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Abstract

In this thesis, we consider the mathematical formulation of thin liquid films,
which are approximated by two-dimensional evolving surfaces. The resulting
equation, which describes the fluid flow on such fluid films, is a vector-valued
surface partial differential equation, namely the incompressible surface Navier-
Stokes equation. We are interested in numerical approaches in order to solve this
equation as well as the interaction with the underlying geometry. Thereby, the
highly nonlinear coupling of the interfacial hydrodynamics and the geometric
properties is analyzed in various examples. First, we derive the vorticity-stream
function formulation, which circumvents the vector-valued structure of the equa-
tions. This allows us to use the standard surface finite element method to solve
this alternative approach numerically This has already been considered in the
literature, but for stationary surfaces. Here, we extend these basic ideas and
propose the respective formulation on evolving surfaces. However, it turned out,
that this approach is only valid for surfaces which are topologically invariant to
a sphere. Thus, we consider the incompressible surface Navier-Stokes equation
in its original form and propose a further approach, which is based on the re-
formulation in the Euclidean basis, the Chorin projection method and spatial
discretization with the standard surface finite element method. This allows us
to study the geometric effects on more general surfaces. Additionally, we present
two extensions of the proposed approaches. The first extension takes the inter-
action of the interfacial hydrodynamics and the surrounding fluids into account,
for which a model based on phase fields is derived. Finally, an approach for polar
liquid crystals on evolving surfaces is proposed, which couples the incompressible
surface Navier-Stokes equation to another vector-valued surface partial differ-
ential equation for their orientational ordering. All examples show the highly
nonlinear coupling between topology, geometric properties, defect interactions,
shape changes and hydrodynamics.
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Kurzfassung

In dieser Arbeit betrachten wir die mathematische Formulierung von dünnen
Flüssigkeitsfilmen, die durch zweidimensionale bewegte Oberflächen approx-
imiert werden. Die resultierende Gleichung, welche fluide Strömungen auf diesen
Flüssigkeitsfilmen beschreibt, ist eine vektorwertige partielle Differentialgleich-
ung, nämlich die inkompressible Navier-Stokes Gleichung auf Oberflächen. Wir
sind interessiert an numerischen Algorithmen zur Lösung dieser Gleichung und
der Interaktion mit der zu Grunde liegenden Geometrie. Dabei wird das hoch-
gradig nichtlineare Zusammenspiel der Grenzflächenhydrodynamik und der Ge-
ometrie in verschiedenen Beipielen analysiert. Als erstes leiten wir die Strom-
funktionsformulierung her, welche die vektorwertige Struktur der Gleichung
umgeht. Damit ist es möglich, die gewöhnliche parametrische Finite Elemente
Methode für das numerische Lösen des alternativen Ansatzes anzuwenden. Dies
wurde bereits in der Literatur behandelt, jedoch für stationäre Oberflächen.
In dieser Arbeit erweitern wir die grundlegenden Ideen und stellen die ent-
sprechende Formulierung für bewegte Oberflächen auf. Dabei stellt sich heraus,
dass dieser Ansatz nur für sphärenähnliche Oberflächen geeignet ist. Deshalb be-
trachten wir die inkompressible Navier-Stokes Gleichung auf Oberflächen in ihrer
Originalform und verfolgen einen weiteren Ansatz, welcher auf der Formulierung
in der Euklidischen Basis, dem Chorin Projektionsalgorithmus und der räum-
lichen Diskretisierung durch die gewöhnliche parametrische Finite Elemente
Methode basiert. Dies erlaubt es uns, die geometrischen Effekte auf allgemeinere
Oberflächen zu untersuchen. Zusätzlich präsentieren wir zwei Erweiterungen
der angegebenen Ansätze. Die erste Erweiterung behandelt die Interaktion
der Grenzflächenhydrodynamik mit umgebenden Fluiden, für welche ein Mod-
ell mit Phasenfeldern hergeleitet wird. Letztendlich beschreiben wir ein Model
für polare Flüssigkristalle auf bewegten Oberflächen, welches die inkompressible
Navier-Stokes Gleichung an eine vektorwertige partielle Differentialgleichung für
deren orientierte Ordnung koppelt. In allen Beispielen ist die hochgradig nicht-
lineare Kopplung zwischen Topologie, Geometrieeigenschaften, Defektinterak-
tionen, Veränderungen der Oberfläche und Hydrodynamik zu verzeichnen.
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1 Introduction

One of the most illustrative examples for experiencing interfacial hydrodynam-
ics can be observed in playing with soap bubbles. Here, the whole system
consists of three parts, namely the surrounding air, the enclosed air and – most

c©Sebastian Reuther

interestingly – the sopy water film in
between. Obviously, this film is very
thin, separates the inner and outer vol-
ume and is covered by colored struc-
tures. These structures emerge due
to the interference phenomena, when
light is broken and reflected on the in-
side and outside of the film. Soap bub-
bles follow the physical principle of minimizing the surface energy which explains
the dynamic shape changes from their emergence to the so-called equilibrium
state, where their shape becomes constant. But not only the shape of the bub-
ble changes dynamically until the equilibrium state is reached, also the colored
structures appearing on the surface nicely visualize the hydrodynamic behavior
of the thin fluid film and the interaction with the surrounding air. Even for this
simple and eye-catching example the fluidic properties of the thin film can be
observed. This leads to the following questions

- What influences the flow behavior of thin fluid films?

- Which roles play dynamic shape changes and the local curvature?

- How does a fluid film interact with the surrounding?

- How can a fluid film be described mathematically?

More serious examples can be found in computer graphics, geophysics or cell
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1 Introduction

biology, where the fluidic behavior of cell or vesicle membranes is considered.
Also so-called active liquid crystals on fluid interfaces are of special interest.
In this thesis we will study the physical effects influencing the hydrodynamics on
general thin fluid films more carefully. In particular, we will see that the inter-
facial flow field can be manipulated by the (non-constant) curvature. Moreover,
we will demonstrate the strong influence of dynamic shape changes on the flow
field. These highly nonlinear phenomena are analyzed in detail and the physical
properties are validated in various numerical studies.
Due to the fact that the thickness of such fluid films is typically orders of
magnitudes lower than its lateral extension, the interface is considered as a
two-dimensional curved surface. The only prize which has to be paid for this
dimensional reduction, is the more complex mathematical description of the ge-
ometry and the equations. More precisely, describing interfacial hydrodynamics
on surfaces generally generates a vector-valued surface partial differential equa-
tion (PDE), namely the incompressible surface Navier-Stokes equation. We will
see that this PDE is a generalization of the usual incompressible Navier-Stokes
equation in the two-dimensional flat space, but requires more care, e. g. regard-
ing the differential operators. We propose two possible approaches based on
finite elements in order to numerically solve the incompressible surface Navier-
Stokes equation. Moreover, we demonstrate the flexibility of these approaches
in various extensions.

