
essarily nondecreasing) and the transformed process (Yt)t∈N with Yt ∶= g(Xt). Such a
transformation keeps the first E[Yt] = ⟨g,1⟩ and second E[Y 2

t ] = ⟨g, g⟩ moment of the
marginal distribution finite, so that the resulting process Yt is again stationary. Further-
more, every L2-function exhibits an Hermite polynomial series expansion.

Definition (Hermite polynomials): For unit variance σ2 = 1 and indices j ∈ N0 the Her-
mite polynomials Hj ∶ RÐ→ R are defined as

Hj(x) ∶= (−1)j dj

dxj
(e−

x2

2 ) e
x2

2 (3.4)

for values x ∈ R. For arbitrary standard deviations σ ∈ R>0 by definition (3.4) the gener-
alized Hermite polynomials are given by

Hσ2

j (x) ∶= σjHj (
x

σ
) . (3.5)

The first four generalized Hermite polynomials read

Hσ2

0 (x) = 1, Hσ2

1 (x) = x, Hσ2

2 (x) = x2 − σ2 and Hσ2

3 (x) = x3 − 3σ2x. (3.6)

In the L2-Hilbert space equipped with the scalar product (3.3) the (generalized) Hermite
polynomials form an orthogonal basis [161, Prop. 6.3.2] since by equation (3.5), we find

⟨Hσ2

i ,Hσ2

j ⟩ = σ2jj! δij (3.7)

for indices i, j ∈ N0, where δij denotes the Kronecker delta. Normalizing the scalar
product (3.7) to unity, every function g ∈ L2 can be represented uniquely by

g =
∞
∑
j=0

αj

σ2jj!
Hσ2

j with Hermite coefficients αj ∶= ⟨g,Hσ2

j ⟩. (3.8)

The series representation (3.8) of the function g implies how the acf %Y of the transformed
process Yt depends on the acf %X of the original Gaussian process Xt. Theorem 3.2
provides this result for centered Gaussian processes with arbitrary marginal standard
deviations σ ∈ R>0 other than unity also, which is typically not elaborated in the
literature but required explicitly for our fit procedure in Chapter 6. The necessary
calculation using generalized Hermite polynomials and Mehler’s formula [123] is given
in Appendix A.
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3. Meta-Gaussian stochastic processes

Theorem 3.2 (cp. Thm. 3.2 in [161]): Let Xt be a stationary Gaussian process with
nonnegative acf %X and marginal distribution N(0, σ2) with mean zero and standard
deviation σ ∈ R>0. Then at time lags k ∈ N0 the acf %Y of the process Yt ∶= g(Xt) obtained
by a pointwise L2-transformation g reads

%Y (k) =
∑∞
j=1

α2
j

σ2jj!
%X(k)j

∑∞
j=1

α2
j

σ2jj!

. (3.9)

Proof. Using Mehler‘s formula (see Appx. A) and equation (A.5), it can be shown [44]
that for time lags k ∈ N0 we have

E[YtYt+k] =
∞
∑
j=0

α2
j

σ2jj!
%X(k)j . (3.10)

Plugging in equation (3.10) into %Y (k) = 1
Var(Yt)(E[YtYt+k] − E[Yt]2) implies equa-

tion (3.9). Mind that α0 = ⟨g,Hσ2

0 ⟩ = E[Yt], so that the first summand in equation (3.10)
cancels out, and note that the denominator in equation (3.9) is a series representation of
the variance of the marginal distribution of the process Yt. ◻

Remark 3.3: The present thesis focusses on stochastic processes with nonnegative
acfs and thus recites and proves Theorem 3.2 under this assumption only. The proof
of the general theorem including negative correlations can be found in [137, Sect. 7.1].
Example 3.10 comments on effects on negative correlations. Our scope is the modeling
of precipitation data with positive LRC in Chapter 6.

Without loss of generality in what follows we consider centered stationary Gaussian
processes Xt with zero-mean marginal distribution N(0, σ2). By the orthogonality of the
Hermite polynomials additive constants affect the first Hermite coefficient α0 = E[Xt]
only. In consistency with the definition (2.3) of the acf this coefficient cancels out in
the Hermite polynomial representation (3.9) just as affine linear transformations do not
change correlations. Variances σ2 other than unity, however, cannot be neglected for
nonlinear transformations, as the acf %Y might depend nonlinearly on this factor, which
does not cancel out generally (cp. the acfs %Z in eq. (3.12) of Ex. 3.4 and %eX in eq. (3.39)).
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3.2. Implications for correlation properties

Example 3.4: Let Xt be a Gaussian process with marginal distribution N(0,1) and
acf %X > 0. Define the polynomial transformations

g ∶=H0 +H2 and h ∶=H2 +H3 (3.11)

as the sum of two Hermite polynomials (3.6) each and consider the processes

Yt ∶= g(Xt) and Zt ∶= h(Xt).

Note that the function g gives the pointwise square of the process Xt. The Hermite
expansion (3.8) yields the Hermite coefficients α0 = E[X2

t ] = 1 and α2 = 2 for the
transformation g and α2 = 2, α3 = 6 for the transformation h. In either case, we
have αj = 0 otherwise, including α0 = E[Zt] = 0 for the function h. A short calculation
gives Var(Yt) = 2 and Var(Zt) = 8. Inserting these values into equation (3.9), we
obtain %Y = %2

X and %Z = 1
4%

2
X + 3

4%
3
X . In the general setting of a process Xt with

an N(0, σ2) marginal distribution with standard deviation σ ∈ R>0 applying generalized
Hermite polynomials analogously yields

%Y = %2
X and %Z = 1

1 + 3σ2
(%2

X + 3σ2%3
X ) . (3.12)

The acf %Z depends nonlinearly on the variance σ2, though, the acf %Y does not.
Figure 3.1 shows the polynomial relation between the original acf %X of the process Xt

and the acfs %Y and %Z of the transformed processes Yt and Zt, respectively. As a
remark, we find %Z → %3

X as σ →∞, so that the nonlinear dependence of the acf %Z on
the variance σ2 is crucial for small values only and dimishes as the variance increases.

3.2. Implications for correlation properties

Theorem 3.2 allows for direct access of the acf %Y (k) of the transformed process Yt at
time lags k ∈ N0. The implications of equation (3.9) for the properties of the acf %Y are
twofold. As a consequence of the instantaneous impact of a memoryless transformation,
the acf of the transformed process is a function of the original acf independent of the
time lag k. Equation (3.9) also bears the asymptotics of the acf of the transformed
process. In Sections 6.1.2 and 6.2.2 we use this relation to adjust the LRC parameter of
the ARFIMA process in our meta-Gaussian model for daily precipitation amounts.
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3. Meta-Gaussian stochastic processes

Definition (Hermite rank): The smallest nonzero index J ∈ N>0, for which the Hermite
coefficient αJ ≠ 0 in the Hermite polynomial expansion (3.8) is non-vanishing, is called
the Hermite rank of the transformation g.

Considering positive correlations, the Hermite rank J of a function g ∈ L2 determines
the asymptotic behavior of the acf %Y of the transformed process Yt. Since the acf %X
satisfies %X(k) → 0 as the time lag k → ∞, the degree of the (infinite) polynomial in
equation (3.9) determines the asymptotic rate of decay of the acf %Y . The Hermite rank J
quantifies the lowest order of this series expansion and yields the asymptotic behavior

%Y (k) ∝ %X(k)J → 0 (k →∞). (3.13)

If the Hermite rank J is larger than unity, then the transformation increases the speed
of the decay of the autocorrelations.

Remark 3.5: The coefficient for the index j = 1 in the Hermite expansion (3.8) reads

α1 = ∫
R
g(x)xfX(x)dx. (3.14)

Every transformation g that is not even hence obeys the Hermite rank J = 1. Therefore,
without further symmetry assumptions on the function g the transformation does not
change the asymptotic behavior (2.10) of a Gaussian LRC process by relation (3.15).

The proportionality (3.13) is valid for any rate of decay of the original acf %X . The acf
of the transformed process Yt = g(Xt) of a Gaussian SRC process with exponentially
decaying acf %X(k) ∝ ek ln ∣a∣ (k →∞) with a basis a ∈ R satisfying ∣a∣ < 1 decays more
rapidly at exponential rate eJk ln ∣a∣ as time lags k →∞ (cp. the acf (2.12) of an AR(1)
process). If the process Xt has LRC in the sense of definition (2.10), then the acf %Y
follows a power law with leading order

%Y (k) ∝ k−γJ (k →∞). (3.15)

If the exponent γ of the underlying LRC process Xt satisfies γ ∈ (0, 1
J
], then the trans-

formed process Yt obeys LRC as well. Otherwise, if γ ∈ ( 1
J ,1], we obtain intermediate that

means SRC. In the language of ARFIMA, processes with LRC parameter d ∈ [1
2 −

1
2J ,

1
2
)

maintain LRC but map to SRC (i.e., intermediate) for d ∈ (0, 1
2 −

1
2J

). The higher the
Hermite rank of a transformation is, the larger is the parameter range of LRC processes
that become SRC processes.
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3.2. Implications for correlation properties

Beyond asymptotics, equation (3.9) allows for further insight into the specific shape
of the relation between the two acfs %X and %Y .

Lemma 3.6: Let %X , %Y ∶ [0, 1] Ð→ [0, 1] be nonnegative acfs of a stationary Gaussian
process (Xt)t∈N and a transformed process Yt = g(Xt) with a function g ∈ L2. Then the
relation T ∶ %X z→ %Y

(i) reduces the strength of correlations at fixed time lags k ∈ N by

%Y (k) < %X(k), (3.16)

(ii) and thus reduces the correlation time by

τY ∶=
∞
∑
k=0

%Y (k) <
∞
∑
k=0

%X(k) =∶ τX (3.17)

(iii) and is strictly monotonically increasing by

%Y (k1) < %Y (k2) if %X(k1) < %X(k2) (3.18)

for time lags k1, k1 ∈ N, and

(iv) is convex in the sense that

T ( t%X(k1) + (1 − t)%X(k2)) ≤ t%Y (k1) + (1 − t)%Y (k2) (3.19)

for all values t ∈ [0,1] and time lags k1, k2 ∈ N with %X(k1) < %X(k2).

Proof. (i) For positive correlations %X(k) ∈ (0,1) we find

∞
∑
j=1

α2
j

σ2jj!
%X(k)j < %X(k)

∞
∑
j=1

α2
j

σ2jj!
= %X(k)Var(Yt), (3.20)

so that equation (3.9) implies inquality (3.16) for all time lags k ∈ N.
(ii) Inequality (3.17) follows from applying the estimate (3.16) to the definition (2.8) of
the correlation time.
(iii) Analogously to estimate (3.20), we obtain the monotonicity (3.18).
(iv) Convexity (3.19) follows from equation (3.9) by the convexity of power functions as

(t%X(k1) + (1 − t)%X(k2))
j
≤ t%X(k1)j + (1 − t)%X(k2)j (3.21)

for all exponents j ∈ N. ◻
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3. Meta-Gaussian stochastic processes

Note that for the two limit cases %X(k) → 1 and %X(k) → 0 as k → 0 and k → ∞,
respectively, by equation (3.9) we have %Y (k) → 1 and %Y (k) → 0, as well. The
term “memoryless” stems from the effect (3.16) since a pointwise transformation cannot
add dependence to a process, in other words, increase correlations at fixed time lags.
Section 3.4.3 gives a transformation of a Gaussian process that increases the strength of
given correlations and is thus not memoryless.

Figure 3.1 visualizes the observations of Lemma 3.6 for the two polynomial transforma-
tions given in Example 3.4. For memoryless transformations the convex and monotonic
image %Y of the acf %X lies below the diagonal by inequality (3.18). Section 3.4 relates
equation (3.9) to a recent study [139] of a functional fit to the inverse relation %Y z→ %X

with visualizations for some example transformations in Figure 3.4.

● ● %Y
● ● %Z (σ = 2)
● ● %Z (σ = 1

2
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

acf %X

ac
fs
%
Y

an
d
%
Z

Fig. 3.1 Relation between the original acf %X of a Gaussian process Xt with marginal
distribution N(0, σ2) and the acfs %Y and %Z (3.12) generated by the polynomial
example transformations g(x) = x2 and h(x) = x3 + x2 − 3σ2x − σ2 generalized from the
equations (3.11) for arbitrary marginal standard deviations σ ∈ R>0.

See [10] for further reading on the sensitivity of the Hermite rank and on a central limit
theorem representation of pointwise transformed LRC processes based on the Hermite
polynomial approach. As a remark, one could also use Appell polynomials instead to
generalize to transformations of non-Gaussian processes [85]. Due to definition (3.4),
Hermite polynomials are a particularly convenient choice when transforming Gaussian
processes. Palma [137] deals with the autocorrelations of the square of various non-
Gaussian processes.
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3.3. Example transformations

3.3. Example transformations

The pointwise square of stochastic processes is one of the transformations studied in
detail earliest in the literature for linear processes with SRC or LRC filters [137, Sect. 7.2].
Further examples obtained by inverse sampling are given in [39] amongst others such
as meta-Gaussian processes with uniform, exponential or Pareto marginal distribution.
Having in mind the modeling of precipitation amounts, we consider transformations
that yield distributions of nonnegative values only, namely the square, lognormal and
absolute-value process. Section 3.3.1 deals with the marginal distributions we obtain
by these nonlinear memoryless transformations of Gaussian processes. The related acfs
are the subject of Section 3.3.2 along with their asymptotic behavior. For each of the
three example maps we have a closed form of the acf of the transformed process. In
general, however, by equation (3.9) the Hermite approach of Section 3.1 only yields a
series representation of the acf typically with Hermite coefficients calculated numerically.

Beyond the Hermite polynomial approach Section 3.4.3 visualizes a non-instantaneous
transformation of a Gaussian process providing a non-Gaussian LRC model with ap-
proximately exponential marginal distribution.

3.3.1. Generated marginal distributions

Before focusing on transformations of zero-mean Gaussian processes, we gain an im-
pression of the variety of non-Gaussian models transformations of arbitrary Gaussian
processes allow for. Let X be an N(µ,σ2)-distributed Gaussian variate with mean µ ∈ R
and standard deviation σ ∈ R>0. Denote by FX and fX the cdf and pdf of the random
variable X, respectively (cp. Tab. B.1). We consider the transformed variates Y =X2,
Y = eX and Y = ∣X ∣. The standard change-of-variables technique together with the
perception FY (y) = P(Y ≤ y) of the cdfs FY of the random variables Y imply

FX2(y) = FX(√y) − FX(−√y) , fX2(y) = 1

2
√
y
(fX(√y) + fX(−√y) ), (3.22)

FeX (y) = FX(ln y) , feX (y) = 1

y
fX(ln y) and (3.23)

F∣X ∣(y) = FX(y) − FX(−y), f∣X ∣(y) = fX(y) + fX(−y) (3.24)

for all values y ∈ R>0 (y ∈ R≥0 for eqs. (3.24)). The positive real line is the support of
each of the generated distributions (including additionally zero for the absolute-value
transformation). Figure 3.2 shows the densities fY derived in equations (3.22), (3.23)
and (3.24) for prescribed example parameters of the original Gaussian variable X.
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3. Meta-Gaussian stochastic processes

○ fX
○ fX2

○ feX

● f∣X∣
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Fig. 3.2 Densities of the three transformed variates Y =X2, Y = eX and Y = ∣X ∣ of a
Gaussian variate X ∼ N(2, 1.25). Note that by equation (3.24) we find f∣X ∣(0) = 2fX(0).

Formulae, in particular, for the first two moments of a Gaussian and a lognormal
distribution are well known as equation (3.25) and (3.26), respectively. Note that
the square of a standard Gaussian variate follows a χ2(1)-distribution (see Appx. B).
Involving equation (3.24), a change of variables implies the mean E[∣X ∣] = ∫

∞
0 yf∣X ∣(y)dy

for the absolute-value transformation. Equation (3.27) states the result of this integral
obtained by straight forward but lengthy calculations2.

E[X2] = µ2 + σ2 Var(X2) = 4µ2σ2 + 2σ4 (3.25)

E[ eX] = eµ+
σ2

2 Var( eX) = e2µ+σ2

(eσ
2

− 1) (3.26)

E[∣X ∣] = 2σ√
2π

e−
µ2

2σ2 + µ(1 − 2Φ(−µ
σ
)) Var(∣X ∣) = E[X2] −E[∣X ∣]2 (3.27)

In virtue of Section 2.3 we analyze the tails of the three example distributions and,
for the sake of clarity, consider transformations of centered Gaussian variates for that
purpose. Let X ∼ N(0, σ2) be a zero-mean Gaussian random variable with standard
deviation σ ∈ R>0, pdf fX defined by equation (3.2) and corresponding cdf FX . By the
equations (3.22), (3.23) and (3.24) and due to the equality FX(−x) = 1 − FX(x), the
cdfs and as their derivatives the pdfs of the transformed variates read

FX2(y) = 2FX(√y) − 1 fX2(y) = 1
√
y
fX(√y) (3.28)

FeX (y) = FX(ln y) feX (y) = 1

y
fX(ln(y)) (3.29)

F∣X ∣(y) = 2FX(y) − 1 f∣X ∣(y) = 2fX(y) (3.30)

2verified by software WOLFRAM MATHEMATICA 11.3.0.0 for rearrangement of symbolic formulae
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3.3. Example transformations

for values y ∈ R>0 (y ∈ R≥0 for the absolute-value transformation). The asymptotics of
the densities (3.28), (3.29) and (3.30) reveal the categories these distributions belong to.

fX2(y) ∝ y−
1
2 e−

y

2σ2 = O (e−
y

2σ2 ) (y →∞) (3.31)

feX (y) ∝ y−1e−
(lny)2

2σ2 = y−1− 1
2σ2 lny (y →∞) (3.32)

f∣X ∣(y) ∝ e−
y2

2σ2 = O (e−
y

2σ2 ) (y →∞) (3.33)

In the sense of Section 2.3 the pdfs (3.31) and (3.33) of the variates generated by
the square and absolute-value transformation of a Gaussian are light tailed, as they
decay faster than an exponential function. The pdf (3.32) of a lognormal distribution
satisfies e−ty = O(feX (y)) as y →∞ for all constants t ∈ R>0 and is thus heavy tailed by
definition (2.5). The tail of the density of a lognormal distribution decays slower than
any exponential function. In Section 6.1.3 we analogously analyze the properties of the
density and asymptotics of the truncated-Gaussian-power distribution.

3.3.2. Generated autocorrelation functions

Let (Xt)t∈N be a zero-mean Gaussian process with marginal distribution N(0, σ2) with
standard deviation σ ∈ R>0 and acf %X . To study the influence of the three transforma-
tions on the acf %X we apply the Hermite polynomial approach (Sect. 3.1). All equations
below involving acfs are to be understood pointwise at time lags k ∈ N0 based on the
instantaneous effect of the transformation (cp. Sect. 3.2).

Example 3.4 deals with the acf of the square of a centered Gaussian process with
arbitrary variance. In case of the square and absolute-value transformation, we shall
assume unit variance σ2 = 1 because their acfs satisfy %∣aX ∣ = %∣X ∣ and %(aX)2 = %X2 for all
factors a ∈ R. For the exponential transformation we need to account for variances σ2 ≠ 1

explicitly in the calculation of the acf %eX as multiples of the variates Xt do not cancel out.
By equation (3.12) we have %X2 = %2

X for the squared process. For the exponential
transformation we assume the standard deviation σ ∈ R>0 arbitrary and thus involve the
generalized Hermite polynomials (3.5). By induction and basic integral arguments the

scalar product (3.3) yields the Hermite coefficients αj = σ2je
σ2

2 for all indices j ∈ N≥0.
Note that αj =

√
e is constant for all indices j in case of σ2 = 1, which is a popular exam-

ple [39,44] of the Hermite polynomial approach. Involving the mean and variance (3.26),
we obtain the result (3.39) by the Hermite series representation (3.9) of the acf %eX and
the series expansion of the exponential function.
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3. Meta-Gaussian stochastic processes

For the absolute-value process we find α0 = E[∣Xt∣] = 2√
2π

by equation (3.27) and αj = 0

for all uneven indices j ∈ N because of the symmetry of the transformation. Using partial
integration, we have the auxiliary calculation

b

∫
a

x
dj

dxj
(e−

x2

2 )dx = [x dj−1

dxj−1
(e−

x2

2 ) − dj−2

dxj−2
(e−

x2

2 )]
b

a

= (−1)j−1 [e−
x2

2 (xHj−1(x) +Hj−2(x))] (3.34)

for integral limits a, b ∈ R ∪ {−∞,∞}. For even indices j ∈ N≥2 definition (3.4) of the
Hermite polynomials and the scalar product (3.7) imply

⟨ ∣ . ∣,Hj⟩ =
(−1)j√

2π

∞

∫
−∞

∣x∣ d
j

dxj
(e−

x2

2 )dx

= (−1)j√
2π

⎛
⎜
⎝
−

0

∫
−∞

x
dj

dxj
(e−

x2

2 ) +
∞

∫
0

x
dj

dxj
(e−

x2

2 )
⎞
⎟
⎠

= (−1)j√
2π

((−1)j [e−
x2

2 (xHj−1(x) +Hj−2(x))]
0

−∞

+ (−1)j−1 [e−
x2

2 (xHj−1(x) +Hj−2(x))]
∞

0
) (by (3.34))

= (−1)j√
2π

((−1)j(Hj−2(0) − 0) + (−1)j−1(0 −Hj−2(0)))

= (−1)j√
2π

⋅ 2(−1)jHj−2(0) = 2√
2π
Hj−2(0). (3.35)

The values of the Hermite polynomials at the point zero satisfy Hj(0) = (−1)
j
2 (j − 1)!!

for even indices j ∈ N≥2 [2, equs. (22.4.8),(22.5.18)] and are known as the Hermite
numbers. The doubled exclamation mark denotes the double factorial, which is defined
by (2m − 1)!! ∶= (2m)!

2mm! for natural numbers m ∈ N≥1 and (−1)!! ∶= 1. By the result (3.35)
the Hermite coefficients (3.8) of the absolute-value transformation read

α0 =
2√
2π
, αj = 0, j ∈ N>0 uneven, αj =

2√
2π

(−1)
j−2
2 (j − 3)!!, j ∈ N>0 even. (3.36)

Note that α0 = E[∣Xt∣] meets equation (3.27) just as Var(∣Xt∣) = 1 − 2
π = π−2

π for
mean µ = 0 and standard deviation σ = 1. Plugging in these two moments and the
Hermite coefficients (3.36) into the Hermite series representation (3.9) of the acf %∣X ∣ gives

%∣X ∣ =
2

π − 2

∞
∑

j=2,j even

((j − 3)!!)2

j!
%jX . (3.37)

Symbolic numerics3 give the closed-form result (3.40).
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3.3. Example transformations

Remark 3.7: For AR(1) processes one can derive the result (3.40) for the acf %∣X ∣ di-
rectly by plugging in the notion (2.11) of the original process into the definition (2.3) of the
acf of the transformed process and considering the bivariate distribution of (∣Xt∣, ∣Xt+k∣)
based on the bivariate Gaussian distribution of (Xt,Xt+k) for time lags k ∈ N. Such
an elementary but extensive calculation also yields equation (3.40) but is not easily
transferable to, for example, ARFIMA processes. The Hermite approach, however, is
more general and applicable to any stationary Gaussian process.

We conclude that both transformations the square and the absolute value obey
Hermite rank J = 2. The exponential function, however, has Hermite rank J = 1. The
closed-form solutions and asymptotics of the acfs of the transformed processes read

%X2 = %2
X (3.38)

%eX = eσ
2%X − 1

eσ2 − 1
∼ σ2

eσ2 − 1
%X (3.39)

%∣X ∣ =
2

π − 2
(
√

1 − %2
X + %X arcsin(%X) − 1) ∼ 1

π − 2
%2
X (3.40)

as %X → 0. By equation (3.39) and (3.40) the leading order of the asymptotics of the
acfs (i.e., the Hermite rank J) becomes equivalently apparent by a series expansion of
the exact formulae in the neighborhood of the argument %X = 0.

In agreement with the power-law relation (3.15) the asymptotic decay of the acf of a
Gaussian LRC process in the sense of definition (2.8) with an acf %X(k) ∝ k−γ as time
lags k →∞ remains unchanged under the exponential function (erroneously disproven
in [44], cp. Rem. 3.8). If the process is squared, though, or if its absolute value is taken,
then LRC processes with exponents 1

2 < γ < 1 become SRC processes, due to intermediate
correlations, while for exponents 0 < γ < 1

2 the LRC asymptotics are preserved with a
change in the exponent of the decrease (3.15) of the acf to %X(k) ∝ k−γJ as k →∞.

As a remark, if the process Xt is a long-range anticorrelated ARFIMA(0, d, 0) process
with LRC parameter d ∈ (−1,0), then the pointwise-squared process X2

t is an SRC pro-
cess [163].

Remark 3.8: Other than asserted in [44] the asymptotic behavior of a given hyper-
bolically decaying acf %X is preserved instead of accelerated (cp. relation (3.39)) by
the exponential transformation. This example does not serve as a counterexample for
the invalidity of Theorem 3.2 with an infinite Hermite series (3.9) as erroneously argued
therein. The Hermite polynomial approach is valid also for transformations with infinite
Hermite series expansion [161, Thm. 6.3.4].

3by the software WOLFRAM MATHEMATICA 11.3.0.0 for rearrangement of symbolic formulae
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3. Meta-Gaussian stochastic processes

3.4. Closing remarks

The modeling of non-Gaussian stochastic processes by transformations of Gaussian
processes is an active field of current research. As an alternative to the Hermite
polynomial approach, a recent study [139] deals with an inverse approach to fitting
the acf of the underlying Gaussian processes appropriately. In Section 3.4.1 we apply
this method to the processes in Example 3.4 and Sections 3.3 and draw a relation
between the two approaches.

Beyond the setting of Chapter 3 more general conditions than positive correlations
and memoryless transformations allow for stochastic models with broader effects and
properties. Section 3.4.2 gives an impression of the acf of transformations of Gaussian
processes with negative correlations. Example 3.10 therein is a side product of a study
on the synthesis of multivariately non-Gaussian random vectors by transforming a
multivariate Gaussian [73]. In Section 3.4.3 we formulate a model for a correlated
process with an approximately exponentially distributed marginal distribution by a non-
memoryless transformation.

3.4.1. Inverse relation between generated and original correlations

The Hermite polynomial approach of Section 3.1 describes how the acf %X of a stationary
Gaussian process Xt maps to the acf %Y of pointwise transformations Yt = g(Xt) of
the original process. In a recent study Papalexiou provides a functional form of the
inverse relation between the generated and the original acf [139]. Empirically observed
autocorrelations of a non-Gaussian process thus directly determine the acf of the Gaussian
process in a meta-Gaussian model for geophysical data.

The approximation of the acf %X given the acf %Y bases on the properties of
the acf of the transformed process listed in Lemma 3.6 as follows. By the con-
vexity (3.19) of the relation %X z→ %Y the inverse relation is concave. The two
monotonicities (3.16) and (3.18) give rise to concave and strictly monotonically in-
creasing functions T1,2 ∶ [0,1] Ð→ [0,1] ∶ %Y z→ T1,2(%Y ) ∶= %X that satisfy the two lim-
its T1,2(%Y ) → 0 as %Y → 0 and T1,2(%Y ) → 1 as %Y → 1. An appropriate ansatz for these
requirements are the functions

T1(%Y ) = (1 + b1%Y )c1 − 1

(1 + b1)c1 − 1
(3.41)

T2(%Y ) = 1 − (1 − %b2Y )c2 (3.42)

with parameters b1 ∈ (−1,0) ⊂ R and c1 ∈ R≥1 or b1 ∈ R>0 and c1 ∈ R≤1, c1 ≠ 0, for the
function (3.41) and b2 ∈ (0,1] ∈ R and c2 ∈ R>1 for the function (3.42). The limits c1 = 1

and b2 = c2 = 1 yield the identity %X = %Y . Figure 3.3 and Remark 3.9 comment on the
parameter choice for these functions.
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Fig. 3.3 Shape of the functions T1 (3.41) and T2 (3.42) on their parameter spaces.

Remark 3.9: The definitions (3.41) and (3.42) along with their first and second
derivatives provide insights into the properties of these two functions in dependence
of the parameter choice. A positive first derivative together with a negative second
derivative imply strict increase and concavity.

For all parameters c1 ∈ R≠0 the function T1 (3.41) is undefined if b1 = 0 due to
denominator zero. All values c1 ∈ R/N0 require b1 ≥ −1 as (1+b1%Y )c1 with %Y ∈ [0, 1] has
a pole at − 1

b1
or is undefined for %Y ∈ (− 1

b1
, 1] otherwise. As a remark, if c1 ∈ N>0 and even,

then the function T1 is defined for b1 ∈ R/{0,−2}. In this case, for all values b1 ∈ R<−1,
however, the function T1 does not map onto the unit interval, since T1(x) < 0 for
all %Y ∈ (0,− 2

b1
) if b1 ∈ (−∞,−2) and T1(%Y ) > 1 for all %Y ∈ (−(1 + 2

b ),1) if b ∈ (−2,−1).
For uneven values c1 ∈ N the function T1 is strictly monotonically increasing from zero
to unity but changes from concavity to convexity at %Y = −1

b . If c1 ∈ R≠0 and b1 ∈ R>−1,
then the function T1 also increases strictly monotonically. Figure 3.3 (left panel) depicts
the parameter areas with concavity.

The function T2 has the pole zero if b2 ∈ R<0, unity if c2 ∈ R<0 and both if both
parameters are negative. It is strictly increasing for pairs of positive parameters. By the
second derivative the curvature changes at %Y = ( b2−1

b2c2−1)
1
b2 from concavity to convexity

if b2, c2 ∈ (0,1) and conversely if b2, c2 ∈ (1,∞). Figure 3.3 (right panel) visualizes the
parameter area valid for concavity.
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3. Meta-Gaussian stochastic processes
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Fig. 3.4 Comparison of approximations of acfs. Given the acf %X of a Gaussian pro-
cess Xt with marginal distribution N(0, σ2) and standard deviation σ ∈ R>0 the Hermite
polynomial approach yields the acf %Y of the transformed processes Yt. From top left to
bottom right the four transformations are the examples (3.31), (3.12), (3.32) and (3.33).
Given in turn the acf %Y of the transformed process Yt a fit of the functions T1 or T2

provides an approximation of the required acf %X of the original Gaussian process Xt.
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3.4. Closing remarks

The results in Figure 3.4 depict an application of the inverse idea to the transformed
processes in Example 3.4 and Section 3.3. Choosing analytically known pairs (%Y , %X)
for a least-squares fit implies good agreement between the inverse of the Hermite
representation of the acf %Y and the fitted functionals (3.41) and (3.42) with the
parameter values shown in Table 3.1.

The fitted parameter values b̄1, c̄1, b̄2 and c̄1 in Table 3.1 relate to the Hermite rank J
of the transformation g with Yt = g(Xt). As the parameter b1 →∞ we find T1(%Y ) → %c1Y ,
so that c1 = 1

J if %Y = %JX such as for the squared process with J = 2, c̄1 ≈ 1
2 and b̄1 ≫ 1

depending on the chosen accuracy of the fit. Analogously, we obtain T2(%Y ) = %b2Y
for c2 = 1, so that b1 = 1

J with b̄1 ≈ 1
2 and c̄2 ≈ 1 for the square accordingly.

T1 T2

b̄1 c̄1 b̄2 c̄2

square 163,841.0 0.498 0.499 0.999

polynomial
σ = 1

2 3,619.1 0.404 0.453 1.056

σ = 2 114,480.6 0.336 0.357 1.029

exponential
σ = 1 1.718 0.000 0.843 1.173

σ = 2 53.598 0.000 0.519 1.616

absolute value 1,304.6 0.569 0.502 1.086

Table 3.1 The parameter values b̄1, c̄1, b̄2 and c̄1 result from least-squares fitting the two
functions T1 and T2 to the analytically known pairs (%Y , %X) described in Figure 3.4.

In case of more complex relations between the acfs %Y and %X , the dominant summands
in the Hermite expansion (3.9) determine the parameters c1 and b2, respectively. If J > 1

then these parameters represent an effective Hermite rank Ĵ in the neighborhood
of the Hermite rank J as the leading order. Due to T1(%Y ) ∝ %c1Y for b1 ≫ 1, we
observe Ĵ ∶= 1

c̄1
close to the Hermite rank J for the absolute-value example. Since the

Hermite coefficient α2 = 0 vanishes for this transformation, the Hermite rank J = 2

dominates the effective Hermite rank Ĵ = 1.8. The effective Hermite rank of the
polynomial H2 + H3 depends on both the two leading Hermite coefficients α2 ≠ 0

and α3 ≠ 0 and the variance σ2 of the underlying Gaussian process resulting in Ĵ = 2.5

and Ĵ = 3, respectively, compared to its Hermite rank J = 2.
For the function T2 the derivative T ′2 (%Y ) = b2c2(1 − %b2Y )c2−1%b2−1

Y induces Ĵ ∶= 1
b̄2

by
matching the leading order J − 1 of the derivative of the Hermite expansion (3.9) in the
neighborhood of %Y = 0. Again the effective Hermite rank Ĵ = 2 fits the Hermite rank
of the square and absolute-value transformation, and measures Ĵ = 2.2 and Ĵ = 2.8 for
the polynomial with different variances. In case of Hermite rank J = 1 such as for the
lognormal transformation the interpretation of the fitted parameters as effective Hermite
ranks is no longer valid.
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3. Meta-Gaussian stochastic processes

Figure 3.4 emphasizes that in general the acf %Y depends on the variance σ2 of the
original Gaussian process (see the polynomial and lognormal example). Difficulties
arise when deciding about which of the two functional forms (3.41) and (3.42) is an
appropriate choice for given autocorrelations of non-Gaussian data [139]. The deviations
of the fitted function T2 for correlations larger than 1

2 in the lognormal example depict
this issue. Moreover, the quality of estimated acfs based on empirical data is not as high
as for the analytically known pairs (%Y , %X) used for the fits in Figure 3.4.

3.4.2. Generating the same marginal distribution but different
correlations

Applying different nonlinear transformations to Gaussian stationary processes might
generate the same marginal distribution, though, differing acfs. Example 3.10 illustrates
such a phenomenon for the χ2-distribution.

Example 3.10 (Ex. 2.5.1 in [73]): Consider a stationary Gaussian process Xt with
marginal distribution N(0,1). Let Q be the quantile function of the χ2(1)-distribution
with one degree of freedom (see Appx. B). By its very definition a marginal χ2(1)-
distribution is generated straightforwardly by the transformation X2

t . Applying inverse
sampling, the process g(Xt) with g ∶= Q ○Φ exhibits the same marginal distribution.

While the marginal distributions of these two transformed processes coincide, their
acfs do not. The transformation g is monotonically increasing contrary to the square,
which forms a symmetric parabola. The Hermite coefficients of the two transformations
hence differ. The square obeys Hermite rank J = 2, whereas the function Q ○Φ features
Hermite rank J = 1. The long-term behavior of the acfs of the two transformed processes
hence differ despite exhibiting the same marginal distribution.

The different acfs become particularly apparent if the original process obeys negative
autocorrelations. Then the process g(Xt) has negative autocorrelations as well, while
the process X2

t does not.

3.4.3. Alternative exponential model with long-range correlations

Exponentially distributed and correlated random numbers can for example be generated
by inverse sampling applied to Gaussian processes [139] or spectral techniques using the
Fourier transform [90,169]. An alternative approach bases on the observation that the
sum of the squares of two standard Gaussian iid variates follows a χ2(2)-distribution
with two degress of freedom, which is the exponential distribution Exp (1

2
). The pairwise

sum of the square of a Gaussian process (Xt)t∈N yields a correlated process with an
exponential marginal distribution in leading order as follows.
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3.4. Closing remarks

For studying the marginal distribution let (X,Y ) ∼ N(( 0
0 ),Σ) be a bivariate Gaussian

vector with (two-dimensional) zero mean, marginal standard deviation σ ∈ R>0 each and
autocovariance matrix Σ ∶= σ ( 1 %

% 1 ) with correlation % = Corr(X,Y ) ∈ (0,1). Using the
equations (3.25) and (3.38), the mean and variance of the sum X2 + Y 2 read

E[X2 + Y 2] = E[X2] +E[Y 2] = 2σ2

Var(X2 + Y 2) = Var(X2) +Var(Y 2) + 2 Cov(X2, Y 2)

= 2σ4 + 2σ4 + 2 ⋅ 2σ4 ⋅ %2 = 4σ4(1 + %2). (3.43)

We obtain the pdf of the variate X2 + Y 2 as the derivative of its cdf by considering the
polar coordinates of the elliptic paraboloid

Az ∶= {(x, y) ∈ R2 ∣x = r sinω, y = r cosω with r ∈ [0,
√
z], ω ∈ [0,2π]} (3.44)

of height z ∈ R≥0. Define α ∶= 1

2πσ2
√

1−%2
and β ∶= 1

2σ2(1−%2) . Then the joint pdf of the

variates X and Y reads f(X,Y )(x, y) = αe−β(x
2+y2−2%xy) (cp. Appx. A) and integration

by substitution gives

P(X2 + Y 2 ≤ z) = P((X,Y ) ∈ Az)

=

√
z

∫
0

2π

∫
0

αe−β(r
2 sin2 ω+r2 cos2 ω−2%r2 sinω cosω) r dωdϕ

= α

√
z

∫
0

re−βr
2

2π

∫
0

eβ%r
2 sin (2π)dωdϕ

= 2πα

√
z

∫
0

re−βr
2

I0(β%r2)dr =
z

∫
0

απe−βz̃ I0(β%z̃)dz̃, (3.45)

where the symbol I0 in equation (3.45) denotes the modified Bessel function of the first
kind. The pdf fX2+Y 2 of the sum X2 + Y 2 hence reads

fX2+Y 2(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

απe−βz I0(β%z), z ≥ 0

0, z < 0.
(3.46)

The two limit cases of %→ 0 of vanishing and %→ 1 of full correlation or d→ 0 and d→ 1
2

in the language of ARFIMA processes give the iid case of an Exp( 1
2σ2 )-distribution and

the scaled χ2(1)-distribution of 2X2 using the pdf (3.28), respectively.
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3. Meta-Gaussian stochastic processes

In the limit of z →∞ the Bessel function I0 in equation (3.46) satisfies the asymp-
totic equivalence I0(z) ∼ ez√

2πz
[2, equ. (9.7.1)]. The tail of the pdf thus decays at

rate e−βz(1−%)z−
1
2 dominated by the exponential decrease. In a semi-logarithmic scaling

the shape of the tail is a straight line with slope − 1
2σ2(1+%) (Fig. 3.5).
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Fig. 3.5 Densities of the sum X2 + Y 2 of bivariately Gaussian distributed variates X
and Y with marginal standard deviation σ = 1

2 and correlation % ∈ {0.05,0.1, . . . ,0.95}.
The pdfs of the two limit distributions χ2(2) = Exp( 1

2σ2 ) with appropriately scaled
for %→ 0 and χ2(1) for %→ 1, respectively, delimit the range of possible distributions.

The correlation structure of the summed squares of a Gaussian process depend on
how the single members of the process are added together. Let (Xt)t∈N be a Gaussian
process with standard Gaussian marginal distribution and acf %X . Given the Gaussian
process Xt define a stochastic process (Yt)t∈N by the transformation

Yt ∶=X2
t +X2

t+1. (3.47)

This transformation is not pointwise like the examples in Section 3.3 but comprises two
values of the original process Xt to one value of the process Yt. By the equations (3.43)
and (3.31) the variance and covariance of the process Yt are Var(Yt) = 4(1+%X(1)2) and

Cov(Yt, Yt+k)
= Cov(X2

t ,X
2
t+k) + Cov(Xt,X

2
t+k+1) + Cov(X2

t+1,X
2
t+k) + Cov(X2

t+1,X
2
t+k+1)

= 2%X(k)2 + 2%X(k + 1)2 + 2%X(k − 1)2 + 2%X(k)2

= 2 (%X(k − 1)2 + 2%X(k)2 + %X(k + 1)2)

for time lags k ∈ N, so that the acf %Y of the transformed process Yt reads

%Y (k) = %X(k − 1)2 + 2%X(k)2 + %X(k + 1)2

2(1 + %X(1)2)
. (3.48)
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3.4. Closing remarks

Consider an AR(1) and an ARFIMA(0, d, 0) process Xt with an SRC parameter ϕ ∈ (0, 1)
and an LRC parameter d ∈ (0, 1

2
), respectively. Figure 3.6 shows the acfs of the original

process Xt, the squared process X2
t and the transformed process Yt (3.47). Plugging

in the analytically known acfs (2.12) and (2.22) of an AR(1) and an ARFIMA(0, d,0)
process into equation (3.48), we obtain the asymptotic behavior

%Y (k) = 1 + ϕ2

2ϕ2
ϕ2k and %Y (k) ∼ 2c

1 + %X(1)2
k4d−2 (k →∞), (3.49)

respectively, of the acfs %Y for time lags k ∈ N>0, where c ∶= Γ(1−d)
Γ(d) . Note that in either

case, the process Yt bears stronger correlations than the process X2
t since additional

dependencies enter the time series by combining different values of the process. In
contrast, the correlations of the squared process fall below the original acf %X in
agreement with inequality (3.16) with doubled exponent in the exponential and power-
law decay, respectively, due to Hermite rank J = 2 in relation (3.31). Comparing the
acfs %X and %Y at time lags k = 1 and k = 2 exemplifies that nonlinear transformations
of a stochastic process might both increase or decrease the correlations with respect to
specific time lags once the transformation is not memoryless as defined by the pointwise
equation (3.1).
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Fig. 3.6 Theoretical (solid lines) and estimated (circles) acfs of one sample time series
of length N = 100,000 each of an AR(1) (left) and an ARFIMA(0, d, 0) (right) process Xt

with AR parameter ϕ = 0.5 and LRC parameter d = 0.3, their squared processes X2
t and

the transformed processes Yt =X2
t +X2

t+1. The solid lines are linear interpolations of the
analytically known values of the acfs (2.12), (2.22), (3.31) and (3.48) at time lags k ∈ N0.
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3. Meta-Gaussian stochastic processes

Note that by equation (3.43) the acf of the original process Xt affects the variance
of the transformed process Yt (3.47) whereas the opposite does not apply. Thus, an
application of such a model requires a fit of the correlations of empirical exponentially
distributed data by equation (3.48) prior to adjusting the marginal distribution of the
model to the data by the variance σ2 of the Gaussian process Xt.

As a remark, the process Ỹt ∶= X2
2t +X2

2t+1 with distinct pairwise sums of members
of an AR(1) or ARFIMA process Xt instead of overlapping pairs of summands as
above obeys the acfs

%Ỹ (k) = %Y (k) ⋅ ϕ2k and %Ỹ (k) = %Y (k) ⋅ 24d−2, (3.50)

respectively, using the result (3.48). In other words, we find %Ỹ (k) = %Y (2k) for time
lags k ∈ N in either case, which mimics the increased difference between the summands
of the squared original process when generating the transformed process Ỹ compared to
the process Yt above.
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4. Numerical estimation of long-range
correlations

Several approaches to the detection of the Hurst effect along with an estimation of the
power-law exponent γ of the rate of the decay of the acf in relation (2.10) are available.
Taqqu et al. [176] give a collection of such methods including the aggregated variance
and differencing the variance methods, periodogram methods, the Whittle estimator
and both the R/S-method (Sect. 4.2.1) introduced in Section 2.4 and the residuals of
regression (Sect. 4.2.2). Beran’s textbook [22, Chap. 5] provides a broad overview of
further methods including maximum likelihood, least square and Bayesian [21] approaches.
Residuals of regression is a more recent alternative name for the well-known detrended
fluctuation analysis (DFA). The methods above can estimate LRC more robustly than
a direct estimation of the power-law decay (2.10) in a double-logarithmic plot of the
empirical acf. Section 4.1 is dedicated to the weaknesses of this approach. In Section 6.2
we apply R/S-analysis and DFA along with a wavelet approach (Sect. 4.2.3) for the
estimation of LRC in precipitation time series.

4.1. Estimation based on the empirical autocorrelation
function

A possible estimator %̄X of the acf %X of a stationary process at time lags k ∈ N0 based
on N ∈ N temporally ordered members X1, . . . ,XN of the process reads

%̄X(k) ∶= 1

(N − k)σ2

N−k
∑
t=1

(Xt − µ)(Xt+k − µ) (4.1)

if µ ∈ R and σ2 ∈ R>0 are the known mean and standard deviation of the process.
The estimation of a power-law exponent γ in a relation %̄X(k) ∝ k−γ (k → ∞) by
equation (4.1) and a double-logarithmic plot bears the following subtleties. First,
the estimator (4.1) is only unbiased if the mean µ and variance σ2 of the process
are known [148]. It is biased, however, if the two quantities are replaced by their
empirical counterparts

µ̄ ∶= 1

N

N

∑
t=1

Xt and σ̄2 ∶= 1

N − 1

N

∑
t=1

(Xt − µ̄)2 . (4.2)
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4. Numerical estimation of long-range correlations

Figure 4.1 visualizes the bias of the estimator (4.1) involving sample mean and vari-
ance (4.2) for an ARFIMA(0,0.3,0) process. This estimate falls below the theoretically
known acf systematically resulting in an estimate of the exponent γ in the power-law de-
cay (2.10) larger than actually present. The underestimation is recognizable in Figure 2.1
also. Therein the theoretical and empirical acfs slightly differ for the two ARFIMA
processes for small time lags already.
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Fig. 4.1 Estimation of the theoretically known acf %X of an ARFIMA(0, 0.3, 0) process
with standard Gaussian marginal distribution. For the same 100 sample time series of
length N = 36,500 the distribution and mean of the estimator (4.1) is depicted using
either the known mean and variance (unbiased) or their estimations (4.2) (biased). For
the sake of clearity the biased estimates are slighted shifted to the right in the graph.

Second, in case of absent or exponentially decaying correlations or exponents γ close
to unity (i.e., LRC parameters d close to zero in relation (2.20)), fluctuations of the
empirical acf around zero and, in particular, logarithms of negative values, impede
reliable inferences about the rate of the decay of the acf. Figure 4.2 shows estimates
of the acfs of the example processes of the Figures 2.1 and 2.2 including the empirical
acf of an ARFIMA(0,0.1,0) process. The left panel illustrates the fluctuations of the
estimator (4.1) around zero for SRC data with vanishing results for time lags with
a negative estimate. The right panel shows the difficulty of identifying SRC effects,
in particular, for weak LRC because of strong fluctuations. Moreover, comparing the
estimate to the theoretical acf reveals the bias when including the sample mean and
variance (4.2). Chapter 5 is dedicated to a precise calculation of the increased variance
of the sample mean for meta-Gaussian processes in the presence of correlations.
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Fig. 4.2 Theoretical (solid line interpolation) and estimated (empty circles) acfs of
Gaussian SRC (left) and LRC (right) processes. Using the AR parameter ϕ = 0.5 in either
case, the estimates base on sample time series X1, . . . ,XN of length N = 36,500 each of
an iid and an AR(1) and three different ARFIMA processes (cp. Figs. 2.1 and 2.2).

4.2. Estimation based on fluctuations on different temporal
scales

Given a time series of length N ∈ N, the three methods we apply in Section 6.2 select
time scales s ∈ N with s < N and perform an estimate of the strength F(s) of fluctuations
on this temporal scale. The resprective quantities, namely the rescaled ranges (R/S-
statistics), the fluctuation function (DFA) and the wavelet coefficients (wavelet analysis)
are time averages over all disjoint time intervals or windows of length s contained
in the data set.

The methods differ in their way of measuring the strength of fluctuations. Typically
the maximal considered window size is one-third of the overall length N of the time
series to ensure a reasonable number of windows for a later averaging [87]. The minimal
window size depends on the particular method and certain properties of the data as
discussed below. Visualizing the strength F(s) of the fluctuations in a time series versus
the time scale s in a double-logarithmic plot, the asymptotic scaling of

F(s) ∝ sα (s→∞) (4.3)

identifies the correlation structure of the data by a growth exponent α ∈ R>0. This
power-law exponent α is commonly referred to as the Hurst exponent (cp. Equ. (2.7),
Rem. 2.2 and Rem. 4.7).
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4. Numerical estimation of long-range correlations

If a stochastic process has a finite correlation time in definition (2.8), then we
find α = 1

2 [50], while α = 1− γ
2 [87] for LRC processes with a power-law decaying acf with

exponents 0 < γ ≤ 1 in relation (2.10). For stationary processes this is true independently
of their marginal distribution and, in particular, even if this distribution has fat tails [176].

Figure 4.3 exemplifies estimates of LRC for synthetic data with known Hurst exponents
using the methods R/S-analysis, DFA and wavelet analysis. The three methods give
similar estimates of the Hurst exponent for the depicted stationary stochastic processes.
In case of the nonstationary fractional Brownian motion, R/S-statistics differ from DFA
and the wavelet analysis. Sections 4.2.1, 4.2.2 and 4.2.3 give details on the implementation
and interpretation of these methods and Section 4.4 provides a summary and remarks.

rescaled range R
S
(s)

101 102 103 104

100

101
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103
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105

window size s

fluctuation function F (s)

101 102 103 104

window size s

wavelet coefficient dj

101 102 103 104

window size s

α ᾱR/S ᾱDFA ᾱwavelet

+ ARFIMA(0,0.45,0) 0.95 0.954 0.956 0.965
× ARFIMA(0,0.2,0) 0.7 0.709 0.728 0.723
● AR(1), ϕ = 0.5 0.5 0.516 0.535 0.566
○ iid Gaussian 0.5 0.491 0.5197 0.546

Fig. 4.3 Estimations ᾱ for different stationary stochastic processes with prescribed
Hurst exponent α by the three methods R/S-analysis, DFA(3) and wavelet analysis. The
results are shifted vertically for better perceptibility.
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4.2. Estimation based on fluctuations on different temporal scales

4.2.1. Rescaled-range analysis

Hurst studied water levels of the river Nile that result from the accumulation of river in-
and outflow [82] (cp. Sect. 2.4). As a natural quantity, the profile (4.4) of the water
flow time series reflects the fluctuations of the gauge heights. To Hurst’s surprise, the
influx did not act as white noise, causing the water volume inside the reservoir to behave
like a Brownian path, but he found some different scaling behavior by the following
procedure. For R/S-analysis the input time series is devided into non-overlapping windows
of equal size s ∈ N (cp. Sect. 4.2). In every window (X1, . . . ,Xs) of the time series we
determine the profile

Yt ∶=
t

∑
i=1

Xi (4.4)

with indices t = 1, . . . , s, and its range

R(s) ∶= max
1≤t≤s

(Yt −
t

s
Ys) − min

1≤t≤s
(Yt −

t

s
Ys) and (4.5)

S(s) ∶= 1

s − 1

s

∑
i=1

(Xi −
Ys
s
)

2

, (4.6)

where the scale (4.6) denotes the window‘s sample variance S. The smallest possible
window size is s = 2, so that both the range (4.5) and the sample variance (4.6) are well
defined. For low window sizes fluctuations strongly affect the sample variance. This effect
diminishes as the window size increases. The range (4.5) captures the highest and lowset
positions of the profile compared to the straight line of uniform growth (with respect to
the window mean µw ∶= Ys

s ) [161]. Note that this definition of the range R is equivalent
to first centering the points in every window by substraction of the window’s sample
mean before calculating the range (4.5) of the profile within the respective window by

Ỹt ∶=
t

∑
i=1

(Xi − µw) = Yt − tµw and

R̃(s) ∶= max
1≤t≤s

Ỹt − min
1≤t≤s

Ỹt = R(s).
(4.7)

Figure 4.4 visualizes the two conceptions (4.5) and (4.7) of the R/S-approach.
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4. Numerical estimation of long-range correlations
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Fig. 4.4 Two perceptions of R/S-analysis with the profile Yt (4.4) (top) and the pro-
file Ỹt (4.7) centered by the window’s mean µw (bottom) for windows of size s = 25 and
an iid time series Xt of length N = 100 with Gaussian marginal distribution N(1,1).
The grid on the abscissa separates the four windows each. In each window an arrow
marks the range between the maximal and minimal value of the (centered) profile of
the (centered) window data. The sum of the two parts of the range per window in the
top gives the range in bottom graph.