1.1 Thesis overview

Considering interfacial hydrodynamics directly accounts for describing vector
fields on surfaces. In Chapter 2 we introduce the required notation and basic
concepts in dealing with vector fields on general evolving surfaces. Further-
more, a generic approach for describing locally defined vector-valued surface
PDEs in the common Euclidean basis is proposed before the incompressible
surface Navier-Stokes equation is derived and introduced in its original form.
The following Chapter 3 is devoted for the surface vorticity-stream function
formulation which is analogously derived as the usual formulation in the two-
dimensional flat space. Thereby, the resulting equations are a system of coupled
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1.1 Thesis overview

scalar-valued surface PDEs which are numerically solved using the surface fi-
nite element method. We consider designed examples which nicely show the
interplay of the flow field with the underlying geometry and the highly nonlin-
ear dynamic behavior through shape changes. The introduced vorticity-stream
function formulation is restricted to geometries which are topologically invariant
to a sphere, cf. Section 3.4. Therefore, we propose a numerical approach which
directly solves the incompressible surface Navier-Stokes equation in its original
form and circumvents this issue in Chapter 4. To be more precise, the Carte-
sian representation of the equations and a minor transformation to reduce the
numerical effort is used to componentwise apply the standard surface finite ele-
ment method. We show some numerical examples on more general geometries,
such as n-tori, for which the vorticity-stream function approach – as introduced
in Chapter 3 – cannot be applied. Additionally, shape changes of the sphere
based on a so-called nonic surface are used to dynamically influence the flow
field. The two proposed approaches from Chapter 3 and Chapter 4 are used
in various extensions which are introduced in the remaining chapters of this
thesis. E. g. in Chapter 5, a diffuse domain/diffuse interface model is proposed,
which accounts for the interaction of the fluid interface with surrounding bulk
fluids. This model can be seen as an approach for two-phase flow problems
with an interface condition based on the incompressible surface Navier-Stokes
equation. We compare the numerical results of the proposed model with an
experiment based on vesicles in shear flow. Furthermore, in Chapter 6 a model
to describe surface liquid crystals on evolving surfaces is considered. Here, we
use the method from Chapter 4 and a coupling to an additional vector-valued
surface PDE for their orientational ordering. The numerical approach for the re-
sulting system of equations is proposed and various examples are shown, which
accounts for the strong influence of the flow field on the orientational order-
ing. In Chapter 7 we conclude this thesis and give some possibilities for further
extensions.
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1 Introduction
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2 Mathematical Preliminaries

In this chapter, we provide the required notation for describing a two-dimensional
evolving surface, provide necessary tools for understanding the appearance of defects
and introduce a general concept to numerically treat vector-valued surface PDEs.
We further propose an alternative approach in order to derive the incompressible
surface Navier-Stokes equation. Additionally, the equation is nondimensionalized and
represented in Cartesian coordinates.
Parts of Section 2.1 and Section 2.3 are taken from the author’s publication [RV15].
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2 Mathematical Preliminaries

2.1 Overview

We consider thin films, whose thickness is much smaller than their lateral ex-
tension, and therefore use a two-dimensional surface to approximate the thin
film. Such systems can often bend easily and we are interested in the question
how an imposed geometric deformation influences the internal structure of the
film. Such an interplay between geometry and internal structure is well studied

c©Sebastian Reuther

for condensed matter systems, see
[BG09]. The most illustrative exam-
ple is probably the structure of a soc-
cer ball, with 12 pentagons, serving as
topological defects. Here, the favored
regular order of hexagons, which easily
tile a flat surface, cannot be extended
throughout the surface of the sphere.
We will discuss this example in more detail in Section 2.3. In technologically
more relevant examples of soft materials, such defects are the key for chemical
functionalization and provide the opportunity for the design of novel materials
[Nel02].
Less explored is an analogy for fluid films. Here, the defects are vortices or
saddles, which interact with the geometry. In [TVN10] this is analyzed for su-
perfluidic films, i. e. fluids with zero viscosity and zero entropy, for which thin
layers of liquid helium are used as a model system. In this thesis, we will con-
centrate on the more subtle case of fluids with nonzero viscosity and consider
various numerical approaches for the incompressible surface Navier-Stokes equa-
tion in the following chapters. Thereby, we simultaneously concentrate on both
the numerical approach and the interaction of the flow field with the underlying
geometry.

2.2 General notation

In this section, we provide the general notation as well as differential operators,
which are extensively used in the whole work. Note that this section serves
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2.2 General notation

as a formulary more than a rigorous mathematical theory. Therefore, we leave
some details which are not important or never used in the further chapters.
Additionally, we use the Einstein summation convention over repeated indices
(unless otherwise noted).

2.2.1 Geometric quantities

Throughout this thesis, we consider a regular moving oriented compact smooth
Riemannian surface S = S(t) ⊂ R3 embedded in R3, where t denotes the time.
Thereby, we restrict to the case ∂S = ∅ (unless otherwise stated). We follow the
general notation introduced in [NNPV18, NV18] and consider a parametrization
x(t, y1, y2) of the surface S defined by

x(t) : U → R3 ,(
y1, y2

)
7→ x

(
t, y1, y2

)
.

Thereby, U ⊂ R2 denotes a parameter set, t the time and y1, y2 the local coordi-
nates. The R3 representation of the surface S is given by S(t) = x(t, U). From
now on we drop the time argument, since it is clear that everything is time-
dependent, and use a similar approach as in [RV18b] but for the more general
case of evolving surfaces. Furthermore, the local basis is given by {∂1x, ∂2x},
where ∂i is the partial derivative in the direction of the i-th local coordinate,
and the unit outer normal vector field is denoted by ν. Accordingly, the first
fundamental form or metric tensor g is defined by gij = 〈∂ix, ∂jx〉. In the follow-
ing chapters we will see that the second fundamental form (or shape operator)
Bij := −〈∂ix, ∂jν〉 plays an important role and occurs in several so-called ex-
trinsic contributions in the considered equations. Also the two main curvatures
– the Gaussian curvature κ and the mean curvature H – typically enters such
equations. Thereby, κ and H are defined by the product and the sum of the two
principal curvatures, respectively. Furthermore, let T(d)

x S = T(d)
x S(t) denotes the

tangent space of d-tensors on x ∈ S and let T(d)S = T(d)S(t) = tx∈ST(d)
x S be

the respective tangent bundle of tensor fields of order d. We further assume that
the surface S moves in normal direction with a prescribed normal velocity vν .

9



2 Mathematical Preliminaries

We exclusively restrict to a transversal observer for the surface S. This means
we use an Eulerian perspective for the tangential space and a Lagrangian point
of view in normal direction. For further details on the choice of an observer we
refer to [NRV18, NV18].
In the following we omit high and low indices as it is usual in the context of
covariant and contravariant descriptions of vector fields and exclusively restrict
to contravariant case. This means that a contravariant vector field p ∈ T(1)S is
denoted by p = pi∂ix.
Let Ωh = Ωh(t) := {X ∈ R3 | |dS(X)| < h/2} ⊂ R3 be a (tubular) neighborhood
around the surface S with sufficiently small thickness h and a signed-distance
function dS . The coordinate system y1, y2 of the surface S is extended by a third
coordinate in normal direction denoted by ξ, which yields an arbitrary coordi-
nate system of the neighborhood Ωh. Furthermore, we introduce the coordinate
projection operator πc : Ωh → S, X 7→ x defined by X = x + dS(X)ν(x), which
is injective for sufficiently small h, cf. [DE13]. E. g. for a vector field p ∈ T(1)S
defined by p = pi∂ix and a scalar field ψ ∈ T(0)S on the surface S we introduce
the smooth normal extensions into the neighborhood Ωh by ψ̃(X) := ψ(x) and
p̃(X) := p(x), respectively. This means that scalar quantities are constantly
extended and vector fields are parallel transported off the surface. Note that
the introduction of the tubular neighborhood and the coordinate projection is
necessary for expressing the differential operators from the next Section 2.2.2 in
the R3 basis.
Next, we introduce the Cartesian representation of some of the geometric quan-
tities from above. Assume the normal vector to be represented in the Euclidean
basis, i. e. ν ∈ R3. Thus, the shape operator, the mean curvature and the
Gaussian curvature is given by [B]ij := [−Dν]ij = −Djνi, H = traceB and
κ = 1

2 (H2 − ‖B‖2), respectively. The differential operator D is thereby for-
mally defined by D := π∇ and its components are given by Di := πij∂j, where
π = I−ν⊗ν denotes the projection into the tangent space and⊗ the outer prod-
uct. In the literature, D is often called surface gradient, e. g. in [DE07a, DE07b].
For scalar fields this operator coincides with the covariant surface gradient, but
for vector fields we have to carefully distinguish between the surface gradient
operator from above and the covariant differential operator, see Section 2.2.2.
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2.2 General notation

2.2.2 Differential operators

Following [NNPV18, NV18, NRV18] the covariant surface gradient operator,
the surface divergence and the two surface curl operators are denoted by ∇S :
T(d)S → T(d+1)S, divS : T(d+1)S → T(d)S, rotS : T(d+1)S → T(d)S, RotS :
T(d)S → T(d+1)S with d ∈ N0, respectively. A more detailed definition of the
differential operators can be found in [NNPV18]. Let ψ : S → T(0)S be a
scalar-valued function and p : S → T(1)S a vector field defined on the surface
S, which is extended to the tubular neighborhood Ωh by using the coordinate
projection according to Section 2.2.1. We restrict to the Euclidean basis for the
neighborhood Ωh and thus the extension of the vector field p in the neighborhood
Ωh in the Euclidean basis is denoted by p̂ : S → R3. Note that the vector
field p̂ now has a normal component, which is completely arbitrary. Especially,
p̂ ·ν 6= 0 is possible in this setting. Analogously, let t : S → T(2)S be a 2-tensor
field on the surface S and t̂ its extension in Cartesian coordinates with again
non-vanishing normal components in general. Thus, the first order differential
operators represented in the Euclidean basis can be written as

[∇Sψ]i = [Dψ]i = Diψ (2.1)

[RotS ψ]i = [ν ×∇Sψ]i = εkliνkDlψ (2.2)

for the scalar function ψ,

[Dp̂]ij = Djp̂i (2.3)

[∇Sp̂]ij = [πDp̂ + (p̂ · ν)B]ij = πikDjp̂k + p̂kνkBij (2.4)

divS p̂ = trace (Dp̂) + (p̂ · ν)H = Dip̂i + p̂iνiH (2.5)

rotS p̂ = − divS (ν × p̂) = −εkliDi (νkp̂l) (2.6)

for the vector field p̂ and

[
Dt̂
]
ijk

= Dkt̂ij (2.7)[
divS t̂

]
i

=
[
π trace

(
Dt̂
)

+ νT t̂B +Hπt̂ν
]
i

= πikDj t̂kj + νkt̂kjBij +Hπij t̂jkνk (2.8)

11
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for the tensor field t̂ with the Levi-Civita symbol εkli. These identities follow by
considering the derivatives in the neighborhood Ωh and restricting to the surface
S. A more detailed derivation can be found in [NNPV18, NV18]. Note that we
use the same symbols for the first order differential operators in the local and
the Cartesian representation of the vector field p as well as the tensor field t.

With the definitions from above we are now able to formulate second order
operators on the surface S. For the scalar-valued function ψ we define the
Laplace-Beltrami operator by

∆Sψ = divS ∇Sψ . (2.9)

For the vector field p there are two possible definitions of the vector Laplacian,
namely the Bochner Laplacian

∆Bp = divS ∇Sp (2.10)

and the Laplace-deRham operator or Hodge Laplacian

∆dRp = −
(
∆RR + ∆GD

)
p (2.11)

with ∆RRp = RotS rotS p and ∆GDp = ∇S (divS p), cf. [AMR88]. These two
operators are connected by the Weizenböck identity, i. e.