By averaging the rescaled range R(s)
S(s) over all windows of size s under certain condi-

tions [22] we obtain a scaling behavior

R

S
(s) ∶= ⟨R(s)

S(s)
⟩ ∝ sH (s→∞). (4.8)
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4.2. Estimation based on fluctuations on different temporal scales

The angle brackets in definition (4.8) denote the sample mean of all rescaled ranges R(s)
S(s)

in windows of size s, so that the number of values entering the average differs depending
on how many windows of size s the empirical time series contains. Numerically the
slope of a linear regression of the points (s, RS (s)) in a double-logarithmic scaling yields
the R/S− or Hurst exponent H as shown for some synthetic time series in Figure 4.3.

The deliberate choice of the notation H for the parameter of fBm by Mandelbrot
reflects that for fGn the R/S-analysis gives the growth exponent H in relation (4.8) [116].
In case of an iid process, the rescaled ranges (4.8) grow with an exponent H = 1

2 . This
exponent is not only robust for marginal distributions with heavier tails than Gaussian
but also in the presence of weak correlations like SRC [161].

The R/S-exponent is bounded from below by zero and from above by unity [111].
Nonstationarities in the data lead to Hurst exponents close to unity and difficulties may
arise in distinguishing them from strong LRC effects [110]. Figure 4.3 shows the result
of a R/S-analysis for a stationary ARFIMA process with strong LRC (d = 0.45) and
a nonstationary process defined by Xt + t with iid standard Gaussian components Xt

and a linear trend t ∈ N. The estimated Hurst exponents are close to unity in either
case, so that a reliable inference about the origin of such a behavior of the rescaled
ranges is impossible.

4.2.2. Detrended fluctuation analysis

The R/S-analysis lacks the ability of appropriately distinguishing intrinsically non-
stationary processes like fBm or processes with additive or local trends from processes
with strong LRC (cp. Fig. 4.7 and Sect. 4.2.1). Aiming at separating LRC from such
nonstationarities, Peng et al. [147] formulated the detrended fluctuation analysis.

Similar to R/S-statistics, for DFA we consider the profile Yt (4.4) of an input time
series (Xt)N1 of length N ∈ N. The profile series is devided into non-overlapping windows
of equal size s ∈ N again. For DFA(q) in every window a polynomial of degree q ∈ N>0 is
fitted to and then substracted from the profile. In doing so, local trends are intended
to be removed. Let pi be the values of the fitted polynomial at times i = 1, . . . , s in
such a window (Y1, . . . , Ys). In every window the fluctuations of the detrended profile
are captured by

F̃ 2(s) ∶= 1

s

s

∑
i=1

(Yi − pi)2. (4.9)

The minimal adequate window size s is q + 2 as F̃ 2(s) = 0 for all 1 ≤ s ≤ q + 1 due to
exakt interpolation. Then the fluctuation function F is defined as

F (s) ∶=
√

⟨F̃ 2(s)⟩ ∝ sα (s→∞) (4.10)
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4. Numerical estimation of long-range correlations

by averaging over all windows of size s. The fluctuation function (4.10) reflects the average
asymptotic behavior of fluctuations of the detrended profile as described below. Figure 4.5
visualizes the method DFA(3) for an example process with additive nonstationarities.
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● Xt fitted polynomials
● Yt ● detrended profile

Fig. 4.5 Visualization of DFA(3) for a sample time series of length N = 100 of the
example process Xt = εt + 5 + 1

2 sin (2π
3 t) with iid standard Gaussian components εt,

profile Yt (4.4) and the detrended profile for window size s = 25, t = 1, . . . ,N . The grid
on the abscissa separates the four windows. In each window a polynomial of degree
three is fitted to and substracted from the profile.

Like for the R/S-exponent H (4.8), the DFA exponent α is numerically estimated as
the slope of a linear regression of the points (s,F (s)) in a double-logarithmic scaling
with values s up to one-third of the length of the input time series Xt.

If a stochastic process is stationary and has a power-law decaying acf with exponent γ
in relation (2.10), then asymptotically as the window size increases the fluctuation
function grows like the power law (4.10) with

α = 1 − γ
2
. (4.11)
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4.2. Estimation based on fluctuations on different temporal scales

Heuristics for this relation and for the growth rate (4.10) can be found in [87]. For
stationary processes with finite variance, recently, it was derived that the fluctuation
function (4.10) of DFA is indeed an exact transformation of the acf [76, 107] (cp.
Sect. 4.4.1), so that relation (4.11) is satisfied. For the Gaussian toy models fGn and
ARFIMA(p, d, q) and generalizations of them to stationary LRC processes with finite
variance marginal distributions the R/S- and DFA exponents H and α, respectively,
coincide [129,176], that is α =H for 0 <H < 1 and

α = d + 1

2
(4.12)

for ARFIMA processes as γ = 1 − 2d in this case (cp. Sect. 2.5). In Section 6.2.2 we
generalize relation (4.12) to meta-Gaussian processes for fitting a transformed ARFIMA
model to non-Gaussian daily precipitation amounts.

As a remark, by DFA Hurst exponents α > 1 have been found in empirical data (which
is impossible with R/S-statistics). These findings motivated generalizations [33,107] of
the term (cp. Sect. 4.4.1). For fBm BH with parameter 0 <H < 1 DFA gives the scaling
exponent α =H + 1 [133] in relation (4.10), while its R/S-exponent (4.8) equals unity due
to its nonstationarity. Figure 4.7 visualizes this difference in the results of these two
methods in case of nonstationary processes.

4.2.3. Wavelet analysis

Wavelet analysis is a filtering technique for the detection of (temporal) scale invari-
ance (cp. Sect. 2.4) in time series. This method has been widely used in signal and image
processing [4] before it became a common tool in the field of long-range dependence [9,89].
For a didactic introduction to wavelet transforms see [3]. An application-oriented sum-
mary is given in [137, Sects. 1.1.12, 4.5.5].

The description below embeds the concept of wavelet analysis in the field of LRC.
Lemma 4.3 provides a generalization of the well-known Haar wavelet for distinguishing
higher order polynomial trends in data from LRC along with visualizing the gener-
alized Haar wavelets in Example 4.5. The numerical implementation of the wavelet
analysis based on these generalized Haar wavelets is particularly straight forward and
established in Lemma 4.6.
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4. Numerical estimation of long-range correlations

Definition: (Wavelet) A wavelet is an integrable function ψ ∶ RÐ→ R such that

∫
R
ψ(t)dt = 0. (4.13)

Typically, wavelets are chosen as L1(R) or L2(R) functions (see below). A wavelet ψ is
said to have m ∈ N>0 zero moments or vanishing moments if

∫
R
tnψ(t)dt = 0 (4.14)

for all exponents n = 0, . . . ,m − 1.

Given a wavelet ψ0, define a family {ψj,k ∶ RÐ→ R ∣ j, k ∈ Z} of wavelets by

ψj,k(t) ∶= 2−
j
2 ψ0 (2−jt − k) . (4.15)

The wavelet ψ0 is commonly referred to as the mother wavelet, of which the func-
tions (4.15) are dilations and translations. The factors 2j with octaves j ∈ Z are
called scales, the constants k ∈ Z denote integer shifts. The normalization by the
factor 2

j
2 ensures preserving the L2-norm since ∫Rψj,k(t)

2dt = ∫Rψ0(t)2dt for all val-
ues j, k ∈ Z [3]. Frequently used wavelets are the Haar, the Daubechies, the poor
man’s (ψ(t) ∶= δ(t) − δ(t − τ), t, τ ∈ R) and the Mexican hat (ψ(t) ∶= d2t

dt2φ(t), t ∈ R)
wavelet. The original Haar wavelet ψ0 ∶ RÐ→ R is defined by

ψ0(t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, t ∈ [0, 1/2)

−1, t ∈ [1/2,1)

0, otherwise.

(4.16)

Integration yields ∫R t
nψ(t)dt = 1

n+1 (2−n − 1) for all exponents n ∈ N0, so that the original
Haar wavelet obeys m = 1 zero moment [137, Ex. 1.9]. As a natural generalization,
step functions with a higher number of different constant pieces than the wavelet (4.16)
allow for more vanishing moments. Lemma 4.3 provides a generalization of the original
Haar wavelet with m = 1 zero moments to higher numbers m of vanishing moments.
Example 4.5 and Figure 4.6 visualize these wavelets for numbers m ∈ {1,3,5,7}.
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4.2. Estimation based on fluctuations on different temporal scales

Given a mother wavelet ψ0, the functions (4.15) form a set of filters and base the
method of the discrete wavelet transform of a stochastic process.

Definition (Discrete wavelet transform): For a stochastic process Xt the set of wavelet
coefficients, also called details,

dj,k ∶= ∫
R
Xtψj,k(t)dt (4.17)

with octaves and shifts j, k ∈ Z is called the discrete wavelet transform (DWT) of
the process Xt.

Lemma 4.1 collects essential properties of the wavelet coefficients (4.17).

Lemma 4.1 (cp. [3]): Let Xt be a stochastic process. Then the wavelet coefficients dj,k
defined by equation (4.17) with octaves and shifts j, k ∈ Z feature the following properties.

(i) If the process Xt has stationary increments, or is stationary itself, then for all
octaves j the wavelet coefficients dj,k are stationary with respect to the shifts k.

(ii) If the process Xt is self-similar with self-similarity parameter 0 <H < 1 (cp. Sect. 2.5),
then for arbitrary but fixed octave j the process (dj,k)k∈Z satisfies

dj,k
d= 2j(H+

1/2)d0,k. (4.18)

(iii) It the process Xt is self-smiliar with stationary increments and self-similarity
parameter 0 <H < 1, zero mean and finite variance, then

E[dj,k] = 0 and E [d2
j,k] = E[d2

0.0] ⋅ 2j(2H+1). (4.19)

Note that the expected value of the squared wavelet coefficients depends on the
scale 2j only and does not depend on the specific shift k.

Heuristics. For heuristical calculations of the properties in Lemma 4.1 see [3]. The
stationarity (i) is due to the definition (4.17) of the wavelet coefficients dj,k by plugging
in the stationarity of the process Xt.

The self-similarity of the process Xt induces a−HXat
d= Xt for all factors a ∈ R>0.

Applying a change of variables to definition (4.17) of the coefficients dj,k implies equa-
tion (4.18) in statement (ii).
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4. Numerical estimation of long-range correlations

Interchanging expectation and deterministic integration in definition (4.17) yields
the zero mean (4.19) of the wavelet coefficients dj,k in statement (iii). Combining the
stationarity (i) of the coefficients dj,k with respect to the shifts k and the scaling (4.18)
in statement (ii) reasons the scaling of their expected value in relation (4.19). (◻)

The scaling (4.19) allows for estimating the presence and strength of LRC in time
series by the application of DWTs to a centered stochastic process Xt. For fBm with
self-similarity parameter 0 < H < 1 in this relation we find the exponent j(2H + 1),
and j(2H −1) for the corresponding fGn [167]. Assessing the scaling behavior of the root
expectation of the squared wavelet coefficients d2

j,k thus allows for direct access of the
Hurst exponent by DWT. Given a mother wavelet ψ0, for an octave j ∈ Z the root average

dj ∶=
√

⟨d2
j,k⟩ (4.20)

is a non-parametric estimator of the root expectation (4.19) and independent of the
shift k ∈ Z by the stationarity (i) in Lemma 4.1.

For an octave j the sample average ⟨d2
j,k⟩ in definition (4.20) denotes the sample mean

of the squared DWTs (4.17) of all non-overlapping windows of the process Xt generated
by the wavelets ψj,k (4.15) by using different shifts k ∈ Z. In a double-logarithmic scaling
the slope of a linear regression of the pairs (2j , dj) of scales and estimated wavelet
coefficients depicts the scaling behavior (4.19).

Remark 4.2: Mind that the Hurst exponent reads H for fGn (cp. Sect. 4.2.1) and H+1

for fBm (cp. Sect. 4.2.2). Neglecting the L2-normalization by 2−
j
2 in definition (4.15)

yields the exponents 2jH and 2j(H + 1) in relation (4.19), respectively. Then in a
double-logarithmic scaling the slope of a linear regression of the pairs (2j , dj) coincides
with these Hurst exponents without further computation.

The sample mean in definition (4.20) is unbiased if the number m of zero moments of
the mother wavelet ψ0 is larger than H − 1 as, in this case, the wavelet coefficients dj,k
do not exhibit practically significant LRC [4]. In general, however, the sample mean
of LRC data obeys strong uncertainty (cp. Chap. 5). The fluctuations of the esti-
mates dj over scales 2j are a second order description of the process Xt and constitute a
kind of ‘wavelet spectrum’ [3].

For the numerical implementation of wavelet analyses Lemma 4.3 provides generalized
Haar wavelets with an arbitrary prescribed number of zero moments. Rybsky et al. [159]
formulate an alternative construction of wavelets with a desired number of vanishing
moments by higher-order differencing of a time series’ profile (4.4).
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Fig. 4.6 Generalized Haar wavelets by Lemma 4.3 visualized form ∈ {1, 3, 5, 7} vanishing
moments with step heights calculated in Example 4.5 and collected in Table 4.1.

Lemma 4.3 (Generalized Haar wavelets): Let m ∈ N be a desired uneven number of
zero moments and define the two intervals Ii ∶= [i − 1, i) and Ji ∶= [−i,−(i − 1)). Then
there exist unique constants ai ∈ R, i = 1, . . . , ⌈m2 ⌉, with a1 > 0, such that the step function

ψ0(t) ∶=
⌈m

2
⌉

∑
i=1

ai (χIi(t) − χJi(t)) (4.21)

is a wavelet with m zero moments and unit L2-norm. (The symbol χA denotes the
indicator function of a set A. Note that by the symmetry of the function (4.21) the
integral (4.14) vanishes for all even exponents n ∈ N.)

Proof. The step function (4.21) is antisymmetric with respect to the origin due to the
symmetric choice of the intervals Ii and Ji, i = 1, . . . , ⌈m2 ⌉, and thus a wavelet by its very
definition. For values n ∈ N elementary calculations yield

0
!= ∫

R
tnψ0(t)dt =

⌈m
2
⌉

∫
−⌈m

2
⌉

tnψ0(t)dt = (−1)n+1 + 1

n + 1

⌈m
2
⌉

∑
i=1

ai (in+1 − (i − 1)n+1) , (4.22)

57



4. Numerical estimation of long-range correlations

which hence vanishes for all even numbers n. Setting equation (4.22) equal to zero for
all uneven n ∈ {1, . . . ,m − 2} gives a set of ⌊m2 ⌋ linear equations determining the ⌈m2 ⌉
parameters a1, . . . , a⌈m

2
⌉. This under-determined set of constants becomes unique when

additionally normalizing the wavelet ψ0 to unit L2-norm involving

1
!= ∫

R
ψ0(t)2dt = ∫

R

⌈m
2
⌉

∑
i,j=1

aiaj(χIi(t) − χJi(t))(χIj(t) − χJj(t))dt (4.23)

=
⌈m

2
⌉

∑
i=1

a2
i ∫R

χIi(t) + χJi(t)dt = 2

⌈m
2
⌉

∑
i=1

a2
i . (4.24)

Note that the ⌊m2 ⌋ vectors (in+1 − (i − 1)n+1)⌈
m
2
⌉

i=1
, n ∈ {1, . . . ,m − 2} uneven, used in equa-

tion (4.22) are linearly independent, so that together with demanding unit L2-norm (4.24)
and a1 > 0 the heights a1, . . . , a⌈m

2
⌉ of the steps of the wavelet (4.21) are unique. ◻

Remark 4.4: If m ∈ N is even, then the wavelet ψ0 obtained by the procedure
established in Lemma 4.3 has m + 1 zero moments since the integral (4.14) vanishes for
all exponents n = 0, . . . ,m. For uneven numbers m the integral (4.14) does not vanish
for the exponent n = m as the vector (im+1 − (i − 1)m+1)⌈

m
2
⌉

i=1
is linearly independent

from the ⌊m2 ⌋ vectors (in+1 − (i − 1)n+1)⌈
m
2
⌉

i=1
, n ∈ {1, . . . ,m − 2} uneven. The obtained

parameters a1, . . . , a⌈m
2
⌉ thus cannot eliminate the integral (4.22) for the exponent n =m.

Example 4.5 applies Lemma 4.3 for calculating the generalized Haar wavelets (4.21)
depicted in Figure 4.6.

Example 4.5: The sum in equation (4.22) shall be represented as the scalar product of
the vector of parameters (a1, . . . , a⌈m

2
⌉) and the vector of coefficients (in+1 − (i − 1)n+1)⌈

m
2
⌉

i=1

for each uneven value n ∈ {1, . . . ,m − 2}. For the numbers m ∈ {3,5,7} of vanishing
moments Table 4.1 (top) exemplifies the vectors of coefficients for deriving the linear
equations for the parameters a1, . . . , a⌈m

2
⌉. Note that the number ⌈m2 ⌉ of different step

heights depends on the desired number m of vanishing moments. The parameters are
unique when assuming a1 > 0 and involving a unit L2-norm by equating the integral (4.24)
to unity. Table 4.1 (bottom) and Figure 4.6 visualize the generalized Haar wavelets
based on Lemma 4.3 for m ∈ {1,3,5,7} zero moments.
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n = 1 n = 3 n = 5

m = 3 (1,3) − −
m = 5 (1,3,5) (1,15,65) −
m = 7 (1,3,5,7) (1,15,65,175) (1,31,211,781)

m = 1 m = 3 m = 5 m = 7

a1 =
√

2

2
≈ 0.71

−

−

−

a1 =
3
√

5

10
≈ 0.67

a2 = −
√

5

10
≈ −0.22

−

−

a1 =
5
√

7

21
≈ 0.63

a2 = −
5
√

7

42
≈ −0.32

a3 =
√

7

42
≈ 0.06

−

a1 ≈ 0.579

a2 ≈ −0.378

a3 ≈ 0.146

a4 ≈ −0.025

Table 4.1 Coefficients (top table) of the linear equations (see Ex. 4.5) describing the
parameters a1, . . . , a⌈m

2
⌉ for the heights of the different steps of the generalized Haar

wavelets (4.21) by regarding the integral (4.22) as a scalar product and equating it to
zero for uneven exponents n ∈ {1, . . . ,m − 2} and deduced parameter values exemplified
for m ∈ {1,3,5,7} vanishing moments (bottom table). The ⌊m2 ⌋ linear equations (4.22)
together with the normalization (4.24) yield exact solutions for the coefficients with a1 > 0.

The stepped shape of the generalized Haar wavelets (4.21) induce a particulary simple
computation of the filter (4.17). Without loss of generality, consider the scaled but
unshifted wavelets ψj,0 of the mother wavelet (4.21) centered at the argument t = 0 as
depicted in Figure 4.6. For discrete-time processes only dilations (j ∈ N0) of this mother
wavelet are valid. The reasoning of Lemma 4.6 is analogous for the shifted wavelets
filtering different windows of the input data.

Given an octave j ∈ N0 and a desired numberm ∈ N zero moments, by construction the
infimum and supremum of the arguments t ∈ Z, for which the scaled wavelets ψj,0(t) are
nonzero, are t = ∓2j⌈m2 ⌉, respectively. The number of integer indices covered by the scaled
wavelet ψj,0, in other words, of points included in the filtering, thus reads 2j+1⌈m2 ⌉ + 1.
The 2⌈m2 ⌉ + 1 positions of the jumps of these step functions are the two bounds of the
scaled support of the wavelet ψ0 and all points within on an equidistant grid with
accuracy 2j . Let

(X−⌈m
2
⌉,X−(⌈m

2
⌉−1), . . . ,X−1,X0,X1, . . . ,X⌈m

2
⌉−1,X⌈m

2
⌉)T (4.25)

enumerate these members of a stochastic process Xt within the considered window.
Lemma 4.6 describes a simple numerical implementation of the filter (4.17) just using
a scalar product of two real vectors.
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4. Numerical estimation of long-range correlations

Lemma 4.6: Let Xt be a discrete-time stochastic process with profile Yt (4.4). Let j ∈ N0

be an octave and define

a ∶= (a⌈m
2
⌉, a⌈m

2
⌉−1 − a⌈m

2
⌉, . . . , a1 − a2,−2a1, a1 − a2, . . . , a⌈m

2
⌉−1 − a⌈m

2
⌉, a⌈m

2
⌉)T , (4.26)

where a1, . . . , a⌈m
2
⌉ are the heights of the steps of the generalized Haar wavelet (4.21)

with m ∈ N vanishing moments given by Lemma 4.3. Analogous to notation (4.25)
denote by

Y ∶= (Y−⌈m
2
⌉, Y−(⌈m

2
⌉−1), . . . , Y−1, Y0, Y1, . . . , Y⌈m

2
⌉−1, Y⌈m

2
⌉)T (4.27)

the values of the profile Yt corresponding to the location of the jumps of the scaled
generalized Haar wavelet ψj,0. Then the filter (4.17) reduces to the scalar product

dj,k = aTY. (4.28)

Proof. For the sake of clearity define s ∶= ⌈m2 ⌉. Then equation (4.28) follows from
plugging in definition (4.21) into the filter (4.17) and using notation (4.27) and the
property ∫

c2
c1
Xtdt = Yc2 − Yc1 , c1, c2 ∈ R>0, c2 ≥ c1, since

∫
R
Xtψj,0(t)dt = ∫

R
Xt

s

∑
i=1

χIi(t) − χJi(t)dt

=
s

∑
i=1

ai(Yi − Yi−1 − (Y−(i−1) − Y−i))

=
s

∑
i=1

aiYi −
s−1

∑
i=0

ai+1Yi −
s−1

∑
i=0

ai+1Y−i +
s

∑
i=1

aiY−i

= asY−s +
s−1

∑
i=1

Y−i(ai − ai+1) − 2a1Y0 +
s−1

∑
i=1

Yi(ai − ai+1) + asYs. (4.29)

The scalar product (4.28) captures the sum (4.29). ◻

In the Figures 4.3 and 4.7 and in Chapter 6 we apply the generalized Haar wavelet
with m = 3 vanishing moments for wavelet analyses of synthetic data and empirical
precipiation amounts, respectively.
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4.3. Sensitivity of the estimators

4.3. Sensitivity of the estimators

Figure 4.3 shows a similarly good performance of the three methods R/S-analysis, DFA
and wavelet analysis when estimating Hurst exponents 1

2 ≤ α < 1 of stationary stochastic
processes. The R/S-analysis, however, cannot distinguish between additive and intrinsic
nonstationarities. This method estimates both the Hurst exponent α = 1.8 of a fBm
with self-similarity parameter H = 0.8 and α = 1

2 of an iid process with an additive linear
trend close to unity (Fig. 4.7).

The methods of DFA and wavelet analysis were designed particularly for detecting
local trends. Peng [147] originally formulated DFA applying a linear detrending. Both
methods succeed in distinguishing local polynomial trends from LRC as the estimated
Hurst exponents for the iid process with linear trend are close to 1

2 either. Figure 4.7
also shows that they properly estimate the Hurst exponent of approximately 1.8 for
the fBm above. Contrary, by construction R/S-statistics cannot result in Hurst exponents
larger than unity [111].

rescaled range R
S
(s)

101 102 103 104

100

101

102

103

104

105

window size s

fluctuation function F (s)

101 102 103 104

window size s

wavelet coefficient dj

101 102 103 104

window size s

α ᾱR/S ᾱDFA ᾱwavelet

△ fractional Brownian motion 1.8 0.978 1.783 1.834
� iid Gaussian + linear trend 0.5 1.001 0.504 0.547

Fig. 4.7 Estimated Hurst exponents ᾱ for an intrinsically nonstationary fBm with self-
similarity parameter H = 0.8 and Hurst exponent α =H + 1 = 1.8 and for a process with
an additive linear trend by the three methods R/S-analysis, DFA(3) and wavelet analysis
with m = 3 zero moments. The process Xt + t is the sum of iid Gaussian process Xt and
the linear trend t ∈ N. The results are shifted vertically for better perceptibility.
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4. Numerical estimation of long-range correlations

Numerical studies [81, 87] showed that higher order DFA(q) can remove additive
polynomial trends of order q ∈ N in the profile and q − 1 in the original time series.
Wavelets with m ∈ N zero moments are blind to polynomials of degrees up to m − 1, in
other words, the wavelet coefficients of a stationary process Xt and processes Xt + p(t)
with such an additive polynomial p coincide [3]. In this case, DFA(q) corresponds
to wavelet analysis with wavelets of order m = q. Note that by construction for even
numbers m ∈ N the generalized Haar wavelets (4.21) obey m+1 zero moments, whereas m
zero moments for odd numbers m (cp. Rem. 4.4). The Figures 4.8 and 4.9 visualize the
effect of detrending on the estimation of Hurst exponents and the relation between DFA
and wavelet analyses using the generalized Haar wavelets.

F(s) for Xt + t

101 102 103 104

10−1
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101

102

103

104

105
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108

109

window size s

F(s) for Xt + t2

101 102 103 104

window size s

F(s) for Xt + t3

101 102 103 104

window size s

○ R/S-analysis, ᾱR/S ≈ 1 ○ wavelets (m = 1), ᾱwavelet1 > 1
○ DFA(0), ᾱDFA(0) ≈ 1 ● wavelets (m = 5), ᾱwavelet5 ≈

1/2

△ DFA(1), ᾱDFA(1) > 1 × wavelets (m = 7), ᾱwavelet7 ≈
1/2

Fig. 4.8 Measured strengths F (4.3) of fluctuations and estimated Hurst exponents ᾱ
of an iid standard Gaussian process Xt with different additive polynomial trends by
the methods R/S-analysis, DFA(0), DFA(1) and wavelet analyses using the generalized
Haar wavelets (4.21) with m ∈ {1, 5, 7} zero moments. For these methods the results for
the three examples coincide4. The latter two wavelet analyses detect the correct Hurst
exponent of 1

2 in either case. The results are shifted vertically for better perceptibility.

4See Figure 4.9 and below for comments on slopes > 1.
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F(s) for Xt + t
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window size s

F(s) for Xt + t2

101 102 103 104

window size s

F(s) for Xt + t3

101 102 103 104

window size s

Xt + t Xt + t
2 Xt + t

3

● DFA(2), ᾱDFA(2) ≈ 1/2 > 1 > 1
× DFA(3), ᾱDFA(3) ≈ 1/2 ≈ 1/2 > 1
△ wavelets (m = 3), ᾱwavelet3 ≈ 1/2 ≈ 1/2 > 1

Fig. 4.9 Measured strengths F (4.3) of fluctuations and estimated Hurst exponents ᾱ
of an iid standard Gaussian process Xt with different additive polynomial trends by the
methods DFA(2), DFA(3) and wavelet analyses using the generalized Haar wavelets (4.21)
with m = 3 zero moments. All these methods remove the linear trend consistenly with the
correct estimated Hurst exponent of 1

2 . DFA(2) cannot remove higher order polynomial
trends just as both DFA(3) and the generalized Haar wavelets for orders higher than
two. The results are shifted vertically for better perceptibility.

Figure 4.9 visualizes that the shape of the estimated strength F (4.3) of fluctuations
carries information beyond the asymptotic behavior described by the Hurst exponent.
For smaller window sizes the impact of the added polynomial trends in the mid and right
panel dominate the estimators only from a crossover point on. Until that the slope 1

2 of
the iid Gaussian process determines the measured fluctuations.

As a remark, the exact slopes > 1 for DFA and wavelet analysis remain an open
question of further research. The slope of R/S-analysis is bounded by 1 [111]. The
right panel of Figure 4.9 indicates that similarly an upper limit slope for the two other
methods might depend on their order of detrending.
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4. Numerical estimation of long-range correlations

The different orders of DFA and wavelet analysis with different detrending capabilities
can yield insight into both LRC and types of local trends [159] and can help examine the
trend structure in the data and distinguish it from LRC [17]. The ability of DFA and
wavelet analysis of recognizing polynomial trends is nonetheless limited in the presence
of strong SRC or nonstationarities on temporal scales beyond the empirical data. The
origin of numerically detected LRC might always lie in strong SRC or the local trend in
a periodic signal with low frequency. Figure 4.10 shows fluctuation functions by DFA(3)
for an AR(1) process with SRC, an ARFIMA(1, 0.3, 0) process with LRC and a periodic
signal with additive Gaussian white noise. Recent studies apply the location of crossover
points of the fluctuation function (4.10) to the inference of characteristic time scales
in time series [126–128].

ϕ = 1
2

slope
○ ARFIMA(1,0.3,0) 0.835 1

2

○ AR(1) 0.529 1
2
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●Xt = 4 sin ( t
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2
X̃t

●Xt = sin ( t
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2
X̃t
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window size s

Fig. 4.10 Fluctuation function (4.10) by DFA(3) of an ARFIMA(1, 0.3, 0) and an AR(1)
process Xt with AR parameter ϕ = 0.3 either (left) and deterministic sine time se-
ries Xt of different frequency and without and with additive standard Gaussian white
noise X̃t (right). Crossovers in the fluctuation functions indicate characteristic time
scales of dominating effects such as SRC or local trends in periodic signals. A zero
slope indicates constant strength of fluctuations. The results are shifted vertically for
better perceptibility.
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4.4. Closing remarks

The estimates of LRC by DFA or wavelet analysis in practice can not only be affected
by nonstationarity [13, 77] but also non-Gaussianity [16]. On this account, a double-
checking of detected LRC by different methods is indispensable. In the Sections 6.1.1
and 6.1.2 we apply R/S-analysis, DFA and wavelet analysis to daily precipitation records
to estimate the stationarity and correlation structure of this data.

4.4. Closing remarks

The detection and estimation of the origins of the scaling behavior of stochastic processes
is an active field of research. Recent studies focus on relations between anomalous
diffusion and LRC (Sect. 4.4.1). Also the quantification of the uncertainty of methods
like DFA is a current matter of interest. Section 4.4.2 summarizes explicit formulae
assigning confidence intervals to the estimators introduced in the Sections 4.2.1 to 4.2.3.

4.4.1. Anomalous scaling of stochastic processes

The temporal scaling of a dynamical process typically refers to its spreading behaviour
determined by the (finite-sample) mean squared displacement (MSD)

⟨∣x(t) − x(0)∣2⟩ ∶= 1

K

K

∑
k=1

∣x(k)(t) − x(0)∣
2
. (4.30)

The MSD serves a natural measurement of the diffusion of particles x(t) ∈ Rd, d ∈ N, with
initial value x(0) at time t = 0 as time t ∈ R>0 evolves. The MSD is an ensemble average
and the sum in definition (4.30) includes the temporal evolution of K ∈ N particles x(k)

enumerated k = 1, . . . ,K. Note that by Birkhoff’s Ergodic Theorem the two averages
over time and space coincide in ergodic systems [42] (cp. Sect. 5.3.2). The average
spreading of particles that follow a standard Brownian motion B(t) in d ∈ N dimensions
yields an MSD that scales linearly with time as ⟨∣B(t) −B(0)∣2⟩ ∼ 2dDt as t→∞ with
diffusion coefficient D ∈ R>0. The asymptotic scaling behavior

⟨∣x(t) − x(0)∣2⟩ ∝ tβ (t→∞) (4.31)

provides a classification of the spreading of diffusive processes by the exponent β ∈ R>0

into normal diffusion (β = 1) and anomalous diffusion (β ≠ 1) or, more precisely, subdif-
fusion (0 < β < 1) and superdiffusion (1 < β < 2). An exponent β = 2 describes ballistic
motion on constant velocity.
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4. Numerical estimation of long-range correlations

For each of the above types of diffusion there exist mathematical toy models with
a prescribed scaling of their MSD [152]. Deterministic models, such as iterations of
piecewise linear functions [62] or Pomeau-Manneville-type maps [117] are capable of gen-
erating normal and both sub- and superdiffusion [55], respectively. Random walks or
Brownian motions are examples of normally diffusive stochastic processes. Randomly
chosen piecewise linear maps, however, can generate subdiffusion of different strength
depending on the probability of choosing either map per iteration [165]. The afore-
mentioned models deploy intermittency as a central mechanism yielding anomalous
scaling behaviour [125,189]. For continuous time random walk models it is known [94]
that a waiting time distribution with density ρ(n) ∼ n−(1+β) as time n → ∞ implies
an MSD exponent of β in relation (4.30). Figure 4.11 shows sample trajectories for some
of these models. Compared to the normal diffusive sample with purely random behavior,
the super- and subdiffusive ones remain longer in the status of moving to one direction
or persisting at a current position, respectively.

Contemporary studies [5,33,107] focus on differentiating and detecting the origins
of anomalous scaling. Estimators like DFA are only capable of detecting anomalous
scaling of stochastic processes, which traces back to their autocorrelations by Hurst
exponents other than the value 1

2 in relation (4.3). The fluctuation function (4.10)
is a transformation of the acf [76, 107] (see Sect. 4.2.2). Recent results generalize
the Hurst effect by splitting up the Hurst exponent into a sum H = L + J +M − 1

referring to the Noah (L), Joseph (J) and a newly introduced Moses (M) effect [33],
respectively (cp. Rem. 2.2). The single summands represent the different sources of
anomalous scaling with growth exponents H ≠ 1

2 , namely a fat-tailed (see Sect. 2.3)
increment distribution, LRC and nonstationarities.

Remark 4.7: Following the notion of Remark 2.2, the Moses effect refers to the biblic
story of Moses, who “led the Israelites after their Exodus from Egypt as they wandered
through the wilderness having no stationary settlements” [33].
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Fig. 4.11 Sample trajectories Xt, 1 ≤ t ≤ 3,000, of a piecewise linear map, a super- and
subdiffusive Pomeau-Manneville-type map and a random piecewise linear map (from
top to bottom).
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4. Numerical estimation of long-range correlations

4.4.2. Probabilistic properties of the estimators

For Gaussian processes there exist explicit formulae describing probabilistic properties
of the rescaled range (2.7) (Sect. 4.2.1) and the fluctuation function (4.10) (Sect. 4.2.2).
The distribution of wavelet coefficients (4.20) (Sect. 4.2.3) in a double logarithmic scaling
is known also for non-Gaussian settings.

Let Xt be a fGn process with self-similarity parameter 0 <H < 1. Then asymptotically
the rescaled range satisfies [22, Sect. 5.4.2]

s−H
R

S
(s) dÐ→ sup

0≤u≤1
B̃H(u) − inf

0≤u≤1
B̃H(u), (4.32)

where B̃H(u) ∶= BH(u) − uBH(1) denotes the fractional Brownian bridge. A gen-
eralization of relation (4.32) to linear LRC processes with finite variance is given
in [161, Sect. 5.1]. The distribution of the rescaled ranges and thus confidence intervals
for the estimated Hurst exponents are typically determined by Monte Carlo simula-
tions [97, 183]. This approach helps quantify the uncertainty of the R/S-analysis in case
of non-Gaussian data, as well [98].

Abry et al. [3, Sect. 4.2] provide an explicit formula for the variance of the estimated
Hurst exponent by wavelet analysis even in the non-Gaussian case. For a large num-
ber nj ∈ N of non-overlapping windows in the sample average (4.20) the squared wavelet
coefficients d2

j are χ
2 random variables with nj degress of freedom. Then one can deduce

an explicit description of the mean and variance of the slope of the wavelet coefficients
in a double logarithmic scaling [137, Sect. 4.5.5].

Similarly, a recent study [172] derives probabilistic properties of the squared fluctuation
function F 2 (4.10). It includes explicit formulae for the mean and variance of the LRC
parameter obtained by DFA applied to white and fractional Gaussian noise and standard
fractional Brownian motion.
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5. Effective sample size of stationary
processes

The presence of correlations affects the estimation of statistical quantities such as the
sample mean and variance (4.2) of empirical data. The central limit theorem (CLT)
ensures that the sample mean of iid finite-variance samples is asymptotically Gaussian.
Deviations from this setting might, however, not only change the convergence rate of such
observables but also their asymptotic probabilistic properties. Thus, usage of the classical
confidence intervals for the sample mean might no longer be justified [56, Chap. 1].

Section 5.1 is dedicated to the asymptotics and the finite-sample variance of the
sample mean for stationary processes. For certain meta-Gaussian LRC processes the
limit distribution of the sample mean might even deviate from Gaussianity as sum-
marized in Section 5.1.1 according to [22, Chap. 4.2]. In Section 5.1.2 the concept
of an effective sample size provides a quantitative comparison of the uncertainty of
the sample mean under the influence of correlations to the iid case by an effectively
decreased number of samples. Correlated and thus in a way redundant samples carry
the same information like a corresponding lower number of iid samples. Section 5.1.3
reflects the asymptotic behavior of the effective sample size and draws a relation to
characteristic time scales in empirical data based on the uncertainty of the sample mean.
Section 5.2 gives an exact calculation of the finite-sample and asymptotic variance of the
sample mean and the effective sample size for meta-Gaussian processes. Some closing
remarks in Section 5.3 draw relations of the effective sample size to anomalous scaling
and large deviation theory.

5.1. Asymptotics and uncertainty of the sample mean

Let Y1, . . . , YN be N ∈ N samples of a stationary stochastic process with mean µY ∶= E[Yi]
and finite variance σ2

Y ∈ R>0 and denote by

µ̄N ∶= 1

N

N

∑
i=1

Yi and σ2
µ̄N

∶= Var(µ̄N) (5.1)

the sample mean and the variance of the sample mean of N samples, respectively. If the
variates Y1, . . . , YN are iid random variables, then by the CLT the normalized sample
mean

√
N ( µ̄N−µYσY

) convergences in distribution to a standard Gaussian variate as the
number N of samples approaches infinity. If further E[Y 3

i ] < ∞, then by the Berry-
Esseen theorem the rate of this convergence with respect to the Kolmogorov-Smirnov
distance reads 1√

N
as N →∞ (i.e., there exists a constant C ∈ R>0 such that the cdf of

the sample mean µ̄N satisfies ∣P(µ̄N ≤ x) −Φ(x)∣ ≤ C√
N

for all values x ∈ R).
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5. Effective sample size of stationary processes

Different generalizations of the classical CLT exist by relaxing either of its conditions.
The textbook [22] by Beran et al. provides a comprehensive collection of stochastic limit
theorems for sums of random variables both in terms of convergence in distribution or
of weak convergence of the sum’s cdf as functional central limit theorems.

An example of a limit theorem for normalized sums of infinite-variance variates
is given by α-stability. The sum of N ∈ N iid symmetric and fat-tailed random vari-
ables (cp. Sect. 2.3) with asymptotics ∝ ∣x∣−α−1 of their density as ∣x∣ → ∞ tends to
an α-stable variate with the same tail parameter α ∈ (0, 2] when normalized by N−1/α [22,
Sect. 4.3.2.3]. Hence, the rate of the convergence of the sample mean µ̄N reduces
to 1

N1−1/α in this case compared to 1√
N

in the Gaussian limit case of α = 2 or the
classical CLT, respectively.

In the presence of SRC along with finite variance, the Gaussian limit distribution
and rate of convergence of the sample mean remain valid just as in the classical CLT.
Finite-variance processes that are mixing or exhibit m-dependence or the Markov
property (cp. Appx. D) satisfy this condition [56, Cap. 3]. If the decay of the acf is,
however, too slow, then non-Gaussian limit distributions are possible even if the variates
obey finite variance. Such a setting is occasionally referred to as “noncentral” limit
theorems [22, Sect. 4.2.5.3] and is valid for example for certain meta-Gaussian LRC
processes as reflected in Sect. 5.1.1.

5.1.1. Limit distribution of the sample mean

Violating the conditions of the CLT potentially changes the asymptotic properties of
the sample mean (5.1). For stationary Gaussian LRC processes the limit distribution
of the sample mean remains Gaussian. The speed of the convergence to the limit
distribution is however slower than in the iid setting. Theorem 5.1 captures these
two observations. Section 5.1.2 deals with the implications for the uncertainty of the
sample mean due to a lower speed of its convergence in the presence of LRC.

Theorem 5.1 (cp. Thm. 4.2 in [22]): Let Xt be a stationary standard Gaussian process
with acf %X(k) ∝ k2d−1 as time lags k →∞ and with LRC parameter d ∈ (0, 1

2
). For N ∈ N

samples of the process Xt define the sum SN(u) ∶= ∑[Nu]
t=1 Xt. Then

N−(d+1/2)L(N)SN(u) Ô⇒ BH(u) (u ∈ (0,1) ), (5.2)

where L(N) is a slowly varying function as N → ∞ and BH is a standard fractional
Brownian motion with Hurst parameter H = d + 1

2 (“Ô⇒” denotes weak convergence).
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5.1. Asymptotics and uncertainty of the sample mean

Relation (5.2) yields a slowed convergence at the lower rate 1
N1/2−d as N →∞ of the

normalized sample mean N
1/2−dµ̄N for LRC parameters d ∈ (0, 1

2
) compared to 1

N1/2

for iid samples. Figure 5.2 visualizes the increased uncertainty of the sample mean for
different ARFIMA time series.

Remark 5.2: Theorem 5.1 remains valid for parameters d ∈ (−1
2 ,

1
2
) if the acf %X

satisfies∑∞
k=−∞ %X(k) = 0 in the antipersistent case of d ∈ (−1

2 ,0) [22]. The setting of d = 0

represents the presence of at most SRC by a finite correlation time (2.8) (cp. Sect. 5.1).

For meta-Gaussian processes the limit distribution of the sample mean is analytically
known and depends on the Hermite rank (cp. Sect. 3.2) of the transformation that
defines the process. In the generic case of Hermite rank J = 1 (see Rem. 3.5), the
sample mean (5.1) remains asymptotically Gaussian. Higher Hermite ranks result in
non-Gaussian limits as Theorem 5.3 specifies.

Theorem 5.3 (cp. Thm. 4.4 in [22]): Let Xt be a stationary standard Gaussian process
with acf %X(k) ∝ k2d−1 as time lags k →∞ and with LRC parameter d ∈ (0, 1

2
). For N ∈ N

samples of a meta-Gaussian process Yt = g(Xt) define the sum SN(u) ∶= ∑[Nu]
t=1 Yt. If the

Hermite rank J of the transformation g ∈ L2 satisfies J(1 − 2d) < 1, then

N−(1−J(1/2−d))L(N)SN(u) Ô⇒
α2
J

J !
ZJ,H(u) (u ∈ (0,1)), (5.3)

where ZJ,H is an Hermite process with parameter H = d + 1
2 and αJ is the J-th Hermite

coefficient (3.8) (“Ô⇒” denotes weak convergence).

The condition J(1− 2d) < 1 in Theorem 5.3 ensures LRC for the transformed process.
If the Hermite rank J satisfied the opposite, then the correlation time (2.8) would be finite
despite a power-law decaying acf. Such an SRC setting is introduced as “intermediate”
in Section 2.4 and implies a Gaussian limit distribution (cp. Sect. 5.1).

Analogously to the implications of Theorem 5.1, relation (5.3) yields the rate 1
NJ(1/2−d)

for the convergence of the normalized sample mean NJ(1/2−d)µ̄N as N → ∞. The
condition J(1−2d) < 1 implies J (1

2 − d) <
1
2 , so that this convergence rate is slower than

the rate 1
N1/2 of the iid setting.
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5. Effective sample size of stationary processes

Figure 5.1 shows the distribution of the sample mean µ̄N for 1,000 time series each of
length N = 5,000 for a Gaussian LRC ARFIMA(0, 0.3, 0) process Xt and the three meta-
Gaussian example processes of Section 3.3, namely the lognormal eXt , the square X2

t

and the absolute-value process ∣Xt∣. Applying Theorem 5.1 and Theorem 5.3 yields
an asymptotically Gaussian distribution for the sample mean of the original Gaussian
and the lognormal process as both examples obey Hermite rank J = 1. Note that the
Hermite process Z1,H in convergence (5.3) is the fBm and thus Gaussian. Both the
square and the absolute value exhibit Hermite rank J = 2 resulting in the Rosenblatt
process Z2,H in convergence (5.3). The sample mean for the squared process is a sum
of dependent χ2-variates and follows the non-Gaussian Rosenblatt distribution [175].
The pdf of the Rosenblatt distribution lacks a closed-form description but can be
approximated numerically [181].

The Gaussian ML-fitted densities in Figure 5.1 well represent the sample mean
distributions of the processes Xt and eXt . Such Gaussians, however, do not well describe
the Rosenblatt sample mean distribution of the processes X2

t and ∣Xt∣ as visualized by
the very skewness of the empirical distributions.
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Fig. 5.1 Histograms of the sample means µ̄N of 1,000 time series each of length N = 5,000
of a Gaussian ARFIMA(0,0.3,0) process Xt with standard deviation σX = 1

2 and of
the meta-Gaussian processes eXt , X2

t and ∣Xt∣ (cp. Sect. 3.3).

72



5.1. Asymptotics and uncertainty of the sample mean

The focus of Figure 5.1 is the shape of the sample mean distribution. The combinations
of the chosen standard deviation σX = 1

2 and the example transformations, however,
result in highly different variances of the related sample means. These quantitatively
specific differences of uncertainties remain without further consideration here.

Remark 5.4: Figure 5.1 involves two stochastic limits. First, the convergence of the
sample mean µ̄N as a (normalized) sum of N dependent variates by the Theorems 5.1
and 5.3 as the number N →∞. And second, the convergence by the CLT of the empirical
distribution to the theoretical distribution of the sample mean as the amount k ∈ N
of empirical sample means approaches infinity. The deliberate choice of the standard
deviation σX = 1

2 for the examples in Figure 5.1 brings the calculated sample means closer
to the first asymptotic regime. As the k different sample time series are independent, the
pointwise rate of the second convergence reads 1√

k
as k →∞ by the CLT (cp. Appx. C).

In two ways, we apply Theorem 5.3 to modeling daily precipitation amounts in
Chapter 6. First, Section 6.3.5 deals with the daily mean of precipitation amounts and
its statistical uncertainty. Second, rescaling the yearly sample mean to annual totals by
the multiplication by 365 days allows for model validation in Section 6.3.6.

5.1.2. Sample mean approach to an effective sample size

Measuring the uncertainty of the sample mean by its variance serves as an approach to
quantifying the effect of correlations on statistical quantities. For a finite number N ∈ N
of iid samples with mean µY ∈ R and variance σ2

Y ∈ R>0 by basic calculations the
mean E[µ̄N ] and variance σ2

µ̄N
of the sample mean (5.1) read

E[µ̄N ] = µY and σ2
µ̄N

=
σ2
Y

N
. (5.4)

The square root σµ̄N = σY√
N

is well known as the standard error of the mean. Lemma 5.5
calculates the variance of the sample mean for stationary processes.

Lemma 5.5: Let Yt be a stationary process with mean µY ∈ R, variance σ2
Y ∈ R>0

and nonnegative acf %Y . Then the mean E[µ̄N ] and the variance σ2
µ̄N

of the sample
mean (5.1) of N ∈ N samples of the process Yt read

E[µ̄N ] = µY and σ2
µ̄N

=
σ2
Y

N
τD(N), (5.5)

where

τD(N) ∶= 1 + 2
N−1

∑
k=1

(1 − k

N
)%Y (k) ≥ 1. (5.6)
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5. Effective sample size of stationary processes

Proof. The linearity of the mean implies E[µ̄N ] = µY . By the definition of the acf (2.3)
for stationarity processes the variance (5.1) of the sample mean of N samples reads

σ2
µ̄N

= 1

N2

N

∑
i,j=1

Cov (Yi, Yj) =
σ2
Y

N2

N

∑
i,j=1

%Y (∣i − j∣) (5.7)

=
σ2
Y

N2

⎛
⎝
N%Y (0) + 2

N−1

∑
k∶=∣i−j∣=1

(N − k)%Y (k)
⎞
⎠
. (5.8)

Division of equation (5.8) by the number N of samples together with %Y (0) = 1 implies
equation (5.5) using definition (5.6). We further have τD(N) ≥ 1 by the sum in
definition (5.6) and the nonnegativity of the acf %Y . ◻

As a direct consequence of equation (5.5) the variance of the sample mean is larger
in the presence of positive autocorrelations than for an equal number of iid samples
with the same marginal variance (cp. the concept of the associated independent se-
quence in Sect. 7.2). The value τD(N) quantifies this increase of statistical uncertainty
for finite sample sizes.

Definition (Finite-size decorrelation time): The value τD(N) defined by equation (5.6)
is called the finite-size decorrelation time of N ∈ N samples of a stationary process.

Remark 5.6: The choice of the term “finite-size decorrelation time” τD(N) is according
to the definition of a “decorrelation time” by its asymptotics as the number N of samples
increases. If finite, this limit serves as a characteristic time scale (cp. Sect. 5.1.3).

Lemma 5.5 allows for the definition of an effective sample size by comparing the vari-
ances of the sample mean in the iid setting (5.4) and in the presence of correlations (5.5).

Definition (Effective sample size): Using the finite-size decorrelation time τD(N),
the effective sample size of N ∈ N samples of a stationary process is defined by

Neff ∶=
N

τD(N)
. (5.9)

Note that by equation (5.6) in the presence of positive correlations the finite-size
decorrelation time satisfies τD(N) > 1, so that the effective sample size Neff is always
smaller than the sample size N . The interpretation of the number Neff as an effective
sample size bases on the observation that the uncertainty

σ2
µ̄N

=
σ2
Y

Neff
(5.10)

of the sample mean (5.5) of N samples of a stationary process coincides with the uncer-
tainty of the sample mean (5.4) of Neff iid samples with the same marginal variance σ2

Y .
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5.1. Asymptotics and uncertainty of the sample mean

Effective sample sizes for AR(1) and ARFIMA processes follow straightforwardly by
plugging in their analytically known acfs (2.12) and (2.22) or (2.23), respectively, into
definition (5.9) using equation (5.6).

Example 5.7 (Effective sample size of AR(1) processes): Let Xt be a Gaussian AR(1)
process (2.11) with AR parameter ϕ ∈ (0,1) and marginal standard deviation σX ∈ R>0.
Its acf reads %X(k) = ϕk for time lags k ∈ N by equation (2.12). For N ∈ N samples
definition (5.6) gives the finite-size decorrelation time

τD(N) =
1 + ϕ + 2ϕ

N (ϕN − 1)
1 − ϕ

(5.11)

with an effective sample size of

Neff = 1 − ϕ
1
N (1 + ϕ) + 2ϕ

N2 (ϕN − 1)
(5.12)

by equation (5.9) and variance σ2
µ̄N

= σ2
X

N τD(N) of the sample mean by equation (5.5). In
the white-noise limit of a vanishing AR parameter ϕ→ 0, equation (5.12) implies Neff = N .
The Examples 5.10 and 5.12 consider the asymptotics of equations (5.11) and (5.12).

The above definition of an effective sample size as a finite-sample property accounts
for an application of this concept to LRC processes, as well, even in the absence of a
finite correlation time (2.8).

Example 5.8 (Effective sample size of ARFIMA processes): Let Xt be a Gaussian AR-
FIMA process (2.11) with LRC parameter d ∈ (0, 1

2
), acf %X(k) for time lags k ∈ N

and marginal standard deviation σX ∈ R>0. For ARFIMA(0, d,0) or ARFIMA(1, d,0)
processes the acf is given by equation (2.22) and (2.23), respectively. Using definition (5.6)
then yields the finite-size decorrelation time τD(N) for N ∈ N samples. As an example,
for ARFIMA(0, d,0) processes it reads5

τD(N) = 1 + 2 ⋅ Γ(1 − d)
Γ(d)

N−1

∑
k=1

(1 − k

N
) Γ(k + d)

Γ(k − d + 1)
(5.13)

= 1 + 1

(2d + 1)N
((N2 − d2)Γ(1 − d)Γ(N + d)

dΓ(N − d + 1)Γ(d)
− (2d + 1)N + d) . (5.14)

Analogously to Example 5.7, the effective sample size Neff and the variance σ2
µ̄N

of
the sample mean can then be determined by equation (5.9) and (5.5), respectively, by
plugging in the result (5.14). Note that in the white-noise limit of a vanishing LRC
parameter d → 0, equation (5.14) yields τD(N) = 1, so that Neff = N . Example 5.13
considers the asymptotics of equation (5.14).

5by the software WOLFRAM MATHEMATICA 11.3.0.0 for rearrangement of symbolic formulae
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5. Effective sample size of stationary processes

Figure 5.2 shows the distribution of the sample mean and the effective sample sizes
for 400 iid, AR(1) and ARFIMA(0,0.2,0) time series with standard Gaussian marginal
distribution. The variances σ̄2

µ̄N
estimated by a ML-fitted normal distribution under

the assumption of independence well coincide with the variances σ2
µ̄N

calculated by
equation (5.11) and (5.14), respectively, using the effective sample sizes.
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Fig. 5.2 Empirical and theoretical distributions of the sample mean of 400 sample time
series of a Gaussian iid, an AR(1) with AR parameter ϕ = 0.3 and an ARFIMA(0, 0.2, 0)
process each with standard Gaussian marginal distribution each of fixed length N = 1,000.
The ML-fitted Gaussian densities yield estimated variances σ̄2

µ̄N
of the sample mean µ̄N .

The theoretical Gaussian densities obey the variance σ2
µ̄N

calculated by the effective
sample size Neff using equation (5.10).

Positive correlations are capable of increasing the uncertainty of statistical quantities
such as the sample mean by orders of magnitudes (see Fig. 5.2). The effective number of
samples Neff provides a quantitative impression of the strength of this effect. Additionally,
the inverse value 1

τD(N) quantifies the influence of correlations relatively by equation (5.9).
The two extreme settings of independence and of fully correlated data yield τD(N) = 1

and τD(N) = N by definition (5.6) resulting in Neff = N and Neff = 1, respectively. In
Section 5.2 we determine effective sample sizes for meta-Gaussian processes.
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5.1. Asymptotics and uncertainty of the sample mean

5.1.3. Sample mean approach to a characteristic time scale

Accompanying the correlation time (2.8) of stationary processes, according to [174,
Chap. 17] we shall define a decorrelation time using the description (5.6) of a finite-size
decorrelation time.

Definition (Decorrelation time): The decorrelation time τD of a stationary process is
defined as the limit

τD ∶= lim
N→∞

τD(N) (5.15)

of the finite-size decorrelation time τD(N) as the number N ∈ N of samples increases
to infinity.

Storch and Zwiers [174] use the equivalent definition τD ∶= limN→∞
N
Neff

to deter-
mine a characteristic time scale if the limit exists. Lemma 5.9 immediately concludes
by basic calculations that SRC processes exhibit a finite decorrelation time, other
than LRC processes.

Lemma 5.9: Let Yt be a stationary process with acf %Y . If the process Yt obeys SRC
with finite correlation time τ < ∞ according to definition (2.8), then its decorrelation
time τD defined as the limit (5.15) satisfies

τD = 2τ − 1. (5.16)

If the process Yt obeys LRC such that τ = ∞, then also τD = ∞ and using the finite-size
correlation time τ(N) ∶= ∑N−1

k=0 %Y (k), we find the asymptotic equivalence

τD(N)
τ(N)

∼ 2 (N →∞). (5.17)

Proof. Using the definitions (5.6) of the finite-size decorrelation time τD(N) for N ∈ N
samples and (2.8) of the correlation time τ yields

τD = lim
N→∞

1 + 2
N−1

∑
k=1

(1 − k

N
)%Y (k) = 1 + 2

∞
∑
k=1

%Y (k) (5.18)

= 1 + 2(
∞
∑
k=0

%Y (k) − 1) = 1 + 2τ − 2 = 2τ − 1 (5.19)

for SRC processes. For LRC processes we have an infinite correlation time τ = ∞, so
that the decorrelation time τD = ∞, the limit in equation (5.18), is infinite as well. In
this case, equation (5.19) implies relation (5.17) as the growth rates of the decorrelation
time and twice the finite-size correlation time τ(N) coincide as N →∞. ◻
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5. Effective sample size of stationary processes

The implications of Lemma 5.9 are at least twofold. First, considering the variance of
the sample mean (5.1) provides an alternative approach to a characteristic time scale for
stationary processes besides the correlation time (2.8). Then equation (5.16) describes
the relation between these two time scales if they exist.

Second, Lemma 5.9 illustrates that the concrete values of characteristic time scales
depend on the perspective of approaching them. The factor of two in equation (5.18)
stems from the symmetry of the acf in the calculation (5.8). Involving statistical
quantities different from the sample mean such as the sample variance or even certain
cross-correlations [174] would yield relations between characteristic time scales similar
but different to equation (5.16).

Example 5.10 (Decorrelation time of AR(1) processes): The decorrelation time (5.20)
for AR(1) processes is well known [120,174,177]. Consider an AR(1) process Xt as defined
in Example 5.7. By definition (5.15) the finite-size decorrelation time in equation (5.11)
implies the decorrelation time

τD = lim
N→∞

1 + ϕ + 2ϕ
N (ϕN − 1)

1 − ϕ
= 1 + ϕ

1 − ϕ
(5.20)

and confirms Lemma 5.9 by

τD = 2τ − 1 = 2

1 − ϕ
− 1 = 1 + ϕ

1 − ϕ
. (5.21)

Mind that the correlation time (2.8) of AR(1) processes reads τ = ∑∞
k=0ϕ

k = 1
1−ϕ .

Remark 5.11: For AR(1) processes Massah et al. [120] determined the variance σ2
µ̄N

of
the sample mean directly by plugging in the autoregression (2.11) into the definition (5.1)
of the variance σ2

µ̄N
including the autocovariances (5.7). As a result, by the decorrelation

time (5.20) the asymptotic equivalence

τD

τ
=

1+ϕ
1−ϕ

1
1−ϕ

= 1 + ϕ → 2 (ϕ→ 1) (5.22)

implies τD ∼ 2τ as ϕ→ 1 as a special limit case of Lemma 5.9.

Lemma 5.9 generalizes the asymptotic observation of Remark 5.11 for AR(1) pro-
cesses to general stationary processes. By its very definition the decorrelation time
satisfies the asymptotic equivalence (5.17) to twice the correlation time in case of an
infinite (de)correlation time, as well. Section 5.1.4 draws inference about the scaling of
the effective sample size for large numbers of samples by considering the asymptotics of
the decorrelation time.
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5.1. Asymptotics and uncertainty of the sample mean

5.1.4. Asymptotics of the effective sample size

Previous definitions of effective sample sizes [174,179] strongly relate to the existence of
a finite characteristic time scale. Considering the asymptotic behavior of the decorre-
lation time (5.15), however, allows for comparing the uncertainty of the sample mean
of iid and not only SRC but also LRC samples. If the decorrelation time (5.15) is
infinite, then its asymptotic behavior is of interest as the speed of the growth of the
effective sample size reduced due to the presence of correlations allows for a descriptive
comparison to the iid setting. Additionally to the MSD or fluctuation functions (cp. Sec-
tion 4.4.1), also the asymptotic behavior of the effective sample size serves as an indicator
of anomalous scaling.

Example 5.12 (Asymptotics of the effective sample size of AR(1) processes): Consider
an AR(1) process as defined in Example 5.7. Such processes exhibit a characteristic
time scale by the decorrelation time (5.20). Hence, we find

Neff ∼ N ⋅ 1 − ϕ
1 + ϕ

and σ2
µ̄N

∼
σ2
X

N
⋅ 1 + ϕ
1 − ϕ

= 1

N(1 − ϕ)2
(N →∞) (5.23)

as the number N of samples increases. Asymptotically the effective sample size Neff

grows linearly with a slope less than unity, and the variance (5.5) of the sample mean of
Gaussian zero-mean standard AR(1) processes with variance σ2

X = 1
1−ϕ2 by equation (2.13)

decreases at an 1
N -rate just as in the classical CLT setting.

Example 5.13 (Asymptotics of the effective sample size of ARFIMA(0, d, 0) processes):
Consider an ARFIMA(0, d, 0) process Xt as defined in Example 5.8. The asymptotics of
equation (5.14) describe the growth rate of the finite-size decorrelation time τD(N) as
the number N of samples increases. Taking into account leading orders only and applying
the property Γ(x + α) ∼ Γ(x)xα for all α ∈ R as x→∞ of the gamma function yields

τD(N) ∼ Γ(1 − d)
d(2d + 1)Γ(d)

⋅ N
2

N
⋅ Γ(N + d)
Γ(N − d + 1)

∼ Γ(1 − d)
d(2d + 1)Γ(d)

⋅N2d (N →∞). (5.24)

Then the effective sample size (5.9) and the variance (5.5) of the sample mean im-
ply (cp. [137, p. 49])

Neff ∼ d(2d + 1)Γ(d)
Γ(1 − d)

N1−2d and σ2
µ̄N

∼
Γ(1 − d)σ2

X

d(2d + 1)Γ(d)
⋅N2d−1 (N →∞), (5.25)

where σ2
X denotes the marginal variance of the ARFIMA(0, d,0) process Xt.
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5. Effective sample size of stationary processes

Remark 5.14: Euler’s reflection formula Γ(1 − z)Γ(z) = π
sin (πz) for all z ∈ C together

with Γ(1) = 1 implies

d(2d + 1)Γ(d)
Γ(1 − d)

= (2d + 1)
Γ(1 − d)2

⋅ πd

sin (πd)
∼ πd

πd
= 1 (d→ 0). (5.26)

The variance (5.25) of the sample mean thus coincides with its behavior (5.4) in the
white-noise limit as the LRC parameter d vanishes. We find 0.9 < Γ(1−d)

d(2d+1)Γ(d) ≤ 1 for
all d ∈ (0, 1

2
), so that predominantly the power-law (5.25) asymptotically determines

the effective sample size of ARFIMA(0, d,0) processes. However, this is not true in
general (cp. Ex. 5.23).

Equation (5.6) describing the finite-size decorrelation time directly by the acf allows
for general inference about the asymptotic behavior of the effective sample size for
stationary processes with power-law decaying acf.

Lemma 5.15: Let Yt be a stationary process with power-law decaying acf %Y (k) ∼ ck−γ

as time lags k ∈ N approach infinity with a constant c ∈ R>0 and an exponent γ ∈ (0,1).
Then the asymptotic behavior of the effective sample size Neff of N ∈ N samples of
the process Yt reads

Neff ∼ (1 − γ)(2 − γ)
2c

⋅Nγ (N →∞). (5.27)

Proof. We shall approximate the countable sum in definition (5.6) of the finite-size
decorrelation time by a continuous integral. Let β ∈ (−1,0) and N ∈ N, then asymp-
totically ∑N−1

k=1 kβ ∼ ∫
N−1
k=1 kβdk ∼ Nβ+1

β+1 as N → ∞. Note that these two asymptotic
equivalences are only valid in case of divergence of the sum (and the integral), otherwise,
sum and integral differ and the limit integral reads 1

β+1 . Setting β = −γ, we conclude
the leading order

τD(N) = 1 + 2
N−1

∑
k=1

(1 − k

N
) ck−γ = 1 + 2c(

N−1

∑
k=1

k−γ − 1

N

N−1

∑
k=1

k1−γ) (5.28)

∼ 2c(N
1−γ

1 − γ
− 1

N
⋅ N

2−γ

2 − γ
) = 2c

(1 − γ)(2 − γ)
⋅N1−γ (N →∞). (5.29)

Plugging in the result (5.29) into definition (5.9) yields the asymptotic growth rate (5.27)
for the effective sample size. ◻

The asymptotic equivalence (5.25) in Example 5.13 calculated for ARFIMA(0, d,0)
processes directly by the asymptotics (5.24) of their finite-size decorrelation time (5.14) is
a special case of Lemma 5.15 with γ = 1− 2d and c = Γ(1−d)

Γ(d) . In Section 5.2 we determine
these two parameter values for meta-Gaussian processes based on Lemma 5.15.
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5.2. Effective sample size for meta-Gaussian processes

5.2. Effective sample size for meta-Gaussian processes

The Hermite polynomials introduced in Chapter 3 provide a convenient approach
to assessing the sample mean of meta-Gaussian processes. As a remark, alternative
approaches to answering related questions such as functional CLTs for non-Gaussian LRC
processes apply other basis functions like for example Appell polynomials [57]. Joining
the concepts of an effective sample size based on the sample mean (cp. Sect. 5.1.2) and
the Hermite expansion of the acf of meta-Gaussian processes (cp. Sect. 3.1) allows for
an analytical calculation of their effective sample sizes in Section 5.2.1. Additionally,
in Section 5.2.2 the asymptotics of the effective sample size adds to the research area of
anomalous scaling (cp. Sect. 4.4.1) by concrete values of previously unknown prefactors
in asymptotic relations (cp. Sect. 5.3).

5.2.1. Finite-sample interpretation

The effective sample size provides an assimilable description of the effect of corre-
lations to statistical quantities. Theorem 3.2 on the calculation of the acf of meta-
Gaussian processes applied to Lemma 5.5 on the uncertainty of the sample mean for
stationary processes directly yields a closed form formula for the effective sample size
of meta-Gaussian processes.

Theorem 5.16: Let Yt = g(Xt) be a meta-Gaussian process with acf %Y and with
a stationary original Gaussian process Xt with nonnegative acf %X . Then for N ∈ N
samples of the process Yt the effective sample size reads

Neff = N

τD(N)
, where τD(N) = 1 +

N−1

∑
k=1

(1 − k

N
)%Y (k) (5.30)

denotes the finite-size decorrelation time (5.6) of the process Yt. Its acf

%Y (k) = 1

σ2
Y

∞
∑
j=1

α2
j

σ2j
X j!

%X(k)j (5.31)

for time lags k ∈ N is given by Theorem 3.2. In equation (5.31) αj denotes the j-th
Hermite coefficient (3.8) for indices j ∈ N and σ2

X and σ2
Y the marginal variance of the

process Xt and Yt, respectively.

Proof. The exact formula (5.30) for the effective sample size of meta-Gaussian processes
is a direct consequence of plugging in the Hermite expansion (5.31) of the acf %Y
from Theorem 3.2 into definition (5.6) of the finite-size decorrelation time τD(N). ◻
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5. Effective sample size of stationary processes

Figure 5.3 shows effective sample sizes for the example transformations of Section 3.3
by applying Theorem 5.16. A numerical approximation of effective sample sizes by
equation (5.30) shall truncate the infinite Hermite expansion therein. Alternatively, a
closed-form representation of the relation %X(k) z→ %Y (k) for time lags k ∈ N might
exist as for the above examples given by the results (3.38), (3.39) and (3.40). Just
as for the Gaussian toy models in Figure 5.2, for these meta-Gaussian examples the
theoretically determined effective sample sizes and thus variances (5.5) of the sample
mean well coincide with the ML-fitted Gaussian densities.

The effective sample sizes of meta-Gaussian processes strongly depend on the trans-
formation (3.1). The lognormal example exhibits a significantly reduced effective sam-
ple size to less than 5% of the number of correlated lognormal samples other than
to about 60 − 70% for the square and absolute-value process for an LRC parameter
of d = 0.2. Mind that as discussed in Section 5.1, the distribution of the sample mean is
not necessarily Gaussian in the case of Hermite ranks larger than unity. This deviation
from normality becomes the more prominent the stronger the correlations are, resulting
in a slightly worse agreement of the ML-estimated and theoretical Gaussian for d = 0.3.
The estimated effective sample size nonetheless provides an intuition of the magnitude of
increased uncertainty also in such cases of strong LRC. The variance (5.5) of the sample
mean remains a measure of uncertainty, independently of whether the asymptotic shape
of its distribution is already reached.

A notable result about the effective sample size stems from the inferences drawn about
the correlations of meta-Gaussian processes in Section 3.2. The effective sample size of
a meta-Gaussian process is always larger than the one of its original Gaussian process.

Corollary 5.17: Let Yt = g(Xt) be a meta-Gaussian process with a stationary original
Gaussian process Xt with nonnegative acf. Denote by NY

eff and NX
eff the effective sample

size of the process Yt and Xt, respectively. Then we have

NY
eff ≥ NX

eff (5.32)

with equality in the estimation (5.32) if the transformation g ∈ L2 is the identity or if
the process Xt is iid.

Proof. For N ∈ N samples denote by τXD(N) and τYD(N) the finite-size decorrelation time
of the original process Xt and the process Yt, respectively. Then the monotonicity (3.16)
applied to definition (5.6) implies τXD(N) ≥ τYD(N), and thus

NX
eff = N

τXD(N)
≤ N

τYD(N)
= NY

eff . (5.33)

If the process Yt is iid, we find τYD(N) = τXD(N) = 1 and thus NY
eff = NX

eff . If the function g
is the identity, then we have %Y = %X , so that τYD(N) = τXD(N) in relation (5.33). ◻
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5.2. Effective sample size for meta-Gaussian processes

Figure 5.3 confirms the observation of Corollary 5.17 for the examples of Section 3.3.
In Section 6.3.1 we apply the effective sample size approach for meta-Gaussian processes
to the assessment of the uncertainty of the daily mean precipitation amount and to the
distribution of annual totals.
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Fig. 5.3 Histograms and ML-fitted Gaussian densities of the empirical sample means µ̄N
of 1,000 time series each of length N = 5,000 of the meta-Gaussian processes eXt , X2

t

and ∣Xt∣ (cp. Sect. 3.3) for the original Gaussian ARFIMA(0,0.2,0) (left) and AR-
FIMA(0,0.3,0) (right) processes Xt with standard deviation σX = 1

2 (cp. Fig. 5.1).
The effective sample sizes of the original processes Xt read Neff ≈ 183 = N ⋅ 3.7%
and Neff ≈ 33 = N ⋅ 0.7% for d = 0.2 and d = 0.3, respectively.
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5. Effective sample size of stationary processes

The inequality (5.32) in Corollary 5.17 states that the effective sample size of a
meta-Gaussian process is always larger than the one of its original Gaussian process
except in trivial cases of equality (i.e., iid processes or the identity transformation).
What appears as a gain of information at the first glance, is a matter of comparing
appropriate quantities. The effective sample size compares the uncertainty of the sample
mean of stationary correlated data to iid data with the same marginal distribution. It
thus provides a description of the strength of the correlations in the data. A pointwise
transformations of a Gaussian process generically reduces the strength of correlations
by Lemma 3.6, so that the effective sample size of meta-Gaussian processes exceeds the
one of the original Gaussian process.

In general, however, this effect does not improve estimations of the sample mean of
the original Gaussian process. The sample mean of nonlinearly transformed data does
not coincide with the same transformation applied to the sample mean of the original
data. Hence, expecting smaller confidence intervals from transforming Gaussian data
and inverting back the obtained sample mean is not reasonable. As an example, for the
lognormal transformation of standard Gaussian samples we have

1 = e0 = eE[
1
N ∑

N
i=1Xi] ≠ E [ 1

N

N

∑
i=1

eXi] = e
1
2 (5.34)

in case of iid data X1, . . . ,XN already.

5.2.2. Large sample behavior

By Lemma 5.9 meta-Gaussian SRC processes exhibit a finite decorrelation time and
thus a characteristic time scale. Theorem 5.16 directly implies an analytical formula for
approximating this quantity.

Corollary 5.18: Let a transformation g ∈ L2 be such that Yt = g(Xt) is a meta-
Gaussian SRC process with marginal variance σ2

Y ∈ R>0 with a stationary Gaussian
original process Xt with marginal variance σ2

X ∈ R>0 and nonnegative acf %X . Denote
by τYD < ∞ and τXD ∈ R>0⋃{∞} the decorrelation time and by τY < ∞ and τX ∈ R>0⋃{∞}
the correlation time of the process Yt and Xt, respectively. Then we have

τYD = 1 + 2

σ2
Y

∞
∑
j,k=1

α2
j

σ2j
X j!

%X(k)j = 2τY − 1 and (5.35)

τYD ≤ τXD = 2τX − 1 (5.36)

with equality in the estimation (5.36) if the function g is the identity or if the process Xt

is iid. In equation (5.35) αj denotes the j-th Hermite coefficient (3.8) for indices j ∈ N.
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5.2. Effective sample size for meta-Gaussian processes

Proof. The equalities on the right-hand side of the relations (5.35) and (5.36) are
straightforward translations of Lemma 5.9. For the derivation of the left-hand side
equation (5.35) let %Y be the acf of the process Yt. Then by the formulae (5.30) and (5.31)
the decorrelation time of the process Yt reads

τYD = 1 + 2 lim
N→∞

N−1

∑
k=1

(1 − k

N
)%Y (k)

= 1 + 2

σ2
Y

lim
K,N→∞

N−1

∑
k=1

(1 − k

N
)
K

∑
j=1

α2
j

σ2j
X j!

%X(k)j = 1 + 2

σ2
Y

∞
∑
j,k=1

α2
j

σ2j
X j!

%X(k)j .
(5.37)

Note that the sums and limits are interchangeable due to the finite correlation time
of the process Yt and the convergence of the Hermite series for every time lag k ∈ N.
The inequality (5.36) follows from the monotonicity (3.16) analogously to the proof
of Corollary 5.17. ◻

If a closed-form representation of the acf %Y as a function of the original acf %X is
known, than by equation (5.30) the decorrelation time τYD of a meta-Gaussian SRC
process Yt reads

τYD = 1 + 2
∞
∑
k=1

%Y (k). (5.38)

As an example, for the square of an AR(1) process equation (5.38) yields a closed-form
representation of its decorrelation time as calculated in Example 5.19.

Example 5.19 (Effective sample size of transformed AR(1) processes): Let Xt be
an AR(1) process with AR parameter ϕ ∈ (0,1) and acf %X(k) = ϕk for time lags k ∈ N.
Then the decorrelation times τYD of the meta-Gaussian example processes of Sec-
tion 3.3 can be approximated by equation (5.38). For the squared process we obtain
the closed-form result

τYD = 1 + 2
∞
∑
k=1

ϕ2k = 1 + ϕ2

1 − ϕ2
and (5.39)

τYD = 2τY − 1, where τY =
∞
∑
k=0

ϕ2k = 1

1 − ϕ2
(5.40)

is the correlation time of the process Yt since by equation (3.38) we have %Y = %2
X .

Figure 5.4 depicts the asymptotically linear relation (5.42) between the sample sizes and
the effective samples sizes of transformed AR(1) processes with different AR parame-
ters. Table 5.1 collects the inverted decorrelation times of the example processes that
are the slopes of this linear relation.
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5. Effective sample size of stationary processes

The finite-sample computation of effective samples sizes of meta-Gaussian processes
given by Theorem 5.16 implies the asymptotics for meta-Gaussian both SRC and LRC
processes with a power-law decaying acf. Theorem 5.20 provides direct access to not
only the growth exponent of the effective sample size as the number of samples increases
but also to the prefactors of these proportionalities.

Theorem 5.20: Let Yt = g(Xt) be a meta-Gaussian process with marginal vari-
ance σ2

Y ∈ R>0, acf %Y and with a stationary original Gaussian process Xt with marginal
variance σ2

X ∈ R>0 and nonnegative acf %X . Denote by J ∈ N>0 the Hermite rank of the
transformation g ∈ L2 and by αJ ∈ R>0 the corresponding J-th Hermite coefficient.

If the acf of the process Xt satisfies %X(k) ∼ cXk−γX as time lags k → ∞ with a
constant cX ∈ R>0 and an exponent γX ∈ (0, 1

J
], then the effective sample size Neff of the

process Yt fulfills the asymptotic equivalence

Neff ∼ aYNγY (N →∞), where

aY = (1 − γY )(2 − γY )
2cY

with cY =
cJXα

2
J

σ2
Y σ

2J
X J !

and γY = γXJ.
(5.41)

If the acf of the process Xt satisfies %X(k) ∝ k−γX as time lags k → ∞ with an
exponent γX ∈ ( 1

J ,1] or decays faster than that, then the effective sample size Neff of the
process Yt asymptotically grows as

Neff ∼ aYN (N →∞), where

aY = 1

τYD

(5.42)

and τYD denotes the decorrelation time (5.35) of the process Yt.

Proof. If the exponent γX of the acf of the original Gaussian process satisfies 0 < γX ≤ 1
J ,

then both the original processXt and the transformed process Yt obey LRC (cp. Sect. 3.2).
The formulae of the prefactor aY and the exponent γY in the descriptions (5.41) are direct
translations of Lemma 5.15. Note that the Hermite rank J determines the leading (i.e.,
slowest) order of the Hermite series (5.31) of the acf %Y (k) as time lags k → ∞. It
remains to derive the factor cY as the prefactor of the asymptotics %Y (k) ∼ cY kγY as
time lags k →∞. Its representation (5.41) follows from plugging in the asymptotics of
the acf %X(k) ∼ cXk−γX as k → ∞ into the above Hermite series and calculating the
prefactor cY of the J-th summand cY k−γXJ .

In the intermediate setting of 1
J < γX < 1 or a faster decay of the acf %X of the original

process, the transformed process Yt is an SRC process. Hence, this process exhibits
a finite decorrelation time and Corollary 5.18 applies. Definition (5.9) of the effective
sample size implies the asymptotic equivalence (5.42). ◻
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Fig. 5.4 Finite-sample and asymptotic effective sample sizes Neff of the meta-Gaussian
processes eσXXt , X2

t and ∣Xt∣ (cp. Sect. 3.3) for original Gaussian AR(1) processes Xt

with AR parameters ϕ ∈ {0.1,0.3,0.5,0.7,0.9} (from top to bottom each) and marginal
standard deviation σX ∈ {1, 1

2}. Table 5.1 collects the values of the depicted slopes.

ϕ aX aeσXX aX2 a∣X ∣
0.1 0.82 0.88 (0.83) 0.98 0.98
0.3 0.54 0.64 (0.56) 0.83 0.85
0.5 0.33 0.42 (0.35) 0.60 0.63
0.7 0.18 0.23 (0.19) 0.34 0.37
0.9 0.05 0.07 (0.06) 0.11 0.11

Table 5.1 Prefactors aY = 1
τYD

of the asymptotics Neff ∼ aYN as N → ∞ by equa-

tion (5.42) of the effective sample sizes of the example processes Yt = g(Xt) of Figure 5.4

with standard deviation σX = 1 (and additionally σX = 1
2 for the process eXt).
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5. Effective sample size of stationary processes

Figure 5.5 shows the asymptotic behavior of the effective sample size of the example
meta-Gaussian processes Yt = g(Xt) of Section 3.3, namely the lognormal, the square and
the absolute value of ARFIMA(0, d, 0) processes, for different LRC parameters d ∈ (0, 1

2
)

and of their original Gaussian process Xt. Table 5.3 collects the related exponents γY
and prefactors aY according to relation (5.41), which determine the slopes and the
vertical position of the straight lines in the double-logarithmic scaling. The prefac-
tors cX for ARFIMA(0, d, 0) and ARFIMA(1, d, 0) processes are given by relation (2.25)
and (2.26), respectively. The slopes of the effective sample size read γY = 1 in case
of LRC parameters d ∈ [1

2 −
1

2J ,
1
2
) and γY = γXJ for LRC parameters d ∈ (0, 1

2 −
1

2J
)

with the exponent

γX = 1 − 2d (5.43)

in the asymptotics (2.20) of the acf of ARFIMA processes and Hermite rank J of the
function g ∈ L2 (cp. Sect. 3.2). In Figure 5.5 the finite-sample approximation (5.30) of
the effective sample size for meta-Gaussian processes coincides with the above asymp-
totics (5.41) and confirm Theorem 5.20.

Example 5.21 (Effective sample size of transformed ARFIMA(0, d, 0) processes): For
the example transformations of Section 3.3 and Figure 5.3 the prefactors aY in the
asymptotics (5.41) of the effective sample size are analytically known by the closed-form
results (3.38), (3.39) and (3.40) for the acf of the transformed processes (cp. Tab. 5.2).
The identity and exponential function obey Hermite rank J = 1, whereas the square
and absolute value exhibit Hermite rank J = 2. For LRC parameters 0 < d < 1

4

the transformed processes thus obey SRC and their effective sample size follows the
linear asymptotics (5.42).

Yt Xt eσXXt X2
t ∣Xt∣

J 1 1 2 2

αJ α1 = σ2
X α1 = σ2

Xe
σ2
X
2 α2 = 2σ4

X α2 =
√

2
πσ

3
X

σ2
Y σ2

X eσ
2
X (eσ

2
X − 1) 2σ4

X
π−2
π σ2

X

cY cX
cXσ

2
X

e
σ2
X−1

c2
X

c2X
π−2

Table 5.2 Calculation of the factor cY for the prefactors of the asymptotics of the
effective sample sizes by formula (5.41) using the results of Section 3.3 for the Hermite
coefficients J , the Hermite coefficients αJ (Sect. 3.3.2) and the variance σ2

Y of the
transformed processes Yt (Sect. 3.3.1). The resulting factors cY coincide with the
asymptotic expansions (3.38), (3.39) and (3.40).
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5.2. Effective sample size for meta-Gaussian processes
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Fig. 5.5 Finite-sample and asymptotic effective sample sizes Neff of the meta-Gaussian
processes eσXXt , X2

t and ∣Xt∣ (cp. Sect. 3.3) for original Gaussian ARFIMA(0, d,0)
processes Xt with LRC parameters d ∈ {0.1, 0.2, 0.3, 0.4} (from top to bottom each) and
marginal standard deviation σX = 1 and σX = 1

2 . Table 5.3 collects the values of the
depicted slopes and prefactors.

d aX aeσXX γX = γeσXX

= 1 − 2d
aX2 a∣X ∣ γX2 = γ∣X ∣

∈ {1,2 − 4d}
0.1 1.07 1.84 (1.21) 0.8 0.95 0.95 1
0.2 1.10 1.90 (1.25) 0.6 0.63 0.66 1
0.3 1.11 1.90 (1.26) 0.4 0.64 0.73 0.8
0.4 1.07 1.84 (1.22) 0.2 1.06 1.22 0.4

Table 5.3 Prefactors aY by relations (5.41) and (5.42) of the asymptotics Neff ∼ aYNγY

as N →∞ of the effective sample sizes for the example processes Yt = g(Xt) of Figure 5.5
with standard deviation σX = 1 and σX = 1

2 .

89



5. Effective sample size of stationary processes

Remark 5.22: Note that by equation (3.39), the smaller is the standard deviation σX of
the original process, the larger is the acf %eσXX (k) of the meta-Gaussian process eσXXt

of a stationary standard Gaussian process Xt and marginal standard deviation σX ∈ R>0

at time lag k ∈ N and the other way round. In other words, we find

%eσXX → %eX (σX → 0) and %eσXX → 0 (σX →∞). (5.44)

Remarkably, the effective sample size of the lognormal process thus is the larger, the
larger is the variance of the original Gaussian process. For the square and absolute-
value process, however, the effective sample size does not depend on the variance of
the original process by equation (3.38) and (3.40), respectively. Both Figure 5.4 and
Figure 5.5 reflect these observations for transformed AR(1) and ARFIMA processes.

Example 5.23 (Range of the prefactor in the asymptotics of Neff): Table 5.3 con-
firms Remark 5.14 as the prefactor in the asymptotic scaling relations of Theorem 5.20 is
close to unity for ARFIMA(0, d, 0) processes. In general, however, the prefactor may be
clearly distinct from unity. Figure 5.6 depicts the range of the prefactor aX and aeX of
an ARFIMA(1, d, 0) process Xt and of the lognormal process eXt of an ARFIMA(0, d, 0)
process Xt with standard deviation σX for different AR parameters ϕ ∈ (0,1) and
standard deviations σX ∈ R>0, respectively.

In the limit of a vanishing LRC parameter d→ 0, by equation (5.45) the prefactor aX
for an ARFIMA(1, d,0) process Xt resembles the characteristic time scale of AR(1)
processes in Example 5.12 just as the prefactor in relation (5.25) for an ARFIMA(0, d, 0)
for vanishing AR parameters ϕ → 0. For AR parameters ϕ → 1 the prefactor aX is
abitrarily small whereas approaches unity (fully correlated with Neff = 1) as d→ 1

2 by

lim
d→0

aX = 1 − ϕ
1 + ϕ

and lim
d→1/2

aX = 1 for all ϕ ∈ (0,1) and (5.45)

lim
ϕ→0

aX = d(2d + 1)Γ(d)
Γ(1 − d)

and lim
ϕ→1

aX = 0 for all d ∈ (0, 1/2) (5.46)

due to the asymptotics of the acf (2.26) of ARFIMA(1, d,0) processes6.

6by the software WOLFRAM MATHEMATICA 11.3.0.0 for rearrangement of symbolic formulae
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5.2. Effective sample size for meta-Gaussian processes

Let Xt be a standard Gaussian ARFIMA(0, d,0) process and consider different
standard deviations σX ∈ R>0. Then the effective sample size of the meta-Gaussian
processes (σXXt)2 and ∣σXXt∣ does not depend on the scale σX , which cancels out in
the acfs (3.38) and (3.40) of the transformed processes and so in their finite-size decorre-
lation time (5.6). For the lognormal transformation, however, the variance of the original
Gaussian processes affects the acf %eσXX by equation (3.39). The prefactor satisfies6

lim
d→0

aeσXX = eσ
2
X − 1

σ2
X

= lim
d→1/2

aeσXX for all σX ∈ R>0 and (5.47)

lim
σX→0

aeσXX = 1 and lim
σX→∞

aeσXX = ∞ for all d ∈ (0, 1/2) . (5.48)

The increase of the prefactor as the standard deviation increases reflects that the
asymptotic scaling (5.41) of the effective sample size becomes valid for the larger
numbers of samples the larger the value σX is (cp. Rem. 5.22). As a remark, the
magnitude of the prefactor appears axially symmetric to the vertical line d = 0.25

in Figure 5.6 (right panel) but is not.
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Fig. 5.6 Prefactors aX and aeσXX of the asymptotic scaling (5.41) of the effective
sample sizes of an ARFIMA(1, d, 0) process Xt (left) and the lognormal process eσXXt of
an ARFIMA(0, d, 0) process Xt with standard deviation σX ∈ R>0 (right) and with LRC
parameters d ∈ (0, 1/2) each. The filled circles mark the limit cases (5.45) and (5.47).
The depicted AR parameters ϕ and standard deviations σX are ϕ = 0.05,0.1, . . . ,0.85
and σX = 0.2,0.4, . . . ,2, respectively.
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5. Effective sample size of stationary processes

5.3. Closing remarks and outlook

The Sections 5.3.1, 5.3.2 and 5.3.3 establish relations between the results of Chapter 5
about effective sample sizes and contemporary research in the field of anomalous scal-
ing [42,119,120]. The concept of effective sample sizes specifies anomalous scaling for
stationary processes such as the asymptotics of both the variance and large deviations
of the sample mean.

5.3.1. Interpretation of the effective sample size

The definition of an effective sample size by the variance of the sample mean in Sec-
tion 5.1.2 allows for different interpretations. It is a matter of perspective whether to
consider the variance of the sample mean or the effective sample size itself. By rela-
tion (5.10) direct numerical estimations of effective sample sizes [179] are an approach
to statistical uncertainty and the other way round. More precisely, given the variance of
the sample mean, the corresponding effective sample size follows immediately.

Massah et al. [120] state a closed-form calculation of the variance σ2
µ̄N

of the sample
mean of a finite number N ∈ N of samples for Gaussian AR(1) processes along with the
asymptotic scaling of the related effective sample size (cp. Rem. 5.11). Section 5.1.2
generalizes this idea to stationary processes and provides effective sample sizes as a
finite-sample property also for LRC processes by Lemma 5.5 and specifically for meta-
Gaussian processes by Theorem 5.16. The finite-size decorrelation time τD defined by
equation (5.6) quantifies the variance (5.5) of the sample mean independently of whether
the asymptotic regimes of the acf or of the distribution of the sample mean (cp. Sect. 5.1.1)
is already valid by involving the known correlations for time lags up to the sample size.

5.3.2. Anomalous scaling and the effective sample size

The asymptotic scaling of the effective sample size serves as an alternative approach to
anomalous scaling besides diffusion measured by the MSD (cp. Section 4.4.1) or LRC
by the Hurst exponent (cp. Section 2.4). For Gaussian ARFIMA(0, d,0) processes
with LRC parameter d ∈ (0, 1

2
) Massah et al. [119, 120] reason the asymptotic scaling

exponents (5.25) as 1−2d of the effective sample size and 2d−1 of the variance of the sample
mean, respectively, by the MSD of fBm (cp. Sect. 2.5). It is well known [42] that using
definition (4.30), the MSD ⟨B2

H⟩ of fBm BH asymptotically scales as ⟨BH(T )2⟩ ∝ T 2d+1

as time T → ∞. Considering the sample mean µ̄N of N ∈ N zero-mean ARFIMA
samples as a discrete-time version of fBm scaled by 1

N implies the asymptotic scaling

σ2
µ̄N

= ⟨ µ̄2
N ⟩ = 1

N2
⟨(

N

∑
i=1

Xi)
2

⟩ ∝ 1

N2
⟨BH(N)2⟩ ∼ αN2d−1 (N →∞) (5.49)
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of the variance σ2
µ̄N

of the sample mean. This heuristic approach applies to ARFI-
MA processes and the prefactor α in the scaling relation (5.49) remains unknown.
The effective sample size approach of Chapter 5 generalizes the observation (5.49) to
stationary processes with power-law decaying acf and provides exact formulae for both
the scaling exponents and the prefactors α (Lem. 5.15 and Thm. 5.20).

Using the concept of a finite-size decorrelation time moreover allows for applying
effective sample sizes as a finite-sample property of SRC and LRC processes by Lemma 5.5.
This approach thus captures and generalizes either concepts studied in [119,120] for AR-
FIMA processes, namely effective sample sizes and their asymptotics.

5.3.3. Link to large deviation theory

Large deviation theory deals with the probability of outliers in the estimation of time
averages [108,120]. Using the notion of the sample mean (5.1), large deviation probabili-
ties (LDP) for stationary processes Yt with mean µY ∈ R are described by

LDP(N,ε) ∶= P(∣µ̄N − µY ∣ > ε) (5.50)

for N ∈ N samples and deviations ε ∈ R>0. If the distribution of the sample mean is sym-
metric, then its LDP simplifies to LDP(N,ε) = 2 P(µ̄N − µY > ε). Otherwise, the scaling
of the two probabilities P(µ̄N − µY > ε) and P(µ̄N − µY < −ε) as ε→∞ might differ. For
stationary Gaussian processes and meta-Gaussian processes with unit Hermite rank the
sample mean is asymptotically Gaussian with µ̄N ∼ N(µY , σ2

µ̄N
) (cp. Sect. 5.1.1). In the

classical setting of iid variates, under mild conditions on the marginal distribution [120]
the asymptotic decrease of LDP is known as

LDP(N,ε) ∝ e−I(ε)N (N →∞) (5.51)

with a rate function I(ε) > 0 for ε ≠ 0 independent of the number N of samples. For
Gaussian samples the rate function reads I(ε) = ε2

2 . Massah et al. [120] apply the
series expansion

erfc(x) = e−x
2

x
√
π

K−1

∑
k=0

(−1)k (2k − 1)!!
(2x2)k

+RK(x) = e−x
2

x
√
π
+ O(e−x

2

x3
) (x→∞) (5.52)

of the inverse error function erfc involving K ∈ N summands. Note that for every fixed
value x ∈ R the error term RK(x) → ∞ as K →∞ in the expansion (5.52). For a fixed
number K of summands, however, the asymptotic scaling is independent from this
number K as x→∞.
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5. Effective sample size of stationary processes

Then for zero-mean stationary samples with an asymptotically Gaussian sample mean
the LDP reads

P(µ̄N > ε) = 1

2
erfc( ε

σµ̄N
√

2
) ∼

σµ̄N

ε
√

2π
e
− ε2

2σ2
µ̄N (ε→∞), (5.53)

where the variance σ2
µ̄N

of the sample mean depends on the variance σ2
Y of the samples.

By plugging in the variances (5.23) and (5.49) of the sample mean into relation (5.53)
Massah et al. derive exponential rates of decay of the LDP (5.51) for AR(1) and ARFI-
MA processes, respectively. Using the asymptotics of effective sample sizes obtained by
Theorem 5.20 and relation (5.10) for the variance σ2

µ̄N
= σ2

Y

Neff
captures these two results

for Gaussian stationary processes and moreover specifies the unknown prefactor in the
asymptotic scaling (5.49) for meta-Gaussian processes with unit Hermite rank by

P(µ̄N > ε) ∼ σY

ε
√

2πNeff

e
− ε2

2σ2
Y

Neff

(ε,N →∞). (5.54)

For AR(1) and ARFIMA(0, d,0) processes these LDP thus read

AR(1) P(µ̄N > ε) ∼ 1

ε(1 − ϕ)
√

2πN
e−

ε2(1−ϕ)2
2

N (N,ε→∞) (5.55)

ARFIMA(0, d,0) P(µ̄N > ε) ∼
√
α

ε
√

2π
Nd− 1

2 e−
ε2

2α
N1−2d

(N,ε→∞) (5.56)

and reproduce the results of [120] along with adding exact values for the proportionality
factor α by Theorem 5.20. Example 5.23 visualizes the range of this factor for ARFI-
MA(0, d,0) processes and the lognormal process eXt for ARFIMA(0, d,0) processes Xt

with different marginal variances. Note that the asymptotic scaling (5.56) is a non-
standard LDP result due to the exponent 1−2d < 1. The standard LDP assumption (5.51)
depends linearly on the number N of samples with unit exponent and aims at calculat-
ing the rate function.
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6. Data model for local daily
precipitation amounts

Local records of precipitation are typically measured by the height of collected water in
rain gauges with a precision of 0.1mm (cp. Sect. 1.4) and obey two essential properties.
First, the distribution of daily precipitation amounts is highly non-Gaussian (see Fig. 1.1).
Second, the presence of LRC in such and other geophysical time series have been discussed
intensively before (cp. Sect. 1.4).

Our model for mid-latitude daily precipitation amounts established in Section 6.1 is
intended to reproduce both the marginal distribution and the temporal correlations of
observed mid-latitude precipitation data by applying a stationary meta-Gaussian pro-
cess (cp. Chap. 3). Five parameters in total suffice to describe the marginal distribution
and both SRC and LRC of the empirical data. Section 6.2 describes a procedure for
an appropriate estimation of the model parameters. Section 6.3 tests this modeling
approach for daily precipitation records [95] of land-based locations in Europe and
provides the results for 20 examples. These data sets are a random selection of the
databases [43], [49] by [95] and [124] satisfying the criterion that the observed period
spans more than 40 years, the data sets are nearly complete and satisfy the condition of
weak seasonality (cp. Sect. 6.1.1).

6.1. Model design

Our meta-Gaussian model combines generating correlations by an ARFIMA process (2.5)
and reproducing the distribution of daily precipitation amounts by powers of a trun-
cated Gaussian. In earlier studies such truncated-Gaussian-power (tGp) distributions
proved to be an appropriate choice for the distribution of daily amounts (cp. Sect. 1.4).
Applying a tGp transformation to an ARFIMA process provides direct access to SRC
and LRC of the model.

6.1.1. Stationarity and annual cycle

European mid-latitude daily precipitation amounts typically exhibit only a moderate
annual cycle and essentially no dominant trend over the years, unlike for example
temperature measurements with their strong seasonality and their positive trend in
times of climate change. For such precipitation records a stationary model is thus an
appropriate choice if only weak nonstationarities are assured. Figure 6.1 shows six
recent years of recorded daily precipitation amounts and daily mean temperatures for
the station at the city of Potsdam, Germany [49]. The shape of this temperature time
series clearly reflects its annual cycle. Figure 6.2 is dedicated to the trend behavior of
both entire 125-year time series.
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6. Data model for local daily precipitation amounts

2013 2014 2015 2016 2017
0

10

20

30

40

50

60

70

date (d)

pr
ec
ip
it
at
io
n
am

ou
nt

(m
m
)

2013 2014 2015 2016 2017

−10

0

10

20

30

date (d)

da
ily

m
ea
n
te
m
pe

ra
tu
re

(○
C
)

daily measurements climatology by monthly means
mean of entire time series monthly standard deviations

Fig. 6.1 Strength of the seasonality of daily precipitation amounts (left) and daily mean
temperatures (right) in station data for the city of Potsdam, Germany. The depicted
climatology considers monthly means of each day of a certain month over the entire
record from 1893 until 2018.

Considering monthly means and variances of the daily data each of the entire empirical
horizon of 126 years allows for preliminarily estimating the strength of seasonality
in Figure 6.1 as follows. The ratio of the difference between the maximal and the
minimal monthly mean and the standard deviation of the anomalies of the time series
are a natural measure for this purpose. Removing the seasonality by subtracting the
climatology from the data by day gives the anomalies. For Potsdam’s temperatures
this ratio measures circa 4.7, whereas circa 0.29 for its precipitation amounts. The
annual cycle thus determines the daily temperatures about five times more than the
fluctuations around this seasonality. The other way round, the variance of Potsdam’s
daily precipitation affects these amounts about 3.5 times stronger than its annual cycle.

As an example, Figure 6.2 provides a rough impression of the evolution of the
annual means of Potsdam’s daily precipitation and temperature measurements and the
corresponding annual standard deviations over time. During the 20-th century at this
station annual mean precipitation exhibited no apparent trend (i), wheres annual mean
temperature anomalies rose by about 1.5 ○C (ii). In contrast, the variance of the annual
mean temperature anomalies visually slightly decreased (iv). The variance of the annual
mean daily precipitation amounts, however, reached both higher and lower values more
often over the years (iii). As a remark, both observations are in compliance with assumed
consequences of climate change as a consequence of, for example, increased persistence
of macro weather situations (IPCC 2021 [121]).
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6.1. Model design
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Fig. 6.2 Presence of trends in the annual mean anomalies (i), (ii) and their standard
deviation (iii), (iv) for the daily precipitation amounts and daily mean temperatures
measured at the Potsdam station, Germany, respectively.

An alternative approach to the assessment of stationarity bases on the scaling of
fluctuations (cp. Sect. 4.3). For stationary LRC processes they grow linearly in a double-
logarithmic scaling with Hurst exponents less than 1. Deviations from linearity serve
as an indicator of prominent (annual) cyclicity and Hurst exponents above 1 of non-
stationarity. Regression values describe the goodness of a linear fit and allow for an
automatized evaluation of the stationarity of time series by linear regression of method-
dependent fluctuation functions.

Neglecting SRC for small time lags, for all the data sets the regression values for
the scaling of the R/S-statistics, the fluctuation function of DFA(3) and the wavelet
coefficients (cp. Sect. 4.2) are close to 1 and thus induce an asymptotic straight-line
behavior each (see Tab. E.3). In compliance with stationarity all corresponding Hurst
exponents are larger than 1

2 and smaller than 1. Further, the detrending of DFA and
implicitly contained in wavelet analysis but not in R/S-statistics does not alter much the
obtained Hurst exponents. This agreement of the results of all three methods further
substantiates the significance of the at most weak nonstationarity of the considered pre-
cipitation time series. Nonetheless, their fluctuations exhibit a crossover on shorter time
scales from a steeper to their asymptotic linear increase (cp. Fig. 6.8). Modeling of such
a behavior requires the additional inclusion of flexibly adjustable SRC in Section 6.2.3.
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6. Data model for local daily precipitation amounts

6.1.2. Long-range correlations

By applying R/S-statistics, DFA, and wavelet transforms, in all our precipitation time
series we consistently observe LRC with Hurst exponents larger than 1

2 and smaller
than 1 (see Tab. E.3) and with high agreement of these values obtained by the three dif-
ferent methods. As LRC in daily precipitation amounts are typically weak (cp. Sect. 1.2),
repeating the analysis for several randomly shuffled versions of the time series helps
infer the significance of this finding. For these data sets with removed correlations
the estimated Hurst exponents are close to 1

2 in compliance with their enforced inde-
pendence (cp. Sect. 2.4) and closer to 1

2 than the results for the original data. As a
result, LRC can be prominent in daily precipitation time series on the observed time hori-
zons (cp. Sect. 4.3). Figure 6.3 shows the estimated Hurst exponents for three of the
data sets and 30 randomly shuffled versions each.
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Fig. 6.3 Significance of LRC in measurements of daily precipitation amounts by com-
paring estimated Hurst exponents of the original time series and 30 randomly shuffled
versions each for three example data sets. The horizontal line in the box plot mark the
median of the latter Hurst exponents each.
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6.1. Model design

6.1.3. Truncated-Gaussian-power model

Modeling nearly stationary mid-latitude daily precipitation amounts requires includ-
ing SRC and LRC along with adequately reproducing their highly skewed marginal dis-
tribution illustrated by the Sections 6.1.1, 6.1.2 and Figure 1.1, respectively. Let (Xt)t∈N
be a stationary ARFIMA(1, d,0) process as defined in equation (2.21) with AR param-
eter ∣ϕ∣ < 1 describing SRC, an LRC parameter 0 < d < 1

2 and a Gaussian marginal
distribution N(0, σ2) with standard deviation σ ∈ R>0. We obtain a meta-Gaussian model

Yt ∶= g(Xt) (6.1)

with a tGp marginal distribution by applying the transformation

g(x) ∶= (x + ν)η+ , (6.2)

where x+ ∶= max(x,0) projects onto the positive part for arguments x ∈ R. The
transformation (6.2) shifts the zero-mean ARFIMA process Xt to a mean ν ∈ R, then
truncates the marginal distribution by mapping negative values to zero and rises all
values of this process to a power η ∈ R>0. This procedure creates a point mass in zero
that accounts for the probability of the absence of precipitation. The zero values in time
series of such a model are crucial for the reproduction of intermittency and the study of
correlations. The model employs five parameters in total: η, ν and σ for the marginal
distribution and ϕ and d for the short- and long-range correlations, respectively. This
modeling appproach is semi-parametric due to the clearly identifiable but not directly
physical role of the parameters.

Let fX and FX denote the Gaussian pdf and cdf, respectively, of the marginal
distribution N(0, σ2) of the underlying Gaussian process Xt. Mind that in case of unit
variance σ = 1, we have fX = φ and FX = Φ. By a coordinate transform the pdf fY
and cdf FY of the stationary marginal distribution of the transformed process Yt read

fY (y) = δ(y)FX(−ν) +
fX( η

√
y − ν)

ηy
η−1
η

χ(0,∞)(y) (6.3)

FY (y) = FX( η
√
y − ν)χ[0,∞)(y), (6.4)

where δ is the Dirac delta function and χA denotes the indicator function that equals 1

on a set A ⊆ R and vanishes outside. By equation (6.3) the tail of the pdf of the tGp
process Yt decreases as

fY (y) ∝ e−
y
2/η

2σ2 y
1−η
η (y →∞) (6.5)

in leading order, so that the stretched exponential factor quickly dominates the shape
of the product (6.5).
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6. Data model for local daily precipitation amounts

The tGp model reflects the marginal Gaussian distribution if η = 1, an exponential
marginal if η = 2 and generates a point mass in y = 1 as the exponent η → 0. By the
leading order (6.5) we find

E [esYt] = ∫
R

esyfY (y)dy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

< ∞, ∀s ∈ R>0, if 0 < η < 2

< ∞, ∀s < 1
2σ2 , if η = 2

= ∞, ∀s ∈ R>0, if η > 2.

(6.6)

In the sense of Section 2.3, the tGp model is thus light tailed in case of 0 < η ≤ 2 as
probabilities decay at least exponentially. For exponents η > 2 the model is heavy tailed
since the tail (6.5) of the model pdf fY is asymptotically stretched exponential and
decays slower than exponentially. The tGp distribution is, however, not fat tailed as for
all exponents η ∈ R>0 all its moments are finite due to

E [Y m
t ] = ∫

R
ymfY (y)dy =

∞

∫
−ν

(x + ν)m⋅ηfX(x)dx < ∞ for all m ∈ N, (6.7)

in other words, the model pdf decays faster than every power law. Note that in
equation (6.7) we have ∫R y

mδ(y)FX(−ν)dy = 0 for all power exponents m ∈ N. The
model mean and variance are analytically known by using equation (6.7) for the power
exponents m = 1 and m = 2. As η →∞, the skewness of the tGp distribution grows since
its tail becomes continuingly heavier together with an increasing peak at y = 0. Hence,
at the same time both the probabilities of very small and very large values increase.

The parameter ν and the underlying variance σ2 not only determine the probabil-
ity FX(−ν) of the absence of precipitation but also influence the location and shape
of the tail of the model pdf (6.3). The exponent η, however, adjusts the tail of the
distribution only.