∆Bp = −∆dRp + κp . (2.12)

From that point of view it can be easily seen that the Bochner Laplacian and
the Laplace-deRham operator match (except of the sign), if the Gaussian cur-
vature is zero. This is, e. g., the case in flat space or on a surface on which
one of the principal curvatures vanishes identically such as a cylindrical shape.
Analogously, we define these operators for the extended vector field p̂. Thus,
the extended Bochner Laplacian is given by

∆Bp̂ = divS ∇Sp̂ (2.13)
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and the extended Laplace-deRham or Hodge Laplacian by

∆dRp̂ = −
(
∆RR + ∆GD

)
p̂ (2.14)

with ∆RRp̂ = RotS rotS p̂ and ∆GDp̂ = ∇S (divS p̂). Again, we use the same
symbols for the Laplacians in the local and the Cartesian representation of the
vector field p.
For further details on geometric calculus – especially for covariant differentiation
in local coordinates – we refer to [AMR88, NVW12, NRV18, NNP+18, NRV17]
and especially to [NV18] for the moving surface setting.

2.3 Basic concepts for the appearance of
defects

2.3.1 Topological constraints

One mechanism for the appearance of defects is a topological constraint. Con-
sider a triangulation of the surface S. Although the Gaussian curvature κ is a
local geometric property, when integrated over S it becomes a topological invari-
ant, namely the Euler characteristic χ(S), which is stated in the Gauss-Bonnet
theorem, i. e.

χ(S) = 1
2π

∫
S
κdS . (2.15)

Thereby, the Euler characteristic χ(S) is defined by

χ(S) := V + F − E (2.16)

with the number of vertices V , the number of faces F and the number of edges
E of the triangulation. Equations (2.15) and (2.16) form a relation between the
triangulation and the Gaussian curvature κ. E. g. for a sphere with radius R, the
(constant) Gaussian curvature is 1/R2 and the surface area is 4πR2, which yields
χ(S) = 2 according to equation (2.15). For the i-th vertex of the triangulation,
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we can assign a coordination number Ci, counting the number of edges at that
point. Each edge connects two vertices. On the other hand, the i-th vertex also
connects Ci faces, where each connects three vertices. Thus, the contribution of
the i-th vertex to χ(S) can be written as 1−Ci/2+Ci/3 = (6−Ci)/6 according
to equation (2.16). Hence, vertices with a coordination number Ci = 6 do not
contribute and we can sum over all defects (Ci 6= 6) and obtain

∑
i

indS(di)
6 = χ(S) (2.17)

with indS(di) := 6 − Ci the defect charge at defect position di. This can be
related to our soccer ball example from Section 2.1. Each of the black and
white face is replaced by a vertex, which is located in the center of the pen-
tagon/hexagon and is connected to the neighboring vertices by an edge. This
forms triangular faces and thus we find 12 vertices with charge +1.

Similar arguments hold for continuous vector fields on closed surfaces. Also
in this case the Euler characteristic can be used to understand the defects.
Here, the charge of a defect is no longer determined by its coordination number
indS(·), but by its index/winding number indV (·), which is the algebraic sum
of the number of revolution of the vector field along a small counterclockwise
oriented curve around the defect. Thus, we state the Poincaré-Hopf theorem

∑
i

indV (di) = χ(S) . (2.18)

Equation (2.18) shows, that any continuous vector field on a sphere must have
at least two +1 defects or one +2 defect. E. g., consider the lines of latitude
on the globe that naturally create two vortices (+1 defects) at the north and
south pole, which yields a realization of the Poincaré-Hopf theorem (2.18). For
a more detailed discussion we refer to, e. g., [Kam02]. Additionally, the Euler
characteristic is related to the genus g(S) of the surface S by

χ(S) = 2− 2g(S) ,

where g(S) is formally defined as the number of handles of the surface S. Thus,
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an alternative version of the Poincaré-Hopf theorem is given by

∑
i

indV (di) = 2− 2g(S) . (2.19)

2.3.2 Geometric potential

The topology of the surface is one source for the appearance of defects and the
total topological charge of all defects is a conserved quantity. However, the real-
ization of equations (2.17) and (2.18) and the defect positions are not determined
by topology, but result from other sources, such as geometric properties.
Each defect experiences a geometric potential, which reflects the broken transla-
tional invariance of the surface and the type of order in the film or the alignment
of the vector field with the surface. In all these cases, defects can be related to
the geometry by an effective geometric interaction [VT04], which reads in the
case of the triangulated surface

ES(di) = −πkeindS(di)2UG(di) (2.20)

and in the case of a continuous vector field

EV (di) = 2πkeindV (di)
(

1− indV (di)
2

)
UG(di) (2.21)

with elastic stiffness ke and geometric potential UG determined by the surface
Poisson equation

∆SUG = κ .

The linear term in equation (2.21) arises from the geometric frustration of a
vector field, while the quadratic term in equations (2.20) and (2.21) originates
from the distortion of a vortex’s own flow pattern by the geometry. This self-
interaction is analyzed in detail for superfluid helium in [TVN10]. For this
case, analytic expressions can be derived for the interaction of vortices with the
geometry showing, e. g., a repulsion of vortices from positive Gaussian curvature
and an attraction to negative Gaussian curvature regions, irrespective of their
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charge and sign. The situation changes if the linear contribution comes into play.
The defects still place themselves such that the Gaussian curvature is screened.
More precisely, positive defects are attracted to peaks and valleys while negative
defects are pulled to saddles of the surface [VN06].

2.3.3 Defect interactions

In addition to the interaction with the geometry, defects also interact with each
other. Like particles, defects interact due to its charge via a Coulomb-like in-
teraction. This results in our two illustrative examples of a soccer ball and
the globe in a repulsion of the defects and a realization in which the geodesic
distance between the defects is maximized.

2.3.4 Nonlinear interactions and hydrodynamics

Combining all three contributions leads to a highly nonlinear interaction of
topology, geometry and defect positions. While this mesoscopic approach is
very efficient and successful in determining stable configurations (at least for
simple geometries), it neglects other influences for the appearance of defects,
which are caused by hydrodynamics. Therefore, we consider a full dynamic
model and use the described approaches only to justify the chosen examples
and to demonstrate the interaction of the flow field with the geometry. Instead
of a superfluid, where dissipation mechanisms of a conventional fluid are absent,
we consider the incompressible surface Navier-Stokes equation for which the
above mentioned interactions are used as suggestive analogies in order to show
that similar interactions can also be found in that case.