6.2. Model estimation

Proper modeling of measurement data not only depends on the model choice but also on
appropriate parameter estimation. Different estimation approaches emphasize, neglect
or assume different properties of the empirical samples. The aim of a particular model
determines the choice of the modeling procedure. Note that the marginal distribu-
tion of mid-latitude daily precipitation is highly skewed with a huge point mass at
zero precipitation (see Fig. 1.1).
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6.2. Model estimation

A day is commonly considered as rainy if its recorded amount exceeds 0.1mm [104]
reflecting the measurement precision (cp. Sect. 1.4). Zero measurements thus tend to
overestimate the occurrence of dry days by capturing all amounts in the range of 0mm
to 0.1mm. Stochastic parameter estimation nevertheless typically [20] focusses on
precisely representing the probability of zero precipitation. The functional form of a tGp
distribution in our model, however, particularly aims at properly representing extremes
in the data. Section 6.2.1 alternatively treats these empirical properties by prioritizing
the mean daily precipitation and extreme events over the probability of zero precipitation.

Applying a meta-Gaussian approach additionally aims at appropriately reproducing
the correlations and fluctuations in precipitation data. The tGp transformation obeys
Hermite rank 1 by Remark 3.5, so that the estimated Hurst exponent of the empirical
data can be used directly to adapt LRC in the underlying ARFIMA(1, d,0) model
in Section 6.2.2. What remains is adjusting SRC through the AR part of the ARFI-
MA model in Section 6.2.3. Section 6.2.4 assembles the individual steps to a holistic
modeling procedure.

6.2.1. Tail-oriented marginal distribution

Precipitation amounts span several magnitudes from less than one up to low three-digit
numbers of liters per square meter a day (cp. Sect. 1.4). These different scales are unlikely
to be modeled equally well by a single tGp distribution. In terms of risk assessment,
quantities such as the mean precipitation amount, the occurrence and duration of
droughts or extremal events are of particular interest. For this purpose precise values
of very little precipitation are less important than approximately capturing the occurrence
of such situations. Having in mind that historical records carry uncertainty in particular
for small values anyway (cp. Sect. 1.4), we aim at properly reproducing very large and
mean daily amounts rather than very small ones.

Maximum likelihood (ML) estimation or the method of moments (MM) are typical
techniques for the adjustment of parameters in stochastic models. ML fitting focuses on
regions of the distribution with high probability, whereas the MM aims at matching the
mean and variance of the empirical data along with the exact probability of nonzero pre-
cipitation [20]. The tail of a distribution, however, is naturally only rarely sampled with
low impact on such estimators. Hence, very small amounts are emphasized with the cost
of a worse representation of the tail of the distribution, so that typically high-frequency
amounts are represented well with deviations in low-frequency amounts. To emphasize
the tail more than the small values of high probability we apply an alternative procedure.
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6. Data model for local daily precipitation amounts

Accepting that our model might be slightly less accurate for very small amounts, our
approach is dedicated to modeling accurately precipitation that exceeds about 4mm a
day. An accumulated amount of such magnitude at one day lies in the lower range of
actually noticeable precipitation (cp. Sect. 1.4). Section 6.3.1 contains further comments
on the choice of this arbitrary threshold. For mid-latitude daily precipitation, however,
about 75 to 85 percent of the daily records are smaller than 4mm (cp. Tab. E.1), so that
we face the issue of modeling statistics while allowing for deviations in the probabilities
for the majority of the measurements.

Inspired by a generalized Kolmogorov-Smirnov test [118] we adjust the parameters η, ν
and σ of the tGp model described in Section 6.1.3 by a least-square fit of the model
survival function 1 − FY to the empirical survival function 1 − F̄ in semi-logarithmic
scaling, where FY is the model cdf (6.4) and F̄ is the empirical distribution function (6.8)
defined as follows.

Definition (empirical distribution function (ecdf) [37, cp. Def. 2.4]): Let Y1, . . . , YN

be N ∈ N random variates with common cdf FY . Then for values y ∈ R the empirical (cu-
mulative) distribution function F̄ is defined as

F̄ (y) ∶= 1

N + 1

N

∑
i=1

χ{Yi≤y}. (6.8)

Note that the ecdf employs order statistics and is a random variable itself.

Remark 6.1: Alternative definitions of the ecdf use a division by N instead of N + 1

in equation (6.8). Makkonen [109] provides a profound elaboration on the preference of
the latter normalization in regard of properly estimating extremes. Independently from
the distribution the probability of not exceeding the i-th value of N ordered observations
reads i

N+1 for iid variates. The ecdf should hence coincide with these values at the
order-ranked sample data. This reasoning also bases the choice of plotting positions
for q-q and p-p plots in Section 6.3.1.

The above approach discriminates high probabilities for small amounts and highlights
low probabilities for large amounts in the tail. As a result, deviations might occur in
the estimated probability of zero precipiation. Including an additional parameter for
this quantity could eliminate such modeling errors. As argued above and in Section 1.4
these errors are negligible for our purpose and we abstain from another parameter for
the sake of parismony. Due to the measurement precision, the distribution of amounts
less than 0.1mm remains unkown. The zero measurements carry their entire probability
and are thus over-represented and shall not be included into the least-square estimate.
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6.2. Model estimation

Remark 6.2: To match the tail of the model cdf (6.4) to the emipirical data also
certain quantiles q ∈ R≥0 with probability p ∈ (0,1) close to unity can be fixed by
numerically solving

ν
!= η
√
q − F−1

X (p) (6.9)

due to the equality

p = FY (q) = FX( η
√
q − ν). (6.10)

Whether reducing the number of parameters by claiming such specific quantities for the
model is feasible depends on the existence of parameters satisfying equalities as above.

Section 6.3.1 applies the above estimation of the model parameters for the marginal
distribution to measurement data for 20 European locations (cp. Tab. E.1).

6.2.2. Long-range correlations by detrended fluctuation analysis

Since the tGp transformation (6.2) has Hermite rank 1 (cp. Rem. 3.5), the asymptotic
power-law decay (2.20) of the acf of the underlying ARFIMA(1, d,0) process Xt yields

%Y (k) ∝ k−γ = k2d−1 (k →∞) (6.11)

for the acf %Y of the tGp process Yt for time lags k ∈ N by the power law (3.15). The
Hurst exponent α of the data estimated by the methods introduced in Section 4.2
provides the LRC parameter d of the process Xt. Based on relation (6.11) we obtain
this parameter value as

d
!= α − 1

2
(6.12)

by applying equation (4.11) and generalizing equation (4.12) to meta-Gaussian processes
with Hermite rank 1. Section 6.3.2 shows the results of R/S-analysis, DFA(3) and wavelet
transform and the estimated model parameters for 20 example data sets (cp. Tab. E.3).
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6. Data model for local daily precipitation amounts

6.2.3. Short-range correlations by conditional probabilities

Violating the linear long-term scaling of the strength (4.3) of fluctuations for small
window sizes indicates the presence of prominent SRC in the data as visualized in Fig-
ure 4.10 (cp. Sect. 4.3).

The identification of an appropriate AR parameter ϕ in equation (2.21) for the
underlying ARFIMA(1, d,0) process Xt from the data is not straightforward though.
Generating the model process Yt, the tGp transformation (6.2) changes the SRC albeit
not the power-law exponent of the LRC of the process Xt. The Hermite polynomial
approach indeed provides a relation between the two acfs also for small time lags by
the series expansion (3.9). There is, however, no closed form of the acf (3.9) of the
transformed process, so that it cannot be inverted easily. Our approach below for data
with non-Gaussian, strongly asymmetric marginal distributions turns away from the
Hermite series and further differs from common earlier techniques [27] for Gaussian SRC
models (cp. Sect. 1.4). We gain insight into the short-range dependencies in our daily
precipitation data by exploring conditional probabilities instead.

Definition (conditional follow-up probability (cfp)): Let (Yt)t∈N be a stationary process.
Then the conditional probability of c ∈ R≥0 follow-up k ∈ N days after is defined as

pc(k) ∶= P(Yt > c ∣ Yt−k > c). (6.13)

In the setting of the process Yt in definition (6.13) describing a daily precipitation
time series, the cfp pc(k) describes the conditional probability of the occurrence of a
day with an accumulated precipitation amount larger than c millimeter k days after a
day of such kind. A natural estimator of the cfp pc(k) for a time series of length N ∈ N
and time lag k ∈ {0, . . . ,N − 1} is given by

p̄c(k) ∶=
∣ { (Yt, Yt−k) ∣ Yt, Yt−k > c} ∣
∣ { (Yt, Yt−k) ∣ Yt−k > c} ∣

. (6.14)

We estimate the AR parameter ϕ by equating the empirical cfp (6.14) and the
respective cfp (6.13) of the model for time lag k = 1 and a daily precipitation amount of
more than c = 4mm (cp. Sect. 6.2.1). For that purpose we numerically solve the equation

p̄4(1) − p4(1)
!= 0 (6.15)

for the parameter ϕ by applying an optimization algorithm to obtain as much agreement
among these conditional probabilities as possible. The estimator (6.14) determines the
empirical cfp p̄4(1) directly from the data by dividing the number of pairs of consecutive
days with either amount larger than 4mm by the overall number of days with an
accumulated amount larger than 4mm neglecting the last sample of the time series by
following the definition of conditional probabilities.
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6.2. Model estimation

Let η, ν and σ be the tGp parameters and d the model LRC parameter estimated
according to Section 6.2.1 and Section 6.2.2, respectively. Then for time lags k the
model cfp (6.13) is analytically known by

pc(k) =

s∞
η√c−ν f(Xt,Xt−k)(x, y)d(x, y)

∫
∞
η√c−ν fX(x)dx

, (6.16)

where f(Xt,Xt−k) denotes the joint pdf of the two variates Xt and Xt−k, which follow a
zero-mean bivariate Gaussian distribution N(( 0

0 ) ,Σ) with covariance matrix

Σ = σ2 ⎛
⎝

1 %X(1)
%X(1) 1

⎞
⎠

(6.17)

and lag-1 autocorrelation

%X(1) = (1 + ϕ2) ⋅ 2F1(1, d,1 − d;ϕ) − 1

ϕ (2F1(1, d,1 − d;ϕ) − 1)
(6.18)

of the process Xt by equation (2.24). Since for given parameters η, ν, σ and d by the
covariance matrix (6.17) the cfp (6.16) depends on the AR parameter ϕ only, the
solution to equation (6.15) serves as an estimator of the SRC parameter ϕ. Section 6.3.3
exemplifies estimated AR parameters for 20 example data sets (cp. Tab. E.1).

6.2.4. Step-by-step modeling procedure

Assembling the Sections 6.2.1, 6.2.2 and 6.2.3 yields a ready-to-use procedure for the
application of our tGp model to precipitation records. Section 6.3 provides results for
real world measurement data.

Our algorithm for modeling mid-latitude daily precipitation reads:

(I) Estimation of the parameters η, ν and σ of the tGp distribution in virtue of the
distribution (6.3) by a least-square adjustment of the model survival function to
the empirical survival function

(II) Estimation of the LRC parameter d = α − 1
2 with Hurst exponent α in the

asymptotics of the fluctuation function (4.3) by applying R/S analysis, DFA or a
wavelet analysis to the empirical data

(III) Estimation of the SRC parameter ϕ in equation (6.18) by the cfp in equation (6.15)
given the estimated values of the parameters η, ν, σ and d

(IV) Synthesis of model time series by the generation of an ARFIMA(1, d,0) time
series with variance σ2 and AR parameter ϕ and transformation of these series by
the tGp transformation (6.2) with parameters ν and η
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6. Data model for local daily precipitation amounts

Section 2.6 describes the synthesis of ARFIMA time series for given SRC and LRC
parameters. The variance σ2

ε of the input white noise can be calculated by the identity

σ2

σ2
ε

= Γ(1 − 2d)
Γ(1 − d)2

⋅ 2F1(1,1 + d,1 − d;ϕ)
1 + ϕ

(6.19)

using the estimated values σ2, d and ϕ. The right hand side of equation (6.19) equals
the variance %X(0) for σ2

ε = 1 by plugging in the time lag k = 0 into the acf (2.23) of
the ARFIMA(1, d,0) process Xt. Note that for an ARFIMA(0, d,0) process with AR
parameter ϕ = 0 the equation (6.19) reduces to σ2

σ2
ε
= Γ(1−2d)

Γ(1−d)2 .

6.3. Model validation

In the modeling of geophysical data, model validation typically bases on comparing
empirical properties of particular interest to their synthetic pendants generated by
the model [20, 104]. Aiming at the generation of realistic precipitation time series
as an input of weather generators and at fluctuations and extremes for risk assess-
ment (cp. Chap. 1), we focus on

• the distribution of daily amounts (Sect. 6.3.1),

• LRC (Sect. 6.3.2) and SRC (Sect. 6.3.3) among daily amounts,

• the occurrence and duration of wet and dry spells (Sect. 6.3.4),

• the mean daily amount (Sect. 6.3.5),

• the distribution of annual totals (Sect. 6.3.6) and

• the distribution of annual daily maxima (Sect. 6.3.7).

Table 6.1 lists three data sets, for which the Sections 6.3.1 to 6.3.7 visualize the
validation of our modeling procedure established in Section 6.2.4. The data sets (a) and (b)
contain station data, whereas the data set (c) provides regional records accumulated over
several stations. Graphical presentations of the results are similar for all the 20 data
sets in Table E.1, so that based on their statistics in Table E.2 any of these examples
would illustrate well our modeling approach and so do the three chosen ones.

location of data set country measurement period
(a) Fichtelberg Germany 1916 - 2018

(b) Bordeaux France 1946 - 2018

(c) Central England England 1931 - 2018

Table 6.1 List of example data sets of daily precipitation amounts for model validation.
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6.3. Model validation

6.3.1. Daily amounts

By applying the tail-oriented parameter estimation introduced in Section 6.2.1 both
the model survival function (sf) and pdf properly capture the distribution of large
amounts (see Fig. 6.4). The semi-logarithmic scaling emphasizes the heavy tail of the
marginal distribution of mid-latitude daily precipitation amounts. Visualizing the cdf
highlights the steepness of the distribution for small amounts (see Fig. 6.5).

Remark 6.3: Accounting for the steepness of the distribution close to zero, we shall
map model data below 0.1 to zero in consistency with the measurement precision.
Considering only amounts above a prescribed threshold of r ∈ R≥0 millimeters as rainy
changes the model probability of zero precipitation to FX( η

√
r − ν) and the model

mean µY and variance σ2
Y from equation (6.7) to

µY = E[Yt] =
∞

∫
r

yfY (y)dy and

σ2
Y = Var(Yt) =

∞

∫
r

y2fY (y)dy −E[Yt]2.

(6.20)

The results presented below and in Appendix E apply the treshold r = 0.1 millimeters
in equations (6.20) when estimating the model parameters. Table 6.2 collects the adjusted
model parameters for the three example data sets of Table 6.1.

data set η ν σ d ϕ

(a) 4.083 1.048 0.521 0.096 0.284

(b) 2.330 0.430 1.569 0.111 0.356

(c) 2.967 0.843 0.696 0.099 0.222

Table 6.2 Parameter values of the tGp model adjusted to the data sets in Table 6.1.

The empirical pdfs in Figure 6.4 base on centers and normalized heights of the bars
in a histogram of the daily measurements. As the area of all bars sums up to 1, the
height of a bin approximates the pdf at the center of that bin and is given by the
number of samples within devided by the overall number of samples and by the bin
width. Minimizing the least-square distance between the logarithm of the empirical and
the model sf is, however, a more robust approach. A least-square approximation by an
empirical pdf in semi-logarithmic scaling is highly inaccurate, in particular, for extreme
events, as bars of zero height exhibit the value of negative infinity. Empirical pdfs thus
crucially depend on the choice of the location and size of the histogram bins.
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Fig. 6.4 Empirical and model sf and pdf for the three data sets in Table 6.1.
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Fig. 6.5 Empirical and model cdf for the three data sets in Table 6.1.

Comparing the statistics of the empirical data and our fitted model in Table 6.3, we
see great agreement in the daily mean, the daily variance and the probability of our 4mm
benchmark of perceptible precipitation (cp. Sect. 6.2.1) with deviations between the
measured data and the model for small amounts close to zero. The smallest daily amount
for which the deviation between the empirical and the model quantile is smaller than a
certain prescribed error, can be determined precisely as apparent from Figure 6.5. If
the modeling focusses more on small amounts for specific applications, a more detailed
elaboration on the model properties in this data range is feasible. Our focus lies on the
larger events, so that for simplicity we keep the threshold of 4mm for model validation.
Figure 6.6 depicts that the difference between the empirical and model daily mean
amounts is below or in the range of the data precision of 0.1mm.

mean mean variance variance
data set (data) (model) (data) (model)

(a) 3.141 3.349 36.003 33.939

(b) 2.508 2.540 30.501 29.943

(c) 1.783 1.805 9.595 9.295

P (data = 0) P (Yt ≤ 0.1) P (data ≤ 4) P (Yt ≤ 4)
(a) 0.411 0.179 0.760 0.753

(b) 0.531 0.485 0.813 0.811

(c) 0.301 0.291 0.856 0.860

Table 6.3 Central empirical and model statistics for the three data sets in Table 6.1.
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Fig. 6.6 Comparison of the empirical and model daily means and standard deviations
for all 20 data sets in Table E.2. The (shifted) diagonals mark equality along with the
measurement precision of 0.1mm, respectively.

Probability plots provide visual comparisons of the empirical and model distribution.
A q-q plot for assessing the empirical and model quantiles shows the strong coincidence
of the tails of the distributions (Fig. 6.7, left) achieved by the tail-oriented parameter
estimation. A closer look at the probabilities by a p-p plot (Fig. 6.7, right) reveals
the difference between the data and the model for small amounts. Depending on the
data set, the probability P(Yt ≤ 0.1) for the absence of precipitation in the model can
highly differ from the one in the data (cp. Tab. 6.3 and Tab. E.2). Note that the p-p
plots particularly highlight the deviations for very small amounts as indicated by the
empirical and model cdf in Figure 6.5.

The prominent staircase shape of the p-p plots arises from the data accuracy of the
empirical data. Due to the low precision of 0.1mm compared to the high steepness
of the distribution for small values, roughly 50% of the entire probability mass are
accompanied by only about ten empirical data points. Hence, the deviations in the p-p
plot could be decreased by discretizing the model distribution to the same precision
of 0.1. Considering all model values of at most 0.1mm as no precipitation by mapping
them to zero changes the p-p plot as exemplified by the arrow in Figure 6.7. Using
synthetic data that obeys the same resolution as the empirical data is crucial for the
generation of confidence intervals in Section 9.3.2 when applying the tail-oriented fit of
the model distribution.

As a remark, due to the very skewness of daily precipitation amounts, a ML adjustment
of the model to the data would generate highly accurate p-p plots but poor q-q plots
as in studies like [20,104]. The same occurs when applying the MM. Section 6.3.6 and
Section 6.3.7 assess the impact of the chosen estimation procedure on the model statistics
of annual total and annual maximal amounts, respectively.
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Fig. 6.7 q-q and p-p plots for the three data sets in Table 6.1.
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6.3.2. Long-range correlations

Figure 6.8 shows the results of the application of DFA(3), R/S analysis and the wavelet
transform introduced in Section 4.2 to the three data sets in Table 6.1. The estimated
Hurst exponents obtained by the three different methods for the same data set are very
similar, while there are variations from data set to data set. We obtain the LRC parame-
ter d by the relation (6.12) based on the exponent α estimated by DFA(3) (cp. Sect. 6.1.2).
The implications of Figure 6.8 are twofold. First, the spread reflecting the statistical
uncertainty is rather small. Second, the estimated Hurst exponents for the measured
precipitation data are well within the spread of the synthetic data, which validates that
our model is able to reproduce the temporal correlations of the observed data well.

0.596 (a)

0.611 (b)

0.599 (c)

0.5

0.614 (a)

0.633 (b)

0.603 (c)

0.5

0.603 (a)

0.565 (b)

0.606 (c)

101 102 103 104 105

10−4

10−3

10−2

10−1

100

101

102

103

104

window size s

w
av
el
et

co
effi

ci
en
ts

∣
re
sc
al
ed

ra
ng

e
∣

flu
ct
ua

ti
on

fu
nc
ti
on

Fig. 6.8 Estimation of the Hurst exponent for the three data sets in Table 6.1 together
with straight lines with slope 1

2 for comparison. The shadow visualizes the results for 25
model time series, each synthesized by the adjusted models according to Table 6.2.
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6.3.3. Short-range correlations

Figure 6.9 shows the conditional probabilities cfp established in Section 6.2.3 for the
three data sets in Table 6.1. Given the estimated model parameters η, ν, σ and d by
Section 6.2.1 and Section 6.2.2, solving equation (6.15) for the treshold of c = 4mm
yields the AR parameter ϕ for the underlying ARFIMA(1, d,0) process.

For all empirical data sets the cfp pc(1) defined by equation (6.13) of a day with
a precipitation amount larger than 4mm right after a day suchlike noticeably exceeds
the unconditioned probability of a single day with an amount above 4mm. We find
good agreement in the cfp also for time lags k > 1 for the “Fichtelberg” data set (a). For
the other two examples, “Bordeaux” (b) and “Central England” (c), visual deviations
occur for time lags k ≥ 2 already. An improved representation of the cfp for larger time
lags than k = 1 can be achieved by increasing the number p of AR components and
using an ARFIMA(p, d, 0) (cp. Sect. 2.5) process as the underlying Gaussian process for
the tGp model.

For comparison Figure 6.9 includes the analytically known cfp (6.13) of a tGp-
transformed ARFIMA(0, d, 0) process with the same parameters η, ν, σ and d as above.
Even though SRC are still inherent to such a process, the short-range dependence we
observe in the empirical data is not entirely captured by fractional differencing only. For
the benchmark c = 4 and small time lags the cfp of such a model evidently falls below
the empirical values.

Figure 6.9 provides a closer look on the long-term behavior of the cfp (6.13) as well.
The covariance matrix (6.17) of the underlying Gaussian process is the key ingredient
of the representation (6.16) of the cfp. The joint probability in (6.16) asymptotically
factorizes since the acf %Y (k) asymptotically vanishes. For the model Yt we thus
have pc(k) → P(Yt > c) as time lags k → ∞, so that the cfp decreases slowly to the
unconditioned probability as time lags increase. Comparing the difference

∣P(Yt > 4) −P(Yt > 4 ∣ Yt−k > 4)∣ (6.21)

calculate for the model by equation (6.13) and estimated for the data by equation (6.14),
we observe the same decrease to zero as time lags k increase. Moreover, the decay
of the cfp pc to the probability P(Yt > c) of the model follows a power law alike the
model acf %Y . The cfp of the empirical data sets show the same scaling behavior,
although, we only implicitly include their autocorrelations by the estimator (6.14). Other
than the empirical acf (cp. Sect. 4.1), the estimated cfp are not subject to negative
values in a logarithmic scaling and are thus capable of approximating the asymptotic
scaling of the acf.
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6. Data model for local daily precipitation amounts

As a remark, the estimated values ϕ do not correspond to a typical correlation time
other than in AR or ARMA (cp. Sect. 2.5) models with a finite sum (2.8). The impact of
the auto-regression in an ARFIMA(1, d, 0) model (2.21) on the acf decays exponentially,
though, the correlation time (2.8) remains infinite, due to the LRC of the model.
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Fig. 6.9 Visualization of the cfp (6.13) (left) and of their decay rates by the differ-
ence (6.21) (right) for the three data sets in Table 6.1.
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6.3.4. Wet and dry spells

A noticeable statistical effect of LRC in time series is a change of the distribution of
waiting times [29]. For white noise or SRC data the waiting times between events of a
common type is exponentially distributed. In the presence of LRC stretched exponential
tails of such waiting times distribution occur [8].

Waiting times between two days with an accumulated precipitation amount of c > 0mm
shall be interpreted as periods of daily amounts of at most cmm. For c = 0 they de-
scribe dry spells. Studying wet and dry spells in measurement data based on the strict
treshold of zero is not appropriate as argued in Section 6.3.1. Applying the tail-oriented
parameter estimation described in Section 6.2.1, we do not aim at precisely reproducing
the probability of zero daily precipitation that we find in the empirical data.

Figure 6.10 gives a visual impression of the effect of LRC on the waiting times for the
more practicable benchmark of c = 4. Further detailed investigation of dry and wet spells
beyond these semi-logarithmic histograms is required. For such an analysis considering
waiting times with respect to small values of c > 0 as a measure of the duration of
dry periods in terms of applications accounts more for the measurement uncertainty of
zero precipitation.

For comparison Figure 6.10 depicts the waiting times of both a tGp-transformed AR-
FIMA(1, d,0) and an AR(1) process with the marginal distribution and LRC and AR
parameters estimated as described in the Sections 6.2.1 to 6.2.3. For the treshold c = 0

both models underestimate the occurrence of dry spells for all the three data sets because
our tGp model still tends to underestimate the probability of a dry day even when
mapping all values less than 0.1mm to zero (see Table E.2). For the treshold c = 4

the AR(1) based process still fails to reproduce the distribution of long dry spells in the
sense that periods longer than about 45 days are visually much more unlikely than in the
empirical data. The LRC tGp model, however, is capable of reproducing a higher number
of such long dry periods in accordance with the statistics of the waiting times in the
original data of the three examples. This visualization does not test the significance of a
stretched exponential decay of the waiting time densities here. Nevertheless, Figure 6.10
illustrates that introducing LRC in our data model is a promising approach to modeling
the tails of the waiting time distributions of daily precipitation time series.

As a remark, for both depicted thresholds in Figure 6.10 the waiting time distribution
of a randomly shuffled version of the originally observed time series clearly differs
from the one of the original data. As expected for uncorrelated data (correlations are
destroyed by the shuffling) the density of its waiting times decays exponentially and
visibly significantly faster than the original waiting times.
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Fig. 6.10 Comparison between empirical waiting time distributions of the empirical
and different synthetic time series for the three data sets in Table 6.1.
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6.3.5. Effective sample size and daily mean

Definition (5.9) together with the finite-size decorrelation time (5.6) provide effective
sample sizes as established in Chapter 5 for stationary empirical data by the empirical acf.
Given the estimated tGp model with LRC in the data captured by an underlying AR-
FIMA process yields a more robust approach to the correlation structure in the data
and so to its effective sample size. Table 6.4 shows an excerpt containing the three data
sets in Table 6.1 from the effective sample sizes for all example data sets in Table E.1.
Figure 6.11 (left) compares the effective (Neff) to the empirical (N) sample size for
all examples. With respect to the variance of the sample mean (cp. Sect. 5.1.2) these
effective sample sizes measure from about 9% to 44% of the empirical sample size with
most ratios between 10% and 30%.

data set N Neff Neff/N
(a) 37,621 5,074 0.135

(b) 26,641 2,778 0.104

(c) 32,142 4,472 0.139

Table 6.4 Comparison between the empirical (N) and effective (Neff) sample sizes by
their ratio Neff

N for the three data sets in Table 6.1.

Involving the model mean µY and variance σ2
Y along with the effective sample

size, Lemma 5.5 provides an approximation of the distribution of the sample mean
for the tGp model. By Theorem 5.3 the sum of the meta-Gaussian LRC process Yt
generated by the tGp transformation with Hermite rank 1 asymptotically follows a
Gaussian N(µY ,

σ2
Y

Neff
) distribution. The model mean and variance are analytically known

by the equations (6.20). For all data sets the relative deviation, defined by σ̄µN −σY
σ̄µN

,
between the empirical σ̄N (cp. equ. (4.2)) and model σY daily standard deviation is
less than 5%. Hence, the above Gaussian distribution describes the uncertainty of the
sample mean such as for example the 68% confidence interval

IN ∶= (µY −
σY√
Neff

, µY +
σY√
Neff

) (6.22)

capturing one standard deviation around the model mean. By favoring the tail of the
distribution of daily amounts the tGp model lacks exact reproduction of the empirical
daily mean, though, this deviation is in the range of the data precision of 0.1mm for all
the example data sets (see Fig. 6.6, left). Figure 6.11 (right) shows that nonetheless for
about half of the 20 data sets the empirical mean lies inside one standard deviation of
the model sample mean. The tendency of our model towards an underestimation of the
probability of zero daily rainfall (cp. Sect. 6.3.1) translates to a possible positive bias
in the annual totals in Section 6.3.6. As a remark, the empirical and model mean µ̄N
and µY , respectively, coincide, when estimating the tGp distribution by the MM.
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Fig. 6.11 Comparison of the empirical and model daily means µ̄N and µY and standard
deviations σ̄N and σY , respectively, for all 20 data sets in Table E.2. For about half of
the data sets the empirical mean lies within the 68% confidence interval (6.22).

6.3.6. Annual totals

Analogously to the daily sample mean in Section 6.3.5, Theorem 5.3 yields a Gaus-
sian approximation of the distribution of annual totals in the tGp model. For annual
total amounts let K = 365, so that A ∶= ∑Ki=1 Yi denotes the annual sum over win-
dows (Y1, . . . , YK) of the tGp model process. We shall assume the annual sum A

asymptotically Gaussian N(µA, σ2
A) with mean µA = KµY. By definition (5.9), we

approximate the variance σ2
A of the annual sum A by

σ2
A =Kσ2

Y τD(K) (6.23)

with the model variance σ2
Y of daily amounts and the finite-size decorrelation time τD(K)

defined by equation (5.6). In Figure 6.12 (bottom right), we find coincidence between
the standard deviation of the empirical and model annual totals. Due the measurement
precision of 0.1mm of the daily data, the precision of the annual sum is limited to 36.5mm,
so that values that differ at this magnitude are practically indistinguishable. The sample
variance is further known for the tendency to underestimate the true variance in the
presence of LRC [22], which could explain that the empirical standard deviations slightly
fall below model standard deviations. Elaborating the same procedure for the tGp model
with its marginal distribution estimated by the MM, we find very small differences in
the representation of the statistics of annual totals.

Figure 6.12 visualizes that the Gaussian pdf adjusted to the empirical annual totals
only slightly differs from the proposed N(µA, σ2

A) distribution given by equation (6.23).
For all data sets the empirical mean of the annual totals lies within one standard
deviation σA of the respective model mean µA with little differences between the two
methods. Using the MM for model estimation yields coincidence between the empirical
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and model mean of annual totals alike for the daily mean amount. By the tail-oriented
model estimation, deviations of the daily and annual mean above measurement precision
are generally possible, since we do not explicitly adjust for these quantities.

For comparison, Figure 6.12 shows the standard deviation of annual totals of an iid
model with finite-size decorrelation time τD(K) = 1 in equation (6.23), which clearly
underestimates the empirical fluctuations. Involving the strength of correlations is thus
crucial for proper modeling of daily precipitation measurements.
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Fig. 6.12 Histogram of annual totals for the three data sets (a), (b) and (c) in Table 6.1
along with histograms and Gaussian pdfs with variance σ2

A (6.23) for annual totals of 100
model time series estimated by the tGp sf. Comparison of the empirical to the standard
deviation σA for both the tail-oriented and MM model estimation (bottom right).
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6. Data model for local daily precipitation amounts

6.3.7. Annual maxima

For risk assessment extreme precipitation events are a statistical quantity of great
interest. The Mahalanobis distance [7] provides a measure for the representation of the
statistics of annual daily maximum amounts by the tGp model. Applying this distance
measure in a multidimensional event space allows for including the joint distribution of
multiple observables into an error evaluation at once.

Given a covariance matrix Σ ∈ Rs×s in s ∈ N dimensions the Mahalanobis dis-
tance dM(x, y) between two points x, y ∈ Rs is defined by

dM(x, y) ∶= ((x − y)TΣ−1(x − y))
1/2
. (6.24)

Points of equal distance from a mean µ ∈ Rs with respect to the distance dM (6.24)
form ellipses in two dimensions and multidimensonal ellipsoids in higher dimensions,
respectively. These level sets serve as probability limits with respect to the parent multi-
variate Gaussian N(µ,Σ) distribution. By the principal axis theorem any multivariate
Gaussian originates from the multivariate standard Gaussian with zero mean and the
identity covariance matrix by a rotation and stretching or compression. Inverting these
affine transformation, the distance dM from the mean µ determines the radius of a sphere
of equal probability mass like the ellipsoid prior to rotation and scaling. ‘Confidence
regions’ of a prescribed probability are spheres with a radius given by the χ2(s)-quantile
function with s degrees of freedom as the squared distance d2

M ∼ χ2(s) (cp. Sect. 3.4.3).
A powerful feature of the Mahalanobis distance is that the value dM(x, y) directly

translates to distances in terms of standard deviations of the N(µ,Σ) distribution.
Analogously to unit dimension, we consider the 68% confidence regions (‘one standard
deviation around the mean’). Note that the radius r = dM of the sphere with a prescribed
probability mass depends on the dimension s (cp. Fig. 6.13). For s = 2 the radius r of
the 68% sphere reads r =

√
F−1
χ2(2)(0.68) ≈ 1.52, while r =

√
F −1
χ2(2)(0.68) ≈ 1.88 for s = 3,

where F−1
χ2(s) denotes the quantile function of the χ2(s) distribution. The sphere with

radius r = 1, however, obeys the probability Fχ2(2)(1) ≈ 0.39 in two and Fχ2(3)(1) ≈ 0.2

in three dimensions with the cdf Fχ2(s) of the χ2(s)-distribution.
For the Fichtelberg data set (a) Figure 6.13 shows the two-dimensional distribution

of pairs of the mean and the standard deviation of annual maxima of different model
time series. The depicted probability limits base on the bivariate Gaussian adjusted
to 100 synthetic pairs. For comparison Figure 6.13 involves LRC and iid tGp model
time series estimated by both the sf and the MM. For the tail-oriented method the point
pairing the mean and variance of the empirical annual maxima lies ’within one standard
deviation’ with respect to dM = 1 for LRC and inside the 95% confidence region for iid
model time series, whereas even outside the 95% limit for the both kinds of MM model
time series. As a conclusion, the MM possibly clearly underestimates the mean and
variance of annual maxima.
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6.3. Model validation
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Fig. 6.13 Visualization of probability limits by the Mahalanobis distance estimated
based on 100 tGp model time series adjusted by the tail-oriented approach of Section 6.2.1
and by the MM both with LRC (left) and for comparison additionally iid (right) for the
Fichtelberg station (a) of Table 6.1. Each empty circle marks the pair of the mean and
the standard deviation of the annual maxima of a model time series of length N = 37,621
like the empirical data set (a). The filled circles depict the mean of these pairs for all 100
synthetic time series for each of the four model variants.

Figure 6.14 visualizes a parallel assessment of three statistical quantities for all 20 data
sets in Table E.2, by considering a three-dimensional Mahalanobis distance between triples
constisting of the mean, the standard deviation and the 100-year return level (cp. Sect. 1.3
and Sect. 9.1) of annual maxima. The latter is estimated by the 99%-quantile of a
GEV distribution adjusted7 to the annual maxima of the empirical and synthetic time
series (cp. Sect. 7.4 and Sect. 7.4.4).

We find that measured in the Mahalanobis distance the mean triple as introduced
above of the empirical annual maxima predominantly lies within the 68% limit and
for about half of the data sets within one standard deviation (= Fχ2(3)(1) confidence
region) around the mean of the LRC tGpmodel time series with tail-oriented parameter
estimation. When adjusted by the MM, we observe larger errors with more than half of
the data sets outside of 68% probability.

7by the software package Climex [134]
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6. Data model for local daily precipitation amounts

The presence of correlations compared to an iid model is indeed conceivable in
Figure 6.14 but the effect of properly estimating the tail of the marginal distribution has
larger influence on how well the statistics of annual maxima are represented. Assessed
by probability limits of the Mahalanobis distance, the tail-oriented parameter estimation
of Section 6.2.1 excels the MM in the representation of annual extremes, whereas
correlations appear less crucial for these statistics. Mind that the opposite applies to
annual mean precipitation amounts by Figure 6.12.
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Fig. 6.14 Comparison of the Mahalanobis distance of the empirical and model mean
triple of the mean, the standard deviation and the estimated 100-year return level of
annual maximal amounts described by probability limits adjusted to 100 tGp model time
series genererated by the four approaches introduced in Figure 6.13 for the 20 data sets
of Table E.2. The smaller the probability is of the model confidence region that contains
the empirical mean the more accurate is the representation of the data by the model.
The outer circle of the radar chart marks unit probability, the center probability zero
and the inner circles probabilities 10%,20%,68% and 95%.
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6.4. Closing remarks and outlook

6.4. Closing remarks and outlook

The detailed statistical analysis of the marginal distribution of daily precipitation
amounts in Section 6.3 adds to the ongoing discussion about the shape of the tail of the
marginal pdf (see Sect. 1.4). Section 6.4.1 summarizes the successful representation of
the empirical statistics by the LRC tGp model (cp. Chap. 10) and Section 6.4.2 sets
these results in contemporary context of research.

Section 6.3.6 assesses the uncertainty of mean annual total precipitation amounts
by assuming a Gaussian distribution of this quantity and Section 6.4.3 provides a
justification of this approach by the skewness of daily and annual ammounts.

An essential property of the LRC tGp model established in Section 6.1 is stationar-
ity. An outlook in Section 6.4.4 provides approaches to generalizations of the model by
describing its limitations due to adjustment to mid-latitude climate.

6.4.1. Statistical representation of empirical data

The main result of the statistical analysis in the Sections 6.3.1 to 6.3.7 is that focussing
on large precipitation amounts, the tGp model well represents statistical key quantities
of mid-latitude daily precipitation by applying both LRC and a tail-oriented estimation
of the marginal distribution. For capturing the statistics of annual totals including LRC
is highly crucial, whereas exact modeling of small amounts less. The other way round,
for representing well the statistics of annual extremes appropriate estimation of the tail
of the marginal distribution is more important than LRC.

The tail-oriented parameter adjustment allows for deviations for small amounts
visualized in p-p plots for some data sets in Section 6.3.1. The model mean daily amount
might thus deviate from the empirical one. Nonetheless, the empirical daily standard
deviation for all data sets measures within 5% relative deviation from the model, so
that for about half of the data sets the daily mean lies within one standard deviation
of the sample mean considering LRC via the effective sample size (Fig. 6.11). The
deviation between the empirical and model standard deviation of annual totals is even
below measurements precision and not significantly altered when estimating the marginal
distribution by the MM instead of with emphasis on the tail. An iid and tail-oriented tGp
model, however, clearly underestimates the fluctuations of annual totals (Fig. 6.12). For
all data sets the mean annual sum lies within one standard deviation (6.23) assuming
Gaussianity and considering correlations by applying the finite-size decorrelation time.

123



6. Data model for local daily precipitation amounts

Note that the MM yields high agreement in p-p plots but poor q-q plots as the
match of the mean, the variance and the probability of zero precipitation is exact but
disregards the tail of the distribution. The proper representation of empirical data in q-q
plots (Fig. 6.7) substantiates the appropriateness of the tail-oriented tGp distribution
for mid-latitude daily precipitation amounts, in agreement with heavy-tailed [106,142]
and contrary to light-tailed [104] or fat-tailed [140,186] models.

In Section 6.3.7 the Mahalanobis distance allows for parallel assessment of the mean,
the standard deviation and the 100-year return level of annual maxima. The tail-
oriented tGp model excels the tGp model estimated by the MM in reproducing the
statistics of annual maxima. Applying an LRC or an iid model does not change this
goodness significantly (Fig. 6.14).

The LRC tGp well represents also SRC measured by conditional follow-up probabili-
ties (6.13) (Fig. 6.9) and wet and dry spells (Fig. 6.10) assessed by waiting times between
days with an accumulated amount of at least a certain size. Comparisons with ARFI-
MA(0, d, 0), AR(1) and iid models emphasize that properly adjusting both LRC and SRC
by the underlying ARFIMA(1, d,0) process is crucial for achieving these statistics.

6.4.2. The tail of the marginal distribution

The model parameter η, which determines the asymptotic stretched exponential de-
cay (6.5) of the tail of the tGp distribution, depends on the particular data set (cp. Ta-
ble E.1 and Fig. 6.15).
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Fig. 6.15 Shape parameters 2
η according to [185] by the estimated tail exponents η of

the tGp distribution for all 20 data sets in Table E.2. Note that the smallest entry in
the leftmost bin is 0.28 and the largest in the rigthmost is 1.08.
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6.4. Closing remarks and outlook

Incorporating physical dynamics, Wilson and Toumi [185] recently derived a universal
approximate stretched exponential e−(y/R0)c (y → ∞) tail behavior of daily rainfall
amounts y ∈ R≥0 with a scale parameter R0 ∈ R>0 and shape c ∈ R>0 with c ≈ 2

3 with a
standard deviation of 0.12. In contrast, we include not only the asymptotically large
but the entire range of the samples into our parameter estimation albeit with different
emphasis. By equation (6.3), the parameter η controls the shape of the pdf for the power-
law part of small amounts and the stretched exponential tail of the tGp at once. Specific
geographical conditions thus possibly influence the parameter values. Nevertheless, we
predominantly observe powers η in the limited range of roughly 2 to 7 at the utmost,
which accords with shape parameters c = 2

η in the range of 0.64 ± 0.2 in agreement
with [185]. Wilson and Toumi focus on the tail of the distribution, so that only two
parameters suffice in their study for an appropriate description of large rainfall events.
Our additional third model parameter helps adjust for smaller values as well with the
reward of representing statistically well both extreme precipitation events and the daily
mean and variance at once.

6.4.3. The skewness of precipitation amounts

Assuming a Gaussian distribution for annual total precipitation amounts in Section 6.3.6
bases on the Hermite rank 1 of the tGp distribution (cp. Sect. 6.2) and Theorem 5.3.
Figure 6.12 visually confirms this assumption for model time series for the three data
sets of Table 6.1. For the 100 synthetic time series considered therein the skewnesses of
their annual totals read approximately (a) 0.35, (b) 0.47 and (c) 0.31, which are slightly
larger than zero, other than the assumption.

The skewness of empirical mean annual totals might as well slightly differ from
zero ((a) 0.49, (b) 0.04, (c) −0.01). Model time series might thus have a negligible
tendency of underestimating this skewness as seen in Figure 6.12 (a). Compared to
the widespread skewness of daily amounts, however, the skewness of annual totals is
moderate to low. Figure 6.16 visualizes this comparison and the overall proper agreement
of empirical and model skrewnesses for either amounts daily and annual. The assumption
of Gaussianity for annual totals yields access to their statistical uncertainty regardless
of the small deviation from zero skewness for measured or synthetic data.
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6. Data model for local daily precipitation amounts
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Fig. 6.16 Comparison of the empirical and model skewness of daily amounts and
annual totals for all 20 data sets in Table E.2. The model skewness of daily amounts
is analytically known by E[(Yt−µY

σY
)3] using the model mean µY and variance σ2

Y given
by equation (6.20) and the model density (6.3) for integration. The model skewness of
annuals totals bases on the mean empirical skewness for 100 model time series.

6.4.4. Limitations of the model and outlook

Due to their very stationarity, ARFIMA processes cannot generate any kind of seasonality.
If desired, generalizations are nonetheless readily accessible. A time-dependent periodic
shift of the tGp marginal distribution can capture an annual cycle in daily precipitation
amounts such as observed for Indian or tropical regions for example. Possible non-
stationary behavior like described in [142] and indicated by Figure 6.2 for the variance
of daily precipitation amounts can find representation in a generalized tGp model by
adding appropriate trends to the parameters or to the transformation of the underlying
Gaussian process in general.

The stationary model yields potential beyond the applications described in Chapter 1
as it serves as a benchmark for example for analyses of phenomena like climate change.
Generating stationary extrapolations of previous precipitation statistics provides points
of comparison against recent and near future measurements and help identify system-
atic changes.
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7. Extreme value theory

Based on the textbooks [101], [48] and [37], we gain an overview of the fundamentals
of extreme value theory (EVT). Classical EVT deals with the distribution of the maximum
of iid random variables. The main result, the Fisher-Tippet-Gedenko theorem or extremal
types theorem, derives the generalized extreme value distribution as the universal limit
distribution of (appropriately shifted and scaled) maxima of iid variates. Under certain
mild conditions this observation remains valid for stationary processes such as ARFIMA
processes (cp. Sect. 2.5) or meta-Gaussian processes (cp. Chap. 3). The application
of EVT primarily aims at the estimation of return levels given return periods or the
other way round (cp. Sect. 1.3).

Sections 7.1 and 7.2 collect essential concepts and results from the EVT for iid
processes and its generalizations to stationary process, respectively, along with an
introduction to statistical inference regarding return levels in Section 7.4.

For an application of EVT to meta-Gaussian processes in Chapters 8 and 9, our
introduction to EVT is with a special focus on norming constants and rates of convergence
in broad detail in Section 7.3. These results base our assessment of return levels
in Section 9.2 and the formulation of our method for the estimation of return levels in
Section 9.3 with application to precipiation data each.

7.1. Classical extreme value theory

Classical EVT deals with the maxima of random samples that are drawn independently
from a common distribution. For a number n ∈ N let

Mn ∶= max{X1, . . . ,Xn} (7.1)

denote the maximum of an n-tuple of iid random variables Xi, i = 1, . . . , n, with common
cdf FX (and pdf fX ∶ dom(fX) =∶ U ⊆ R Ð→ R≥0 if existent). Since the variates Xi are
independent, the cdf FMn and, if so, the pdf fMn ∶ U Ð→ R≥0 ofMn follow immediately as

FMn(x) = P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = FX(x)n, x ∈ R, and (7.2)

fMn(x) = d
dx
FMn(x) = nFX(x)n−1fX(x), x ∈ U, (7.3)

in the points x ∈ U where FX is differentiable. As a remark, the existence of a pdf fX is
not necessary for equation (7.2) and EVT in general.
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7. Extreme value theory

The primary interest of the field lies in the asymptotic stochastic properties of the
maximum Mn (7.1) in the regime of large numbers n of samples. In the limit of n→∞,
limn→∞ FMn(x) ∈ {0,1} is apparent for all x ∈ R by FX(x) ∈ [0,1] and equation (7.2).
Note that FMn(x) → 1 (n → ∞) is only possible if the distribution of the samples Xi

features a finite upper endpoint xm < ∞, defined by

xm ∶= sup{x ∈ R ∣ FX(x) < 1} , (7.4)

with FX(xm) = 1. For distributions with xm = ∞ we find the trivial limit FMn(x) → 0

as n → ∞ for all x ∈ R. Figure 7.1 exemplifies the evolution of the cdf FMn (7.2) for
standard uniformly and normally distributed samples as n→∞.
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Fig. 7.1 Evolution of the cdfs (7.3) of the maximum Mn (7.1) of n ∈ N iid samples
of the standard uniform (xm = 1) and standard Gaussian (xm = ∞) distribution (cp.
Appendix B) for n ∈ {1,2,3,4,5,10,25,50} (left) and n ∈ {1,2,5,10,50,100,500,1,000}
with darkening lines as n increases.

Example 7.1 visualizes the evolution of the probability mass of the maximum Mn

as n increases by depicting the pdf fMn (7.3) for some frequently used distributions.

Example 7.1: Figure 7.2 exemplifies the distribution of the maximum Mn for the four
distributions Exp(1), Par(1, 3) and U(0, 1) and N(0, 1) (cp. Appendix B). The shaping
of the pdf from the original pdf (n = 1) of the samples to the pdf (7.3) of the maximum
of n ∈ N samples differs amongst these examples. As to the exponential distribution, for
large numbers n the pdf retains its shape and keeps shifting rightwards as n increases.
In case of Pareto distributed samples, the pdf flattens out with increasing n, while
for the uniform distribution it accumulates in its upper endpoint xm = 1. The pdf of
the maximum of iid Gaussian samples keeps shifting rightwards while being stretched
vertically more and more.
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Fig. 7.2 Evolution of the pdfs (7.3) of the maximum Mn (7.1) of n ∈ N iid samples of
the standard exponential, a Pareto (xmin = 1, α = 3), the standard uniform and standard
Gaussian distribution (cp. Appendix B) for n ∈ {1,2,3,4,5,10,25,50} (bottom left)
and n ∈ {1,2,5,10,50,100,500,1,000} (otherwise) with darkening lines as n increases.

Norming constants A non-trivial limit distribution for the maximum Mn is only
expected under shifting and scaling in equation (7.2). Let an ∈ R>0 and bn ∈ R, n ∈ N.
In what follows, we refer to a shifted and scaled maximum an(Mn − bn) as normed to
distinguish the denotation from normalized random variables with typically zero mean
and unit variance. According to [48] we call an and bn norming constants. Occasionally,
the constants an and bn are referred to as the scaling constant and the centering constant,
respectively. For x ∈ R the cdf of a normed maximum reads

Fan(Mn−bn)(x) = P(an(Mn − bn) ≤ x) = FX ( x
an

+ bn)
n

. (7.5)

For appropriately chosen norming constants possible limits as n →∞ in (7.5) narrow
down to extreme value distributions as we recap in Section 7.1.1. If a pdf fX exists, then
description (7.5) implies that the pdf fan(Mn−bn) of normed maxima of iid samples reads

fan(Mn−bn)(x) =
n

an
FX ( x

an
+ bn)

n−1

fX ( x
an

+ bn) (7.6)

for all values x ∈ an(U − bn) in that F ( x
an
+ bn) is differentiable (U is the domain of the

pdf fX in equation (7.3)).
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7. Extreme value theory

7.1.1. Extreme value distributions

The basis of EVT is the crucial observation by Fisher and Tippett [52] that if a
limit distribution exists for appropriately normed maxima Mn (7.5), then it is stable
under maximization.

Heuristics. For numbers m,n ∈ N let Xi,j , i = 1, . . . , n, j = 1, . . . ,m, be iid random
variables and let Mi ∶= max{Xi,1, . . . ,Xi,m}, i = 1, . . . , n, be n maxima of m-tuples of
these variables. Assuming a common cdf F for the distribution of each maximum Mi, we
have P(Mi ≤ x) = F (x), x ∈ R. Then by equation (7.2), P(Mnm ≤ x) ≈ F (x)n for large
numbers n, in whichMnm ∶= max{M1, . . . ,Mn} denotes the maximum (7.7) of n maxima
of m samples each and likewise the maximum of n ⋅m samples. If the distributions of
both all Mi and Mnm share their functional form, then their cdfs F and Fn, respectively,
coincide up to a linear rescaling. (◻)

The concept of max-stability describes the property

Mnm = max{max{X1,1, . . . ,X1,m}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∼F

, . . . ,max{Xn,1, . . . ,Xn,m}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∼F

} ∼ Fn (7.7)

of stability under maximization. The symbol ∼ in scheme (7.7) denotes ‘following a
distribution with cdf’.

Definition (Max-stability): A distribution with cdf F is called max-stable if for all
exponents n ∈ N there are constants cn ∈ R>0 and dn ∈ R such that

F (x)n = F (cnx + dn). (7.8)

By equation (7.2) distributions satisfying equation (7.8) are stable under maximiza-
tion up to an affine transformation. As a remark, max-stability relates to the well-known
concept of α-stability of random variables under summation (cp. Sect. 5.1) by consid-
ering maximization instead. Solving (7.8) for the cdf F , a classification of max-stable
distributions into three types emerges [52]. Usually they are enumerated as Type-I,
Type-II and Type-III extreme value distributions (EVD) and typically named the Gumbel,
Frechét and Weibull class, respectively. Table 7.1 states a corresponding standard cdf G
for each of the types. Including location and scale parameters µ ∈ R and σ ∈ R>0 and
applying G (x−µ

σ
) to these cdfs generates the full variety of EVDs.
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7.1. Classical extreme value theory

extremal type standard cdfs (α > 0) characteristics (n ∈ N)

Type I (Gumbel) Λ(x) = e−e−x , x ∈ R Λ(x)n = Λ(x − lnn)

Type II (Frechét) Φα(x) =
⎧⎪⎪⎨⎪⎪⎩

0, x < 0

e−x
−α
, x ≥ 0

Φα(x)n = Φα(n−1/αx)

Type III (Weibull) Ψα(x) =
⎧⎪⎪⎨⎪⎪⎩

e−(−x)
α
, x ≤ 0

1, x > 0
Ψα(x)n = Ψα(n1/αx)

Table 7.1 The standard cdfs of the three extreme value distributions.

The key difference between the three types of EVDs lies in the tails of their pdfs, that
capture the probability of the occurrence of high extremes. The Gumbel class contains
light-tailed EVDs with exponentially decaying tails, while the Frechét class comprises
fat-tailed EVDs with power-law tails. In either case, we have xm = ∞ in definition (7.4),
whereas EVDs of Weibull type exhibit a finite upper endpoint xm < ∞.