2.4 General vector-valued PDEs on evolving
surfaces

In this section, we propose a general approach to rewrite locally defined vector-
valued surface PDEs in the Euclidean basis, which is a starting point for further
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numerical approaches. We will see, that this opens the possibility to use estab-
lished methods, such as the standard surface finite element method.

In the literature, a lot of work has been done on the class of general scalar-
valued surface PDEs, e. g. in [Dzi88, DE07a, DE07b, DE13], whereas for vector-
valued surface PDEs only very recent approaches have been proposed, e. g. in
[RV18b, NNPV18, NNP+18, NRV18, OQRY18, HLL16]. In [NNV18] a finite
element method for arbitrary tensor-valued surface PDEs is proposed, which
uses the representation of the equations in the Euclidean basis. Here, we will
use the same basic ideas in order to reformulate vector-valued surface PDEs on
moving surfaces. Thus, consider a general local vector-valued surface PDE of
the form

∂̄tp = F (p,∆dRp) (2.22)

on S = S(t) with initial condition p (·, t) |t=0 = p0(·). Thereby, p = pi∂ix ∈
T(1)S denotes a vector field and ∂̄tp := (∂tpi) ∂ix the so-called intrinsic time
derivative. For simplicity the right hand side F only depends on zero and second
order contributions of p. Note that we restrict to the Laplace-deRham operator
∆dR in equation (2.22) since the Bochner Laplacian ∆B can be expressed via
the Laplace-deRham operator ∆dR in connection with the Gaussian curvature
κ through the Weizenböck identity (2.12).

The intrinsic time derivative in equation (2.22) is embarrassing for the most of
the numerical tools to solve vector-valued surface PDEs, since they are not able
to work with a local vector basis. To be more precise, solving such equations is
typically done by considering the vectors in the Euclidean basis and considering
the vector-valued equation as system of coupled scalar surface PDEs for each
component. We follow [NRV18] and define ∂tp := ∂t (pi∂ix), which would be
more appropriate than ∂̄tp = (∂tpi) ∂ix as in the above equation (2.22). By
using the product rule, we obtain ∂tp = (∂tpi) ∂ix + pi∂i∂tx = ∂̄tp + pi∂i∂tx
and therefore a relation between ∂tp and ∂̄tp. Generally, ∂tp does not belong
to the tangential space of the surface S and therefore only the tangential part
of ∂tp is considered. This means, the i-th contravariant component of ∂tp reads
[∂tp]i = [g−1]ij ∂tp · ∂ix = [g−1]ij

(
gjk∂tpk − vνgjkBklpl

)
which results in ∂̄tp =

π∂tp+vνBp. For more details we refer to [NV18, NRV18]. Accordingly, equation
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(2.22) now reads
π∂tp + vνBp = F (p,∆dRp) . (2.23)

Next, we extend the local basis by a coordinate in the normal direction and
consider the Euclidean basis as in Section 2.2.2. Thus, let p̂ be the Cartesian
representation of the corresponding local vector p. Note that p̂ is not necessarily
tangential. The newly added normal coordinate yields an additional degree of
freedom and equation (2.23) rewritten for p̂ results in an under-determined
problem. This issue can be handled in various ways. One possibility is the
introduce a Lagrange multiplier to enforce a zero normal component, which has
been considered in, e. g., [JOR17]. But this is not the focus of this work, since
the arising equations have saddle point structure and the numerical methods
require more care. Therefore, we here follow a penalty approach which uses an
additional penalty term in the equation to enforce the normal component to be
zero in a weak sense, cf. [NNPV18, RV18b]. Thus, equation (2.23) rewritten in
Cartesian coordinates reads

π∂tp̂ + vνBp̂ = F (p̂,∆dRp̂)± α(p̂ · ν)ν , (2.24)

with initial condition p̂ (·, t) |t=0 = p̂0(·) and a typically large penalty parameter
α. The sign in front of the penalty term corresponds with the sign in front
of the Laplace-deRham operator. It was shown in [NNPV18] that ∆dRv ≈
∆dRv̂ if the penalization technique from above is applied. Furthermore, first
order convergence in α was numerically shown for various physical problems in
[NNPV18, RV18b].

Eq. (2.24) can now be treated componentwise and established methods for
solving surface PDEs – such as the surface finite element method [DE13] – can
be applied. We will use these technique in some of the following chapters in
order to directly solve the incompressible surface Navier-Stokes equation and an
vector-valued equation for oriented ordering on evolving surfaces, see Chapter 4
and Chapter 6.
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2.5 Incompressible surface Navier-Stokes
equation

2.5.1 Literature

One of the first occurrence of the incompressible surface Navier-Stokes equation
dates back to the 1960s where Scriven published his fundamental work on in-
compressible Newtonian fluids on evolving surfaces in [Scr60]. In [AD09] this
formulation is used to describe the influence of the membrane viscosity effect
in liquid membranes. These models are based on basic conservation laws, i. e.
mass and linear momentum conservation. It turned out that the formulation of
the interfacial fluid – especially the acceleration term – in [Scr60] and [AD09]
is wrong, which has been corrected recently by [YOS16]. Here, the incompress-
ible surface Navier-Stokes equation is derived by variation of the kinetic energy
of a moving manifold and using the Lagrange-d’Alembert principle. Other ap-
proaches, which correctly derive the equations, can be found in [DF96], where
the Rayleigh dissipation potential is minimized, and in [HZE07], where rigorous
covariant differentiation is used. Recently, the correct formulation on moving
surfaces is derived by a thin-film limit of the three-dimensional incompressible
Navier-Stokes equation in [Miu17], by using basic conservation laws in [JOR17]
and by applying a variational principle in [KLG17]. All of these models are
restricted to Cartesian coordinates and consider a three-dimensional velocity
vector field in the Euclidean space. Very recently, in [NRV18] a thin film limit
of the three-dimensional incompressible Navier-Stokes equation is performed to
achieve the correct formulation in covariant form.