Considering the maximum Mn for an EVD by applying relation (7.2) reflects further
differences in their characteristics. As Table 7.1 (right column) illustrates, pdfs of
maxima of Type-I EVDs are shifted rightwards as n increases. In contrast, Type-II and
Type-III distributions undergo an increasing and decreasing scale, respectively.

Generalized extreme value distribution An efficient representation of the three types
of EVDs is provided by the generalized extreme value (GEV) distribution, which captures
them all in a single formula.

Definition (Generalized extreme value distribution): Let µ, ξ ∈ R and σ ∈ R>0. Then
members of the family of distributions with cdfs of the form

Gξ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−(1 + ξ(x−µ
σ

) )−
1/ξ
, ξ ≠ 0

e−e−
x−µ
σ , ξ = 0

(7.9)

are called generalized extreme value (GEV) distributions. The parameters denote
the location (µ), scale (σ) and shape (ξ) of the distribution. Depending on these
parameters the domain of a GEV distribution is {x ∈ R ∣ 1 + ξ (x−µσ ) > 0}. A GEV
distribution with parameters µ,σ and ξ is denoted by GEV(µ,σ, ξ).
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7. Extreme value theory

The shape parameter ξ of a GEV distribution is occasionally referred to as the extreme
value index [19, 32], which is not to be confused with the extremal index of a time
series (cp. Sect. 7.2.1). Shape parameters ξ > 0 and ξ < 0 yield Type-II and Type-III
distributions, respectively, with α = 1

ξ and GEV (µ + σ, σα ,
1
α
) representing the Frechét

and Weibull family each with location µ ∈ R and scale σ ∈ R>0. The limit case of ξ → 0

results in the Type-I or Gumbel class. Figure 7.3 shows an example pdf for each regime
of the shape parameter ξ.
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Fig. 7.3 Example Gumbel (ξ = 0), Frechét (ξ > 0) and Weibull (ξ < 0) type pdfs
exhibiting an exponential, power-law and finite upper tail, respectively.

GEV distributions are max-stable as a short calculation validates property (7.8).
Moreover, max-stable distributions are precisely the GEV distributions.

Theorem 7.2 (Thm. 1.4.1 in [101]): A distribution is max-stable if and only if it is a
member of the GEV family.

The central conclusion of classical EVT is the Fisher-Tippett-Gnedenko or extremal
types theorem Theorem 7.3. It states that non-degenerate limit distributions of appropri-
ately normed maxima are of GEV type. An example of a degenerate limit is given by
distributions with finite upper endpoint (7.4) xm < ∞ and a jump in that point [101, p. 12].
For any choice of norming constants the cdf (7.5) of the normed maximum of variates
with such a distribution approaches a degenerate limit cdf, which attains only the two
values zero and one. Another example with a degenerate limit but more prominent in
application is the Poisson distribution (cp. Rem. 7.8, Appx. F and Ex. 1.7.14 in [101]).
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7.1. Classical extreme value theory

Theorem 7.3 (Fisher-Tippett-Gnedenko or extremal types theorem [101]): For a
number n ∈ N of iid random variables Xi, i = 1, . . . , n, let Mn = max{X1, . . . ,Xn} denote
their maximum. If for some constants an ∈ R>0 and bn ∈ R we have

P(an(Mn − bn) ≤ x)
dÐ→ G(x) (n→∞) (7.10)

for all x ∈ R and a non-degenerate cdf G, then G belongs to the GEV family (7.9).
Conversely, each cdf G of a GEV distribution appears as a limit in (7.10).
(The symbol

dÐ→ in (7.10) denotes convergence in distribution, i.e., pointwise convergence
of the cdf (7.5) of the normed maximum to the cdf G in all the continuity points of G.)

Remarkable about Theorem 7.3 is that if norming constants exist such that a non-
degenerate limit cdf is attained in (7.10), then it will be of GEV type whatever the
distribution of the samples Xi. This observation originates from [52] and was proved
in full generality in [58]. Due to its universality, Theorem 7.3 readily provides a tool
for statistical inference about the distribution of extreme events. Section 7.4 delineates
the application of EVT. By Khintchine’s theorem Theorem 7.4 the limit EVD in the
extremal types theorem is unique up to an affine transformation.

Theorem 7.4 (Khintchine’s theorem): Let (Fn)n∈N be a sequence of cdfs Fn and G a
non-degenerate cdf and let an ∈ R>0 and bn ∈ R be norming constants such that in all
continuity points x ∈ R of G

Fn ( x
an

+ bn)
dÐ→ G(x) (n→∞). (7.11)

Then for a non-degenerate cdf G∗ and norming constants αn ∈ R>0 and βn ∈ R we find

Fn ( x

αn
+ βn)

dÐ→ G∗(x) (n→∞) (7.12)

if and only if

an
αn
Ð→ a and an(βn − bn) Ð→ b (n→∞) (7.13)

for some a ∈ R>0 and b ∈ R, and then

G∗(x) = G(x
a
+ b) . (7.14)
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Khintchine’s theorem Theorem 7.4 implies that if norming constants exists such that
convergence (7.10) is valid, then they are unique up to the relations (7.13). Therefore,
each possible choice of norming constants yields the same type of limit EVD by the
max-stability of the GEV family (Thm. 7.2). The exact type of the limit EVD G in
convergence (7.10) is uniquely determined by the tail of the distribution of the samples Xi

in Theorem 7.3. Section 7.1.2 introduces specific characterizations of the tail that identify
the limit type. Furthermore, the choice of norming constants crucially influences the
pointwise and uniform rate of the convergence (7.10) as the Sections 7.3 describes. A
deliberate choice of norming constants is the essence of the method for the estimation of
return levels established in Section 9.3.

Example 7.5: The exponential, Pareto and uniform distributions in Example 7.1 and
Figure 7.2 are prototypes of the three classes of EVD (Tab. 7.1). Let F denote the
cdf of the Exp(λ) (with rate λ ∈ R>0), Par(1, α) (with shape α ∈ R>0) or the uniform
distribution, respectively. Taking arguments x ∈ R in the support of these distributions
and using the sequence representation (1 + x

n
)n → ex (n→∞), for large numbers n ∈ N

of samples the cdfs Fn of their maxima approach

Exp(λ) F (x)n = (1 − e−λx)n ≈ e−ne−λx = e−e
−λ(x− 1

λ
lnn)

(Type I)

Par(1, α) F (x)n = (1 − x−α)n ≈ e−nx
−α = e

−(n−1/αx)
−α

(Type II)

U(0,1) F (x)n = (1 − (1 − x))n ≈ e−n(1−x) = e−(−n(x−1)) (Type III).

(7.15)

With norming constants an = λ and bn = 1
λ lnn the exponential distribution is of Gumbel

type. The uniform distribution normed by an = n and bn = 1 is of Weibull type
with parameter α = 1. Note that for the power-law Pareto distribution Par(xmin, α)
with xmin ∈ R>0, the tail parameter α directly translates to the tail parameter of the
Frechét class by using bn = 0 and an = n−1/α.

7.1.2. Domains of attraction

A distribution with cdf F is said to belong to the domain of attraction of one of the
three types of EVDs (Tab. 7.1) if norming constants exist such that the limit GEV
distribution of its normed maxima in the extremal types theorem Theorem 7.3 is of
that type. In the iid setting considering the tail of the survival function 1 − F suffices
to determine to which of the classes the distribution belongs to [48, 108]. Lemma 7.6
describes this effect.
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7.1. Classical extreme value theory

Lemma 7.6 (Lem. 1.2.2 in [102]): Let un ∈ R, n ∈ N, be constants and τ ∈ R≥0. If Xi,
i = 1 . . . , n, are iid random variables with common cdf F and Mn = max{X1, . . . ,Xn},
then

P(Mn ≤ un) → e−τ (n→∞) (7.16)

if and only if

n(1 − F (un)) → τ (n→∞). (7.17)

Heuristics. The convergence (7.17) is equivalent to 1 − τ
n ∼ F (un) as n→∞. Then the

equivalence of the asymptotics (7.16) and (7.17) is evident by

P(Mn ≤ un) = F (un)n ∼ (1 − τ
n
)
n

→ e−τ (7.18)

due to the sequence representation of the exponential function. (◻)

Beyond the general conditions of Lemma 7.6 and Lemma F.1 there are specific criteria
for the rate of the decrease of the survival function 1−F , such that a distribution belongs
to the domain of attraction of one of three EVD types. Table F.1 in Appendix F gives
an overview of these conditions. If the distribution is absolutely continuous with respect
to the Lebesgue measure, then sufficient conditions involving the pdf for belonging to
a GEV class are available and called von Mises conditions [48]. Norming constants along
with the related GEV class are analytically known for many common distributions. For a
detailed list of conditions see [48, Sect. 3.3]. Table 7.2 gives some examples for each class.

shape of GEV class example distributions

ξ = 0 Gaussian, Lognormal, Weibull, Gamma, exponential
and truncated-Gaussian-power distribution,
distributions with exponential tail and finite upper endpoint

ξ > 0 Pareto, Cauchy and Burr distribution,
α-stable distributions with α < 2

ξ < 0 uniform and Beta distribution,
distributions with power-law tail and finite upper endpoint

Table 7.2 Example distributions for each of the three domains of attraction of EVDs.
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Note that the convergence (7.10) in the extremal types theorem Theorem 7.3 is a
special case of Lemma 7.6 for the choice of linearly normed thresholds

un(x) =
x

an
+ bn (7.19)

and tail behavior τ(x) = − ln(G(x)), x ∈ R, of a GEV cdf G. For cdfs F in the domain
of attraction of each of the three types of EVDs it is possible to choose a sequence of
linearly transformed thresholds un = γn ∈ R in equation (7.19) such that n(1−F (γn)) → 1

as n → ∞ [101, p. 17]. The related norming constants clearly depend on the specific
type of the EVD (cp. Tab. 7.3) with γn → xm as n → ∞ each. In either case, such
a choice implies

F (γn) ≈ 1 − 1

n
(7.20)

for large numbers n ∈ N. Note that the (1 − 1
n
)-quantile represents the empirical

maximum of n samples [48, p. 129]. We modify this convenient choice of thresholds when
establishing our method for the estimation of return levels of tGp processes in Section 9.3.

Type II an =
1

γn
bn = 0

Type III an =
1

xm − γn
bn = xm

Type I an =
1

h(γn)
bn = γn

Table 7.3 Possible choices of norming constans an ∈ R>0 and bn ∈ R for each of the
three EVDs by defining γn = F−1 (1 − 1

n
) using relation (7.20). The function h is the

auxiliary function of a cdf F in the Gumbel domain of attraction [48, p. 141]. For an
appropriate choice of the function h see Table F.1 [101, Thm. 1.6.2].

Example 7.7: It is well known that the Gaussian distribution belongs to the Gumbel
domain of attraction [52]. For the standard Gaussian with pdf φ one appropriate choice
of norming constants is implicitly defined by the equations

bn = nφ(bn) and an = bn (7.21)

for n ∈ N iid samples [69]. These norming constants are the first summands of a
series expansion of the constants proposed in Table 7.3 and discussed in more detail
in Section 7.3. Applying equation (7.6), Figure 7.4 shows how the pdf of the normed
maxima of standard Gaussian samples collapses to the pdf of the Gumbel distribution
as the number of samples increases.
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Fig. 7.4 Evolution of the pdfs fan(Mn−bn) (7.6) (left) and cdfs Fan(Mn−bn) (7.5) (right)
of the normed maxima an(Mn − bn) with norming constants (7.21) of n ∈ N iid samples
of the standard Gaussian distribution for numbers n ∈ {1,2,5,10,50,100,500,1,000}
with darkening lines as n increases.

The error between the cdf (7.5) of the normed maximum an(Mn − bn) and the
limit GEV distribution in the extremal types theorem Theorem 7.3 for finite num-
bers n ∈ N of samples depends on the specific choice of the norming constants an and bn.
In Sections 7.3 we discuss different choices of norming constants for maxima of Gaussian
samples. Section 8.1 on norming constants for certain meta-Gaussian processes prepares
the assessment of the rate of the convergence (7.10) for tGp processes in Section 8.2.
A specific choice of norming constants in Section 9.3.1 helps decrease the statistical
uncertainty when estimating return levels of tGp processes.

Remark 7.8: There are distributions that are not in any of the three domains of
attraction of EVDs. In particular, for discrete distributions with infinite upper endpoint
every valid choice of exceedances un in Lemma 7.6 may yield a degenerate limit distri-
bution for their transformed maxima. The Poisson and geometric distribution are such
examples with broad relevance to application (cp. Exs. 1.7.14 and 1.7.15 in [101]). The
speed of the decay of the jump heights of their survival functions implies the violation of
the assumption of non-degeneracy of the limit distribution in Theorem 7.3 (see Lem. F.1
in Appx. F). A different violation of Theorem 7.3 occurs if only nonlinearly transformed
thresholds un induce the convergence (7.17). A related example according to von
Mises [102, p. 435] is the distribution with cdf F (x) = 1 − e−x−sinx. For this cdf and
continuous cdfs F in general the typically nonlinear choice

un(x) = F −1 (e−
τ(x)
n ) (7.22)
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always yields pointwise convergence of P(Mn ≤ un) to the limit cdf e−τ(x) [101, p. 36].
Note that for large n ∈ N

e−
τ(x)
n = (e−τ(x))

1
n ≈ (1 − τ(x)

n
)
n⋅ 1
n

= 1 − τ(x)
n

, (7.23)

so that n(1 − F (un(x))) = τ(x) for all x ∈ R. The choice (7.22), however, is only of the
linear form (7.19) if and only if F is the cdf of a GEV distribution itself even though
Lemma 7.6 applies [156]. We study equation (7.23) in more detail in Section 7.3.

7.2. Extreme value theory for stationary processes

Section 7.1 above introduces classical EVT for the maxima of iid samples. Now let (Xt)t∈N
be a stationary process (cp. Sect. 2.2) with marginal cdf F in the domain of attraction of
one of the three EVD distributions in Table 7.1. Under certain weak conditions on the
dependence among the different samples Xt the extremal types theorem Theorem 7.3
generalizes to stationary processes in the sense that their maxima follow a GEV distri-
bution asymptotically. There are several concepts of describing dependencies between
different variates of a stochastic process, such as m-dependence, the Markov property
and strong or distributional mixing (cp. Appx. D). For each of them generalizations of
the classical EVT are available [101, Sect. 3.1].

7.2.1. The conditions D(un) and D′(un)
For a number k ∈ N of indices i1, . . . , ik ∈ N and a threshold u ∈ R let

Fi1,...,ik(u) ∶= F(Xi1 ,...,Xik)(u) ∶= P({Xij ≤ u ∣ j = 1, . . . , k}) (7.24)

denote the joint cdf of random variates Xi1 , . . . ,Xik .

Let (un)n∈N be a sequence of thresholds un ∈ R. As a relaxation of strong mix-
ing (cp. Appx. D) Leadbetter [100] introduced the following distributional mixing condi-
tion for such sequences of thresholds.
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7.2. Extreme value theory for stationary processes

Definition (Condition D(un)): The condition D(un) is said to hold if for any set of
indices i1, . . . , ip, j1, . . . , jq ∈ N with p, q ∈ N such that

1 ≤ i1 < ⋯ < ip < j1 < ⋯ < jq ≤ n (7.25)

and j1 − ip ≥ l ∈ N we have

∣Fi1,...,ip,j1,...,jq(un) − Fi1,...,ip(un) ⋅ Fj1,...,jq(un) ∣ ≤ cn,l (7.26)

for a function cn,l such that cn,ln → 0 as n→∞ for some sequence (ln)n∈N with ln = O(n).

ConditionD(un) implies a degree of dependence between the maxima of the processXt

on distinct subintervals of the (temporal) indices t ∈ N [101, p. 54]. If the condition D(un)
is satisfied for thresholds un of affine linear form, then the conclusion of the extremal
types theorem Theorem 7.3 transfers to stationary processes as captured by Theorem 7.9.

Theorem 7.9 (cp. [101]): For a number n ∈ N let Mn ∶= {X1, . . . ,Xn} denote the
maximum of n samples of a stationary process (Xt)t∈N. Suppose there exist norming
constants an ∈ R>0 and bn ∈ R such that

P(an(Mn − bn) ≤ x)
dÐ→ G(x) (n→∞) (7.27)

for all x ∈ R and a non-degenerate cdf G. If for all values x ∈ R the condition D(un) is
satisfied for the sequence (un)n∈N of affine linear thresholds un = x

an
+ bn, then the cdf G

is an EVD of one of the three types in Table 7.1.

The domains of attraction for stationary sequences trace back to the results for the
iid setting of Section 7.1.2 by considering an iid sequence with the same marginal cdf F
like the stationary process Xt.

Definition (Associated independent sequence): For a stationary process (Xt)t∈N with
marginal cdf F an iid sequence (X∗

t )t∈N with the same marginal cdf F but without
dependence among the different samples X∗

t is called the associated independent sequence
of the process (Xt)t∈N. For a number n ∈ N we denote the related maximum of an n-tuple
of samples X∗

1 , . . . ,X
∗
n by

M∗
n ∶= max{X∗

1 , . . . ,X
∗
n} . (7.28)
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Theorem 7.10 concludes that assuming condition D(un), the domains of attraction
of a stationary process and its associated iid sequence coincide and thus depend on the
tail of their common marginal distribution only.

Theorem 7.10 (cp. [37, Thm. 5.2] and [101, Thm. 3.7.1]): Let (Xt)t∈N be a stationary
process and (X∗

t )t∈N the associated iid sequence. Suppose there exists norming con-
stants an ∈ R>0 and bn ∈ R such that the assumptions of Theorem 7.9 are valid. If the
condition D(un) is satisfied for the sequence of thresholds un = x

an
+ bn for all x ∈ R, then

P(an(M∗
n − bn) ≤ x)

dÐ→ G1(x) (n→∞) (7.29)

if and only if

P(an(Mn − bn) ≤ x)
dÐ→ G2(x) (n→∞), (7.30)

where G1 and G2 are non-degenerate cdfs of GEV distributions and

G2(x) = Gθ1(x) (7.31)

for a constant θ ∈ (0,1].

Note that by the max-stability (7.8) the power Gθ of a GEV(µ,σ, ξ) cdf G is an EVD
of the same type, namely GEV (µ − σ

ξ (1 − θ
−ξ), σθξ, ξ) for shape parameters ξ ≠ 0

and a GEV (µ + σ ln θ, σ, 0) if ξ = 0, respectively. Moreover, for maxima of stationary
processes the same norming constants like for the associated iid sequence in conver-
gence (7.29) may be used to achieve the limit GEV distribution (7.30) [101, Cor. 3.7.3].

Extremal index The constant θ in Theorem 7.10 is referred to as the extremal index
of the process Xt and is not to be confused with the extreme value index ξ of a GEV
distribution (cp. Sect. 7.1.1).

Definition (Extremal index): Let (Xt)t∈N be a stationary process with marginal cdf F
and let θ ∈ R>0 be a constant. Suppose for all τ ∈ R>0 there exists a sequence (un)n∈N of
thresholds un such that

lim
n→∞

P(Mn ≤ un) = e−θτ and (7.32)

lim
n→∞

n(1 − F (un)) = τ. (7.33)

Then the constant θ is called the extremal index of the process (Xt)t∈N.
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Relation (7.32) bears resemblance to relation (7.16) of Lemma 7.6. In contrast to
the iid setting, however, condition D(un) implies just lim infn→∞ P(Mn ≤ un) ≥ e−τ [101,
p. 66], whereas only a scaling of the tail variable τ by the extremal index θ yields the
unique limit (7.32). Due to demanding only a certain decay of the dependence between
maxima of different separated parts of the processes by condition D(un) [101, p. 54],
clustering of extremes within these parts is still allowed. From a point processes
perspective equation (7.33) implies that there are approximately τ exceedances of un
among an n-tuple X1, . . . ,Xn of the process Xt [48, p. 243]. An interpretation of
the extremal index is the inverse of the mean asymptotic size of such clusters of
exceedances [37, p. 97]. Example 7.11 visualizes a stationary process with extremal
index θ = 1

2 and mean cluster size 1
θ = 2.

Example 7.11: Let (Yi)i∈N be an iid sequence of standard Gaussian random vari-
ables Yi ∼ N(0,1) and define a stationary process (Xi)i∈N by Xi ∶= max{Yi, Yi+1}. Due
to the independence of the variates Yi, the marginal cdf of both the process Xt and its
associated iid sequence X∗

t is Φ2. For a value x ∈ R consider the sequence of thresh-
olds un = x

an
+ bn with the norming constants an and bn defined by the equations (7.21)

for n ∈ N. Then the maxima M∗
n (7.28) and Mn of the two processes satisfy

P(M∗
n ≤ un) = P(max{X∗

1 , . . . ,X
∗
n} ≤ un)

= (Φ(un)2)n → Λ(x)2 (n→∞). (7.34)

P(Mn ≤ un) = P(max{X1, . . . ,Xn} ≤ un)

= P(max{Y1, Y2} ≤ un, . . . ,max{Yn, Yn+1} ≤ un)

= P(max{Y1, . . . , Yn+1} ≤ un)

= P(max{Y1, . . . , Yn} ≤ un)P(Yn+1 ≤ un)

= Φ(un)n P(Yn+1 ≤ un) → Λ(x) (n→∞). (7.35)

Note that Φ(un)n → Λ(x) in the limit (7.34) and P(Yn+1 ≤ un) → 1 in the limit (7.35)
as n → ∞ each. In the language of equation (7.31) in Theorem 7.10 the limits (7.34)
and (7.35) yield G1 = Λ2 and G2 = Λ, so that G2 = G

1/2
1 and the extremal index of the

process Xi reads θ = 1
2 . Figure 7.5 visualizes the mean cluster size of 1

θ = 2 of this process.
Defining Xi ∶= max{cYi, Yi+1} for i ∈ N with c ∈ [0, 1] and iid Frechét variates Yi ∼ Φ1

with shape and scale parameters α = 1 and σ = 1
c+1 , respectively, and norming con-

stants an = 1
n and bn = 0 according to Table 7.1 provides another example of a sta-

tionary process (Xi)i∈N with extremal index θ ≠ 1. Similar arguments as for the
derivations (7.34) and (7.35) with un = nx yield P(M∗

n ≤ nx) = e−x
−1

for all n ∈ N
and P(Mn ≤ nx) → e−((c+1)x)−1

as n→∞, so that θ = 1
c+1 [37, Ex. 5.1].
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Fig. 7.5 Sample time series of length N = 50 the process Xi (left) in Example 7.11 and
its associated iid sequence X∗

i (right) with common marginal cdf Φ2. The mean cluster
size is 1

θ = 2, so that, in particular, extremes of the process Xi occur in pairs.

Theorem 7.10 states that using the same norming constants, in general, the limit EVD
distributions of the normed maxima of the stationary process Xt and its associated iid
sequence X∗

t differ in their parameters yet agree in their GEV type. It is clearly possible
to adjust the norming constants of the iid process appropriately for the stationary
process, such that the limit GEV distributions of the normed maxima of either processes
are identical. Further conditions on the dependence structure of the process Xt imply
such an equivalence of the limit distributions even with extremal index θ = 1 in both
relations (7.31) and (7.32), using the same norming constants for both processes.

Definition (Condition D′(un)): The condition D′(un) is said to hold if

lim
k→∞

lim sup
n→∞

n
[n/k]
∑
i=2

P(X1 > un,Xi > un) → 0, (7.36)

where [ . ] denotes the integer part.

Assuming condition D(un) and following the aforementioned argumentation, by
equation (7.33), there are on average τ

k exceedances among the variates X1, . . . ,X[n/k].
Condition D′(un) limits the asymptotic probability of more than one exceedance among
such an [n

k
]-tuple for high thresholds [48, p. 243]. In Example 7.11 condition D(un)

is satisfied while D′(un) is violated (cp. [48, Ex. 4.4.4] with F = Φ2). For Gaussian
processes these conditions can be deduced straightforwardly from the acf (Sect. 7.2.2).
In Chapter 8 we discuss the validity of the two conditions for meta-Gaussian processes.
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Remark 7.12: The verification of the conditionsD(un) andD′(un) for specific stochas-
tic processes might be highly non-trivial. In the context of dynamical systems Lucarini et
al. [108] formulate a number of alternative conditions on the dependence structure of a
system, which are weaker and more easily applicable but still yield EVDs as limit laws.
For example a condition D(m)(un) [108, Equ. (3.2.2)] with m ∈ N generalizes condi-
tion D′(un) by starting the sum in definition (7.36) at j =m+ 1 instead of j = 2 (m = 1).

Lemma 7.13 (Proposition 4.4.3 in [48]): Let (Xt)t∈N be a stationary process with
marginal cdf F and suppose a sequence of thresholds un ∈ R, n ∈ N, satisfies condi-
tions D(un) and D′(un). Then for a tail variable τ ∈ R≥0 we find

P(Mn ≤ un) → e−τ (n→∞) (7.37)

if and only if

n(1 − F (un)) → τ (n→∞). (7.38)

From Theorem 7.10 and Lemma 7.13 it becomes apparent that iid processes exhibit
an extremal index θ = 1. The reverse statement, however, is false in general. There are
non-iid stationary processes with unit extremal index. Long-range correlated ARFIMA
processes (Sect. 2.5) are prominent representatives of this kind. The presence of LRC
causes clustering of extremes in such time series [29] yet just such that the asymptotic
extremal behavior still conforms to the associated iid sequence. Section 9.2 discusses
the influence of strong short-range depedencies on the estimation of return levels.

Remark 7.14: There are generalizations of EVT for stationary to certain nonstationary
processes, for example, processes of the form Xt = εt+mt with a Gaussian process εt and
deterministic componentsmt ∈ R. Then under certain conditions on the correlations of the
process εt and the summands mt using an additive redefinition of the constants bn (7.48)
yields the Gumbel law for the extremal behavior of the process just as in the iid
setting [101, Thm. 6.2.1].
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7.2.2. The conditions D(un) and D′(un) for Gaussian processes

The acf provides direct access to the dependence structure of stationary Gaussian
processes. Berman [23] formulated an approach to verifying the conditions D(un)
and D′(un) for such processes solely based on their correlations.

Lemma 7.15 (cp. [48, Lem. 4.4.7(c)]): Assume (Xt)t∈N is a stationary Gaussian
process with covariance function r(n) ∶= Cov(Xt,Xt+n). Let (un)n∈N be a sequence of
thresholds un ∈ R. If lim supn→∞ n (1 −Φ(un)) < ∞ and

r(n) lnn→ 0 (n→∞), (7.39)

then both conditions D(un) and D′(un) are satisfied.

The relation (7.39) is called Berman’s condition and is equivalent to r(n) = O ( 1
lnn

)
as n → ∞. Hence, if the correlations of a stationary Gaussian process decay faster
than logarithmically, then Lemma 7.13 is valid along with Theorem 7.10 with extremal
index θ = 1. A variety of well-known Gaussian processes features an acf suchlike, in
particular, AR and ARFIMA (Sect. 2.5) processes as members of the class of linear
stationary Gaussian processes with finite variance [48, Ex. 4.4.9].

Remark 7.16 (cp. [101, Sect. 6.5]): Berman’s condition (7.39) provides the almost
best (i.e., weakest) possible requirement on the dependence structure of a stationary
Gaussian process such that the extremal behavior is GEV-like by Lemma 7.13 [101, p. 133].
If the covariance function satisfies r(n) lnn→ c > 0 as n→∞, then the distribution of
the normed maxima approaches a convolution of the Gumbel and a Gaussian instead
of the pure Gumbel distribution. If r(n) lnn →∞ as n →∞, this limit distribution is
even Gaussian (under certain continuity conditions on the covariance function r and
using different norming constants).

7.3. Rates of convergence

Statistical inference based on the extremal types theorem Theorem 7.3 requires infor-
mation about the speed of the convergence (7.10) and (7.9) of appropriately normed
maxima of an increasing number of samples of an iid or stationary process. Many
authors addressed this question in general settings [59,66,153,156,173] and for specific
distributions [31,45,54,67,69,105]. For example, it is well known that in case of Gaussian
samples the convergence of their normed maxima is particularly slow (see Thm. 7.19)
with consequences on the statistics of their extremes as described in Section 7.4.
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There are different measures for the speed of convergence of random variables such
as almost sure convergence and convergence in probability or distribution. The text-
book [153] is dedicated to a detailed analysis of the speed of the different types of
convergence in EVT including convergence of moments and densities. Note that point-
wise convergence of cdfs is equivalent to convergence in distribution. For the application
of the extremal types theorem Theorem 7.3 validation of pointwise limits of the normed
cdfs suffices. Knowledge about theoretical rates of convergence with respect to any of
the aforementioned kinds allows for error assessment when estimating return levels. In
general, a slow rate indicates high inaccuracy of statistical estimates.

7.3.1. Rate of convergence in the classical setting

In case of continuous limit cdfs, such as GEV distributions, pointwise convergence implies
uniform convergence (which is not true in general). Appendix C provides a proof of this
essential statement. Uniform rates of convergence address a broad error assessment as
they capture all quantiles at once. For our method in Section 9.3 we leave such a global
view on error estimation and focus on convergence in specific quantiles.

Let F be a cdf in the domain of attraction of a GEV distribution with cdf G using
norming constants an ∈ R>0 and bn ∈ R. For a finite number n ∈ N of samples and a
value x ∈ R, using equation (7.5), we define the local error between the cdf of the normed
maxima an(Mn − bn) and the limit GEV distribution by

∆n(x) ∶= ∣F ( x
an

+ bn)
n

− G(x) ∣ . (7.40)

The global error we denote by

∆n ∶= sup
x∈R

∆n(x). (7.41)

It is convenient to perceive Lemma 7.6 as an approach to the estimation of the
local error (7.40) [101, p. 36]. Given a sequence of thresholds (un)n∈N for an x ∈ R
with un ∶= un(x) = x

an
+ bn such that n(1 − F (un)) → τ(x) ∈ R≥0 as n→∞, define a tail

variable τn = τn(x) ∶= n(1 − F (un)). Then by equation (7.2) we find the pointwise limit

P(Mn ≤ un) = F (un)n = (1 − τn
n

)
n

→ e−τ(x) (n→∞). (7.42)

Mind that the function τ = τ(x) specifies the tail of the limit GEV distribution. As a
remark, thresholds un more general than affine linear transformations of values x are
possible but not required for our purpose.
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7. Extreme value theory

Using notion (7.42) for a fixed number n ∈ N of samples, we define two different local
errors in x ∈ R by

∆′
n(x) ∶= ∣ (1 − τn(x)

n
)
n

− e−τn(x) ∣ and (7.43)

∆′′
n(x) ∶= ∣ e−τn(x) − e−τ(x) ∣ (7.44)

according to [101]. The related global errors ∆′
n and ∆′′

n are defined analogously to (7.41).
Then we shall distinguish between the two origins (7.43) and (7.44) of deviations in the
approximation (7.10) of the limit EVD by

∆n(x) ≤ ∆′
n(x) +∆′′

n(x). (7.45)

Elementary arguments imply ∣(1 − z
n
)n − e−z ∣ = z2ez

2n +O ( 1
n
) for z ∈ R. Therefore, by

definition (7.43) and inequality (7.45) the convergence in the extremal types theorem
Theorem 7.3 is not faster than linear of order 1

n in general. Higher speeds of convergence,
however, are possible in specific situations [65, p. 179]. If and only if F is already the cdf
of a GEV distribution itself, the global error (7.41) vanishes uniformly and for all sample
sizes as ∆n = 0 for all n ∈ N [156].

Example 7.17: For the exponential, Pareto and uniform distribution (cp. Ex. 7.1) with
norming constants chosen alike equations (7.15) in Example 7.5 the error (7.44) vanishes
as ∆′′

n = 0 since τn(x) = τ(x) for all n ∈ N. In other words, for all finite numbers n of
samples we find equality in relation (7.17) of Lemma 7.6 between the tail behavior τ of
the limit GEV distribution and its approximate discription τn. Hence, in either case,
the pointwise convergence is precisely linear [156]. In fact, the cdf of normed maxima of
samples drawn from an exponential distribution Exp(λ), λ ∈ R>0, converges uniformly
to the Gumbel cdf at rate 1

n
(2 + 1

n
) 1

e2 independent of the rate parameter λ [69].

Remark 7.18: On the one hand every exponential rate of decay of the error (7.41)
occurs in the extremal types theorem Theorem 7.3. Moreover, any rate faster than
exponential implies a uniformly vanishing error ∆n = 0 for all n ∈ N. On the other hand
the convergence can also be arbitrarily slow [156].
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The error ∆′′
n(x) in (7.44) is governed by the way how the cdf P(an(Mn − bn) ≤ x)

approaches its limit e−τ(x). One can show that

∆′′
n = e−τ ((τ − τn) + ζ(τ − τn)2) (7.46)

for a constant ζ ∈ (0,1) if τ − τn ≤ ln 2 [101, Thm. 2.4.2]. The choice of the norming
constants determines the specific rate of the decrease of the error (7.45) of conver-
gence (7.10) as the tail variable τn comprises the shape of the survival function of the
normed maxima. Moreover, the local deviation ∆′′

n(x) in a quantile x ∈ R crucially
depends on the similarity between the tail of the distribution of the normed maxima
and of the limit GEV distribution. The central idea for our method in Section 9.3 is
increasing this similarity in the neighborhood of a desired quantile by a specific choice
of norming constants.

Rate of convergence for iid Gaussian processes Already Fisher and Tippett observed
a remarkable slowness of the convergence of the distribution of the maxima of iid
Gaussian samples to their limit Gumbel shape by numerical experiments [52]. Several
different pairs an and bn of norming constants for the Gaussian case along with pointwise
or uniform rates of convergence have been proposed ever since each with a different
accuracy in the approximation. Table 7.4 lists some of these norming constants. In
his seminal article [67] Hall proved that the optimal uniform rate of convergence is
logarithmic of order 1

lnn as n→∞ (see Thm. 7.19) using the norming constants (7.48).
The equations (7.49) to (7.52) provide further optimal choices of norming constants.

an =
√

2 lnn bn =
√

2 lnn − ln (lnn) + ln (4π)
2
√

2 lnn
(7.47)

an = bn bn = nφ(bn) (7.48)

an = −
φ(bn)

Φ(bn) lnφ(bn)
bn = Φ−1 (e−

1/n) (7.49)

an =
e−1/n

nφ(bn)
bn = Φ−1 (e−

1/n) (7.50)

an =
bn

1 + b2n
bn = Φ−1 (1 − 1

n
) (7.51)

an = bn bn =

¿
ÁÁÀW0 (

n2

2π
), (7.52)

Table 7.4 Selection of norming constants for the maxima of n ∈ N iid Gaussian samples
from [101], [67], [31], [66], [54] and [188], respectively, in this order. The function W0 in
definition (7.52) denotes the principal branch of the Lambert W function that solves the
equation W (z)eW (z) = z for z ∈ R [38].
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7. Extreme value theory

As an introduction to the methods in the proof Theorem 7.19 below we discuss
some preliminary properties of the norming constants in Table 7.4. In Section 9.3 we
apply this methodology for determining asymptotic properties of norming constants
for maxima of tGp samples. All the centering constants bn defined in Table 7.4 are
different approximations of the centering constants bn in equations (7.49) and (7.50).
The definition of bn in (7.51) involves the series expansion of the exponential distribution
and realizes the idea introduced in definition (7.20). The centering constant (7.48) results
from applying the approximation

1 −Φ(x) = φ(x)
x

(1 − 1

x2
+ 1 ⋅ 3
x4

+ . . . + (−1)k ⋅ 1 ⋅ 3 ⋅ . . . ⋅ (2k − 1)
x2k

) +Rk(x) (7.53)

of the survival function of the normal distribution [2, Equ. 26.2.12, p. 932] for x ∈ R
and k ∈ N to definition (7.51). In absolute value the error term in equation (7.53) is less
than the first neglected summand and satisfies Rk(x) = (−1)k+1 ⋅1⋅3⋅. . .⋅(2k+1) ∫

∞
x

φ(t)
t2k+2dt.

Definition (7.52) provides an exact solution of equation (7.48) for bn by the Lambert W
function. The centering constant bn (7.47), however, is a leading order approximation of
the function W as follows.

Heuristics. An approach to generating an approximate solution of equation (7.48) for
the centering constant bn, n ∈ N, bases on the asymptotic dominance of the exponential
function [38] in

n2 = 2πb2neb
2
n ∼ eb

2
n (n→∞). (7.54)

Note that equation (7.54) results from plugging in the Gaussian pdf φ into defini-
tion (7.48). Taking logarithms of both sides of approximation (7.54) yields

b2n ∼ 2 lnn + u (n→∞) (7.55)

for some u ∈ R>0 with u≪ lnn. Plugging in approximation (7.55) into relation (7.54),
we obtain

n2 ∼ 2π(2 lnn + u)e2 lnn+u = 2π(2 lnn + u)n2eu (n→∞). (7.56)

Dividing both sides of approximation (7.56) by 2π ⋅n2 ⋅2 lnn and a short calculation imply

1

4π lnn
∼ (1 + u

2 lnn
²
≪1

) eu ∼ eu (n→∞) and, thus,

u ∼ ln
1

4π lnn
= − ln 4π − ln (lnn) (n→∞). (7.57)

148



7.3. Rates of convergence

In a last step we turn back to assumption (7.55), plug in the result (7.57) for the
constant u and obtain

b2n ∼ 2 lnn − ln (lnn) − ln 4π (n→∞). (7.58)

Completing the squares and using the equality
√
A2 −B2 = A

√
1 − B2

A2 for A,B ∈ R yields
the leading order approximation of the centering constant bn (7.48)

bn =
√

2 lnn − ln (lnn) + ln (4π)
2
√

2 lnn
+O( 1

lnn
) (n→∞) (7.59)

as given in definition (7.47). A rigorous derivation of the result (7.59) is formulated
in [40, p. 374]. (◻)

In Section 9.3 we define alternative norming constants for distributions in the Gumbel
domain of attraction, aiming at involving them in the estimation of return levels. The
heuristics above help deduce the rate of the convergence these constants imply for the
normed maxima of Gaussian and tGp samples in Section 9.3.1.

For the sake of gaining more insight into techniques for the derivation of bounds
of pointwise and uniform deviations in EVT we transfer the proof of Theorem 7.19
given in [67] to our notion (7.5) of the cdf of normed maxima. In Section 8.2 we
summarize existing results based on similar approaches to rates of convergence for
certain meta-Gaussian processes.

Theorem 7.19 (cp. [69]): Let an and bn be the norming constants defined by the
equations (7.48). Then there exist constants C1,C2 ∈ R>0 such that for every number n ∈ N
the global error (7.41) between the cdf (7.5) of the normed maximum of n iid standard
Gaussian samples and the limit Gumbel cdf Λ (Tab. 7.1) satisfies

C1

lnn
≤ ∆n ≤ C2

lnn
. (7.60)

The upper bound in the inequality (7.60) may be specified by the constant C2 = 3. The
uniform rate of the convergence (7.60) cannot be improved beyond logarithmic by choosing
a different sequence of norming constants.
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7. Extreme value theory

Sketch of proof. The reasoning splits into two separate argumentations of the uniform
bounds in the inequalities (7.60). For the lower bound we deduce that the rate of the
convergence cannot be better than 1

lnn as n→∞ whatever the norming constants. By
Khintchine’s theorem Theorem 7.4 (with G = G∗) all suitable norming constants αn ∈ R>0

and βn ∈ R satisfy an
αn
→ 1 and an(βn − bn) → 0 as n→∞, so that

αn =
rn
an

and βn = bn +
δn
an

(7.61)

for some real sequences (rn)n∈N, (δn)n∈N such that rn → 1 and δn → 0 as n→∞. Hence,
for all values x ∈ R by equations (7.61) the threshold un ∶= un(x) = x

αn
+ βn reads

un = bn (1 + 1

b2n
(rnx + δn)) . (7.62)

Approximation (7.53) of the survival function 1 −Φ of the standard Gaussian distribu-
tion implies

Φ(un)n = (1 − φ(un)
un

(1 − 1

u2
n

) +R1(un))
n

(7.63)

with 0 < ∣R1(un)∣ < 3φ(un)
u5
n

= O (b−4
n ) as n→∞ by equations (7.62) and (7.63). Elemen-

tary but extensive calculations starting from the approximation (7.63) and involving
expansions such as 1

1+z = 1 − z +O (z2) and ez = 1 + z +O (z2) as z → 0, z ∈ R, yield

Φ(un)n −Λ(x)

= Λ(x)e−x ( 1

b2n
(1 + x + x2/2) + (rn − 1)x + δn +O (b−4

n + (rn − 1)2 + δ2
n + 1/n)) . (7.64)

The leading order estimate (7.64) illustrates that the pointwise convergence of the local
error ∆n(x) (7.40) cannot be faster than of rate 1

lnn and so does the global error ∆n (7.41).
Note that by approximation (7.58) of the constants bn

1

2 lnn
≤ 1

b2n
≤ 1

2 lnn − (ln (lnn) + ln 4π)
. (7.65)

Setting rn = 1 and δn = 0 in equation (7.64) yields the left hand side in inequality (7.60),
where for example choosing C1 = 0.65 is valid since supx∈R Λ(x)e−x (1 + x + x2/2) ≈ 0.6527.
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Aiming at the constant C2 = 3 for the upper bound in inequality (7.60), let n ≥ 21

since otherwise 3
lnn > 1. Then it suffices to estimate the global error (7.41) by ∆n ≤ 2.4

b2n

because b2n > 0.8 lnn for all n ∈ N≥21 by approximation (7.58). For x ∈ R consider the
threshold un = x

an
+bn. Choosing cn ∶= ln (ln b2n) allows for separate estimates of a uniform

bound of the error ∆n(x) for values x from one of three subintervals

I1 ∶= (−∞,−cn], I2 ∶= (−cn,0) and I3 ∶= [0,∞). (7.66)

By the choice of the constants cn and the monotonicity of both the Gumbel cdf Λ and
the cdf Φn for quantiles x ∈ I1 one can show that

Λ(x) ≤ Λ(−cn) =
1

b2n
and Φ(un)n ≤ Φ(− cn

an
+ bn)

n

≤ 2.08

b2n
. (7.67)

Hence, the local error on the interval I1 is uniformly bounded by supx∈I1 ∆n(x) ≤ 2.08
b2n

.
For x ∈ I2 ∪ I3 we consider the function Ψn(x) ∶= 1 −Φ(un) and

Φ(un)n = en ln Φ(un) = en ln (1−Ψn(x)). (7.68)

The monotonicity of the function Ψn implies Ψn(x) < Ψn(−cn) < 0.097. By the series
expansion ln (1 − z) = −z − z2

2 − z3

3 +O(z4) (z → 0), z ∈ R<1, and the definition (7.48) of
the constants bn one can show that

n ln (1 −Ψn(x)) = −nΨn(x) −Rn(x) with (7.69)

0 < Rn ∶= Rn(x) ≤
nΨn(x)2

2(1 −Ψn(x))
≤ 0.18

b2n
. (7.70)

For the sake of perceptibility we write An(x) ∶= e−nΨn(x)+e−x and estimate the local
error (7.40) by

∆n(x) = Λ(x) ∣ ee−xΦ(un)n − 1 ∣

= Λ(x) ∣ e−nΨn(x)+e−xe−Rn − 1 + (e−Rn − e−Rn) ∣ (by (7.68) and (7.69))

≤ Λ(x) e−Rn
±

↗1 (n→∞)

∣An(x) − 1 ∣ + Λ(x)
²
∈(0,1)

∣ e−Rn − 1 ∣

≤ Λ(x) ∣An(x) − 1 ∣ + Rn (by expansion of e−Rn (Rn → 0))

≤ κ

b2n
+ 0.18

b2n
(by (7.70)). (7.71)

One can show that a valid choice of the constant κ in estimate (7.71) is 0.84 if x ∈ I2

and 1.39 if x ∈ I3. Hence, the local error (7.41) on the intervals I2 and I3 satis-
fies supx∈I2∪I3 ∆n(x) ≤ 1.57

b2n
uniformly. ◻
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Remark 7.20: The rate of the convergence in the extremal types theorem Theorem 7.3
indeed depends on the choice of norming constants. There exist norming constants
that are not optimal and cause lower rates of convergence. For maxima of iid Gaussian
samples the constants an and bn defined by equations (7.47) yield

∆n(x) ∼
Λ(x)e−x

16

(ln (lnn))2

lnn
(n→∞) (7.72)

for the local error (7.40) in x ∈ R [101, Equ. (2.4.8)], which is significantly slower than 1
lnn .

The central idea of the proof of Theorem 7.19 on the best possible rate of the
convergence (7.10) in the extremal types theorem Theorem 7.3 in the Gaussian setting is
tracing back the global error ∆n (7.41) with respect to any choice of norming constants αn
and βn to the norming constants an and bn defined by equations (7.48) using Khintchine’s
theorem Theorem 7.4. The latter are optimal constants in the sense that using them as
norming constants for the maxima of iid Gaussian samples results in the optimal rate of
convergence of 1

lnn . Figure 7.6 visualizes the pointwise convergence in the value x = 0 for
these norming constants. The derivation of the uniform upper bound, however, mainly
bases on estimates of specific functions such as z−1 ln (ln z), z−1 ln z, z−1(ln z)2 and
z3e−x

2/2 evaluated at certain positions z ∈ R depending on the constants bn [67]. Similar
estimates show that also the pairs of norming constants given by the equations (7.49)
to (7.52) are optimal [31, 54, 66, 188] along with a sharper uniform upper bound by
improving the generously chosen constant C2 = 3 in inequality (7.60).
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Fig. 7.6 Rate of decay of the pointwise error ∆n(x) (7.40) in the value x = 0 as the
number n of iid standard Gaussian samples increases (left). For the sake of perceptibility
the right panel depicts the transformed error 1

∆n(x) . For comparison, an envelope of two
straight lines of logarithmic growth is added (namely c lnn with c ∈ {4.8,5.2}). Note
that by estimate (7.65) the shape of the error is logarithmic only in first order with
deviations on higher orders.
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7.3. Rates of convergence

Remark 7.21: When using the norming constants (7.48) the global error ∆n between
the cdf of the normed maxima of iid Gaussian samples and the limit Gumbel cdf is fairly
small for moderate numbers n ∈ N already (Fig. 7.6, left panel). The slow convergence
at rate 1

lnn as n → ∞ causes nevertheless that a not much better approximation is
gained as the number n of samples increases. More precisely, with a constant C2 = 3 in
inequality (7.60) the error estimate ranges from 0.65 to 0.13 for n between 100 and 1010,
which remains the same order of magnitude (cp. [101, p. 40]).

7.3.2. Rate of convergence for stationary processes

Section 7.3.1 separates the origins of the pointwise speed of the convergence in the
extremal types theorem Theorem 7.3 for iid stochastic processes. For a finite number n ∈ N
and a value x ∈ R the rather technical error ∆′

n(x) (7.43) relates the exponential of the
tail of the n-time survival function of the normed maxima to their cdf F (un)n (7.5)
with un = x

an
+ bn. The error ∆′′

n(x) (7.44) captures the deviation of this exponential to
the limit GEV cdf. For stationary processes with extremal index θ = 1 we extent this
approach to the rate of the convergence in Theorem 7.10 and Lemma 7.13 by including a
further influencing factor according to [102]. For appropriate norming constants an ∈ R>0

and bn ∈ R let

∆′′′
n (x) ∶= ∣P(an(Mn − bn) ≤ x) − F ( x

an
+ bn)

n

∣ = ∣P(Mn ≤ un) − F (un)n ∣ (7.73)

denote the error between the cdfs of the normed maxima of the stationary process and
its associated iid sequence in a quantile x ∈ R. Analogously to definition (7.41), the
related global error shall be denoted by ∆′′′

n . Then for stationary processes an estimate
of the pointwise error

∆n(x) ∶= ∣P(an(Mn − bn) ≤ x) −G(x) ∣ (7.74)

(denoted by the same symbol as for the iid setting in definition (7.40) with the uniform
error ∆n defined accordingly) of the convergence (7.30) to a limit GEV cdf G splits up into

∆n(x) ≤ ∆′
n(x) +∆′′

n(x) +∆′′′
n (x). (7.75)
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The restriction to processes with extremal index θ = 1 allows for the split-up (7.75) as the
limit GEV cdf G remains even in the presence of dependencies by Theorem 7.10. Note
that for iid processes we uniformly find ∆′′′

n = 0 in definition (7.73) by equation (7.2). For
a choice of valid norming constants of the associated iid sequence in convergence (7.29)
the division of the rate of convergence (7.30) by inequality (7.75) provides a reasonable
interpretation of the origins of the speed of convergence . Deriving an intuitive description
of the behavior of the error ∆′′′

n (x) as the number of samples n approaches infinity is
in general delicate since the probability P(an(Mn − bn) ≤ x) represents a multivariate
distribution with dependencies among the single dimensions. For stationary Gaussian
processes, however, the acf provides direct access to the rate of the convergence (7.73).

Rate of convergence for stationary Gaussian processes Leadbetter et al. [101, Sect.4.6]
provide a discussion of the asymptotics of extreme events of stationary Gaussian pro-
cesses. Aiming at an application to meta-Gaussian processes obtained from ARFIMA
models in Section 8.2.2, we focus on Gaussian processes that exhibit LRC in the sense of
definition (2.20). Due to their power-law decaying acf (2.10), ARFIMA processes satisfy
Berman’s condition (7.39). As a remark, Berman [23, Thm. 3.1] showed that also a
square-summable acf function %, namely ∑∞

k=0 %(k)2 < ∞, implies the conditions D(un)
and D′(un) and thus extremal behavior of Gumbel type with extremal index θ = 1

by Lemma 7.13. The maxima of Gaussian ARFIMA processes, hence, asymptotically
follow the same Gumbel distribution like those of their iid counterparts. Moreover, by
Theorem 7.10 the same norming constants that are appropriate for their associated iid
sequence in Theorem 7.3 are valid for norming the maxima of ARFIMA processes.

A concept of quantifying the error ∆′′′
n (x) (7.73) for stationary Gaussian processes

originates from measuring the distance between multivariate Gaussian vectors by com-
paring their covariance matrices [48, p. 216]. The normal comparison lemma bounds the
pointwise distance between the cdfs of two general multivariate Gaussian distributions by
a convenient function of their covariances. Lemma 7.22 is a special case of this lemma for
comparing a stationary Gaussian process and its associated iid sequence using their acfs.

Lemma 7.22 (cp. Lem. [101, 4.2.4]): Let (Xt)t∈N be a stationary Gaussian process
with zero mean, unit variance and acf %X and let ∣%X(k)∣ ≤ δ ∶= maxk=1,...,n ∣%X(k)∣ < 1

for an n ∈ N and k = 1, . . . , n. Then for each threshold u ∈ R we find

∣P(Mn ≤ u) −Φ(u)n ∣ ≤Kn
n

∑
k=1

∣%X(k)∣ e−
u2

1+∣%X (k)∣ , (7.76)

where the constant K ∈ R>0 depends on the bound δ.
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7.3. Rates of convergence

Defining ρ ∶= sup{0, %X(k) ∣ k ∈ N>0} (note that negative autocorrelations are not
excluded), based on Lemma 7.22 one can deduce [155] that the rate of the decay of the
error (7.73) is at least of order

∆′′′
n ∝ n

− 1−ρ
1+ρ (lnn)−

ρ
1+ρ (n→∞) (7.77)

for stationary Gaussian processes under suitable conditions [101, Thm. 4.6.3] on the
growth of the sum ∑nk=1 ∣%X(k)∣ as n→∞ and so, in particular, for ARFIMA processes.
The rate (7.77) is in general faster than the optimal logarithmic rate (7.60) of the
convergence in the extremal types theorem Theorem 7.3 for Gaussian iid processes.
Hence, by the relation (7.75) the rate of the convergence of the normed maxima of
ARFIMA processes is dominated by, yet not worse than, the slow logarithmic convergence
to the Gumbel limit for its associated iid sequence.

Figure 7.7 gives an impression of the pointwise error (7.74) using the norming con-
stants (7.48) for the maxima of standard ARFIMA(0, d,0) samples for different LRC
parameters d. The slope of the transformed error 1

∆n(x) in a logarithmic-linear scaling
of the errors ∆n(x) as the number n of samples increases depends on both the posi-
tion x and the LRC parameter d. Note that the value d = 0 reproduces Figure 7.6.
For d > 0 a crossover from a first faster and than logarithmic decrease is visible. The
calculation of the error (7.74) is of high numerical effort8. The joint cdf (7.24) needed to
determine P(an(Mn − bn) ≤ x) involves the fully occupied covariance matrix (6.17) of
dimension n for asymptotically large numers n of samples.

7.3.3. Ultimate and penultimate approximations

Fisher and Tippett [52] identified the particularly slow convergence of the maxima
distributions of iid Gaussian samples to their limit Gumbel shape. According to Hall [67]
this convergence is logarithmic of order 1

lnn as the number n ∈ N of samples increases to
infinity (cp. Thm 7.19). Approaching the limit standard Gumbel cdf in the extremal
types theorem Theorem 7.3 by a sequence of Type-I cdfs with different location and
scale parameters is typically called an ultimate approximation. Any Type-I EVD can,
however, be approximated arbitrarily well by Type-II or Type-III EVDs [102, p. 455].
Such an approach to the limit Gumbel EVD by Frechét or Weibull EVDs (cp. Tab. 7.1)
is commonly referred to as an penultimate approximation according to [52].

8done by the minimax exponentially tilted (MET) estimator in MATLAB software package mvncdf [25]
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Fig. 7.7 Rate of decay of the pointwise error ∆n(x) (7.74) in the value x = 0 as the
number n of standard ARFIMA(0, d, 0) samples increases. For the sake of perceptibility
the transformed error 1

∆n(x) is depicted. The slopes estimated by linear regression
are 4.8,6.0,5.2 and 1.9 for LRC parameters d ∈ {0,0.1,0.2,0.3} (from top to bottom).

Gomes and de Haan [59] provide a second-order theory for penultimate approximations
of any limit GEV shape: let the cdf F of iid random samples be in the domain of attraction
of a GEV distribution with cdf Gξ (7.9) and shape parameter ξ ∈ R. Under appropriate
conditions (von Mises type first and second order conditions) on the tail of the survival
function 1 − F in either case of the type of the limit GEV distribution, the cdf of the
normed maxima can be better approximated by a sequence of cdfs Gξn of different EVDs
with shape ξn ∈ R than by the final Gξ [59]. Defining a function v(t) ∶= F−1 (e−e−t)
for t ∈ R, norming constants an ∶= 1

v′(lnn) and bn ∶= v(lnn) and a sequence of shape
parameters ξn ∶= ξ̃(lnn) with ξ̃(t) ∶= v′′(t)/v′(t) yields

lim
n→∞

Fn ( x
an
+ bn) −Gξn(x)

ξ̃′(lnn)
= cxG′

ξ(x), (7.78)

where cx ∈ R is a constant dependent on the value x ∈ R and uniformly bounded on
bounded intervals. Note that by von Mises’ first order condition we have ξ̃(t) → ξ

as t→∞, so that ξn → ξ and Gξn(x) → Gξ(x) as n→∞. Under further mild conditions
on the cdf F the rate ξ̃′(lnn) in the convergence (7.78) can be replaced by ξ̃(lnn)β for
some exponent β ∈ R>0. For the lognormal distribution we have β = 3 (cp. Sect. 8.2.2),
whereas the standard Gaussian features β = 2 as derived by Cohen [36] in Lemma 7.23. As
a remark, exponential and Pareto distributions do not exhibit penultimate behavior [59].
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7.3. Rates of convergence

Lemma 7.23 (cp. Thm. 2 in [36]): For a number n ∈ N let bn be the norming constant
for the maxima of iid Gaussian samples defined by equation (7.48). Then there exists
sequences (αn)n∈N, (An)n∈N and (Bn)n∈N of Weibull exponents αn ∈ R>0 and norming
constants An ∈ R>0 and Bn ∈ R>0 such that for all values x ∈ R

∣Φ(x)n −Ψαn(An(x −Bn)) ∣ = O( 1

b4n
) = O( 1

(lnn)2
) (n→∞). (7.79)

Moreover, there do not exist such sequences, so that a Frechét approximation would
yield ∣Φ(x)n −Φαn(An(x −Bn))∣ = O ( 1

(lnn)2 ) as n → ∞. The functions Ψαn and Φαn

denote the cdf of Weibull and Frechét type, respectively, with exponent αn (cp. Tab. 7.1).

Lemma 7.23 states that a penultimate approximation of the limit Gumbel shape of the
maxima of iid Gaussian samples by Weibull distributions decreases the error compared to
the ultimate approximation by Type-I distributions by improving the rate of convergence
from 1

lnn in relation (7.10) to 1
(lnn)2 in relation (7.79). A Frechét approximation does not

result in a better rate of convergence. In [35] Cohen generalizes suchlike improvements
to a wide class of distributions in the Gumbel domain of attraction.

Remark 7.24: The Hill estimator Hk,n ∶= 1
k ∑

k
i=1 ln (Xn−i+1.n

Xn−k,n
), for a number k ∈ N

with 1 ≤ k ≤ n, and the upper order statistics Xi,n, i = 1, . . . , n, of n ∈ N iid samples,
mentioned in Remark 7.26 is designed to provide an estimate of the shape parameter of
a penultimate approximation of the limit GEV distribution. Conceiving this relation
requires a specific definition of the penultimate shape parameters ξn [66, Prop. 2.2].

Figure 7.8 depicts the shape parameters ξ estimated for the maxima of several time
series of iid standard Gaussian samples. Due to the improved approximation of the limit
Gumbel shape by Weibull type EVDs (Lem. 7.23), the majority of the estimates obtained
by a maximum likelihood are negative. For a description of the statistical inference by
extreme value theory see Section 7.4 and Section 7.4.4. In Section 9.2 we apply ultimate
and penultimate approaches to the estimation and comparison of return levels.
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Fig. 7.8 Absolute frequencies of the penultimate GEV estimates of the shape parameter ξ
for 100 maxima of n = 365 (cp. Sect.7.4) iid standard Gaussian samples each. The
histogram bases on 100 of such estimates.

In what follows we call adjusting a Gumbel distribution with shape parameter ξ = 0 to
the empirical maxima of time series aGumbel estimation. Allowing shape parameters ξ ≠ 0

in such a representation of the maxima distribution by Frechét or Weibull distributions
we refer to as a (full) GEV estimation.

7.4. Statistical inference by extreme value theory

The extremal types theorem Theorem 7.3 and its generalization Theorem 7.9 allow
for statistical inference about the occurrence of extremes in both iid and stationary
processes. Return levels and return periods are statistical quantities of interest regarding
extreme events and introduced in Section 7.4.1. The universality of the distribution of
maxima given by GEV distributions provides direct statistical access to the estimation
of return levels.

Geophysical data sets typically consist of a single time series of measurements, for
example of precipitation amounts or temperatures. Statistics for the single maximum
of the entire scope of the record are accordingly unfeasible. We obtain an empirical
distribution of the extremes by blocking the data into segments of a fixed lengths of
typically one year and considering the maximum of each block. This concept gives rise
to the notion of the block maxima approach in Section 7.4.2. Involving all high values
above a prescribed threshold for the statistics of extremes instead of only block maxima
allows for an alternative usage of EVT in Section 7.4.3. Such a peaks over threshold
approach involves the full data if more measurements than maximal values only are
available. Figure 7.9 visualizes the two concepts. We recap below how both methods
base on the extremal types theorem Theorem 7.3. Theorem 7.9 implies the validity of
these procedures for stationary LRC processes in Section 7.4.4.
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Fig. 7.9 Visualization of the block maxima (left) and peaks over threshold (right) ap-
proach for eight years of a Gaussian N(0, 1) example data (only positive values depicted).

7.4.1. Return levels and return periods of extremes

A return level denotes the quantile of a distribution that is exceeded on average once
during a corresponding return period.

Definition (Return level and return period): Let X be a random variable with cdf F .
Given an excess probability p ∈ [0,1], a quantile q ∈ R such that

F (q) = P(X ≤ q) = 1 − p (7.80)

is called a return level with return period 1
p .

Relation (7.2) implies the interpretation of quantiles of the maximum distribution as
return levels (7.80) of extreme events of stochastic processes. For a fixed number n ∈ N
a return level q ∈ R of the maximum Mn (7.1) of an n-tuple of iid samples with excess
probability p ∈ [0,1] describes the magnitude of an extreme event that occurs every 1

p

tuples on average.
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7. Extreme value theory

In practical terms, the size n of the considered tuples or blocks of data accounts for
the interpretation of the return periods of corresponding return levels. Let F be the cdf
of a random variable that describes data with daily resolution. Then for a number m ∈ N
of years we denote an m-year return level of its annual maximum distribution (7.2) with
block size n = 365 by

Qm ∶= F−1 ⎛
⎝
n
√

1 − 1

m

⎞
⎠
, (7.81)

using an upper-case letter. In contrast, we denote the m-year return level of the
distribution of the daily data by lower-case

qm ∶= F−1 (1 − 1

n ⋅m
) (7.82)

in view of definition (7.80) of return levels. On average one out of n⋅m daily measurements
exceeds a return level qm with return period n ⋅m and frequency 1

n⋅m . A return level Qm
occures as a maximum on average once every m annual blocks. Section 9.1 compares
these two approaches to return levels. The 100-year return levels Q100 and q100 are of
particular interest for applications (cp. Chap. 1). Considering different temporal ranges
is yet possible by variation of the block size n or the return period. Definition (7.81) of
annual return levels bases on the iid setting (7.2). Section 7.4.4 discusses the application
of EVT to stationary LRC processes.

The strength of Theorem 7.3 for the estimation of return levels is trifold. First,
sporadically missing daily data does not significantly influence the statistical inference
by EVT since only rare events enter the analyses. Second, the GEV assumption is
an appropriate approximation of the distribution of extremes independently from the
distribution of the individual iid samples. And third, it allows for the extrapolation of
the distribution of extreme events to return periods beyond the temporal scope of the
empirical data.

Remark 7.25: In case of empirical data, for example from geophysics or economics,
daily records typically range from about 30 up to less than 100 years. The empirical cdf
of annual maxima or threshold exceedances thus can not distinguish any return period
larger than the measurement range (cp. also Rem. 9.2). Considering return levels of
an empirical maxima cdf is only meaningful in theoretical settings with synthetic time
series of arbitrary length as done in [47] but in general futile for statistical analyses of
real world data.
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7.4. Statistical inference by extreme value theory

7.4.2. Block maxima approach

In regard of definition (7.1) the maxima Mn denote the maxima of blocks of samples of
size n ∈ N. Aiming at estimating 100-year return levels (7.81), we consider annual blocks
of size n = 365 days. The distribution of a maximum Mn then describes annual daily
maxima as the units of the maximum and the samples themselves coincide.

Based on the extremal types theorem Theorem 7.3 for iid and Theorem 7.9 for
stationary processes, we assess the statistics of extremes and their return levels by
adjusting a GEV distribution to empirical block maxima. If the marginal cdf of the
process is in the domain of attraction of a GEV distribution with cdf G, then this
distribution describes the normed maximum an(Mn − bn) via

P(an(Mn − bn) ≤ q) ≈ G(q) (7.83)

for quantiles q ∈ R and appropriately chosen norming constants an ∈ R>0 and bn ∈ R.
Mind that approximation (7.83) is appropriate for numbers n of samples that are large
enough such that the asymptotic regime of the convergence (7.10) is valid [37]. Due to
the max-stability (7.8) of the GEV distributions, we equivalently have

P(Mn ≤ q) ≈ G(an(q − bn)) = G∗(q), (7.84)

where G∗ is another member of the same GEV family. Estimating the GEV parame-
ters µ, ξ ∈ R and σ ∈ R>0 of the cdf G∗ in approximation (7.84) readily captures both
the type of the limit EVD (cp. Sect. 7.3.3) and the norming constants without explic-
itly requiring their calculation. Inverting the cdf (7.9) of the estimated GEV(µ,σ, ξ)
distribution yields formulae for the extraction of the return level Qm for a given return
period m = 1

p by

Qm =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ − σ
ξ
(1 − (− ln (1 − p))−ξ) , ξ ≠ 0

µ − σ ln (− ln (1 − p)), ξ = 0.
(7.85)
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7. Extreme value theory

For the application of the equations (7.85) the parameters of the GEV distribution
are typically estimated by the maximum likelihood (ML) method. Then the parame-
ters are multivariate Gaussian and nonlinear transformations of respective confidence
regions (cp. Mahalanobis distance in Sect. 6.3.7) allow for error assessment of the esti-
mated return levels. Every contemporary software package includes procedures for ML
estimation of GEV distributions. The optimization of the likelihood function for GEV
distributions is typically non-trivial due to a highly complex parameter landscape. For
the estimates of return levels in Section 6.3 and Section 9.2 we apply the ML estimation
of the software package climex9, which provides stable numerical optimization algo-
rithms for this purpose. Amongst others the textbook [37] gives details on the ML
estimation of return levels. Figure 7.10 shows a GEV estimation for block maxima of a
Gaussian iid time series.
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Fig. 7.10 ML-estimated GEV(µ̄, σ̄, ξ̄) pdf with estimated parameters µ̄, σ̄ and ξ̄ for 100
annual block maxima (n = 365) of iid standard Gaussian samples.

If additional information about the distribution of the samples beyond only the
empirical block maximum distribution is available, then a-priori knowledge about the
shape parameter might help reduce the number of parameters in the ML estimation.
If the domain of attraction is known to be the Gumbel class, one might zeroize the
shape parameter for the ML estimation by setting ξ = 0. Such a constraint, however,
might impose further inaccuracy in the estimation of return levels due to a slow rate of
the convergence (7.10) as introduced in Section 7.3. Figure 7.11 and Figure 7.14 below
comment on this effect. In Section 9.3 involving norming constants, we establish a way
of still benefitting from knowledge about validity of the Gumbel domain of attraction
for the estimation of return levels.

9open source R software package and web application by Philipp Müller [134]
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7.4. Statistical inference by extreme value theory

Remark 7.26: Several estimators for the shape parameter were proposed such as
the Hill estimator [75], Pickand’s estimator [150] or the Dekkers-Einmahl-de Haan
estimator [41]. These estimators are of special interest in case of distributions in the
Frechét and Weibull classes with a shape parameter clearly distinct from zero. Note that
for slowly varying tails or in the presence of correlations the quality of such estimates of
the tail index worsens drastically. For related "Hill horror plots", for example for AR(1)
processes, see [48, Fig. 4.1.13 and Fig. 5.5.4].

Statistical uncertainty inheres in the estimation of return levels by applying the block
maxima approach due to several sources. A typical violation of the assumptions of the
extremal types theorem Theorem 7.3 in practical terms is the lack of independency among
empirical data. Section 7.4.4 recaps the role of dependencies in the application of EVT.
Another well-known origin of uncertainty is the sampling error. A ML estimation of
the GEV distribution is subject to a finite number of empirical block maxima, whereas
the empirical distribution coincides with the limit GEV distribution only asymptotically
by the strong law of large numbers. The application of Theorem 7.3, however, involves
two kinds of theoretical limits. Availability of even an infinite number of sample maxima
would not guarantee full statistical reliability. The extremal types theorem Theorem 7.3
ensures the validity of a GEV shape for the distribution of the maximum Mn only in
the limit of an infinite block size n = ∞. Any finite block size n < ∞, such as n = 365 for
annual return levels, may induce significant deviation from the asymptotic GEV shape.

This phenomenon becomes apparent, in particular, in the case of Gaussian sam-
ples (cp. Fig. 7.11). The presence of different stochastic limits contains in itself the
danger of mistaking one with the other. This problem gaines in importance when the
appropriateness of adjusting the Gumbel distribution (ξ = 0) to annual maxima is rea-
soned by the presence of samples with a distribution in the Gumbel domain of attraction
along with a high number of sample maxima [96,158]. The rate of the convergence (7.10)
discussed in Sections 7.3.1 and 7.3.2 is a way towards an evaluation of this source of
statistical uncertainty. A penultimate approximation (cp. Sect. 7.3.3) by estimating the
shape parameter despite knowing about the belonging to the Gumbel class might im-
prove the estimation of return levels under the cost of a higher uncertainty due to larger
confidence intervals. Example 7.27 compares ultimate and penultimate estimates of the
100-year return levels Q100 (7.81) of iid standard normal and exponentially distributed
samples using the block maxima approach.
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7. Extreme value theory

Example 7.27: Figure 7.11 shows both ultimate and penultimate estimates of the 100-
year return level Q100 (7.81) of iid standard Gaussian (left panel) and exponentially
distributed (right panel) samples. Both distributions are in the Gumbel domain of
attraction. The sampling error is larger for the penultimate than for the ultimate
approach due to a higher number of estimated parameters. In either case, the variance
of the estimate decreases as the number m of included block maxima increases.

The mean Gumbel estimate Q̄100 of the analytically known Q100 ≈ 4.033 for the annual
maxima of standard Gaussians does not converge to the correct return level as the sample
size m increases because the asymptotic Gumbel regime is not yet dominant for block
size n = 365 in convergence (7.10) (cp. Thm. 7.19). The mean GEV estimate Q̄100

of Q100 by including the shape parameter to the estimation excels the Gumbel estimate
due to an increased speed of convergence by Lemma 7.23.

For block maxima of iid samples from the exponential distribution, the convergence
to the Gumbel shape is faster (cp. Ex. 7.17), so that zeroizing the shape parameter still
yields a proper estimation of Q100 ≈ 10.5 with reduced statistical uncertainty compared
to the full GEV estimation.
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Fig. 7.11 Estimation of the 100-year return level Q100 by the block maxima approach
for 100 time series of length N = 100 ⋅ 365 days for iid standard Gaussian (left) and
exponentially distributed (right) samples by a ML-estimated Gumbel distribution (ξ = 0)
or a general GEV distribution (ξ ≠ 0 estimated) to different numbers m of block maxima
in approximation (7.84). The estimated return level Q̄100 is the mean of the estimates for
each of the time series. The confidence intervals depict the inner 95% of these estimates
and are slightly shifted horizontally in the graphic for the sake of perceptibility.
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7.4.3. Peaks over threshold approach

In case of the availability of empirical maximum values only, the block maxima approach
of Section 7.4.2 is an appropriate method for the estimation of return levels of extreme
events. In the presence of measurements with a higher (temporal) resolution, however,
the block maximum procedure is wasteful because of neglected data when considering
only the maximum of each block [19,108]. Including this additional information about
the right tail of the distribution instead is promising for decreasing the sampling
error. The method of choice for this purpose runs under the name point process of
exceedances [99] or peaks over threshold (POT) approach, in particular, in applied science
like hydrology [48, p. 340].

We recap the essence of considering exceedances of high thresholds instead of block
maxima according to [37, Sect. 4.2.1]. This methodology provides one way of using
additional statistical information beyond only block maxima for the estimation of return
levels. Section 9.3 presents an alternative method to benefit from additional information
about the distribution of the data by involving norming constants.

Definition: Let X be a random variable. The probability of exceeding a given thresh-
old u ∈ R by an excess value x ∈ R>0 shall be defined by

Tu(x) ∶= P(X > u + x ∣X > u) . (7.86)

If the cdf F of the variate X is known, then the cdf of the conditional probability (7.86)
of threshold exceedance by x ∈ R>0 reads

Tu(x) =
1 − F (u + x)

1 − F (u)
. (7.87)

Similar to the block maxima approach the essence of the POT approach is an asymptoti-
cally universal description of conditional threshold excesses by one family of distributions
for large thresholds [12].

Generalized Pareto distribution The extremal types theorem Theorem 7.3 implies that
if a non-degenerate limit distribution exists for the distribution of asymptotically high
threshold exceedances (7.87), then it is a generalized Pareto distribution (see Thm. 7.28).
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Definition (Generalized Pareto distribution): Let µ, ξ ∈ R and σ ∈ R≥0. Then a
member of the family of distributions with a cdf of the form

GP (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (1 + ξ (x−µσ ))−
1/ξ
, ξ ≠ 0

1 − e−
x−µ
σ , ξ = 0

(7.88)

is called a generalized Pareto distribution (GPD). The parameters denote the location (µ),
scale (σ) and shape (ξ) of the distribution. Depending on these parameters the domain
of a GPD is {x ∈ R ∣ 1 + ξ (x−µσ ) > 0}. A GPD with parameters µ,σ and ξ is denoted
by GPD(µ,σ, ξ).

We consider a heuristic introduction of Theorem 7.28 below. A detailed discussion of
the point process of exceedances can be found in [48, Sect. 6.5] amongst others.

Theorem 7.28 (cp. Thm. 4.1 in [37]): Let X be a random variable with a cdf in the
domain of attraction of a GEV(µ,σ, ξ) distribution with µ, ξ ∈ R and σ ∈ R>0. Then for
large enough thresholds u ∈ R the distribution of the random variable X− u conditioned
on X > u is a GPD(0, σ̃, ξ) approximately, where σ̃ ∶= σ+ξ(u−µ) for threshold exceedances
in the domain {x ∈ R>0 ∣ 1 + ξ xσ̃ > 0}.

Heuristics. Let F denote the cdf of the random variable X. By the extremal types
theorem Theorem 7.3 for quantiles y ∈ R and large enough numbers n ∈ N of independently
drawn samples X1, . . . ,Xn with common cdf F we have

P(max{X1, . . . ,Xn} ≤ y) = F (y)n ≈ e−(1+ξ( y−µ
σ

))−
1/ξ
. (7.89)

The right hand side in approximation (7.89) is the cdf of a GEV(µ,σ, ξ) distribution
with shape parameter ξ ≠ 0. For cdfs F in the Gumbel domain of attraction (ξ = 0)
the derivation is valid analogously. Since F (y) → 1 as y → ∞, the Taylor expansion
of the natural logarithm for large enough quantiles y implies 1 − F (y) ≈ − 1

n ln (F (y)n).
Applying this approximation to relation (7.89), we obtain

1 − F (y) ≈ 1

n
(1 + ξ (y − µ

σ
))

−1/ξ
. (7.90)

Plugging in y = u + x and y = u into relation (7.90) and involving notion (7.87) of the
probability Tu(x) of threshold excesses x ∈ R>0, a short calculation yields the cdf Fu
of X − u conditioned on X > u as

Fu(x) ∶= P(X ≤ u + x ∣X > u) = 1 − Tu(x) ≈ 1 − (1 + ξ x
σ̃
)
−1/ξ

= GP (x) (7.91)
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with σ̃ = σ + ξ(u − µ) for large enough thresholds u ∈ R. In the Gumbel setting of
shape ξ = 0, we obtain σ̃ = σ analogously. Note that the domain of the cdf Fu is [0,∞).
The approximation (7.91) is the cdf GP in definition (7.88) of the GPD(0, σ̃, ξ) with the
scale σ̃ depending on the threshold u. (◻)

Like the GEV family captures the asymptotic distributions of block maxima, the GPDs
describe the asymptotic distributions of conditional threshold excesses. Note that by
relation (7.91) the shape parameter ξ of a distribution in the domain of attraction
of GEV(µ,σ, ξ) coincides with the shape parameter of the resulting GPD(0, σ̃, ξ) in
Theorem 7.28. Hence, threshold exceedances exhibit a similar classification into expo-
nentially (ξ = 0) or power-law (ξ > 0) decaying probability of extremes or having a finite
upper bound (ξ < 0).

The POT approach assesses extremes of a random variate X by the survival proba-
bility P(X > u + x) of rare events using the conditional probability Tu(x) of threshold
exceedances (7.86). From approximation (7.91) we deduce

1 − Fu(x) = P(X > u + x ∣X > u) = P(X > u + x)
P(X > u)

≈ 1 −GP (x). (7.92)

Given a return period m̃ ∈ N, by relation (7.92) the associated return level q ∈ R≥0 satisfies

1

m̃
= P(X > q) ≈ P(X > u) (1 −GP (q − u)). (7.93)

A natural estimator for the probability P(X > u) is given by the empirical cdf via Nu
N ,

where N ∈ N denotes the empirical sample size and Nu ∈ N the number Nu < N of samples
larger than the threshold u [48]. If the temporal resolution of the empirical samples is
daily, then an excess of a return level q in approximation (7.93) occurs every m̃ days on
average. Analogously to the procedure (7.85) in the block maxima method, inverting
relation (7.93) yields estimates of annual return levels qm ∈ R≥0 with a prescribed annual
return period m ∈ N and excess probability p ∶= 1

365m as

qm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u + σ
ξ ((NuNp)

ξ
− 1) , ξ ≠ 0

u + σ ln (NuNp) ξ = 0.
(7.94)

The return level qm is exceeded once in m years on average. Choosing p = 1
m̃ for a daily

return period m̃ ∈ N yields daily return levels in equation (7.94). For a comparison
of the two kinds of annual return levels in the block maxima and the POT approach
see Section 9.1.
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7. Extreme value theory

In relation (7.93) the location zero of the cdf GP in approximation (7.91) is shifted
by the threshold u. Thus, ML estimation of a GPD with location zero to the empirical
excesses X − u for all data points X > u above a given threshold u yields estimates of
the scale and shape parameters σ and ξ, respectively, for the calculation of return levels
by equations (7.94).

µ = u = 2.2
σ = 0.343
ξ = −0.048
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Fig. 7.12 ML estimated GPD(µ̄, σ̄, ξ̄) pdf with estimated parameters σ̄ and ξ̄ for
threshold exceedances (µ = u = 2.2 in equation (7.94)) of a 100-year (n = 365 in
approximation (7.89)) sample time series of daily iid standard Gaussian samples.

Statistical inferences by the POT approach are subject to three sources of uncertainty
compared to the two (namely the block size and the number of empirical block maxima)
for the block maxima method. Including more information about the sample distribution
than only block maxima still improves the statistical accuracy. First, the sampling error
is now governed by a higher number of samples obtained as threshold excesses. The
asymptotic GPD regime (7.91), though, is valid for large thresholds only, which is the
second source of statistical uncertainty. An appropriate choice of the specific threshold u
for the ML estimation of the probability (7.91) is delicate. It requires balancing between
the bias by violating the asymptotics (7.90) for low thresholds and an increased variance
due to less exceedances for high thesholds [37, Sect. 4.3.1]. A mean residual life plot
helps evaluate the appropriateness of a specific threshold (see Ex. 7.29, Fig. 7.13 and
Appx. G). Third, the block size, or more precisely, the sample size n bases the proof
of the asymptotic GPD distribution in Theorem 7.28 by applying the extremal types
theorem Theorem 7.3, such that the approximation (7.89) by a GEV distribution is
subject to the rate of the convergence (7.10) just as for the block maxima approach.
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7.4. Statistical inference by extreme value theory

In practical terms, the POT approach leads to an improved error in the convergence
of the normed block maxima to their limit GEV distribution as follows. As introduced
above the block maxima method for an empirical data set of m ∈ N years of daily records
bases statistical inference about annual return levels on a block size of n = 365 days in the
extremal types theorem 7.3. The higher number of n = 365m, however, underlies the POT
approach, so that the approximation (7.89) is closer to the asymptotic GEV regime. In
case of a slow convergence (7.10) like for example for Gaussian time series (cp. Thm. 7.19),
the aforementioned increase of the block size to the size of the empirical data might still
not significantly improve the estimation of return levels (cp. Rem. 7.21). For comparison
see Figure 7.14 on the rate of the convergence in the extremal types theorem Theorem 7.3.

Example 7.29: We apply the POT method to iid sample data from a standard
Gaussian and exponential distribution interpreted as daily measurements. Aiming at
estimating the 100-year return level q100 (7.82) for these time series by equation (7.93),
we consider a return period of m̃ = 36,500 days in definition (7.80), which corresponds
to m = 100 years in equation (7.94). Linear regimes in a mean residual life plot
help identify appropriate choices of thresholds u for the adjustment of a GPD in
approximation (7.92) (cp. Appx. G).
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Fig. 7.13 Mean residual life plot for 100 time series of length N = 36,500 of iid samples of
a standard Gaussian (left) and exponential (right) distribution. The analytical solutions
for the mean excess mu are given in the equations (G.4) and (G.3), respectively. The
estimated excesses m̄u are the mean of the estimates for each of the time series with the
inner 95% values giving the depicted confidence intervals.
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For the exponential distribution Figure 7.13 (right panel) reveals a linear mean residual
life plot for thresholds u ∈ [2,7] roughly, so that POT estimates of the quantile q100

are fairly reliable when deploying thresholds suchlike. Note that for the exponential
distribution Exp(λ) with λ ∈ R>0, the conditional excess probability Tu in definition (7.86)
is independent of the specific threshold u, or more precisely, Tu(x) = e−λx for all
values x ∈ R>0. As a remark, this property is called memorylessness (not to be confused
with the memoryless transformations of Chap. 3) of the exponential distribution and
describes that when interpreted as a waiting time distribution the waiting time until
the occurrence of a next event does not depend on the time already passed [53, p. 33].
The mean excess mu ∶= E[X − u ∣ X > u] = σ is thus constant for all thresholds u,
where σ = an = λ is the scale of the approximate GEV distribution (7.15) of the related
block maxima (cp. eq. (G.3)). The mean estimate of the 100-year return level of the
exponential samples does not depend on the choice of the threshold in Figure 7.14 (right
panel). The variance of the estimate, however, increases as the height of the threshold
increases to the point of a lack of availability of exceedances for too high thresholds.

For the Gaussian samples, however, the mean residual life plot is inconclusive as
the relation between the thresholds and the related mean conditional excesses appears
curved all over. Indeed, the mean excess reads mu is linear only asymptotically as u→∞
at a slow rate by equation (G.4). The extreme slowness of the convergence (7.10) to the
Gumbel regime in the Gaussian case provides a reasoning of this effect (see Sect. 7.3).

Accordingly, the POT estimates of the 100-year return level q100 of Gaussian samples
in Figure 7.14 (left panel) are inaccurate when assuming a shape parameter of ξ = 0 for
the adjustment of the GPD in approximation (7.91). Like for the penultimate block
maxima approach in Figure 7.11 including the shape parameter into the GPD estimation
improves the estimate.

Comparing Figure 7.11 and Figure 7.14 form = 100 block maxima reveals an improved
statistical uncertainty by the POT approach over the block maxima method for the
Gaussian samples. The GPD estimates without assuming zero shape for thresholds
between about u = 2 and u = 2.5 exhibit a lower variance than the full GEV estimate.
Nevertheless the uncertainty of the choice of a threshold remains. We observe the same
reduction of the variance of the estimate for the exponential distribution for thresholds
below about u = 5 for either assumption of the shape parameter.
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Fig. 7.14 Estimation of the 100-year return level q100 by the peaks over threshold
approach for 100 time series of length N = 36,500 days for iid standard Gaussian (left)
and exponentially distributed (right) samples by a ML-adjusted GPD assuming ξ = 0 or
estimating ξ ≠ 0 and using different thresholds u. The chosen threshold positions are
nine equally spaced values from the 90% quantile (≈ 1.28 and ≈ 2.3) up to the 100-year
return level (≈ 4.03 and ≈ 10.5, respectively). For better perceptibility, the estimates
with ξ ≠ 0 are slightly shifted horizontally in the graphics while conducted for the same
thresholds as in the ξ = 0 setting. Note that the number of threshold exceedances per
time series depends on the height of the threshold u, so that even no estimate might
be feasible for large thresholds. This occurs for most of the sample time series of both
example distributions for the three highest choices of thresholds. In either case, the
sampling error is larger if the shape parameter ξ is estimated instead of assumed zero
similar to the block maxima method in Figure 7.11.

Example 7.30: The Pareto distribution is in the Frechét domain of attraction (Tab. 7.2),
so that a Gumbel estimation is not reasonable. The relation between thresholds u and
mean excesses mu is linear by equation (G.5). Figure 7.15 emphasizes that for large
thresholds the linearity of the mean residual life plot is violated. This effect stems from
the large variance of the sample mean (G.1) of the excesses due to the large variance of
the samples compared to their mean value.
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Fig. 7.15 Mean residual life plot (left) and POT estimate of the 100-year return level q100

(right) for 100 time series of length N = 36,500 of iid samples of a Pareto Par(1,5)
distribution. The chosen threshold positions are 20 equally spaced values from the 95%
quantile (≈ 1.58) up to the 100-year return level q100 ≈ 8.17. For thresholds above about
u = 5 excesses very likely do not exist in the times series, so that no estimate is possible.

The Examples 7.29 and 7.30 visualize the strengths and weaknesses of the POT
approach. Like the block maxima approach the appropriateness of the estimates of
return levels by the POT method depend on the quality of the approximation (7.10) in
the extremal types theorem Theorem 7.3. In case of slow convergence for a cdf in the
Gumbel domain of attraction, penultimate approximations might improve the estimate
under the cost of an increased variance. The uncertainty further stems from the choice
of the threshold. Example 7.30 exemplifies for Pareto distributed samples that higher
uncertainy in this choice might be balanced out by a fast convergence (7.10) (cp. Ex. 7.17)
with accurate estimates of return levels despite lower certainty in the threshold.

Dependencies in the data are capable of introducing further uncertainty into the
estimation of return levels of extremes. Section 7.4.4 summarizes the implications for
statistical inference by EVT for stationary processes introduced in Section 7.2.

7.4.4. Statistical inference for stationary processes

Theorem 7.9 implies that for stationary processes satisfying the condition D(un) the
limit maxima distribution is an EVD similar to the iid setting. The strength of the
dependence among the samples of a stationary time series influences the specific shape
of the limit GEV distribution. Theorem 7.10 describes the relation between these two
limit distributions by using the extremal index θ to power-transform one into the other.
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7.4. Statistical inference by extreme value theory

Due to the max-stability of the EVDs, the two distributions obey to the same extremal
type just with possibly different location, scale and shape parameters. Estimation of
these GEV parameters by ML-adjustment to empirical block maxima thus captures both
settings of independence and dependence, so that the same statistical procedure like
for iid data is applicable.

The presence of dependencies in time series is capable of influencing both the specific
parameters of the limit GEV distribution and the rate of the convergence in the gen-
eralized extremal types theorem Theorem 7.10. An extremal index θ = 1 implies that
asymptotically the statistics of extremes equal the behavior of extremes of the associ-
ated iid process and result in the same limit GEV distribution as the block size increases
to infinity. In practical terms with finite block sizes, however, the dependencies in the
data possibly highly influence the statistics of extremes [37, p. 97]. Rust [157] provides a
numerical study on the effect of LRC on the statistical inference by EVT. Example 7.31
visualizes such effects for different ARFIMA(0, d,0) processes. The applicability of
the POT approach to stationary processes bases on the above reasoning for the block
maxima approach by Theorem 7.28 in the asymptotic limit of large thresholds. For finite
thresholds, in particular, in case of extremal indices θ > 1, clustering of extremes [29]
increases the statistical uncertainty of GPD estimates.

For Gaussian LRC processes with extremal index θ = 1 the slow logarithmic rate of
convergence nonetheless dominates the error (7.75) when approaching the limit Gumbel
distribution, so that the impact of the correlations on extreme value statistics for AR-
FIMA(0, d,0) becomes visually apparent only for strong LRC with parameters d ≥ 0.3

in Figure 7.16.

Example 7.31: Figure 7.16 shows GEV and Gumbel estimates of the 100-year return
level of standard Gaussian ARFIMA(0, d,0) time series for different LRC parameters d.
Note that the value d = 0 reproduces Figure 7.11 (left panel). On average, the full GEV
estimate excels the Gumbel estimate with the cost of larger confidence intervals. The
appropriateness of the Gumbel distribution is still dominated by the slow logarithmic
convergence of the normed maxima distribution for Gaussian data, so that the penul-
timate approximation by a GEV distribution overcomes better the impacts of slow
convergence in general and of power-law decaying autocorrelations for ARFIMA time
series. Remarkably, for a low number of annual maxima involved into the estimation the
increased sampling error improves the Gumbel estimate by actually underestimating
the 100-year return level of the limit Gumbel distribution.
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Fig. 7.16 GEV and Gumbel estimates of the 100-year return level Q100 ≈ 4.03 of ARFI-
MA(0, d,0) time series for different LRC parameters d and different numbers of annual
maxima included. The estimate Q̄100 depicts the mean of the estimates of 100 sample
time series visualized by the box plots. The estimate Q̄100 depicts the mean of the
estimates of 100 sample time series visualized by the box plots. The boxes show their
median and the 25% and 75% quantiles, the whiskers extend to the adjacent value each.
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8. Extreme value theory for
meta-Gaussian processes

Aiming at an application to precipiation measurements, we consider EVT for meta-
Gaussian LRC processes Yt = g(Xt) with power-law decaying acfs and generated by a
strictly monotonic L2 transformation g (cp. Sect. 3.1). On the positive real line the tGp
transformation of ARFIMA processes introduced in Section 6.1.3 for the modeling of
precipitation time series satisfies these conditions in Example 8.3. The transforma-
tion F−1 ○ Φ typically used for inverse sampling of Gaussian processes (cp. Sect. 1.1
and Chap. 3) is strictly monotonic for most frequently desired prescribed marginal
distributions with cdf F as well and applied in Example 8.2 and Example 8.4. Let

M̃n ∶= max{X1, . . . ,Xn} and Mn ∶= max{Y1, . . . , Yn} (8.1)

denote the maximum of a window or block of size n ∈ N of an underlying Gaussian
process Xt and the transformed process Yt with marginal cdf F , respectively. The
monotonicity of the transformation g preserves the ordering of the members of the
process, so that we have

P(M̃n ≤ x) = P(Mn ≤ g(x)) (8.2)

for all x ∈ R with F (x) in the domain of the target cdf F . For the tGp distribution we con-
sider the cdf (6.4) for values x ≥ 0. Besides the Gumbel class of the underlying Gaussian,
the marginal distribution generated by the transformation might belong to any of the
three types of EVDs, which can be determined by the von-Mises conditions (cp. Tab. F.1).

Equation (8.2) directly implies the validity of the conditions D(g(un)) and D′(g(un))
for meta-Gaussian processes if the original Gaussian process satisfies the conditionsD(un)
and D′(un) for a series of thresholds un. Mind that memoryless transformations
decrease or at most keep the strength of correlations by Lemma 3.6. The validity of the
generalized extremal types theorem Theorem 7.9 for meta-Gaussian processes requires
thresholds g(un) of affine linear form, which might be a challenging task. Section 8.1
establishes that under certain conditions on the transformation g a Taylor expansion of the
transformed thresholds g(un) allows for deducing affine linear thresholds and convergence
to the Gumbel limit based on the thresholds un chosen for the Gaussian process.

Section 8.2 deals with the rate of the convergence of the normed maxima distribution
to its limit EVD for meta-Gaussian processes. Applying these observations, Section 8.3
provides an outlook about effective block sizes for EVT.

175



8. Extreme value theory for meta-Gaussian processes

8.1. Norming constants

By Theorem 7.10 norming constants valid for maxima of its associated iid process are
valid as well for maxima of a stationary process if the condition D(un) with affine linear
thresholds un is satisfied. Hence, a differentiation of the dependence structure is not
necessary for deriving norming constants for meta-Gaussian processes. For the rate of
the convergence (7.27) both the dependencies in the underlying Gaussian processes and
the transformation are crucial and subject of Section 8.2.

Let αn, βn denote norming constants for the standard Gaussian distribution implying
convergence of the normed maxima of standard Gaussian samples to their limit Gumbel
distribution as for example given in Table 7.3. For the sake of simplicity, deriving norming
constants for meta-Gaussian processes, we use the constants defined by equations (7.48)
with αn = βn for all block sizes n ∈ N. The methodology below remains analogously valid
for alternative choices of norming constants only with more complex calculations.

Using the notion (8.1) and relation (8.2), in case of strictly monotonic and twice
continuously differentiable transformations g, the convergence P(M̃n ≤ x

αn
+ βn) → Λ(x)

for normed standard Gaussian maxima to the Gumbel cdf Λ as n→∞ implies norming
constants an and bn for the meta-Gaussian process by the Taylor expansion as

P(M̃n ≤
x

αn
+ βn) = P(Mn ≤ g (

x

αn
+ βn))

= P(Mn ≤
x

an
+ bn +Rn) (8.3)

= P(an(Mn − bn) ≤ x + anRn) → Λ(x) as n→∞

with an ∶=
αn

g′(βn)
and bn ∶= g(βn) (8.4)

if anRn ∝ ang
′′(βn) (

x

αn
)

2

∝ g′′(βn)
αng′(βn)

→ 0 as n→∞. (8.5)

The representation of the error Rn used in equation (8.5) deploys the second order
mean-value remainder in the neighborhood of the expansion points βn and is valid
pointwise for all x in the domain of the marginal cdf of the transformed process. Note
that by the estimate (7.65) we have α2

n ∼ 2 lnn, so that 1
αn
→ 0 as n→∞. Firstly, the

derivative g′(βn) determines the behavior of the scaling constant an and, secondly, both
the first and second derivative g′(βn) and g′′(βn) decide about the convergence (8.3).

For affine linear transformations σX + ν with a standard deviation σ ∈ R>0 and a
mean ν ∈ R of standard Gaussian variates X equations (8.4) directly imply an = αn

σ

and bn = σβn + ν. The Examples 8.1 to 8.4 study deriving norming constants for inverse
sampling of standard Gaussian variates to the exponential and uniform distribution and
transformation to the lognormal and tGp distribution, respectively.
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Example 8.1 (Norming constants for the lognormal distribution): Using the trans-
formation g(x) = ex with g′(x) = ex, the Taylor approach (8.4) gives the norming
constants [101, Ex. 1.7.4]

an = βne−βn and bn = eβn . (8.6)

The convergence (8.5) follows directly as g′′(βn)
g′(βn) = 1 and 1

αn
→ 0 as n→∞. Applying a

similar method like for approximating the norming constants (7.48) by equations (7.47)
in Section 7.3.1 gives the norming constants [105]

an =
√

2 lnn

e
√

2 lnn
and bn = e

√
2 lnn (1 − ln (lnn) + ln (4π)

2
√

2 lnn
) , (8.7)

which change the rate of convergence analogously to the Gaussian case (cp. Ex. 8.5).

Example 8.2 (Norming constants for the exponential distribution): Let F (x) = 1−e−x

denote the cdf of the exponential distribution Exp(1) for arguments x ∈ R>0. The
corresponding transformation g for inverse sampling and its derivative read

g(x) = (F −1
1 ○Φ)(x) = − ln (1 −Φ(x)) and g′(x) = φ(x)

1 −Φ(x)
. (8.8)

Plugging in the norming constants αn = βn defined by equations (7.48) into equations (8.8)
and using the asymptotics (7.53) yields

g(βn) = − ln(φ(βn)
βn

(1 +O(1/β2
n))) = − ln( 1

n
+O(1/β2

n)) = lnn +O( 1

nβ2
n

) ,

g′(βn) =
φ(βn)

1 −Φ(βn)
= φ(βn)
φ(βn)
βn

(1 +O(1/β2
n))

= 1
1
βn

+O(1/β3
n)

= βn +O( 1

βn
)

(8.9)

as the sample size n→∞ and the norming constants by equations (8.4) as

an =
βn

βn +O(1/βn)
= 1 +O( 1

β2
n

) → 1 and bn = lnn +O( 1

nβ2
n

) ∼ lnn (8.10)

as the sample size n→∞. Note that these norming constants asymptotically coincide
with those given in Example 7.5. It remains to derive relation (8.5) for concluding
convergence to the Gumbel cdf in equation (8.3). We have

g′′(x) = φ(x)( φ(x)
(1 −Φ(x))2

− x

1 −Φ(x)
) = g′(x)2 − g′(x)x, (8.11)

so that by the asymptotics (8.9) we obtain g′′(βn)
g′(βn) = O( 1

βn
) and thus anRn → 0 as n→∞.
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Example 8.3 (Norming constants for the tGp distribution): For exponents η ∈ R>0

consider the function g(x) = xη for values x ∈ R≥0. Considering nonnegative values only
suffices as the truncation by the tGp transformation (6.2) concentrates the probability
of all negative values at zero. A continuation of the cdf for positive values to zero thus
directly gives the cdf for all nonnegative values. Aiming at tGp distributions for powers
of all possible truncated Gaussian distributions, that might be the results of the model
estimation in Section 6.2, we apply the norming constants α̃n ∶= αn

σ and β̃n ∶= σβn + ν for
a standard deviation σ ∈ R>0 and a shift ν ∈ R using the norming constants αn and βn
defined by equations (7.48). Using g′(x) = ηxη−1, for exponents η ≠ 2 the norming
constants by equations (8.4) read

an =
α̃n

g′(β̃n)
= αn(σβn + ν)

1−η

ση
and bn = g(β̃n) = (σβn + ν)η (8.12)

In case of the power of standard Gaussian variates, the norming constants are an = 1
sβ

2−s
n

and bn = βsn. Hall [68] obtained the same norming constants (8.12) considering the
distribution of the maxima of powers of the absolute value of a standard Gaussian
variate. The convergence (8.5) of the scaled error is valid as g′′(β̃n)

α̃ng′(β̃n)
= O( 1

α̃nβ̃n
) ∼ 1

β2
n
→ 0

as n→∞. Example 8.6 and Section 8.2.1 discuss the rate of convergence (8.3) and the
case of the exponent η = 2.

Example 8.4 (Norming constants for the uniform distribution): Analogously to Exam-
ple 8.2 for inverse sampling let F (x) = x denote the cdf of the uniform distribution U(0, 1)
and consider

g(x) = (F−1 ○Φ)(x) = Φ(x) and g′(x) = φ(x), (8.13)

which by equations (8.4) gives the norming constants

an =
βn

φ(βn)
= n and bn = Φ(βn) → 1 as n→∞. (8.14)

Other than in the Examples 8.1 to 8.3 the scaled error (8.5) does not vanish in case of
inverse sampling for the uniform distribution as g′′(βn)

αng′(βn) = −
βnφ(βn)
βnφ(βn) = 1. Missing conver-

gence to the Gumbel cdf is, however, expected, since the uniform distribution belongs
to Weibull instead of the Gumbel class. Asymptotically, the norming constants 8.14
coincide with those obtained in Example 7.5 nonetheless but the higher order terms in
the Taylor expansion do not cancel out but modify the limit asymptotically.
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8.2. Rate of convergence

The optimal rate of the convergence (7.10) in the extremal types theorem Theo-
rem 7.3 for the normed maxima of iid Gaussian variates is 1

lnn as the block size n
increases (see Thm. 7.19). Under the assumptions of Chapter 8 let g be a transformation
such that condition (8.5) is satisfied and the maxima distribution of the meta-Gaussian
process g(Xt) converges to the Gumbel limit. Let an and bn denote the norming
constants (8.4) obtained by the Taylor expansion in Section 8.1 with

P(Mn ≤
x

an
+ bn) → Λ(x) as n→∞, (8.15)

using the notion (8.1). Inverting the idea (8.2) yields

P(Mn ≤
x

an
+ bn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ (g−1 ( x
an
+ bn))

n
if Xt is iid and

F(X1,...,Xn) (g
−1 ( x

an
+ bn)) if Xt is stationary,

(8.16)

where F(X1,...,Xn) denotes the joint cdf (7.24) of the members X1, . . . ,Xn in a window
of size n ∈ N of the underlying stationary Gaussian process Xt. Section 8.2.1 studies
the rate of the convergence (8.15) for meta-Gaussian iid processes. For stationary
meta-Gaussian processes generated from Gaussian LRC processes Section 8.2.2 deploys
the results obtained for the iid setting for estimating the rate of the convergence (8.15).

8.2.1. Rate of convergence in the classical setting

Using a Taylor expansion of the inverse function g−1 implies that the error (8.5) es-
tablished when defining the norming constants (8.4) serves for estimating an upper
bound of the rate of the convergence (8.15). Let αn = βn = nφ(n) denote the optimal
norming constants for the Gaussian distribution defined by equations (7.48) for samples
sizes n ∈ N. Then, using the derivative (g−1)′(x) = 1

g′(g−1(x)) , the Taylor series for the
inverse function g−1 in the neighborhood of the point bn = g(βn) reads

g−1 ( x
an

+ bn) = g−1(bn) +
(g−1)′(bn)

an
x +Rn = βn +

x

αn
+Rn (8.17)

with

Rn ∝
(g−1)′′(bn)

a2
n

∝ g′′(g−1(bn))
(g′(g−1(bn)))2

⋅ 1

g′(g−1(bn))
⋅ g

′(βn)2

β2
n

= g′′(βn)
g′(βn)β2

n

(8.18)

as the number n of samples increases.
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8. Extreme value theory for meta-Gaussian processes

As the inverse of a strictly monotonically increasing function is strictly increasing itself,
the mean value theorem and using the notion un ∶= x

αn
+ βn ∼ βn as n→∞ implies

∣P(Mn ≤
x

an
+ bn) −Λ(x) ∣

= ∣P(g−1(Mn) ≤ g−1 ( x
an

+ bn)) −Λ(x) ∣ (by (8.2))

≤ ∣P(M̃n ≤ g−1 ( x
an

+ bn)) −P(M̃n ≤
x

αn
+ βn) ∣ + O(1/lnn) (by Thm. 7.19)

≤ ∣P(M̃n ≤ un +Rn) −P(M̃n ≤ un) ∣ + O(1/lnn) (by (8.17))

= ∣Φ (un +Rn)n −Φ (un)n ∣ + O(1/lnn) (by (8.16))

∝ nΦ (un)n−1 φ (un)Rn + O(1/lnn) ∝ βnRn + O(1/lnn)

(8.19)

Note that Φ(un)n → Λ(x) and Φ(un) → 1, so that Φ(un)n−1 → Λ(x) as n→∞. Plugging
in the asymptotics (8.18) into the estimate (8.19) yields the pointwise error (7.40)

∆n(x) = ∣P(Mn ≤
x

an
+ bn) −Λ(x) ∣ = O( g′′(βn)

g′(βn)βn
) + O( 1

lnn
) (8.20)

as the block size n→∞. The asymptotic error (8.20) coincides with the condition (8.5) for
the convergence (8.3) and provides an upper bound for its rate. The above methodology
yields rates of convergence not better than logarithmic. In case of the inverse sampling
to the exponential distribution in Example 8.2, by Example 7.17 the optimal rate of
convergence is linear using the asymptotic norming constants (8.10). The approximations
of these constants by a Taylor series, however, yield the rate βnRn = O( 1

β2
n
) = O( 1

lnn
) only

and keep the logarithmic convergence of the maxima of the original Gaussian process. The
norming constants (8.10) are thus valid but not optimal for the exponential distribution.

Example 8.5 (Rate of convergence for maxima of iid lognormal variates): Example 8.1
shows that using the norming constants (8.6) yields an upper bound of the rate (8.20)
of the convergence (8.15) of 1

βn
∼ 1√

lnn
as n → ∞ by approximation (7.59). Liao and

Peng [105] prove this rate optimal for the ultimate approximation and that the alternative
constants (8.7) give a slower convergence rate of (ln (lnn))2

√
lnn

as the number n of samples
increases, similar to the convergence (7.72) slower than 1

lnn for maxima of iid Gaussian
samples. The penultimate approximation of the maxima of lognormal variates is of the
faster but still slow order 1

(lnn)3/2 [35]. The lognormal process is a meta-Gaussian process
with slower rates of convergence than for maxima of the underlying Gaussian iid process
in both ultimate and penultimate approximation.
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8.2. Rate of convergence

Example 8.6 (Rate of convergence for maxima of tGp variates): Example 8.3 derives
that using the norming constants (8.12), the distribution of the maxima of iid tGp
variates converges to the Gumbel limit at rate 1

β2
n
∼ 1

lnn as n → ∞ by estimate (7.65).
For variates X ∼ N(0,1), in an auxiliary calculation Hall [68, Eq. (11)] calculates the
optimality of these constants and this rate for maxima of variates Xη

+ aiming at the rate
of the convergence for maxima of variates ∣X ∣η.

Figure 8.1 shows the pointwise error (8.20) at the position x = 1 of tGp distributions
with shift and scale parameters ν = 0 and σ = 1, respectively, and with different
exponents η ≠ 2. Note that the exponent η = 1 reproduces Figure 7.6 for the position x = 1

instead of x = 0. The values ∆n(x) are directly calculated by equation (8.16) without
any approximation of the inverse function g−1(x) = x1/η for values x ∈ R≥0 or of the
norming constants. The linear shape of the inverse error 1

∆n(x) in semi-logarithmic
scaling confirms the theoretical result of 1

lnn convergence.
Analogously to the Gaussian distribution (cp. Lem. 7.23), Hall [68] derives the optimal

rate of 1
(lnn)2 for the penultimate approximation of the distribution for the maximum

of tGp variates. The optimal rates of the ultimate and penultimate approximation for
maxima of tGp variates coincide with those for the underlying Gaussian variates. In case
of the exponent η = 2 [35], the rates of the ulimate and penultimate approximation are
faster with 1

(lnn)2 and 1
(lnn)3 . Optimal norming constants for approaching the Gumbel

limit are an = 2(β2
n−1)
β2
n

and bn = β2
n − 2

β2
n
[68]. Section 9.3 deals with the effect that

distinguishes the maxima of tGp variates with an exponent η = 2 from the others
with η ≠ 2.