The formulation on stationary surfaces is discussed in [Tem88, CRT99], but
with the wrong factor in front of the term including the Gaussian curvature.
The correct formulation can be found in [EM70, MT01, RV18b], for which the
property of a dissipative system was analytically shown in [NRV17]. A vorticity-
stream function approach was derived in [NVW12], which is used in [NRV17]
and extended to evolving surfaces in [RV15, RV18a]. In [GA18] the equation is
derived by using a variational approach and exterior calculus.
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Applications The incompressible surface Navier-Stokes equation is connected
to the Boussinesq-Scriven constitutive law for two-phase flow problems with
interfacial viscous dissipation, see e. g. [Scr60, SS82, BP10, BGN15a]. Appli-
cations can be found in [HZE07, AD09, FHH10, BGN15a, RV16], where the
properties and dynamics of biomembranes were discussed, in computer graphics
[ETK+07, MCP+09, VCD+16] and in geophysics [STY15, PGRPV17]. Addi-
tionally, the dynamics of plasma motion in fusion plasma physics is of special
interest, see e. g. [Boo05].

Numerical approaches Methods to numerically solve the incompressible
surface Navier-Stokes equation are rare in the mathematical literature. The
vorticity-stream function approach [NVW12, RV15, RV18a] allows to use stan-
dard techniques for scalar-valued surface PDEs, such as the surface finite element
method [DE07a, DE07b, DE13] or the diffuse interface method [RV06]. The lat-
ter was extensively used in [RV16]. Other numerical approaches, which take
the incompressible surface Navier-Stokes equation in its vector-valued form into
account, can be found in [MHS16], but with the missing term including the Gaus-
sian curvature, and in [NRV17]. Both approaches are based in discrete exterior
calculus (DEC). In [GA18] a spectral numerical method is proposed to numeri-
cally solve the equations on radial manifold shapes. The incompressible surface
Navier-Stokes equation is rewritten in Cartesian coordinates in [RV18b, NRV18]
and the standard surface finite element method [DE07a, DE07b, DE13] is used to
solve the equations componentwise. A similar technique is proposed in [JOR17]
for the surface Stokes problem.

2.5.2 Derivation

In the following, we briefly sketch a possibility to derive the incompressible sur-
face Navier-Stokes equation from the mass conservation law and a modification
of the linear momentum conservation law, which is proposed in [YOS16]. The
purpose of this modification is that the derivation is independent of the choice
of the coordinate system, while the derivation in, e. g., [JOR17] is restricted to
the Cartesian coordinate system. To start with we state the following lemma

20



2.5 Incompressible surface Navier-Stokes equation

adapted from [YOS16, Appendix 2].

Lemma 1 (Master balance equation, [YOS16]). Let ψ, η ∈ T(0)S are given
scalar functions and let p ∈ T(1)S be a vector field on the surface S. Further-
more, let hold the balance law

d
dt

∫
U

ψds =
∫
U

ηds+
∫
∂U

〈p,νT 〉da

for any open subset U = U(t) ⊂ S = S(t) with sufficiently smooth boundary,
νT the normal vector on ∂U and d

dt the material derivative. Then, localization
yields the partial differential equation

d
dtψ + ψ divS v− ψvνH = η + divS p .

Thereby, v denotes the tangential velocity of the surface S.

Conservation of mass The conservation of mass reads in integral form

d
dt

∫
U

ρSds = 0

for any open subset U ⊂ S = S(t) with the surface material density ρS . Using
Lemma 1 with ψ = ρS , η = 0 and p = 0 yields the localized conservation of
mass

d
dtρS + ρS divS v− ρSvνH = 0 .

Modified tangential balance of linear momentum In flat space the bal-
ance of linear momentum is a vector-valued integral equation. This can be
generalized to surfaces if Cartesian coordinates are used, see e. g. [JOR17]. In
the more general context of an arbitrary coordinate system this is no longer
possible. If we analogously state the balance equation in an arbitrary local co-
ordinate system componentwise, we would lose the frame invariance of the whole
system. Roughly speaking, for two different choices of the coordinate system we
get two different equations in general. Thus, we modify this law by contracting
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with an arbitrary time-independent and covariantly time-constant test vector
field u tangent to U [YOS16]. Accordingly, the modified tangential balance of
linear momentum reads

d
dt

∫
U

〈ρSv,u〉ds =
∫
U

〈f ,u〉ds+
∫
∂U

〈σνT ,u〉da (2.25)

with external forces f and surface stress tensor σ = −pidS + 2ηSd. Thereby,
p denotes the pressure, idS the surface identity and d the rate-of-strain tensor,
i. e.

d = 1
2
(
∇Sv + (∇Sv)T

)
− vνB ,

see [AD09]. It holds 〈σνT ,u〉 = 〈νT ,σu〉 due to the symmetry of the stress
tensor σ. Hence, Lemma 1 can be applied to equation (2.25) with ψ = 〈ρSv,u〉,
η = 〈f ,u〉, p = σu and thus localization yields

d
dt〈ρSv,u〉+ 〈ρSv,u〉 divS v− 〈ρSv,u〉vνH = 〈f ,u〉+ divS (σu) .

With the product rule d
dt〈ρSv,u〉 =

(
d
dtρS

)
〈v,u〉+ ρS〈 d

dtv,u〉 we obtain

(
d
dtρS + ρS divS v− ρSvνH

)
〈v,u〉+ ρS〈

d
dtv,u〉 = 〈f ,u〉+ divS (σu) .

The term in the first brackets on the left hand side is the localized conservation
of mass and therefore vanishes identically. Thus, by using the arbitrariness
of u and the correct acceleration term from [HZE07] or [YOS16], i. e. d

dtv =
∂̄tv + ∇vv− 2vνBv− vν∇Svν , we obtain

ρS
(
∂̄tv + ∇vv− 2vνBv− vν∇Svν

)
= divS σ + f ,

where we recall the intrinsic time derivative ∂̄tv = (∂tvi) ∂ix from above. We
further assume the surface density ρS to be constant in space and time. Follow-
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ing [AD09], the divergence of the rate-of-strain tensor can be evaluated as

2 divS d = divS (∇Sv)︸ ︷︷ ︸
=−∆dRv+κv

+ divS
(
(∇Sv)T

)
︸ ︷︷ ︸
=∇S(divS v)+κv

−2 divS (vνB)

= −∆dRv + 2κv +∇S (vνH)− 2 divS (vνB)

and by using the identity ∂̄tv = π∂tv+vνBv from Section 2.4 the incompressible
surface Navier-Stokes equation finally reads

ρS (π∂tv + ∇vv− vνBv− vν∇Svν) = −∇Sp+ ηS
(
−∆dRv + 2κv

)
+ ηS (−2 divS (vνB) +∇S (vνH))

+ f (2.26)

divS v− vνH = 0 (2.27)

with the initial condition v (·, t) |t=0 = v0(·).