8.2.2. Rate of convergence for stationary meta-Gaussian processes

Let Yt = g(Xt) be a meta-Gaussian process with marginal cdf FY and a transformation g
satisfying the assumptions of Chapter 8. The pointwise and global error (7.74) of the
convergence (8.15) splits up by the estimate (7.75) into the error of the iid setting and
the deviation ∆′′′

n between the maxima distribution of the dependent process Yt and its
associated independent sequence Y ∗

t (cp. Sect. 7.2.1).
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Fig. 8.1 Rate of decay of the pointwise error ∆n(x) (7.40) at the position x = 1 as
the number n of iid tGp samples with shift parameter ν = 0, scale parameter σ = 1
and different exponents η increases. For the sake of perceptibility the graph depicts
the transformed error 1

∆n(x) . The slopes estimated by linear regression are 2.7,2.9,3.3

and 4.3 for the exponents η ∈ {0.5,1,1.5,2.5} (from bottom to top).

Using the notions (8.1) and un(x) ∶= x
an

+ bn for a value x ∈ R in the support of
the cdf FY , by relation (8.2) the monotonicity of the inverse transformation g−1 preserves
the probabilities of both the maxima Mn of the process Yt and the maxima M∗

n of the
associated independent sequence Y ∗

t when reconstructing the maxima M̃n and M̃∗
n of the

underlying Gaussian LRC and iid process, respectively. Then the error ∆′′′
n (x) satisfies

∆′′′
n (x) = ∣P(Mn ≤ un) − FY (un)n ∣

= ∣P(Mn ≤ un) −P(M∗
n ≤ un) ∣

= ∣P(M̃n ≤ g−1(un)) −P(M̃∗
n ≤ g−1(un)) ∣

= ∣P(M̃n ≤ g−1(un)) −Φ(g−1(un))n ∣ ∝ n−c1(lnn)−c2 (n→∞)

(8.21)

for some constants c1, c2 ∈ R>0 by Lemma 7.22. Note that for ARFIMA processes Xt

the power-law decay (7.77) of the deviation (7.76) in Lemma 7.22 is valid whatever
the thresholds g−1(un) for fixed values x [101, Thm. 4.6.3]. The norming constants
for meta-Gaussian processes obtained by the Taylor approach in Section 8.1 are not
necessarily optimal. Equation (8.21), however, remains valid for alternative norming
constants as well. The rate of the convergence (8.15) is dominated by the slower of the
two influencing rates, the one of the iid setting and ∆′′′

n (7.73) for the stationary setting.
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8.2. Rate of convergence

The Examples 8.7, 8.8 and 8.9 consider the rates of the decay of the error ∆n(x) for
the meta-Gaussian processes obtained by transforming an ARFIMA process to an LRC
process with tGp, lognormal or exponential marginal distribution. Given appropriate
norming constants and a position x, the values ∆n(x) are directly calculated10 by the
joint cdf in equation (8.16) without any approximation of the inverse function g−1 or of
the norming constants.

Example 8.7 (Rate of convergence for tGp-transformed ARFIMA processes): Fig-
ure 8.2 shows the asymptotic 1

lnn rate of convergence for tGp-transformed ARFI-
MA(0, d,0) processes dominated by the error of the iid setting (cp. Ex. 8.3) after
a crossover from the polynomial decay (8.21) using the norming constants an and bn
given by equations (8.12).

As a remark, equation (8.21) remains valid for meta-Gaussian LRC processes with
a Type-II or Type-III marginal distribution. Inverse sampling is capable of generating any
marginal distribution by transforming a stationary Gaussion LRC process. An example
for this is the uniform distribution discussed in Example 8.4 with linear convergence
of the maxima distribution in the iid setting like for the exponential distribution but
with Type-III limit.
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Fig. 8.2 Rate of decay of the pointwise error ∆n(x) (7.74) at the position x = 1 as
the number n of tGp-transformed ARFIMA(0, d,0) samples with shift parameter ν = 0,
scale parameter σ = 1 and exponent η = 2.5 increases. For the sake of perceptibility
the transformed error 1

∆n(x) is depicted. The slopes estimated by linear regression
are 4.1,4.5,4.9 and 3.4 for LRC parameters d ∈ {0,0.1,0.2,0.3} (from top to bottom).

10done by the minimax exponentially tilted (MET) estimator in MATLAB software package mvncdf [25]
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8. Extreme value theory for meta-Gaussian processes

Example 8.8 (Rate of convergence for ARFIMA processes transformed to lognormal):
The rate of the convergence for an iid lognormal process is 1√

lnn
and dominates the rate

of the error 1
∆n(x) for exponentially-transformed ARFIMA processes. Figure 8.3 (right

panel) shows the error in double-logarithmic scaling for block sizes up to n = 5000. In this
range, the power-law decay still dominates the asymptotically slower root-logarithmic
decay. Visualizing the rate 1√

lnn
by depicting 1

∆n(x)2 with logarithmic x-axis requires
extensive numerical effort already for the iid process. Note that compared to the error
in the left panel of Figure 8.3 for a meta-Gaussian process with exponential marginal
distribution from Example 8.9 the decay for the iid process with LRC parameter d = 0 is
qualitatively slower than a power-law.

Example 8.9 (Rate of convergence for ARFIMA processes transformed to exponential):
The optimal rate of the convergence for the maxima of iid exponentially distributed
variates is linear for the asymptotic norming constants given in Example 7.17. Using
these norming constants in equation (8.21) for an LRC process with exponential marginal
distribution obtained by inverse sampling of an ARFIMA(0, d,0) process implies the
power-law decay of the error (8.15) depicted in Figure 8.3 (left panel). In this case,
the power-law decay of the error ∆′′′

n dominates the linear decay of the iid setting.
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Fig. 8.3 Rate of decay of the pointwise error ∆n(x) (7.40) at the position x = 1 (left)
and x = 0.5 (right) as the number n of transformed standard Gaussian ARFIMA samples
with exponential (left) and lognormal (right) marginal distribution increases for LRC
parameters d ∈ {0,0.1,0.2,0.3} (left) and d ∈ {0,0.1,0.2} (right) from bottom to top.
The corresponding slopes estimated by linear regression are −1,−0.5,−0.4 and −0.2 (left).
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8.3. Closing remarks

The transformation of Gaussian processes is capable of changing both the extremal
type of the marginal distribution and the asymptotic rate of the convergence in the
extremal types theorem Theorem 7.3 for iid and in the generalized extremal types
theorem Theorem 7.9 for stationary processes, respectively. The meta-Gaussian processes
considered in the Examples 8.7, 8.8 and 8.9 obey an equally fast, slower and faster
asymptotic rate of convergence. Due to the max-stability of the limit EVDs, the
statistical application of EVT by adjusting an EVD to an empirical maxima distribution
implicitly reflects these rates and the type of the limit EVD by the estimated GEV
parameters irrespective of knowledge about precise optimal norming constants or the
extremal index. From a theoretical perspective, a transformation of a Gaussian process
to a meta-Gaussian process with a faster convergence of its maxima distribution improves
the estimation of return levels (cp. Sect. 7.4.1). In practical applications, however, such
an approach is meaningless as elaborated in Section 9.2.

8.3. Closing remarks

The presence of dependencies in stochastic processes affects statistical inference. Similar
to the idea of an effective sample size based on the sample mean in Chapter 5, Section 8.3.1
provides an outlook on an effective block size in the EVT for stationary proceses. The
effective sample size has implications on the large deviation theory of the sample
mean (cp. Sect. 5.3.3). Analogously, an effective block size serves for the generalization
of the large devation theory for extreme events outlined in Section 8.3.2.

8.3.1. Effective block size of stationary processes

The effective sample size established in Chapter 5 provides a quantitative description of
the impact of correlations on the statistics of the sample mean. The Hermite approach
yields both asymptotic and finite sample effective sample sizes for meta-Gaussian
processes. The generalized extreme value theorem Theorem 7.9 raises the question for
an effective block size for stationary processes compared to their associated iid sequence
both as an asymptotic and a finite-block-size property.
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8. Extreme value theory for meta-Gaussian processes

Comparing the variance of the sample mean for a stationary process to the one of its
associated iid sequence, the effective sample size according to the sample mean bases on
the (finite-time) decorrelation time (5.6) and (7.23), respectively. A comparison of the
global error ∆n (7.75) between the limit EVD and the distribution of the normed maxima
provides an approach to quantifying statistical uncertainty in EVT by effective block sizes
for stationary processes. Theorem 7.10 states that for the maxima Mn of a stationary
process and the maxima M∗

n of its associated iid sequence the same norming constants
are valid. If the process obeys unit extremal index, then comparing the error ∆n provides
an approach to quantifying statistical uncertainty in EVT by effective block sizes for
stationary processes similar to the effective sample size in Section 5.1.4. The setting of
an extremal index requires a more detailed consideration as discussed below.

Let a stationary process obey unit extremal index and let an and bn be norming
constants such that the corresponding normed maxima approach an EVD with cdf G.
For meta-Gaussian LRC processes under mild assumptions Section 8.2 derives the two
convergence rates in Theorem 7.9 by a Taylor methodology. Denote by R and R∗ the
decay rates of the errors

∣P(M∗
n ≤ un) −G(x) ∣ ∝ R∗

n

∣P(Mn ≤ un) −G(x) ∣ ∝ Rn
(8.22)

as the number n of samples increases to infinity for thresholds un = x
an
+ bn. Comparing

the asymptotic behavior of the two rates (8.22) yields an asymptotic description of an
effective block size neff by solving

c1R∗
neff

!= c2Rn, (8.23)

where the constants c1, c2 ∈ R>0 denote the maximal prefactors in the proportionali-
ties (8.22) over all values x ∈ R. Mind that this maximum exists as pointwise convergence
implies uniform convergence in case of continuous limit functions (cp. Appx. C).

Example 8.10: The lognormal and tGp transformation preserve the asymptotic rates
of the convergence to the Gumbel limit from iid and LRC lognormal or tGp vari-
ates (cp. Exs. 8.8 and 8.7). Asymptotically by Rn = R∗

n = 1
lnn (and 1√

lnn
, respectively)

the corresponding effective block sizes are thus of order

neff ∝ n and neff ∝ n, (8.24)
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8.3. Closing remarks

respectively, as the block size n increases. For the meta-Gaussian LRC process with
exponential marginal distribution (cp. Ex. 8.9) both rates are power-laws but with
possibly different exponents as R∗

n = 1
n and Rn = 1

nκ for some exponent κ ∈ R>0. The
asymptotic effective sample size is thus of order

neff ∝ nκ. (8.25)

The precise calculation of the prefactors in the proportionalities (8.22) is delicate and
requires extensive estimations as for example elaborated for the Gaussian distribution
itself in [67], the lognormal transformation in [105] and powers of the absolute value of a
Gaussian in [68]. Such estimates depend on the norming constants and are a matter of
current research. Using the norming constants (7.52) based on the Lambert W function
recently led to an improved estimate of the uniform error for Gaussian variates [187].
Mind that the logarithmic rate is optimal for maxima of Gaussian variates and cannot
be improved further. Using such results for quantifying asymptotic effective block sizes
precisely allows for their practical interpretation.

In case of an extremal index other than one (cp. Sect. 7.2), the limit EVDs Gθ and G
for the stationary process itself and its associated iid sequence, respectively, coincide in
types but differ in their location for Type-I and additionally in their scale for Type-II
and -III EVDs. Mind that by the max-stability (7.8) the power Gθ of a GEV(µ,σ, ξ)
cdf G is a cdf of an EVD of the same type with Gθ ∼ GEV (µ − σ

ξ (1 − θ
−ξ), σθξ, ξ) for

shape parameters ξ ≠ 0 and Gθ ∼ GEV (µ + σ ln θ, σ, 0) if ξ = 0, respectively. Due to
different limit EVDs of the normed maxima of the stationary process and its associated iid
sequence, defining an effective block size is ambiguous in case of an extremal index
other than unity. The deviations ∆n indeed depend on the choice of the norming
constants, which determine how the normed maxima approach their limit EVD. Statistical
uncertainty is then not only subject to the rate of the convergence but also to the different
ways of how the normed maxima evolve to their asymptotic location. Given norming
constants an, bn valid for the associated iid sequence, a reasonable assessment of effective
block sizes might be a comparison of the errors

∣P(M∗
n ≤ x

an
+ bn) −G(x) ∣ and ∣P(Mn ≤

x

ãn
+ b̃n) −G(x) ∣ (8.26)

with norming constants ãn, b̃n chosen for compensating the shift. Mind that the normed
maxima of the stationary process satisfy an(Mn − bn) → Gθ as the block size n → ∞.
If the limit EVD is the cdf G = Λ of the standard Gumbel distribution, then ãn = an
and b̃n = bn + ln θ

an
satisfy equation (8.26). Example 8.11 depicts the two different choices

of norming constants for an example process.
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8. Extreme value theory for meta-Gaussian processes

Example 8.11: For the sake of perceptibility consider an alternative of Example 7.11
with extremal index θ = 1

5 . Define the process Xi ∶= {Yi, Yi+1, . . . , Yi+4} with iid standard
Gaussian variates (Yi)i∈N with cdf F = Φ. Then the marginal cdf of the process (Xi)i∈N
reads Φ5. Analogously to equation (7.34) and (7.35), the distributions of the maximaMn

and M∗
n of the process Xi and its associated iid sequence, respectively, satisfy

P(Mn ≤ ũn) = Φ(ũn)nΦ(ũn) → Λ(x)

P(M∗
n ≤ ũn) = Φ(ũn)5n → Λ(x)5

as n→∞ (8.27)

for normed thresholds ũn = x
αn
+βn with norming constants αn, βn for example as defined

by equations (7.48). The norming constants αn, βn for the cdf Φ yield the norming
constants an = αn and bn = ln(1/θ)

αn
+ βn for the cdf Φ

1/θ, such that

P(M∗
n ≤ un) → Λ(x) and P(Mn ≤ un) → Λ(x − ln θ) as n→∞ (8.28)

for normed thresholds un = x
an

+ bn. Figure 8.4 shows the empirical and theoretical
distributions (8.28) for block sizes n = 365 both for the Gaussian distribution and
analagously for the exponential distribution with F (x) = 1 − e−x.
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an = bn =
ln 1/θ
αn

+ βn each
with αn, βn by (7.48) with αn = 1, βn = lnn by Ex. 7.5

ãn, b̃n and ãn,θ, b̃n,θ by method in Sect. 9.3.1

Fig. 8.4 Distribution of the maximumMn for the processXi defined in Example 8.11 and
of the maximum M∗

n of its associated iid sequence for the marginal cdf of the underlying
process Yi chosen as standard Gaussian (left) and exponentially distributed (right).
The colored pdfs depict the distributions (8.28) of the normed maxima for block
sizes n ∈ {100,365,1,000} (left) and n ∈ {10,20,365} (right). The histrograms show
the empirical distribution for n = 365 and 1,000 sample block maxima of the pro-
cess Xi (left bulk each) and its associated iid sequence (right bulk each). The norming
constants an, bn for the cdfs F 1/θ follow directly from the constants αn, βn known for
the cdf F (top row) and are alternatively chosen by the method in Section 9.3.1 com-
pensating the shift by ln θ. Note that by the 1

n -convergence for maxima of exponentially
distributed variates the pdfs of the normed maxima for the finite block sizes n are already
visually indistinguishably close to the limit Gumbel pdf.
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8. Extreme value theory for meta-Gaussian processes

In case of an extremal index other than unity, the conception of an effective block
size by the errors ∆n in Theorem 7.10 is ambiguous in the following sense. Other than
for the effective sample size, where the sample mean calculates equally for both the
stationary process and its associated iid sequence, the distributions of the maxima Mn

and M∗
n approach their limit GEV shape in a different manner and depending on the

chosen norming constants. Example 8.11 visualizes that even though the rates of the
convergences (8.28) and thus the effective and chosen block size qualitatively coincide
asymptotically, the limit EVD and the error ∆n when approaching it are quantitatively
different. Thus, even when corrected for the location shifted by ln θ for a Type-I
and −1

ξ (1 − θ
−ξ) for a Type-II or -III limit a precise definition of an effective block size

with an intuitive, quantitative interpretation analogously to the effective sample size
remains subtle and an open question.

In case of a unit extremal index asymptotically the distributions of the maxima of
the stationary process and those of its associated iid sequence normed by the same
norming constants coincide. As the extremal index is an asymptotic property itself,
there are processes with unit extremal index but dependencies among individual samples
might still affect the finite-block-size statistics. The comparison of the errors ∆n then
yields a quantitative description of an effective block size as both an asymptotic and
finite-block-size property. As an example, Gaussian processes that satisfy Berman’s
condition (7.39) obey unit extremal index. Strong SRC, nonetheless, yield finite-block-
size return levels significantly different from the infinite-block-size limit (cp. Fig. 9.2).
Moloney et al. [131] reason an extremal index for finite block sizes by the mean cluster
size and infere finite-block-size properties.

Adjusting a GEV distribution to empirical maxima captures both asymptotic and
finite-block-size extremal index effects in the optimal model parameters estimated by ML.
Section 9.2 deals with how incorporating outside knowledge about the dependence
structure of the process helps interpret the results obtained from applying EVT. The
object of Section 9.3 is establishing a method for the estimation of return levels by an
appropriate choice of norming constants.
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8.3.2. Large deviations in extreme value theory

Section 5.3.3 links the effective sample size of a time series measured by the variance of
its sample mean to the large deviation theory of the sample mean. Section 8.3.1 allows
for applying the idea of an effective block size to the large deviation theory for classical
extreme value theory as a generalization to the maxima of stationary processes. For
a recap of [182] let Mn denote the maximum of n ∈ N iid samples with a cdf in the
Gumbel domain of attraction and norming constants an, bn →∞ such that an(Mn − bn)
convergences in distribution to a Gumbel variate. Then asymptotically the mean of
the maximum Mn satisfies E[Mn] ∼ µΛ

an
+ bn ∼ bn as the block size n → ∞, where µΛ

denotes the mean of the Gumbel distribution. Similar to large deviations of the sample
mean in equation (5.50), classical large deviations for EVT aims at additive deviations
of the form

LDPλ(N,ε) ∶= P(Mn −E[Mn] > ε )

∼ P(Mn > bn + ε ) ∼ 1 − e−e−ε = O(e−ε)
(8.29)

as n→∞. The deviation LDPλ(N,ε) hence measures deviations described by the limit
Gumbel distribution itself with O(e−ε) = O(1) dependency on the considered deviation ε.
Aiming at a rate function I(ε) analogously to the rate function (5.51) for large deviations
of the sample mean, an alternative measure of large deviations in EVT are multiplicative
large deviations of the form

LDPΛ(n, ε) ∶= P(Mn > bnε ) . (8.30)

For large deviations LDPΛ(n, ε) of the maximum of exponential and Gaussian samples
Vivo [182] derives the rate functions

Exp(1) P(Mn > bnε) ∼ e−(lnn)(ε−1) (n, ε→∞) (8.31)

N(0,1) P(Mn > bnε) ∼ e−(lnn)(ε
2−1) (n, ε→∞). (8.32)

The rate functions (8.31) and (8.32) obtained by multiplicative deviations (8.30) carry
more information than the additive large deviations (8.29) as they not only include the
limit Gumbel shape of the maxima distribution but also the marginal distribution of the
individual samples.

For meta-Gaussian iid processes with appropriate norming constants an, bn →∞ the
asymptotic behavior of the mean of E[Mn] ∼ bn potentially differs from the original
Gaussian setting yielding non-standard large deviation results of the form

LDPΛ(n, ε) ∝ e−(lnn) I(ε) (n, ε→∞). (8.33)
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8. Extreme value theory for meta-Gaussian processes

Note that for the exponential and Gaussian marginal distribution with corresponding
centering constants bn each the mean of the maximum Mn in leading order grows at
rate bn ∼ lnn and bn ∼

√
2 lnn, respectively, as the block size n→∞ with corresponding

large deviations

Exp(1) P(Mn > bnε) ∼ e−bn(ε−1) (n, ε→∞) (8.34)

N(0,1) P(Mn > bnε) ∼ e−
b2n
2

(ε2−1) (n, ε→∞). (8.35)

The n-dependence in the asymptotic large deviation (8.33) origins in the behavior of
the mean E[Mn] rather than in different rates of convergence to the common Gumbel
limit. For stationary processes and, in particular, meta-Gaussian processes the finite and
asymptotic effective block sizes provide access to transfer the results (8.34) and (8.35)
by reformulating the expression (8.33) using the effective block size neff similar to
Section 5.3.3 for large deviations of the sample mean.
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9. Improved estimation of return levels
by incorporating outside knowledge

The advantage of EVT lies in the universality of the generalized extremal types theorem
Theorem 7.9 for the estimation of return levels (cp. Sect. 7.4). Under mild conditions
the limit distribution of the maxima of stationary processes is an EVD irrespective of
the process’ marginal distribution and its specific dependence structure (cp. Sect. 7.2).
Even if empirical data provides (annual) maximum measurements only, an application
of EVT by adjusting an EVD to the empirical maxima distribution is possible. The
presence of further knowledge on the stochastic properties of the quantity of interest, for
example, in form of measurements on higher (temporal) resolution such as daily records,
provides a more detailed interpretation of the results obtained by EVT. Our focus lies
on stationary processes that satisfy the condition D(un). Additional data on higher
resolution allows for an assessment of the stationarity of the process that generated
recorded extremes and thus of the applicability of the EVT for stationary processes.
Section 6.1.1 elaborates such an analysis for daily precipitation amounts.

Remark 9.1: There are generalizations of EVT for certain nonstationary Gaussian
processes with additive trends on bounded growth rates [101, Sect. 6.1]. For Gaussian
processes with strong dependence due to an acf decaying slower than Berman’s con-
dition (7.39), however, the asymptotic limit of properly normed maxima obey even
distributions other than EVDs [101, Sect. 6.4 - 6.6] (cp. Rem. 7.16).

Many distributions of high practical relevance such as the Gaussian oder exponential
distribution are in the Gumbel domain of attraction. Furthermore, the discription of
these Type-I EVDs requires one parameter less than for Type-II or -III distributions.
Using a Gumbel estimation of the distribution of extremes is thus a popular approach
because of its higher parsimony compared to a full GEV estimation [96]. As an EVD
captures the statistical properties of extremes only in the asymptotic limit of infinite
block sizes statistical uncertainty applying EVT has at least three origins

(i) Domain of attraction: The choice of the Gumbel distribution is possibly inappro-
priate if the marginal distribution is in the Type-II or -III domain of attraction.

(ii) Rate of convergence: The error of the empirical to the theoretical limit EVD is
possibly large for finite block sizes.

(iii) Extremal index: The limit EVDs of a stationary process and of its associated iid
sequence possibly differ due to an extremal index other than unity.
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9. Improved estimation of return levels by incorporating outside knowledge

The availability of additional data on the marginal distribution and the dependence
structure of the process underlying recorded extremes allows for an assessment of the
above sources of uncertainty. Daily records yield an empirical marginal distribution
for a verification of its domain of attraction for handling item (i). Possible reasons for
slow rates of convergence in item (ii) are the shape of the marginal distribution itself,
like in case of the Gaussian (see Sect. 7.3), lognormal (see Ex. 8.5) or tGp (see Ex. 8.6)
distribution, or long-term dependencies among individual samples (cp. Ex. 8.9 for an LRC
process with exponential marginal). Note that the slow logarithmic convergence of the iid
setting dominates also the convergence of the maxima distribution for Gaussian and
certain meta-Gaussian processes with power-law decaying acf (cp. Sect. 8.2.2). By
Theorem 7.10 the limit EVD of a stationary process with unit extremal index and of its
associated iid sequence asymptotically coincide. In case of an extremal index other than
unity in item (iii), for example due to strong short-range dependencies among individual
records, the asymptotic or finite-block-size distribution of extremes differs in location
and scale from the iid setting (cp. Ex. 8.11).

A comparison of return levels obtained from the marginal distribution helps interpret
return levels deduced by EVT for treating items (i) and (iii). In any case, a comparison
of return levels obtained from a Gumbel and from a full GEV estimation (cp. Sect. 7.4)
is a reasonable approach to item (ii) as in some cases it is known that the penultimate
approximation by a GEV distribution obeys a faster rate of convergence than the
ultimate approximation by a Gumbel distribution (cp. Sect. 7.3.3). If the two estimates
are close to each other, then the choice of a Gumbel estimate of return levels is likely to
be appropriate and decreases statistical uncertainty.

Section 9.1 discusses different definitions of annual return levels by the marginal and
maximum distribution, respectively. Section 9.2 compares return levels obtained from
the marginal distribution, a Gumbel and a full GEV estimation for synthetic time series
and empirical precipitation data. Section 9.3 establishes an approach to improving the
uncertainty of return level estimates by combining the smaller confidence intervals due a
marginal distribution in the Gumbel domain and the additional information on return
levels given by the marginal distribution for stationary processes with unit extremal
index. The object of Section 9.4 is an outlook on a possible generalization of this
approach to processes with extremal index other than unity and further techniques for
reducing statistical uncertainty in the application of EVT.
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9.1. Definitions of annual return levels

9.1. Definitions of annual return levels

For stationary processes there are at least two possible definitions of annual return levels.
The quantile Qm of the distribution of block maxima with probability 1 − 1

m yields the
return level of extremes with a frequency of 1

m , which occurs once every m ∈ N blocks of
length n ∈ N on average. Alternatively, the quantile qm of the marginal distribution with
probability 1 − 1

nm describes a return level for the individual measurements underlying
the block maxima with frequency 1

nm , that occurs on average once every n ⋅m samples.
The choice of a block size of n = 365 allows for an interpretation of the quantiles Qm
and qm as annual return levels (cp. Sect. 7.4.1).

Let Yt be a stationary process with marginal cdf FY . If the process Yt is an iid
processes, then the two conceptions of return levels base on quantiles of the marginal
distribution by equation (7.2) as

Qm = F−1
Y

⎛
⎝
n

√
1 − 1

m

⎞
⎠

(9.1)

qm = F−1
Y (1 − 1

nm
) (9.2)

and thus coincide as the deviation of the two probabilities describing the two return
levels (9.1) and (9.2) reads

RRRRRRRRRRR

n

√
1 − 1

m
− (1 − 1

mn
)
RRRRRRRRRRR
= 1

2nm2
+O( 1

nm3
) (n,m→∞). (9.3)

For block size n = 365 and a return period of m = 100 annual blocks the error (9.3)
measures about 1.37 ⋅ 10−7. The obtained 100-year return levels Q100 and q100 thus
highly coincide even for heavy-tailed distributions such as the Pareto distribution
with infinite first moment. The 100-year return levels are of particular interest in
applications (cp. Chap. 1).

Properly normed the Gumbel or GEV distribution approximates the maxima dis-
tribution of stationary processes by Theorem 7.9. If the process obeys unit extremal
index such as iid processes, then the same limit distribution describes the maxima of
the process and of its associated iid sequence. In this case, equation (9.1) and corre-
spondingly equation (9.2) provide access to the return level Qm and coincide with the
return level qm up to negligible deviations by equation (9.3). If the process Yt obeys
an extremal index other than unity, however, the two limit EVDs differ in location
and scale, so that the return levels Qm of annual maxima and qm by the marginal
distribution no longer agree. For example, strong short-range dependence shifts the
return levels of annual extremes compared to those of an iid sequence with the same
marginal distribution (cp. Exs. 7.11 and 8.11). In the sense of a finite-block-size extremal
index such effects are also significant for process with asymptotically unit extremal index
but strong SRC (cp. Sect. 8.3.1 and Fig. 9.2).
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9. Improved estimation of return levels by incorporating outside knowledge

Aiming at an application of EVT to risk assessment, the quantiles Qm are crucial for
proper estimation of return levels of annual extremes rather than the quantiles qm as
an extremal index other than unity indicates quantitative differences in the occurrence
of annual extremes.

Remark 9.2: Empirical return levels given by both the empirical marginal and maxima
distributions are limited to return periods of at most the measurement range. Assuming
and adjusting a stochastic model is necessary for the inference of return levels beyond
the empirical horizon in either case (cp. Rem. 7.25).

9.2. Comparison of return level estimates

Section 9.1 provides three different approaches to return levels for stationary processes
in the presence of an empirical marginal distribution for individual measurements.
Comparing estimates for all three quantities together with involving further statistical
properties of the individual samples helps properly infer the return levels Qm of annual
maxima by EVT. The three different estimates are

● the return level Q̄m obtained by a Gumbel estimate,
● the return level Q̄m obtained by a full GEV estimate and
● the return level q̄m estimated by the marginal distribution.

(9.4)

Assume the input empirical data stationary. Otherwise, possible nonstationarities
such as trends or seasonalities are to be removed from the data (cp. Sect. 6.1.1). The
parameters estimated when adjusting an EVD to empirical data implicitly capture all the
aforementioned influences on the statistics of extremes. By resolving the individual effects
the origins of statistical uncertainty described in items (i) to (iii) above imply a step-by-
step procedure to statistical inference for stationary processes by EVT. Coincidences
among the different estimates (9.4) help interpret the validity of return level estimates.

For meta-Gaussian processes with a power-law decaying acf the error ∆′′′
n (7.73) is a

power law as well by Section 8.2. Aiming at improving the estimates of return levels
for extreme precipitation amounts in Section 9.2.2, we focus on such meta-Gaussian
processes for which the rate of the convergence of the maxima distribution is dominated
by the logarithmic rate of their associated iid sequences. This assumption indicates that
a possible deviation of the GEV estimate Q̄m from the estimate q̄m by the marginal
distribution and thus from the return level of annual maxima of the associated iid
sequence is not due to slower convergence for the dependent process in the generalized
extremal types theorem Theorem 7.9 but rather due to a large sampling error for
highly correlated data in general. As a remark, Example 8.9 describes a process with
power-law convergence of its maxima distribution and a faster linear convergence for its
associated iid sequence.

196



9.2. Comparison of return level estimates

Our step-by-step procedure for the comparison of return level estimates reads

(A) Comparison of the return levels Q̄m by a Gumbel and a full GEV estimation:

→ If the two estimates are close to each other, the Gumbel distribution is an
adequate choice and provides smaller confidence intervals.

A discrepancy of the two estimates is possibly due to:

(i) Domain of attraction:
The empirical marginal distribution helps identify whether the Gumbel distri-
bution is an appropriate choice.

(ii) Rate of convergence:
→ If the marginal distribution is known for slow convergence to the Gumbel
limit, a full GEV estimate is to be preferred [35].

(B) Comparison of the return levels Q̄m by a full GEV (or if applicable by (A) a Gumbel)
estimate and q̄m by the marginal distribution:

→ If the two estimates are close to each other and long-range dependencies in the
time series are only weak, then estimate (9.2) is appropriate and possibly provides
smaller confidence intervals11

A discrepancy of the two estimates is possibly due to:

(iii) Extremal index other than unity:
→ The estimate q̄m is inappropriate and the estimate Q̄m approximates best
the return level of annual maxima among the three possibilities (9.4).

In the presence of strong long-range dependence, the empirical cdf might represent
the true statistics of the process only poorly due to sampling errors. Knowledge about
the long term dependence structure of the individual measurements helps interpret
a coincidence of the estimated return levels Q̄m by EVT and q̄m by the marginal
distribution. Under weak long-term dependence such a coincidence supports the validity
of both, whereas strong long-term dependence implies the opposite. An approach to
a validation of the conclusion (B)(iii) is a GEV estimation of the return level Q̄m for
randomly shuffled versions of the original time series. Again sampling errors impede
proper representation of the associated iid sequence already in case of strong short-term
dependence. Section 9.2.1 gives examples for these two effects.

11Confidence intervals for the estimation (9.2) depend on the method for adjusting a model cdf to the
empirical data (cp. Rem. 9.2 and Sect. 9.4).
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9. Improved estimation of return levels by incorporating outside knowledge

In any case, the penultimate approximation by a full GEV estimate provides the most
reliable approach to return levels due to a flexible adjustment to possibly slow convergence
in the extremal types theorem Theorem 7.9 and to a possibly quantitatively different limit
distribution by an extremal index other than unity. Even if the marginal distribution is
in the domain of attraction of the Gumbel distribution, the penultimate approximation
by a GEV distribution possibly exhibits a faster rate of convergence (cp. Exs. 8.7
and 8.8). For some marginal distributions in the domain of attraction of Type-I EVDs
the ultimate approximation by the Gumbel distribution provides an estimate of return
levels with decreased statistical uncertainty (cp. Ex. 8.9). If the convergence to the
Gumbel limit EVD is, however, too slow and the Gumbel distribution does not describe
well the finite-block-size maxima distribution, then these two estimates signficantly differ
as described in comparison (A).

A comparison to the return level q̄m by the marginal distribution aims at reduc-
ing statistical uncertainty by usage of more individual data points. The POT ap-
proach (cp. Sect. 7.4.3) aims in the same direction in Section 9.4. Due to strong
short-term dependence for finite block sizes or even asymptotically, the annual return
level of the marginal distribution not necessarily coincides with the one of the annual
maximum since the return level by the marginal distribution corresponds to the one of
the asscociated iid sequence (cp. Sect. 8.3.1).

Section 9.2.1 visualizes the assessment of return level by comparing the different 100-
year return levels (9.4) for synthetic time series, namely a tGp-transformed ARFI-
MA(0, d, 0) process, a Gaussian AR(1) process (both with unit extremal index) and the
process from Example 8.11 with extremal index 1

5 . Section 9.2.2 applies the comparison
of return levels to empirical data on daily precipitation amounts for the assessment
of 100-year return levels of extreme precipitation events.

9.2.1. Application to synthetic data

The maxima distributions for ARFIMA, in particular, Gaussian AR, and tGp-transformed
ARFIMA processes and their associated iid sequence asymptotically coincide due to unit
extremal index (cp. Sect. 7.3.2 and Sect. 8.2). For finite block sizes, however, prominent
clustering of extremes might occur due to strong LRC [29] or SRC [131] and significantly
shift the location of the annual return level Qm compared to return level qm by the
marginal distribution. The process Xi = max{Yi, Yi+1, . . . , Yi+4} with an underlying iid
process Yi ∼ Exp(1) considered in Example 8.11 obeys an extremal index of θ = 1

5 , so
that asymptotically the maxima of the process Xi are shifted by ln θ compared to those
of its associated iid sequence.

The Figures 7.16, 9.1, 9.2 and 9.3 show comparisons of the different 100-year return
levels Q100 and q100 (9.4) for these four example processes. All marginal distributions
belong to the Gumbel domain of attraction but with different rate of convergence.
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9.2. Comparison of return level estimates

(A) For the AR(1), ARFIMA(0, d, 0) and tGp-transformed ARFIMA(0, d, 0) processes the
penultimate approximation of their maxima distribution is of the low order 1

lnn as
the block size n increases. All the Figures 7.16, 9.1 and 9.2 visualize a significant
discrepancy between the two estimates. The penultimate approximation converges at
the faster rate 1

(lnn)2 and thus provides more reliable estimates of the m-year return
level Qm (cp. Sect. 7.3.3 and 8.2).

Figure 9.3 depicts a coincidence of the Gumbel and full GEV estimate for the pro-
cess Xt with exponential marginal distribution, which is due to the fast linear rate of
convergence for the exponential distribution in either case. The Gumbel estimate Qm
is realiable for this example and provides less statistical uncertainty.

(B) Comparing the estimated return levels Qm (via Gumbel or full GEV by (A)) to the
corresponding return level qm of the marginal distribution provides insight into the
impact of short-range dependencies. Return levels estimated for shuffled versions of
the original process serve as an approximation of the return level qm, which is known
for the example models but unknown in applications. Mind that qm coincides with
the return level Qm of the maxima of the associated iid sequence (cp. Sect. 9.1).

For large AR-parameters ϕ ≥ 0.7 the maxima of the AR(1) process and of its shuffled
versions deviate from each other in Figure 9.2. Strong SRC are known to act like an
extremal index other than zero in finite-block-size approximations (cp. Sect. 8.3.1).
At the same time the sampling error of the marginal distribution of an AR process
vanishes quickly due to an exponentially decaying acf. Hence, the estimate Qm is
reliable for this example and accounts for the finite-block-size effect of a shifted mean
for the maximum distribution. For small AR parameters the return level qm and the
estimates Qm coincide so that qm provides a reliable estimate and smaller confidence
intervals are possible depending on the method11.

The influence of LRC is on average negligible for the estimation of the return level Q100

of the original and tGp-transformed ARFIMA(0, d, 0) processes up to very strong LRC
with LRC parameter at least d = 0.4 by deviating from the known return level q100

in Figure 7.16 and Figure 9.1, respectively. Deviations here arise only for small
numbers of blocks of about 20 because of the sampling error. The estimated return
levels Qm coincide for the original and shuffled time series for all LRC parameters but
deviate from the analytically known return level qm by the marginal distribution for
strong LRC. This observation indicates that the LRC are too strong for any reliable
return level estimate due to a significant sampling error describable, for example, by a
drastically reduced effective sample size (cp. Sect. 5.1.2).

The acf of the process Xi decays rapidly and vanishes for all time lags k ≥ 5. The
deviation between the estimates Qm for the original and random shuffled time series
in Figure 9.3 indicating strong SRCeffects together with the small sampling error and
the fast convergence of the ultimate approximation by (A) yields the Gumbel return
level Qm as the estimate with lowest statistical uncertainty.
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Fig. 9.1 GEV and Gumbel estimates of the 100-year return level Q100 ≈ 65.6 of tGp-
transformed ARFIMA(0, d,0) time series with location ν = 0, scale σ = 1 and expo-
nent η = 3 for different LRC parameters d and different numbers of annual maxima
included. The estimate Q̄100 depicts the mean of the estimates of 100 sample time
series visualized by the box plots. The boxes show their median and the 25% and 75%
quantiles, the whiskers extend to the adjacent value each.
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Fig. 9.2 GEV and Gumbel estimates of the 100-year return level Q100 of standard
Gaussian AR(1) time series for different AR(1) parameters ϕ and different numbers
of annual maxima included. The 100-year return level by the marginal distribution
reads q100 ≈ 4.03. The estimate Q̄100 depicts the mean of the estimates of 100 sample
time series visualized by the box plots. The boxes show their median and the 25%
and 75% quantiles, the whiskers extend to the adjacent value each.
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Fig. 9.3 Impact of SRC on Gumbel and GEV estimates of the return level Qm (9.4)
for the tGp-transformed ARFIMA(0, d,0) process from Figure 9.1 with exponent η = 3
and LRC parameter d = 0.2 (left) and the process Xi from Example 8.11 with extremal
index θ = 1

5 (right). The depicted estimates are for block size n = 365 and time series
with N = 36,500 samples or equivalently m = 100 years. Note that the left panel
reproduces the estimates located in the center of Figure 9.1.

The central conclusions for an assessment of the reliability and statistical uncertainty
of return level estimates for stationary processes by EVT are

• Outside knowledge about the marginal distribution improves decisions about the
validity of a Gumbel estimation based on the domain of attraction of the marginal
distribution or if applicable on the rate of the convergence to the Gumbel limit.

• Outside knowledge about the long-range dependence structure among individual
measurements improves the validity of return level estimates subject to effective
sample sizes.

• Outside knowledge about the short-range dependence structure improves the
reliability of the return level given by the marginal distribution.

The results in Section 9.1 and Section 9.2 remain valid for any return level other than
the visualized 100-year return level as the convergence to the limit EVD in the generalized
extreme value theorem Theorem 7.9 is uniform (cp. Appx. C). The ML estimate Q̄100

yields results with lowest statistical uncertainty for the event that occurs on average
once a year, which is represented by the location of the bulk of the corresponding EVD.
The longer the considered return period is the higher gets the statistical uncertainty. In
Section 9.2.2 we apply the comparison of return levels to the data sets of precipiation
measurements discussed in Chapter 6 for the estimation of 100-year return levels of
extreme precipitation events. Section 9.3 establishes an alternative approach to the
estimation of return levels based on specifically chosen norming constants.
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9.2. Comparison of return level estimates

9.2.2. Application to daily precipitation amounts

Section 6.3 provides a detailed validation of tGp-transformed ARFIMA processes for mod-
eling time series of mid-latitude daily precipitation amounts. The marginal distribution
of such an estimated tGp model provides the return level qm and allows for a comparison
of this estimate to those of the return level Qm by Gumbel and GEV estimates.

Figure 9.4 shows a comparison of the 100-year return levels Q100 and q100 estimated for
the 20 recorded data sets introduced in Chapter 6 (cp. Tab. E.1). The relative deviation
between the GEV estimates Q̄100 and the estimates q̄100 by the marginal distribution
defined by Q̄100−q̄100

Q̄100
is less than ±10% and less than ±10mm for all data sets except for

one (Schwerin with ≈ 18%) and two (Schwerin with ≈ 20mm, Valencia with ≈ 26mm),
respectively. The analogously defined relative deviation between the GEV and Gumbel
estimates of the return level Q100, however, ranges between ≈ −3% and ≈ 30% with more
than 10% difference for about half of the data sets (Fig. 9.4, left panel).

Applying the comparison described in Section 9.2 by incorporating outside knowledge
about the individual measurements additionally to the annual maxima amounts only
yields validity of the GEV estimates Q̄100 due to high coincidence with the estimates q̄100

by the marginal distribution. All the empirical time series exhibit both weak saisonality
and weak LRC, so that neither violation of the assumption of stationarity nor a large
sampling error crucially confound the estimates of return levels by EVT (cp. Sect. 6.1.1,
the regression values in Tab. E.3 and the LRC parameters d in Tab. E.1). SRC in the time
series are low to moderate with AR parameters ϕ in the range of 0.2 to 0.45 (cp. the AR
parameters ϕ in Tab. E.1). Section 9.4 further discusses the impact of SRC.

The tGp distribution is in the Gumbel domain of attraction. As recapped in Chapter 8
the slow 1

lnn -rate of the convergence of the corresponding maxima distribution to its
limit Gumbel shape as the block size n → ∞ improves to 1

(lnn)2 using a penultimate
approximation by a GEV distribution. We find that the larger the estimated shape
parameter η of the tGp marginal distribution is, in other words, the havier the tail of
the marginal distribution is, the larger is the relative deviation between the Gumbel
and GEV estimates (Fig. 9.4, right panel). Section 9.3 provides an explanation of the
tendency of Gumbel estimates for maxima of tGp samples towards an underestimation
of return levels and uses the observation of less deviation for exponents η close to two
for an alternative approach to the estimation of return levels.

The higher appropriateness of GEV estimates for maxima of stationary tGp processes
comes along with increased statistical uncertainty due to one additional parameter
for the stochastic description of extremes. Aiming at smaller confidence intervals, the
estimate q̄100 by the marginal distribution provides an adequate alternative estimator
given low SRC and LRC by Section 9.1. Using a Bayesian approach, for three example
data sets Figure 9.5 shows confidence intervals for the estimates Q̄100 by Gumbel
and GEV estimation and q̄100 by the marginal distribution, respectively, based on 100

synthetic sample time series obtained from an adjusted tGp model.
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Fig. 9.4 Comparison of the Gumbel and GEV estimates Q̄100 and the estimate q̄100 by
the marginal distribution (see list (9.4)) of the 100-year return level for the 20 data sets
of daily precipitation records in Table E.2. The inner and outer straight lines next to
the equality line mark 5% and 10% relative deviation (left panel). Table E.1 collects the
shape parameters η of the tGp model adjusted to the empirical time series each (used
in right panel).

The three depicted examples in Figure 9.5 show decreased statistical uncertainty
for the 100-year return level each by smaller confidence intervals, or more precisely
credible intervals in the Bayesian context, for the estimates q̄100 compared to GEV
estimates Q̄100. For the “Fichtelberg” data set (a) the mean GEV estimate for 100

shuffled versions of the original time series clearly falls below the estimate for the original
time series. This observation is possibly due to prominent SRC. Section 9.4 gives an
outlook on such effects. Nonetheless, either estimate for the stations (a) to (c) lies within
one standard deviation of the mean estimate q̄100. Note that the time series (c) does
not contain measurements taken at a single station but daily records accumulated over
several locations in the region of central England. The thus lower variance among the
daily measurements results in smaller variation of return level estimates accordingly.

As a result, knowledge about the marginal distribution of the predominantly stationary
daily measurements well described by a tGp distribution yields higher reliability of GEV
than of Gumbel estimates for return levels of mid-latitude precipitation extremes. Given
weak SRC and LRC additionally, estimating return levels by the marginal distribution
allows for decreased statistical uncertainty. Note that these estimates depend on the
method used for adjusting a model distribution to the daily data (cp. Rem. 9.2).
The confidence intervals in Figure 9.5 base on the tail oriented parameter estimation
introduced in Section 6.2.1 but other techniques such as entropy based parameter
estimations [140] are possible. Section 9.3 aims at further improvements by making use
of knowledge about the marginal distribution and the corresponding Gumbel limit at once.
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Fig. 9.5 Comparison of the Gumbel and GEV estimates Q̄100 and the estimate q̄100

by the marginal distribution (see list (9.4)) of the 100-year return level for the three
empirical precipitation data sets (a) to (c) in Table 6.1. The estimates for the shuffled
time series are the mean of the same estimates for 100 shuffled versions of the original
empirical time series. The box plots comprise the estimates Q̄100 and q̄100 for 100 model
time series for each data set according to Section 6.2. The boxes show the median and
the 25% and 75% quantiles each, the whiskers extend to the adjacent value, and the
arrowheads include one standard deviation from the box mean.
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9. Improved estimation of return levels by incorporating outside knowledge

9.3. Estimation of return levels by norming constants in the
Gumbel domain

It is well known and visualized in Sections 7.3 and 8.2 that the convergence of the
distribution of properly normed extremes to its limit GEV shape in Theorem 7.9 is
particularly slow for some distributions in the Gumbel domain of attraction. For the
Gaussian and tGp distribution this rate of convergence as the block size n ∈ N increases
asymptotically reads 1

lnn and even 1√
lnn

for the lognormal distribution (cp. Ex. 8.5). Due
to this slow convergence, adjusting a Gumbel distribution to empirical maxima of blocks
of finite length possibly yields inappropriate estimates of return levels (cp. Sect. 7.4).

Using a penultimate approximation by adjusting a GEV distribution instead of the
ultimate approximation by a Gumbel distribution (cp. Sect. 7.3.3) provides one possibility
of approaching the above effect. As an example, the rates of the convergence for maxima
of Gaussian or tGp samples then accelerates to 1

(lnn)2 (cp. Ex. 8.7). Section 9.2 visualizes
that the mean estimation of return levels indeed improves but with increased statistical
uncertainty due to an additional parameter needed for a GEV distribution and in case of
low dependencies among the individual samples, estimating return levels by the marginal
distribution instead of EVT yields decreased reliability.

For some distributions, however, we observe reliable estimates of return levels by
the Gumbel distribution despite a known slow convergence. In Figure 9.4 we find
highest coincidence between the Gumbel and GEV estimates of the 100-year return level
of extreme precipitation events for those empirical data sets for which the estimated
shape parameter of the marginal tGp distribution is closest to η ≈ 2. Hall [68] derived
a faster optimal rate of 1

(lnn)2 for the ultimate approximation of the maxima of the
squared absolute values of Gaussian samples (see Ex. 8.3) and Castro proved 1

(lnn)2

for the Gamma distribution [31]. Figure 9.6 shows estimates of the 100-year return
level of synthetic iid tGp samples with shape parameter η = 2.1 (left panel) and
Gamma (cp. Tab. B.1) distributed samples (right panel). Contrary to the still slow
convergence of the corresponding maxima distributions we find high coincidence between
the ultimate and penultimate estimates for 100 sample time series in either case and
thus increased reliability by Section 9.2. The shape of the marginal distribution each
provides an explanation of this effect. The two distributions considered in Figure 9.6
have in common a nearly exponentially decreasing tail of their pdfs. The tGp pdf decays

at rate y
1−η
η e−

y
2/η

2σ2 by its asymptotics (6.5) and the pdf of the Gamma distribution at
rate yα−1e−βy by Table B.1 as y →∞.
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tGp, η = 2.1
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Gumbel

GEV

100-year return level Q̄100

Γ(3, 1/2)

26 28 30 32 34 36

100-year return level Q̄100

Fig. 9.6 Mean (dark) and individual (light) GEV and Gumbel estimates of the 100-year
return level for 100 synthetic sample time series of length N = 36,500 of an iid process
with tGp marginal distribution with location ν = 0, scale σ = 1 and shape η = 2.1 (left)
and Gamma marginal distribution with shape α = 3 and scale β = 1

2 . The straight lines
marks the return level Q100 ≈ 18.7 and Q100 ≈ 30.8, respectively, analytically known by
equation (9.1).

This observation of improved Gumbel estimates in the presence of a tail of the
marginal pdf close to the exponential tail of the Gumbel pdf rises the idea of further
decreasing statistical uncertainty of return level estimates by incoorporating both the
marginal distribution and the knowledge about an asymptotic Gumbel shape of the
maxima distribution in Section 9.3.1. Section 9.3.2 provides corresponding results for
synthetic time series and Section 9.3.4 applies the method to emipirical precipitation
measurements. An outlook in Section 9.4 is dedicated to generalizations of the idea to
processes with strong SRC.

Remark 9.3: From a theoretical perspective, inverse sampling is capable of improving
return level estimates for extremes of samples with a slow convergence of the correspond-
ing maxima distribution to the limit Gumbel shape. The return level QXm with return
period 1

m of maxima of blocks of size n ∈ N of samples with cdf FX are given by

QXm = F−1
X (FY (QYm)) (9.5)

for a distribution with cdf FY with return level QYm with the same return period
for the corresponding maxima distribution due to the monotononicity of the quantile
function F−1

Y . Using a distribution with a faster convergence in the extremal types
theorem Theorem 7.9 then yields both return levels QXm and QYm with improved reliability.

For practical purposes, however, the cdf FX and its quantile function are only given
empirically. The calculation of the return level QXm by equation (9.5) requires an
estimation of the empirical cdf up to the probability 1 − 1

nm . By equation (9.3) this
approach resembles the estimation of return levels by the marginal distribution. A
transformation of empirical data to a distribution with improved convergence properties
in EVT is thus only a loop way to the direct estimation by the marginal distribution.
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9. Improved estimation of return levels by incorporating outside knowledge

9.3.1. Error reduction for return levels by norming constants

The norming constants describe the relation between the marginal distribution and
the limit GEV distribution in Theorem 7.3. Fisher and Tippett [52] derived the
universal limit shape along with the three types of EVDs by calculating the mode and
scale of the distribution of the maximum Mn (7.1) of n ∈ N samples with marginal cdf F
given by P(Mn ≤ x) = F (x)n for values x ∈ R in the domain of the cdf F . After
that norming constants have typically based on the idea (7.20) and as described in
Table 7.3. Norming constants are thus given by choosing thresholds un = x

an
+bn such that

F (un) ≈ 1 − 1

n
(9.6)

for large numbers n of samples representing the empirical maximum of n samples. In
particular, for x = 0 the centering constant satisfies F (bn) = 1 − 1

n and approximates the
position of the mode of the maximum distribution in case of a Gumbel limit distribution.
For the Gaussian cdf Φ, the approximation (7.53) with 1−Φ(x) = φ(x)

x +O( 1
x3 ) as x→∞

yields the centering constant βn implicitly by

φ(αn)
αn

= 1

n
(9.7)

together with the scaling constant βn = αn (cp. Ex. 7.7). The maximum distribution
normed by constants chosen by equation (9.6) approximates the limit Gumbel distribution
best in its mode located at x = 0 and with probabilityG(0) = 1

e for cdfsG of all three types
of EVDs. Note that F (bn)n = (1 − 1

n
)n → 1

e as the sample size n→∞. Figure 7.4 shows
this convergence of the pdf of the normed maximum αn(Mn − βn) to the Gumbel pdf
for the maximum of Gaussian variates.