2.5.3 Nondimensionalization and Cartesian extension

We denote nondimensional variables/quantities and differential operators by a
”∼“ over its symbol. Let l∗ be a given length scale and t∗ a given time scale. By
using the identities from Table 2.1, we obtain for equations (2.26) and (2.27)

ρS l
∗

t∗2

(
π̃∂̃tṽ + ∇̃ṽṽ− ṽνB̃ṽ− ṽν∇̃S ṽν

)
= −ρS l

∗

t∗2
∇̃S p̃+ ηS

l∗t∗

(
−∆̃

dR
ṽ + 2κ̃ṽ

)
+ ηS
l∗t∗
∇̃S

(
ṽνH̃

)
− 2ηS
l∗t∗

d̃ivS
(
ṽνB̃

)
+ ρS l

∗

t∗2
f̃

1
t∗

d̃ivS ṽ−
1
t∗
ṽνH̃ = 0 .

For convenience and for better readability we drop the ”∼“-notation from now
on and consider each variable, quantity and operator in its nondimensional form
(unless otherwise stated). Thus, we get by further manipulation and by using
the definition of the Reynolds number Re := ρS l

∗2

ηS t∗
the nondimensional form of
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Symbol
nondimensional

counterpart
Symbol

nondimensional
counterpart

∂t
1
t∗
∂̃t vν

l∗

t∗
ṽν

∇S 1
l∗
∇̃S ν ν̃

divS 1
l∗

d̃ivS π π̃

∆dR 1
l∗2

∆̃
dR

B 1
l∗
B̃

∇ 1
l∗

∇̃ H 1
l∗
H̃

v l∗

t∗
ṽ κ 1

l∗2
κ̃

p ρS l
∗2

t∗2
p̃ f ρS l

∗

t∗2
f̃

Table 2.1: Variables, quantities and differential operators in dimensional and nondi-
mensional form.

the incompressible surface Navier-Stokes equation (2.26)-(2.27)

π∂tv + ∇vv− vνBv− vν∇Svν = −∇Sp+ 1
Re

(
−∆dRv + 2κv +∇S (vνH)

)
− 2

Re divS (vνB) + f (2.28)

divS v− vνH = 0 . (2.29)

Next, we propose an alternative formulation of the divergence of the surface
stress tensor in its nondimensional form, i. e. the viscous terms in equation (2.28),
which is sometimes more convenient to use. As above, we follow [AMR88] and
use the definition of the Laplace-deRham operator ∆dRv = −RotS rotS v −
∇S (divS v). Furthermore, we use the identity divS B = ∇SH, the localized
conservation of mass as well as the product rule and rewrite the viscous terms
as

divS σ = −∆dRv + 2κv +∇S (vνH)− 2 divS (vνB)

= RotS rotS v + 2κv + 2∇S (vνH)− 2B∇Svν − 2vν divS B

= RotS rotS v + 2κv + 2H∇Svν − 2B∇Svν . (2.30)

Thus, an alternative form of the incompressible surface Navier-Stokes equation
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(2.28)-(2.29) reads

π∂tv + ∇vv− vνBv− vν∇Svν = −∇Sp+ 1
Re (RotS rotS v + 2κv + 2H∇Svν)

− 2
ReB∇Svν + f (2.31)

divS v− vνH = 0 . (2.32)

In order to use established numerical methods to solve the incompressible sur-
face Navier-Stokes equation (2.28)-(2.29) or the alternative version (2.31)-(2.32),
we extend the equations to Cartesian coordinates and penalize the normal com-
ponent to be zero in a weak sense as proposed in Section 2.4. Thus, the system
(2.28)-(2.29) now reads

π∂tv̂ + ∇v̂v̂− vνBv̂− vν∇Svν = −∇Sp+ 1
Re

(
−∆dRv̂ + 2κv̂ +∇S (vνH)

)
− 2

Re divS (vνB) + f̂ − αv (v̂ · ν)ν (2.33)

divS v̂− vνH = 0 , (2.34)

where f̂ denotes the extended three-component external forces. Analogously,
the extended version of the alternative formulation (2.31)-(2.32) reads

π∂tv̂ + ∇v̂v̂− vνBv̂− vν∇Svν = −∇Sp+ 1
Re (RotS rotS v̂ + 2κv̂ + 2H∇Svν)

− 2
ReB∇Svν + f̂ − αv (v̂ · ν)ν (2.35)

divS v̂− vνH = 0 . (2.36)

The systems (2.33)-(2.34) and (2.35)-(2.36) are equipped with the initial condi-
tion v̂ (·, t) |t=0 = v̂0(·).

2.5.4 Relation to other derivation approaches

In this section, we successively transform [JOR17, equation (3.12)] to the present
formulation (2.35)-(2.36) in order to show their equivalence. For simplicity we
consider the surface force f̂ to be zero and the velocity field v̂ to be tangential.
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Hence, equations (2.35) and (2.36) read

π∂tv̂ + ∇v̂v̂− vνBv̂− vν∇Svν = −∇Sp+ 1
Re (RotS rotS v̂ + 2κv̂ + 2H∇Svν)

− 2
ReB∇Svν (2.37)

divS v̂− vνH = 0 . (2.38)

We recall [JOR17, equation (3.12)] in their notation and in nondimensional form

∂•ΓuT + unṅ = −∇Γπ + 1
Re (∆ΓuT +KuT )

+ 1
Re (−∇Γ (∇Γ · uT )− 2 (κP−H)∇Γun) (2.39)

∇Γ · uT = −unκ . (2.40)

Thereby, uT denotes the tangential velocity, π the pressure, un the normal ve-
locity, n the normal vector, P the projection to the tangent space, ∇Γ = P∇
the surface gradient operator, ∆Γ the Bochner Laplacian, K the Gaussian cur-
vature, κ = ∇Γ · n the mean curvature and H = ∇Γn the shape operator. Note
that in contrast to [JOR17] we here assume that the surface gradient vector
is formally a column vector. Replacing their notation by the notation of this
thesis, i. e. replacing uT by v̂, π by p, un by vν , κ by −H, K by κ, H by −B, n
by ν and P by π, yields for equations (2.39) and (2.40)