Most probability mass is located in the neighborhood of the mode of a distribution by
definition. A ML adjustment of a Gumbel distribution to empirical maxima thus gives
parameters close to the norming constants obtained by assumption (9.6) for distributions
in the Gumbel domain of attraction disregarding either tails. The mode of Type-II and
Type-III GEV distributions is not located precisely at x = 0, so that GEV parameters
estimated by ML do not reflect the assumption (9.6) for distributions in their domain of
attraction. The above observation of improved return level estimates due to similarity
between the tail of the pdf of the normed maximum distribution and the limit exponential
tail of the Gumbel pdf indicates decreased estimation errors due to slow convergence
when choosing alternative norming constants with decreased deviation of the tails rather
than the bulks of the two pdfs. The knowledge about the limit GEV distribution allows
for defining norming constants by assuming

F (Q
an

+ bn)
n

!= G(Q) and (9.8)

d
dQ

F (Q
an

+ bn)
n

!= G′(Q) (9.9)
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9.3. Estimation of return levels by norming constants in the Gumbel domain

and thus equating both the cdf and pdf of the maximum distribution for finite block
size n to those of the GEV limit in a certain quantile Q ∈ R in the domain of the cdf F .
Setting Q = 0 reflects the approach (9.6) cdfs in the Gumbel domain of attraction. We
have G(0) = G′(0) = 1

e for all three types of EVDs (cp. Fig. 7.3).
Aiming at agreement of the two distributions in the neighborhood of a return

level Qm of annual extremes with return period m ∈ N other than m = e
e−1 like for the

approach (9.6), we consider the return level QGm ∶= G−1 (1 − 1
m
). Solving equations (9.8)

and (9.9) then yields norming constants such that the deviation between the normed
maximum distribution and the limit GEV distribution vanishes at the return level Qm.

Let Q ∈ R be a return level of the Gumbel distribution with return period m ∈ N
such that with p = 1 − 1

m we have Q = Λ−1(p) = − ln (− lnp) and denote by un = Q
an
+ bn

corresponding thresholds. Then for the tGp with shape parameter η using equations (9.8)
and (9.9), we obtain

p
1
n = Λ(Q) != Φ(u1/η

n ) and thus
φ(u1/η

n )
u

1/η
n

!= − lnp

n
by (7.53) (9.10)

−p lnp = Λ′(Q) != nu
1/η−1
n

ηan
Φ(u1/η

n )n−1φ(u1/η
n ). (9.11)

The assumptions (9.10) together with Φ(x) → 1 as x → ∞ transform the assump-
tions (9.11) to un = (ηan)

η
2−η so that the definition of the thresholds un implies

φ ((ηan)
1

2−η )

(ηan)
1

2−η

!= − lnp

n
and bn = (ηan)

η
2−η − Q

an
(9.12)

as an implicit approach to norming constants with the desired properties (9.8) and (9.9).
The constants (9.12) with shape η = 1 provide norming constants for maxima of Gaussian
samples in Lemma 9.4 as a special case. Choosing additionally p = 1

e and Q = 0

reproduces the constants (9.7). Note the similarity between the scaling constants αn
and an given for the Gaussian distribution by assumption (9.7) and (9.12), respectively.
The centering constants βn and bn differ by the shift Q

an
of the return level Q scaled

accordingly. As a remark, Zarfaty et al. [188] mention replacing the right hand side
of the condition (9.7) by p

n as a promising approach to improving estimates of the
uniform error of the 1

lnn -convergence in the extremal types theorem Theorem 7.3 for
maxima of Gaussians. Lemma 9.4 and Corollary 9.5 prove the validity of the norming
constants (9.12) for properly norming the maximum of Gaussian and tGp samples,
respectively, by applying Khintchine’s theorem Theorem 7.4.

209



9. Improved estimation of return levels by incorporating outside knowledge

Lemma 9.4: Using the shape η = 1, the norming constants obtained from equations (9.8)
and (9.9) for quantiles Q = − ln (− lnp) of probability p ∈ (0,1) are valid norming constants
for the maximum distribution of standard Gaussian iid variates to retain convergence in
the extremal types theorem Theorem 7.3.

Proof. Let αn, βn be the norming constants (9.7) for the maximum distribution of
standard Gaussian iid variates and denote by α̃n, β̃n the norming constants obtained
from equations (9.8) and (9.9) and satisfying φ(α̃n)

α̃n
= c

n and β̃n = α̃n − Q
α̃n

with the
numerator c ∶= − lnp and the quantile Q = − ln c by approximation (9.12). We derive the
asymptotic behavior of the scaling constant α̃n analogously to Hall’s method [67] for the
asymptotics (7.58) of the scaling constant αn (9.7) in the case of c = 1.

The assumption n2 = 2πc2α̃2
neα̃

2
n ∼ eα̃

2
n for large block sizes n ∈ N implies α̃2

n ∼ 2 lnn+u
with u≪ lnn. Then analogously to the derivation of the asymptotis (7.58) we obtain

α̃2
n ∼ α2

n − 2 ln c = α2
n + 2Q

α̃n ∼ αn + Q/αn +O(1/α3
n)

(n→∞). (9.13)

Khintchine’s theorem Theorem 7.4 states that any pair of norming constants satisying
the asymptotic relations (7.13) are valid. For the norming constants α̃n, β̃n using αn = βn
the approximations (9.13) imply

αn
α̃n

= αn
αn(1 +O(1/α2

n))
→ 1

(β̃n − βn)αn = (α̃n − Q/α̃n − αn)αn = Q(1 − 1

1 +O(1/α2
n)

) → 0
(n→∞), (9.14)

so that by Khintchine’s theorem the norming constants α̃n, β̃n are valid. ◻

Corollary 9.5: The norming constants obtained from equations (9.8) and (9.9) for
quantiles Q = − ln (− lnp) of probability p ∈ (0,1) are valid norming constants for the
maximum distribution of iid tGp variates with shape η ∈ R>0, location ν = 0 and scale σ = 1

to retain convergence in the extremal types theorem Theorem 7.3.

Proof. Denote by ãn, b̃n the norming constants obtained from equations (9.8) and (9.9).
Let αn = βn be the norming constants (9.7) for the standard Gaussian distribution and
let an, bn be the norming constants for the tGp distribution with shape parameter η ∈ R>0,
location ν = 0 and scale σ = 1 deduced as an = α2−η

n

η and bn = βηn in equations (8.12) of
Example 8.3. Due to equations (9.12) and definition (9.7), using the notion of Lemma 9.4,
the norming constants satisfy

ãn =
1

η
α̃2−η
n and b̃n = aηn −

Q

ãn
. (9.15)

Then arguments analogous to Lemma 9.4 yield an
ãn
→ 1 and (b̃n − bn)an → 0 and thus the

validity of the norming constants ãn, b̃n for the convergence in Theorem 7.3. ◻
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9.3. Estimation of return levels by norming constants in the Gumbel domain

Remark 9.6: Given valid norming constants αn, βn for the maximum distribution of
random variates X, the norming constants an = αn

σ and bn = σβn+ν are valid for properly
norming the maximum of the affine linear transformation σX+ν to obtain convergence in
the extremal types theorem Theorem 7.3 (cp. Sect. 8.1). Applying this relation to a tGp
distribution with location and scale parameters other than zero and unity, respectively,
yields corresponding norming constants by the reasoning of Corollary 9.5.

Aiming at a best possible visualization of the approximation in a prescribed quantile
in Figure 9.7, we abstain from considering the asymptotic solutions (9.12) of equa-
tions (9.8) and (9.9) for large block sizes n but determine norming constants for the
maxima of tGp samples directly by denoting qn ∶= Φ−1(p1/n) as

ãn = −
n

ησp1/n lnp
φ(qn)(σqn + ν)1−η and

b̃n = (σqn + ν)η −
Q

an
.

(9.16)

Figure 9.7 shows the normed pdfs of the maximum distribution for iid standard Gaussian
and tGp variates using the norming constants (9.16) with coincidence with the limit Gum-
bel pdf and cdf in the return levels with probability p = 1

e and p = 1 − 1
100 (left panel)

and p = 0.6 (right panel). Such a choice possibly produces huge deviations in return
levels other than the one equalized, however, these errors do not affect the estimation of
return levels close to this return level in Section 9.3.2.
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Fig. 9.7 Evolution of the pdfs fan(Mn−bn) (7.6) of the normed maximum an(Mn − bn)
of iid standard Gaussian (left) and tGp variates with shape η = 3, location ν = 0.5
and scale σ = 0.6 (right), respectively, using the norming constants (9.16) for block
sizes n ∈ {50,500,5,000} with darkening lines as n increases. The left panel depicts the
normed pdfs with coincidence in the return level Q = 0 with p = Λ(0) = 1

e and Q ≈ 4.6

with p = Λ(Q) = 1− 1
100 , the right panel uses the return level Q ≈ 0.7 with p = Λ(Q) = 0.6.
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9.3.2. Statistical inference by norming constants

Let F be a cdf in the domain of attraction of the Gumbel distribution. Then given
valid norming constants an, bn, the Gumbel distribution asymptotically well describes
the distribution of the normed maximum an(Mn − bn) by the extremal types theorem
Theorem 7.3 as P(an(Mn − bn) ≤ x) ∼ Λ(x) as the block size n→∞. Using the norming
constants established in Section 9.3.1 for a return level Q of the Gumbel distribution
with probability p = Λ(Q) yields the coincidence F ( Qan + bn)

n
= Λ(Q). By the continuity

of the Gumbel cdf we find the similarity

F (q)n ≈ Λ(an(q − bn)) = p (9.17)

for return levels q in the neighborhood of the return level Q. Chosing the probabil-
ity p = 1 − 1

m of a return level Qm of the Gumbel distribution with return period m ∈ N
therefore yields the return level Q̃m of the maximumMn with the same return periodm as

Q̃m = Qm
an

+ bn. (9.18)

The return level Qm = Λ−1(p) for a desired return period m is analytically known by
the Gumbel cdf Λ. The estimation of return levels Q̃m of a stationary process with
marginal cdf F by equation (9.18) requires the estimation of the norming constants an, bn
such that deviations are low between the Gumbel pdf and the pdf of the normed maximum.
Note that in typical applications of EVT the norming constants are captured by ML
estimates of GEV parameters. The modified Gumbel estimate above directly uses the
norming constants defined by equations (9.8) and (9.9) instead.

9.3.3. Application to synthetic data

Figure 9.8 shows the 100-year return levels estimated by the modified Gumbel approach
for extremes of Gaussian and of tGp iid time series. Aiming at an application to
precipitation data in Section 9.3.4, we consider both time series with continuously
generated samples (top panels) and with samples Yt discretized by ⌊10Yt⌋

10 with a precision
of 0.1 (bottom panels) (cp. Sect. 1.4). This discretization is in accordance with mapping
all model values less than 0.1mm to zero precipitation in Section 6.3.1.

The Gumbel and GEV estimates and their statistical uncertainty do not differ for
continuous and discretized model data by a comparison of the bottom an top panels
in Figure 9.8. Adjusting a model distribution to synthetic data obtained from this
distribution by ML yields clearly smaller confidence intervals for both estimates by the
marginal distribution and the modified Gumbel approach (top panels). Section 6.3.1
and Section 6.3.7, however, elaborate the inappropriateness of a ML adjustment of
the tGp model to daily precipitation amounts when focussing upon proper representation
of extreme events.
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9.3. Estimation of return levels by norming constants in the Gumbel domain

The bottom panels show application-oriented confidence intervals obtained from
the tail-oriented estimation of the marginal distribution by synthetic time series with
precision 0.1 for the estimation of the 100-year return level by both this marginal
distribution directly and the modified Gumbel estimation based on estimating the
norming constants (9.18). Note that the choice of the probability p = 1 − 1

m for the
modified Gumbel approach reproduces the mean result and uncertainty of the estimate
by the marginal distribution. This observation is due to the definition (9.10) for the
norming constants used for the former method and the coincidence of the estimates Q̄m
and q̄m by (1 − 1

m
)

1/n ≈ 1 − 1
nm as discussed in Section 9.2. If the modified Gumbel

estimate for the probability p = 1
e reproduces the original Gumbel estimate depends on

the specific choice of the approximation of the norming constants (9.16). The deviation
between the normed pdf of the maximum distribution and the limit Gumbel pdf vanishes
in the quantile Q = 0 in this case but the error in the return level Q = Λ−1(p) depends
on the uniform error between the two distributions (see Fig. 9.7 and cp. Sect. 7.3).

We obtain decreased uncertainty of the estimate of the return level Qm by chosing
a probability 1

e < p < 1 − 1
m =∶ pm close to but not equal to the upper bound pm, which

represents the estimation by the marginal distribution directly. For lower probabilities
the estimation of the marginal distribution is required only up to return levels with
probability p < pm. The tail-oriented estimation then generates the smaller confidence
intervals the smaller the chosen probability p (Fig. 9.8, bottom panels).

The choice of the tail-oriented parameter estimation for the marginal distribution and
confidence intervals obtained by Bayesian approach and 100 sample time series provide a
proof of concept for reducing statistical uncertainty of return level estimates for extreme
events by combining outside knowledge about the marginal distribution and the known
Gumbel limit. The slight underestimation of the analytically known return level Q100 for
the time series in Figure 9.8 is due to normalization of the empirical cdf by N + 1, which
yields the model cdf asymptotically only (cp. Rem. 6.1). Section 9.4 provides an outlook
on more sophisticated and general application of the modified Gumbel approach.

9.3.4. Application to daily precipitation amounts

Figure 9.9 extends Figure 9.5 by the modified Gumbel estimate of the 100-year return
level of annual maximal daily precipitation amounts for the three empirical data sets
listed in Table 6.1. The panels add on the results of the Gumbel and GEV estimates Q̄100,
the estimates ¯q100 by the marginal distribution. For all stations both estimates Q̄100

and ¯q100 are within one standard deviation of the mean modified Gumbel estimate with
coincidence (9.8) and (9.9) assumed for the return level Q with p = Λ(Q) = 0.95. We thus
find decreased statistical uncertainty of the modified Gumbel estimate for the 100-year
return level compared to estimates by a GEV or the marginal distribution measured
by the standard deviation obtained from modified Gumbel estimates for 100 model
time series each as established in Section 9.3.1. Mind that the data set (a) exhibits
strong SRC (cp. Sect. 9.2.2), which explains the visible deviations between the estimates.
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Fig. 9.8 Estimates of the 100-year return level Q100 of maxima of blocks of size n = 365
of standard Gaussian (left) and tGp samples with shape η = 3, location ν = 0.5 and
scale σ = 0.6 (right) by the four methods: Gumbel and GEV estimate, estimate by
the marginal distribution (see list (9.4)) and modified Gumbel estimate. The modified
Gumbel estimate is depicted for different choices of the probability p, so that the Gumbel
return level Q = Λ−1(p) coincides with the maxima distribution for the finite block
size n in that return level. The upper panels show the results for 100 synthetic sample
time series with the marginal distribution estimated by ML, for the lower panels the
sample time series are discretized and the marginal distribution is estimated by the
tail-oriented approach of Sect. 6.2.1. In Section 9.3.4 we apply the lower method for
the generation of confidence intervals for return levels of precipitation amounts, which
obey the precision 0.1mm.
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9.3. Estimation of return levels by norming constants in the Gumbel domain
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100-year return levels Q̄100 and q̄100

● Q̄100 or q̄100 for the empirical time series

Fig. 9.9 Estimates of the 100-year return level Q100 of annual maxima for the three
empirical precipitation data sets (a) to (c) in Table 6.1 by the four methods: Gum-
bel and GEV estimates, the estimate by the marginal distribution (see list (9.4))
and the modified Gumbel estimate. The modified Gumbel estimate is depicted
for the choices p ∈ {0.9,0.95,0.99} of the probability p, so that the Gumbel return
level Q = Λ−1(p) coincides with the maxima distribution for the finite block size n in
that return level. The box plots comprise the estimates for 100 model time series each
for each data set according to Section 6.2. The boxes show the median and the 25%
and 75% quantiles each, the whiskers extend to the adjacent value, and the arrowheads
include one standard deviation from the box mean.
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9. Improved estimation of return levels by incorporating outside knowledge

9.4. Closing remarks and outlook

The return levels of stationary processes are subject to the marginal distribution and the
dependence structure of the process. Outside knowledge about both properties allows
for assessing the validity of return levels Qm obtained from EVT by a comparison to
the corresponding return level qm of the marginal distribution (cp. Sect. 9.2).

In Figure 9.4 we find the largest deviation between the GEV estimate Q̄100 and the
estimate q̄100 for the data set “Valencia”, which obeys both the largest marginal variance
and strongest SRC among the 20 considered data sets in Table E.1 and Table E.2.
Section 9.2 elaborates the impact of strong SRC on the resulting maxima distribution
even for processes with asymptotic unit extremal index. A detailed investigation of
the finite-block-size effects on the mean cluster size and the relation to the heavyness
of the marginal distribution along with a systematic analysis of the influence and
dinstinguishment of strong long- and strong short-term dependence remains an open
question. The Figures 7.16, 9.1 and 9.2 apply the straightforward approach to this
question by considering the return level estimates for shuffled versions of the original
time series with destroyed dependencies.

Along with such a study above a comparison of the estimates by the marginal
distribution in Section 9.2 and the modified Gumbel estimates established in Section 9.3
to the POT approach provides questions for future research. In case of availability of
data beyond annual maxima only, the “point-process” or POT approach is the method
of choice for discussing extremes of iid processes [48, p. 340]. Considering not only block
maxima but all threshold excesses is capable of improving both the sampling error and
the error of the approximation (7.10). By Theorem 7.28 the parameters of the GPD
adjusted to threshold exceedances, however, are directly related to the parameters
of the GEV distribution adjusted to corresponding block maxima, so that statistical
uncertainty obeys the same influencing factors as described in Section 7.4. In particular,
for processes with a slow convergence to a limit GEV or Gumbel shape like Gaussian
or tGp processes, the choice of a threshold is potentially delicate and introduces further
uncertainty (cp. Ex. 7.29), which is even more relevant in the presence of strong SRC.
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9.4. Closing remarks and outlook

The modified Gumbel estimate assumes weak dependence among the individual
samples. Note that weak dependence refers to both regimes short- and long-term
dependence since strong LRC crucially confound statistical estimates anyways and
strong SRC like in Example 8.11 possibly change the distribution of finite-block-size
maxima significantly by an effective extremal index other than unity. A potential
generalization of the modified Gumbel approach to stationary processes with strong
short-range dependence might include an estimation of an effective finite-block-size
extremal index by the mean cluster size [131] and applying an affine linear transformation
to the norming constants defined by equations (9.8) and (9.9). Such a method accounted
for the possible shift of the maximum distribution by an extremal index other than
unity (cp. Fig. 9.3). The same opportunity of a generalization applies to the estimation
of return levels by the marginal distribution and by the POT method.

Our estimation of the norming constants for the modified Gumbel approach applies the
tail-oriented parameter estimation described in Section 6.2.1, which highly depends on
the precision of the considered data as visualized in Figure 9.8. An advantage of the tail-
oriented estimation is the direct access to a comparison of statistical uncertainty by the
required accuracy of marginal distribution for large events as described in Section 9.3.2.
Such a comparison is not as straightforward for example when using norming constants
defined by the Lamber W function (cp. Tab. 7.4) and satisfying the conditions (9.8)
and (9.9) even though such constants are expected to provide a lower uniform error for
large events [188]. Nonetheless, alternative methods for the estimation of the norming
constants might further reduce the size of confidence intervals for return level estimates
and potentially allow for more detailed insights into appropriate choices of return levels
in the neighborhood of the desired return level.

The modified Gumbel approach is further not limited to Gaussian or tGp pro-
cesses. The conditions (9.8) and (9.9) readily transfer to other distribution with a
differentiable cdf such as the lognormal, exponential or Pareto distribution. The ap-
proach thus also generalizes to distributions in the domain of attraction of Type-II
or -III EVDs. A future project could study whether also in these situations the modified
Gumbel approach significantly improves statistical uncertainty since the convergence to
the limit GEV distribution is typically not as slow as for the prominent Gaussian and
meta-Gaussian processes (cp. Sects. 7.3 and 8.2). Obtaining a proper shape parameter
for the limit GEV distribution by the Hill estimator (cp. Rem. 7.26) might addition-
ally reduce statistical unertainty in the general GEV setting for stationary processes
with weak dependence.
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10. Conclusion

The present thesis deals with non-Gaussian stationary stochastic processes with special
focus on risk assessment and statistical uncertainty due to the presence of LRC. My
contribution is the extension and application of existing concepts from pure and applied
mathematics to the research field of theoretical physics. I consider the following topics.

(i) Data models for non-Gaussian long-range correlated processes

(ii) The theory of effective sample sizes for stationary processes

(iii) Extreme value theory for stationary and particularly meta-Gaussian processes

(iv) Application of the concepts (i) to (iii) to empirical precipitation records

My major contribution to the topics above is twofold. First, I show that meta-Gaussian
data models obtained from nonlinear and memoryless transformations of Gaussian AR-
FIMA processes provide a flexible approach to the modeling of non-Gaussian LRC data.
Second, I specify the influence of LRC on statistical inference by a detailed interpretation
of existing theory about stationary stochastic processes for non-Gaussian correlated
data and provide mathematical methods for assessing and improving the reliability of
statistical estimates for general stationary and, in particular, meta-Gaussian processes.

The main outcome of topic (i) is a parametric alternative to the generation of synthetic
non-Gaussian LRC time series with prescribed correlations. By establishing the effective
sample size as a finite-sample property of the sample mean of stationary processes in
topic (ii), I quantify the impact of both SRC and LRC on the statistics of non-Gaussian
data. Regarding topic (iii), I obtain theoretical results for the extreme value theory of
meta-Gaussian processes in terms of rates of convergence in the generalized extremal
types theorem and corresponding norming constants. Using these results, I formulate a
procedure for assessing the reliability of return level estimates obtained from EVT by
a comparison to estimates obtained from the marginal distribution directly. Beyond
that, I establish a modifed Gumbel method for the estimation of return levels based on
a specific choice of norming constants depending on the marginal distribution.

Applying the concepts of topic (i) in topic (iv), I establish a step-by-step modeling
procedure for daily precipitation amounts. I also elaborate that meta-Gaussian AR-
FIMA models are capable of reproducing key statistical quantities of empirical non-
Gaussian LRC precipitation records by a detailed statistical assessment. In addition, I
apply the effective sample size of topic (ii) to obtain distributions and confidence
intervals for the daily mean and annual total precipitation amounts. Using both
methods introduced in topic (iii), I determine reliable estimates with decreased statistical
uncertainty of the 100-year return level of extreme precipitation events.

Section 10.1 lists my major and minor contributions to the for topics (i) to (iv)
considered in the present thesis. Section 10.2 mentions open questions and provides
impulses for future research.
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10. Conclusion

10.1. List of central contributions

As a basis for my results and methods the present thesis includes required existing
knowledge from pure and applied mathematics, theoretical physics and climate science.
I draw relations between previous and contemporary results about stochastic processes,
extreme value theory and precipitation modeling and extent them. The collections below
list my central contributions to the topics (i) to (iv) beyond the main results above.

(i) Data models for non-Gaussian long-range correlated processes

• The Hermite approach to the acf of meta-Gaussian processes is usually reported
for transformations of Gaussian zero-mean and unit-variance processes. In general,
the acf of the transformed process, however, depends nonlinearly on the original
standard deviation. Aiming at a flexible and direct application to empirical
data, I reproduce the Hermite approach by applying Mehler’s formula to zero-mean
Gaussian processes with arbitrary variance (cp. Sect. 3.1).

• I provide a theoretical derivation of properties of the acf of meta-Gaussian processes,
which are occasionally mentioned in application-oriented literature but not proven
explicitly, such as the convex relation to the original acf (cd. Sect. 3.2).

• I contribute a new theoretical example by the exact calculation of the Hermite
expansion and a closed-form representation of the acf of the pointwise absolute
value of Gaussian processes (cp. Sect. 3.3).

• As an example of an alternative approach to non-Gaussian LRC models I elaborate
summed squares of consecutive members of a Gaussian process. This transformation
is not memoryless and yields a non-Gaussian LRC model with approximately
exponential marginal distribution (cp. 3.4.3).

• For the numerical detection of LRC by the wavelet transform based on the original
Haar wavelet with only one vanishing moment I define generalized Haar wavelets
with an increased capability of detrending and prove their vanishing moments of
any desired number (cp. 4.2.3).

(ii) The theory of effective sample sizes for stationary processes

• As a generalization of the previously known asymptotic time scale of SRC processes
based on the variance of the sample mean, I introduce and determine effective
sample sizes as an interpretable, yet asymptotically infinite, finite-sample property
of stationary LRC processes (cp. Chap. 5).
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10.1. List of central contributions

• By citing a theorem about the distribution of sums of stationary processes, I
contribute to ongoing discussions about the validity of the Gaussian distribution,
which is appropriate in case of iid processes by the CLT. If the transformation
generating a meta-Gaussian process obeys an Hermite rank larger than unity, then
the sum over the members of such a process is not Gaussian but given by the
marginal distribution of a corresponding Hermite processes (cp. Sect. 5.1.1).

• Establishing the concept of a finite-size decorrelation time, I determine finite-sample
and asymptotic confidence intervals for the sample mean of general stationary and,
in particular, ARFIMA processes. These results generalize the previously known
asymptotic distribution of the sample mean for AR(1) processes (cp. Sect. 5.1.2).

• The power-law sample-size dependence of the asymptotic scaling of the variance
of the sample mean of Gaussian ARFIMA samples has been known before [119]. I
determine this relation precisely by calculating the corresponding proportionality
factor in closed form (cp. Sect. 5.1.2).

• I provide an explanation of the origin of the observation that for AR(1) processes
asymptotically the ratio of the given and effective size approaches the value two [120]
for AR parameters close to unity. The symmetry of the acf regarding time lags
yields an affine linear relation with slope two between the decorrelation time
and the correlation time by definition (cp. Sect. 5.1.3).

• Applying the Hermite approach to the calculation of the (finite-size) decorrelation
times, I specify the theoretical results above about finite-size and asymptotic
effective sample sizes to meta-Gaussian processes (cp. Sect. 5.2).

• Linking the above results about effective sample sizes to large deviation theory, I
clearify previously unknown constants in closed-form formulae for large deviation
probabilities of Gaussian LRC processes (cp. Sect. 5.3.3).

(iii) Extreme value theory for stationary and meta-Gaussian processes

• As a basis for an application of norming constants, which are typically esti-
mated GEV parameters adjusted to empirical block maxima, I reproduce in
detail previously known results from EVT for both iid and stationary processes
with particular focus on rates of convergence and the norming constants in the
extremal types theorem (cp. Chap. 7).

• By numerical experiments I visualize the impact of a slow convergence in the
extremal types theorem on return level estimates by the block maximum or POT
approach, in particular, for Gaussian data (cp. Sect. 7.4).
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10. Conclusion

• I find a significant impact of long-range dependencies on block maxima estimates
of return levels only in the presence of strong LRC by numerical experiments
with synthetic ARFIMA and meta-Gaussian ARFIMA samples (cp. Sect. 7.4.4
and Sect. 9.2.1)

• I formulate second order conditions on the transformation generating a meta-
Gaussian process, such that the norming constants obtained by a Taylor expansion
of the transformation are valid to retain convergence in the extremal types theorem
and I derive the corresponding rate of convergence. I apply these results to
obtain norming constants for the maxima of tGp samples with arbitrary location
and scale (cp. Sect. 8.1).

• I derive a theoretical relation between return levels obtained from the block maxima
distribution and from the marginal distribution. In case of iid processes, these
two conceptions coincide up to negligible deviations and I show that the marginal
distribution provides proper return level estimates especially in case of a slow
convergence in the extremal types theorem. Based on this result, I formulate a
procedure for evaluating return level estimates obtained from EVT by incorporating
additional information about the marginal distribution and both SRC and LRC
given by individual samples beyond block maxima only (cp. Sect. 9.2).

• I show that for some distributions in the Gumbel domain of attraction return
level estimates by EVT exhibit a high accuracy despite a slow convergence of the
corresponding maximum distribution to its limit shape due to an already high
agreement of its tail and the limit Gumbel tail. Based on this observation, I
formulate a modified Gumbel approach as an alternative method for the estimation
of return levels with decreased uncertainty in the presence of individual samples. I
define norming constants, such that the tail of the normed maximum distribution
coincides with the limit Gumbel tail in a prescribed return level. Generalizing Hall’s
method [69], I derive the validity of these alternative norming constants in the
extremal types theorem (cp. Sect. 9.3).

A central conclusion of my work on effective sample sizes and EVT for stationary
processes is a noteworthy difference between the impact of SRC and LRC on inference
about sample means and return levels. LRC qualitatively change the asymptotic sample-
size dependence of the standard deviation of the sample mean to a power-law decay
slower than the square-root rate. In contrast, power-law decaying LRC do not change
the asymptotic rate of convergence and limit distribution in the extremal types theorem,
whereas SRC are capable of qualitatively changing the location of the limit maximum dis-
tribution by a shift due to clustering of extremes. For finite-sample statistics strong SRC
or strong LRC nonetheless affect sample mean and return level estimates, respectively,
by introducing an effective sample size or an effective extremal index.
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10.1. List of central contributions

Estimating the SRC and LRC in empirical data allows for an evaluation of the
uncertainty accompanying sample mean and return level estimates. These conclusions
are crucial for my assessment and modeling of daily precipitation amounts in topic (iv).

(iv) Application of the concepts (i) to (iii) to empirical precipitation records

• I formulate an easily applicable and parametric data model for stationary LRC
precipitation measurements by applying a tGp transformation to an ARFIMA
process (cp. Chap. 6) and elaborate the validity of this model for records from 20

empirical mid-latitude European data sets.

• Reasoning the model design, I assess the stationarity of the empirical data by
a comparison of the variance and the annual cycle amongst the individual daily
records, and the presence and significance of LRC in the data by regression values
describing the linearity of the asymptotic strength of fluctuations measured by DFA
and a comparison of the obtained Hurst exponents to randomly shuffled versions
of the original data sets with destroyed correlations (cp. Sect. 6.1).

• I provide a step-by-step modeling procedure for the estimation of the five model
parameters with focus on extreme events. For the estimation of the location, scale
and shape of the tGp transformation I apply a tail-oriented approach by least-
square adjusting the model marginal survival function to the empirical survival
function in semi-logarithmic scaling. Such an approach discriminates very small
and emphasizes large precipitation amounts. I estimate the LRC parameter of
the underlying ARFIMA model by DFA(3) directly from the data since the acf of
the tGp model obeys the same asymptotic power-law decay due to unit Hermite
rank. For the estimation of the AR parameter for highly non-Gaussian data I
formulate an alternative method based on conditional probabilities of the occurrence
of a prescribed amount of precipitation on two consecutive days (cp. Sect. 6.2).

• I validate my model by a detailed statistical analysis concerning key statistical
quantities, namely daily and annual amounts, SRC and LRC, wet and dry spells
and annual maxima. A main result is that an ML or an MM estimate of the tGp
marginal distribution crucially underestimates extreme precipitation events but
represent mean daily and annual totals precisely. The tail-oriented parameter
estimation, however, captures the occurrence of extremes events with deviations
for small and mean amounts below the measurement precision of 0.1mm or within
one standard deviation (cp. Sect. 6.3).
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10. Conclusion

• Applying my estimation of effective sample sizes from topic (ii) to the esti-
mated LRC tGp models, for the 20 data sets I derive effective samples sizes
between about 12% to 50% along with confidence intervals for the daily mean and
annual total amount (cp. Sect. 6.3.5 and Sect. 6.3.6).

• Applying my procedure from topic (iii) for the evaluation of return level estimates
by extreme value theory yields that the tGp distribution obeys slow convergence
of Gumbel estimates in the extremal types theorem and GEV estimates are to be
preferred. All data sets show moderate to weak SRC and LRC, respectively, such
that direct return level estimates by the marginal distribution are valid. Applying
my modified Gumbel approach additionally, I further decrease the statistical uncer-
tainty of these estimates of the 100-year return level (cp. Sect. 9.2.2 and Sect. 9.3.4).

10.2. Open questions and impulses for future research

• I draw a relation between the Hermite approach and the recent inverse of idea of
Papalexiou [138], who maps the acf of a non-Gaussian to the acf of a Gaussian
process. The interpretation of the parameters estimated for this relation as
effective Hermite ranks helps choosing an appropriate transformation for the meta-
Gaussian approach. Future research could adress this idea in detail and with
application to other nonlinear transformations of Gaussian processes than the tGp
transformation (cp. Sect. 3.4.1).

• I visualize the sensitivity of different estimators of LRC obtained from numerical
experiments with nonstationary toy models. The maximal Hurst exponent the
estimators yield seemingly depends on the prescribed order of detrending. Rescaled-
range statistics are known to obey a unit Hurst exponent at maximum. The slopes
by DFA(2) and DFA(3) yields for a cubic additive trend differ from unity and
from each other. A precise assessment of these maximal slope requires future
research (cp. Sect. 4.3).

• I deduce an explicit formula for the asymptotic large devation probabilities of
the sample mean of Gaussian-LRC processes by applying my results on effective
sample size. A direct next step of research could be an application of the same
idea to large deviations of meta-Gaussian processes.

• My modified Gumbel approach to the estimation of return levels bases on the tail-
oriented estimation of the marginal distribution and shows the capability of reducing
statistical uncertainty by the corresponding norming constants. Incorporating
more sophisticated methods for modeling the marginal distribution might further
improve return level estimates by the modified Gumbel approach (cp. Sect. 9.3).
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10.2. Open questions and impulses for future research

• Similar to effective sample sizes prominent SRC could be interpreted as an effective
extremal index and thus induce an effective block size as a finite sample property
for EVT. Asymptotically such an effective block size tends to the original block for
processes with unit extremal index such as ARFIMA processes (cp. Sect. 8.3.1).

• Section 8.3.2 summarizes existing theory on large deviaton probabilities for the
maxima of iid processes with focus on the expected maximum value and the rate
function for large deviations. Both influencing factors depend on the marginal
distribution. Possible generalizations are incorporating meta-Gaussian iid or LRC
processes. As for power-law decaying autocorrelations the asymptotic rate of
convergence in the extremal types theorem coincides with the iid setting, also the
results for large deviations of the maximum are expected to agree with the iid results
but require further research (cp. Sect. 8.3.2)

• My data model for daily precipitation amounts is appropriate for empirical records
with only weak nonstationarities. For the application of this approach to data
sets recorded in regions with a strong annual seasonality in the occurrence and
daily amount of precipitation nonlinear transformations of LRC processes with a
cyclicity provides a generalization of transforming stationary ARFIMA processes.
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Appendix

A. Mehler’s formula

Mehler’s formula [123] provides an Hermite polynomial expansion of the density of
a bivariate normal distribution. This formula is the basis of the relation (Thm. 3.2)
between the acf of a stationary Gaussian process and the acf of an L2-transformation of
this process as described in Section 3.1.

Let (X,Y ) ∼ N(( 0
0 ),Σ) be a bivariate Gaussian vector with (two-dimensional) zero

mean, unit marginal variance each and autocovariance matrix Σ ∶= ( 1 %
% 1 ) with the

correlation % = Corr(X,Y ). Then for values x, y ∈ R the density f(X,Y ) of the joint
distribution of the variates X and Y reads

f(X,Y )(x, y) =
1

2π
√

det(Σ)
e
−x

2+y2−2%xy

2(1−%2)

= φ(x)φ(y)
∞
∑
j=0

%j

j!
Hj(x)Hj(y) (A.1)

= 1

2π
e−

x2+y2

2

∞
∑
j=0

%j

j!
Hj(x)Hj(y), (A.2)

where Hj denotes the j-th Hermite polynomial for indices j ∈ N0 (cp. Sect. 3.1). The ex-
pression (A.1) goes back to Kibble [93]. Using equation (A.2) and the orthogonality (3.7)
of the Hermite polynomials, a basic but lengthy calculation yields

E [Hi(X)Hj(Y )] = %j ⟨Hi,Hj⟩ = j!%j δij (A.3)

for indices i, j ∈ N0. For arbitrary variances Var(σX) = Var(σY ) = σ2 ∈ R>0 consider the
bivariate Gaussian distribution N((0, 0), σ2Σ). Then the bivariate joint density f(σX,σY )
of the scaled variates σX and σY satisfies

f(σX,σY )(x, y) =
1

σ2
f(X,Y ) (

x

σ
,
y

σ
) . (A.4)

In the setting of the generalized Hermite polynomials Hσ2

j , equation (A.3) translates to

E [Hσ2

i (σX)Hσ2

j (σY )] = σi+j E [Hi (X)Hj (Y )] = σ2jj!%j δij (A.5)

for indices i, j ∈ N0.
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Appendix

B. Specific distributions

distribution parameter support cdf F (and pdf f)

Uniform, a, b ∈ R (limits) a ≤ x ≤ b F (x) = x − b
b − a

f(x) = 1

b − aU(a, b) a > b

Exponential, λ ∈ R>0 (scale) x ∈ R≥0
F (x) = 1 − e−λx

f(x) = λe−λx
Exp(λ)

Normal, µ ∈ R (location) x ∈ R F (x) = Φ(x − µ
σ

)

Φ (x) ∶= 1

2
(1 + erf ( x√

2
))

f(x) = 1

σ
φ(x − µ

σ
)

φ(x) ∶= 1√
2π

e−
x2

2

N(µ,σ2) σ ∈ R>0 (standard
deviation)

Chi-square1, k ∈ N>0 (degrees
of freedom)

x ∈ R>0, if k = 1 F (x) = 1 −
γ (k

2 ,
x
2
)

Γ (k
2
)

f(x) = x
k
2
−1e−

x
2

2
k
2 Γ (k

2
)

χ2(k) x ∈ R≥0, if k > 1

Pareto, xmin ∈ R>0 (scale) x ∈ R≥xmin F (x) = 1 − (xmin

x
)
α

f(x) =
αxαmin

xα+1
Par(xmin, α) α ∈ R>0 (shape)

Generalized
extreme value
distribution,

µ ∈ R (location) x ∈ R: F (x) = e−(1 + ξ(x−µ
σ

) )−
1/ξ

σ ∈ R>0 (scale) 1 + ξ (x−µσ ) > 0

GEV(µ,σ, ξ) ξ ∈ R (shape)

Gamma β ∈ R≥0 (scale) x ∈ R>0
f(x) = βα

Γ(α)x
α−1e−βx

Γ(α,β) α ∈ R>0 (shape)

Table B.1 Collection of frequently used distributions.

1In the cdf of the χ2-distribution the two-argument function γ denotes the lower incomplete gamma
function. For k = 1 degree of freedom the cdf and pdf are given in equation (3.28).
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C. Convergence of distribution functions

C. Convergence of distribution functions

Let Fn, F ∶ RÐ→ [0,1] be cdfs.

Definition (Pointwise convergence): A series (Fn)n∈N converges pointwise to a limit
cdf F , denoted by Fn

p.w.
Ð→ F , if for all x ∈ R

lim
n→∞

Fn(x) = F (x).

Definition (Convergence in distribution): A series (Fn)n∈N converges in distribution to
a limit cdf F , denoted by Fn

dÐ→ F , if the cdfs Fn converge pointwise to the limit cdf F
in all the continuity points x ∈ R of F.

Definition (Uniform distribution): A series (Fn)n∈N converges uniformly to a limit
cdf F if the cdfs Fn converge to F uniformly on R, in other words, if for all x ∈ R

lim
n→∞

sup
x∈R

∣Fn(x) − F (x)∣ = 0. (C.1)

Lemma C.1: Let Fn, F ∶ R Ð→ [0,1], n ∈ N, be cdfs such that F is continuous and
Fn

p.w.
Ð→ F as n→∞. Then Fn

dÐ→ F uniformly on R as n→∞.

Proof. Based on the pointwise convergence of the series (Fn)n∈N to F , uniform conver-
gence is implied by the continuity and asymptotics of the limit cdf F and the monotony
of both all Fn and F as follows.

Let ε > 0. By the continuity and asymptotics of F we can choose a finite (m+1)-tuple
−∞ =∶ x0 < x1 < . . . < xm−1 < xm ∶= ∞, m ∈ N, such that

∣F (xi−1) − F (xi)∣ <
ε

5
(C.2)

for all i = 1, . . . ,m. Note that, in particular, the convergence of F as x → ±∞ allows
for choices of x1 and xm−1 such that ∣F (x0) − F (x1)∣ = ∣0 − F (x1)∣ < ε/5 and ∣F (xm−1) −
F (xm)∣ = ∣F (xm−1) − 1∣ < ε/5. Hence, for all n ∈ N we obtain

sup
x∈R

∣Fn(x) − F (x)∣

≤ max
i=1,...,m

sup
x∈[xi−1,xi]

∣Fn(x) − Fn(xi)∣ + ∣Fn(xi) − F (xi)∣ + ∣F (xi) − F (x)∣

≤ max
i=1,...,m

∣Fn(xi−1) − Fn(xi)∣ + ∣Fn(xi) − F (xi)∣ + ∣F (xi−1) − F (xi)∣ (C.3)
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by the monotony of Fn and F . Let n0 ∈ N be such that by the pointwise convergence of
the cdfs Fn

∣Fn(xi) − F (xi)∣ <
ε

5
(C.4)

for all i = 1, . . . ,m and n ≥ n0. Such an n0 exists since the number m + 1 of points xi is
finite. We can further estimate the first summand in (C.3) by

∣Fn(xi−1) − Fn(xi)∣

≤ ∣Fn(xi−1) − F (xi−1)∣ + ∣F (xi−1) − F (xi)∣ + ∣Fn(xi) − F (xi)∣. (C.5)

Applying (C.2) and (C.4) to (C.3) and (C.5), for all n ≥ n0 we conclude

sup
x∈R

∣Fn(x) − F (x)∣

≤ max
i=1,...,k

∣Fn(xi−1) − F (xi−1)∣ + 2∣Fn(xi) − F (xi)∣ + 2∣F (xi−1) − F (xi)∣ < ε

and obtain convergence in distribution or Fn
dÐ→ F , respectively. ◻
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D. Weak dependence structures of stochastic processes

D. Weak dependence structures of stochastic processes

The two extreme scenarios of dependence in a stochastic process are the setting of
full independence and of a completely dependent series of just the same random vari-
able repeated. In between these two limit cases there exist various characteristics
describing the dependence structure [56, Chap. 3]. The collection below contains short-
memory characterisations that do not change the shape of the limit distribution both of
the CLT (cp. Rem. 5.1 in Sect. 5.1) and in the EVT (cp. Thm. 7.10 in Sect. 7.2.1). Let

α(k) ∶= sup{∣P(A ∩B) −P(A)P(B) ∣ ∣ A ∈ F−0 ,B ∈ F+k } ,

where F−0 and F+k are the σ-algebras generated by the “past information” Xs, s ∈ Z≤k,
and the “future information” Xs, s ∈ Z>k, respectively [56].

Definition (α-mixing, strong mixing): A stationary process Xt is α-mixing or strong
mixing if α(k) → 0 as k →∞.

The conditions D(un) and D′(un) (Sect. 7.2.1) are a generalization of strong mixing.
Leadbetter et al. [101, Sect. 3.2] introduced these weaker requirements as a convenient
condition on the dependence structure of extreme events in EVT.

Definition (m-dependence): A stationary process Xt obeys m-dependence if there
exists an integer m ∈ N such that α(k) = 0 for all time lags k ∈ Z>m.

Definition (Markov property): A discrete-time stochastic processXt possesses theMar-
kov property if for all times t ∈ N0

P(Xt = xt ∣Xt−1 = xt−1, . . . ,X0 = x0) = P(Xt = xt ∣Xt−1 = xt−1) . (D.1)

The Markov property of continuous-time processes is defined by means of the filtration
adapted to the process. Markov chains are discrete-time Markov processes. Basic
calculations imply an exponentially decaying acf for such processes by raising their
diagonalized transition matrix to the power of increasing time lags. Note that the
eigenvalues of stochastic matrices are positive and bounded from above by one. An
example of a continuous-time Markov process ist the Brownian motion.
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Appendix

E. Estimated model parameters

Table E.1 provides the estimated parameter values of the LRC tGp model for measurement
data from 20 different mid-latitude European locations (cp. Sect. 6.3) together with
effective sample sizes for these time series (cp. Sect. 6.3.5). Table E.2 compares the
statistics of the empirical data and the adjusted models for all 20 data sets. Table E.3
collects the estimated Hurst exponents along with their validation by regression values
for all 20 data sets.
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F. Influence of tails in extreme value theory

F. Influence of tails in extreme value theory

Let Mn = {X1, . . . ,Xn} be the maximum of n ∈ N iid random variables Xi, i = 1, . . . , n,
with common cdf F . The shape of the distribution of Mn is dominated by the tail
behavior of the cdf F (cp. Lem. 7.6). Lemma F.1 provides further insight into how
the speed of the decay of the survival function 1 − F influences the distribution of
extremes (cp. [101, Thm. 1.7.13]).

Lemma F.1 (Thm. 3.1.3 in [48]): Let xm ≤ ∞ be the right endpoint (7.4) of a cdf F
and let τ ∈ R>0. A sequence (un)n∈N of exceedances un ∈ R such that

n(1 − F (un)) → τ (n→∞) (F.1)

exists if and only if

lim
x↗xm

1 − F (x)
1 − F (x−)

= 1 and F (xm−) = 1, (F.2)

where F (x−) ∶= limt↗x F (x) denotes the left or lower limit of F in x ∈ R.

Lemma F.1 applies, in particular, to discrete distributions with infinite upper endpoint.
Prominent examples of such distributions, which violate limit condition (F.2), are the
Poisson and the geometric distribution. In either case, the decay of the survival function
is too fast, in the sense that the attained limit (F.1) is less than one (Exs. 3.1.4 and 3.1.5
in [48]). In other words, the jump heights of F decay too slowly to yield a non-degenerate
limit distribution of Mn as n→∞.
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Appendix

GEV(µ,σ, ξ) characterization examples

ξ > 0 α = 1
ξ Pareto Par(xmin, α),

1 − F (x) = x−αL(x), x ∈ R Cauchy, Burr,

L ∶ RÐ→ R slowly varying α-stable with α < 2

von Mises (sufficient) condition:

lim
x→∞

xf(x)
1 − F (x)

= α

ξ < 0 α = 1
ξ , xm < ∞ uniform U(a, b),

1 − F (xm − 1
x
) = x−αL(x), x ∈ R power-law tail with

L ∶ RÐ→ R slowly varying finite upper endpoint

von Mises (sufficient) condition: Beta distribution

lim
x↗xm

(xm − x)f(x)
1 − F (x)

= α

ξ = 0 xm ≤ ∞,∃z < x < xm ∶ Gaussian, Lognormal

1 − F (x) = c(x)e−∫
x
z
g(t)
h(t)dt, x ∈ R Weibull, Gamma,

c(x) → c > 0, g(x) → 1, h′(x) → 0 (x↗ xm) exponential,

and moderate further conditions exponential tail with

(necessary and sufficient) condition: finite upper endpoint

lim
x↗xm

1 − F (x + fh̃(x))
1 − F (x)

= e−t, t ∈ R

with, e.g., h̃(x) = ∫
xm
x

1−F (t)
1−F (x)dt, x < xm

Table F.1 Characterization of domains of attractions of EVDs and example distributions
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G. Mean residual life plot

G. Mean residual life plot

The application of EVT by the POT approach requires the choice of an appropriate
threshold for the selection of points for the statistical analysis (cp. Sect. 7.4). See [37]
for a more detailed description of the methodology of threshold selection below.

Let n ∈ N denote a number of iid samples of a random variable X with a cdf in
the domain of attraction of a GEV(µ,σ, ξ) distribution with µ, ξ ∈ R and σ ∈ R>0.
Then by Theorem 7.28 approximately for large numbers n and large thresholds u ∈ R,
the distribution of the excesses X − u conditional on X > u follow a GPD(0, σu, ξ)
with σu ∶= σ + ξ(u − µ). The mean of such a GPD reads σu

1−ξ if ξ < 1, and is infinite
otherwise. Therefore, for the mean size of the threshold exceedances we find

E [X − u ∣X > u] = σ + ξ(u − µ)
1 − ξ

. (G.1)

Relation (G.1) reveals a linear depenency of the mean size of excesses on the threshold u
in the asymptotic regime of the GPD. Testing for a linear change of the mean conditional
exceedances under altering thresholds helps locate a valid regime of thresholds. An
appropriate estimator for these means is the sample mean of the empirical excesses.
LetNu ∈ N denote the number of empirical values above a threshold u. A plot of the points

(u , 1

Nu

Nu

∑
i=1

(X(i) − u)) (G.2)

is called mean residual life plot and visualizes the shape of the dependency of the mean
excesses from the height of the threshold. Any threshold from a linear region in such a
plot forms a suitable choice for the POT approach. For a visualization of this procedure
see Example 7.29.

Elementary arguments yield exact formulae for the mean excessmu ∶= E [X − u ∣X > u]
of an exponentially (with rate parameter λ ∈ R>0), Gaussian or Pareto (with loca-
tion xmin = 1 and shape parameter α ∈ R>1) distributed random variable X as

Exp(λ) ∶ mu =
1

λ2
(G.3)

N(0,1) ∶ mu =
φ(u)

1 −Φ(u)
− u (G.4)

Par(1, α) ∶ mu =
u

α − 1
. (G.5)
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Abbreviations

General abbreviations

appx. appendix
chap. chapter
cor. corollary
cp. compare (to a given reference)
e.g. for example (exempli gratia (lat.))
equ. equation (plural: equs.)
ex. example (plural: exs.)
i.e. that is (id est (lat.))
lem. lemma
p. page
prop. proposition
rem. remark (plural: rems.)
sec. section
thm. theorem

Specific abbreviations

acf autocorrelation function (plural: acfs)
cdf cumulative distribution function (plural: cdfs)
cfp conditional follow-up probability
ecdf empirical (cumulative) distribution function
EVD extreme value distribution (plural: EVDs)
EVT extreme value theory
fBm fractional Brownian motion
fGn fractional Gaussian noise
GEV generalized extreme value (distribution)
iid independent and identically distributed
LRC long-range correlations
ML maximum likelihood
MM method of moments
pdf probability density function (plural: pdfs)
sf survival function
SRC short-range correlations
tGp truncated-Gaussian-power (distribution)
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Symbols

General symbols

N set of all natural numbers excluding the number zero
N0 set of all natural numbers including the number zero
R set of all real numbers

R≥0 set of all non-negative real numbers
R>0 set of all positive real numbers

ln natural logarithm
χA indicator function of a set A
Φ cdf of the standard Gaussian distribution
φ pdf of the standard Gaussian distribution

L2(R, µ)
space of all with respect to the measure µ square-integrable functions
on RÐ→ R

d= equality in distribution
dÐ→ convergence in distribution
Ô⇒ weak convergence in D[0,1]

∶= {[0,1] Ð→ R ∣ right-cont. on [0,1),finite limits on (0,1]}

dom(f) domain of a function f

P(X ≤ x) probability of an event {X ≤ x} = {ω ∈ Ω ∣X(ω) ≤ x}

X ∼ P A random variable X follows a distribution P
X ∼ F A random variable X follows a distribution with cdf F

f(x) ∼ g(x) Asymptotic equivalence: The functions f and g are called asymptoti-
(x→∞) cally equivalent if limx→∞

f(x)
g(x) = 1.

f(x) ∝ g(x) Asymptotic proportionality : The functions f and g are called asymp-
(x→∞) totically proportional if limx→∞

f(x)
g(x) = c ∈ (0,∞).
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Specific symbols

%, (%X) autocorrelation function (of a stochastic process Xt) 12,227

τD(N) finite-size decorrelation time of N ∈ N samples 73

τD decorrelation time 77

Neff effective sample size of N ∈ N samples of a stationary process 74

∆n(x) local error in Theorem 7.3 at a position x ∈ R, n ∈ N 145

∆n global error in the extremal types theorem, n ∈ N 145

∆′
n,∆

′′
n,∆

′′′
n specific errors affecting the global error ∆n, n ∈ N 146

Qm ∈ R, return level of block maxima with return period m ∈ N 159

qm ∈ R, m-year return level of a distribution of daily data, m ∈ N 159
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