∂•Γv̂ + vν ν̇ = −∇Γp+ 1
Re (∆Γv̂ + κv̂−∇Γ (∇Γ · v̂))

+ 1
Re (2 (Hπ − B)∇Γvν) (2.41)

∇Γ · v̂ = vνH . (2.42)

By using ∇Γ · v̂ = divS v̂ equation (2.42) is equivalent to equation (2.38) and we
only need to consider equation (2.41) henceforth. Using the Weizenböck identity
(2.12), the Bochner Laplacian in equation (2.41) can be replaced by

∆Γv̂ = −∆dRv̂ + κv̂ = RotS rotS v̂ + κv̂ +∇S (divS v̂) ,
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2.5 Incompressible surface Navier-Stokes equation

where ∆dRv̂ = −RotS rotS v̂ − ∇S (divS v̂) is used as above. Thus, by using
∇Γξ = ∇Sξ for scalar functions ξ on the surface S equation (2.41) reduces to

∂•Γv̂ + vν ν̇ = −∇Sp+ 1
Re (RotS rotS v̂ + 2κv̂ + 2H∇Svν − 2B∇Svν) (2.43)

and the right hand side is equivalent to that in equation (2.37). The left hand
side of equation (2.43) can be rewritten as

∂•Γv̂ + vν ν̇ = π∂tv̂ + π ((v̂ + vνν) · ∇) v̂− vνBv̂− vν∇Svν , (2.44)

where the definitions ∂•Γv̂ = π (∂tv̂ + ((v̂ + vνν) · ∇) v̂) and ν̇ = −Bv̂ − ∇Svν
from [JOR17] were used. Finally, if we assume that v̂ is extended constantly off
the surface in normal direction, we get the identity

[π ((v̂ + vνν) · ∇) v̂]k = πkl (v̂i + vννi) ∂iv̂l = πkl (v̂iDiv̂l + vννiDiv̂l)

= πklv̂iDiv̂l = v̂iDiv̂k = [∇v̂v̂]k .

Therefore, the acceleration term (2.44) is equivalent to that in equation (2.37).
Finally, we have shown the equivalence of the incompressible surface Navier-
Stokes equation in the present form (2.37)-(2.38) to that proposed in [JOR17,
equation (3.12)].
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3 Vorticity-stream function
approach

In this chapter, we derive and numerically solve the vorticity-stream function approach
of the incompressible surface Navier-Stokes equation and investigate the interplay
between topology, geometry and fluid properties. Thereby, a surface finite element
discretization is used to discretize the resulting equations in space. Motivated by
designed examples for superfluids, we numerically consider the influence of a geometric
potential on vortices for fluids with a finite Reynolds number and show examples in
which geometric shape changes manipulate the flow field.
The main content of this chapter is taken from the author’s publication [RV15] and its
erratum [RV18a]. Additionally, the limitations of this approach and some simulation
results from the book chapter [NRV17] are presented in the following Section 3.4 and
Section 3.5.2, respectively.
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3 Vorticity-stream function approach

3.1 Overview

An alternative formulation of the incompressible surface Navier-Stokes equa-
tion (2.28)-(2.29) is the vorticity-stream function formulation which has been
considered for general stationary surfaces in [NVW12]. It turned out that this
approach is only applicable for spherical surfaces (surfaces with genus g(S) = 0),
see [NRV17, RV18b] and the below Section 3.4. However, we will see that the
vorticity-stream function approach is still a very appealing approach since the
number of independent variables is reduced by dropping the pressure, the saddle
point structure of the equations is removed and the incompressibility constraint
is automatically fulfilled. Additionally, the resulting problem is a system of
scalar-valued surface PDEs, for which established numerical methods – such as
the standard surface finite element method [DE13] – can be used.
First, we consider some general assumptions and basic identities. Afterwards,
we transform the incompressible surface Navier-Stokes equation (2.28)-(2.29)
into the vorticity-stream function formulation step-by-step and present the lim-
itations of this approach. Numerically, we consider similar examples as for
superfluidic films and observe qualitatively the same phenomena as analyzed in
[TVN10]. However, quantitatively the results differ and we analyze the influ-
ence of the Reynolds number as well as study the dynamics of the interaction
between the geometry and the vortices of the flow field. Additionally, various
examples for dynamically manipulating the flow field through shape changes are
presented.

3.2 General assumptions and identities

Let ξ and η be scalar-valued functions, p̂ an extended vector field on S as above
and v̂ the velocity field determined by equations (2.33) and (2.34), which is
assumed to be tangential for simplicity. From [NVW12] we state the following
identities. As in the two-dimensional flat space, it can be shown that

rotS ∇Sξ = divS RotS ξ = 0 . (3.1)
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Furthermore, it holds

rotS RotS ξ = ∆Sξ (3.2)

RotS ξ · RotS η = ∇Sξ · ∇Sη (3.3)

rotS (ξp̂) = ξ rotS p̂ + p̂ · RotS ξ , (3.4)

where the dot in equations (3.3) and (3.4) means the standard dot product in R3.
The Levi-Civita connection (transport term) can be componentwise expressed
by the surface gradient operator D, i. e. [∇v̂v̂]k = v̂iDiv̂k. However, for the
vorticity-stream function approach it is convenient to use the identity

∇v̂v̂ = 1
2∇S (v̂ · v̂) + rotS v̂ (ν × v̂) , (3.5)

which was extensively used in [NVW12, NRV17, RV15, RV18a, RV18b]. Fur-
thermore, we define the so-called Jacobian

J (ξ, η) := RotS ξ · ∇Sη = (ν ×∇Sξ) · ∇Sη . (3.6)

Note that right hand side of equation (3.6) is geometrically the triple product
of the normal vector ν, the surface gradient of ξ and the surface gradient of η.
Hence, the properties of the triple product directly yield the anti-symmetry of
the Jacobian, i. e. J (ξ, η) = −J (η, ξ), as well as J (ξ, ξ) = 0. Since the surface
S is moving the curl operator rotS (·) and the partial time derivative ∂t are non-
commuting differential operators. The opposite is true on stationary surfaces
which has been considered in [NVW12]. However, it holds

rotS (π∂tv̂) = ∂t rotS v̂ + vνB : ∇S (ν × v̂) + RotS vν · (Bv̂) ,

which can be obtained by basic computations, see [RV18a]. Furthermore, we
use the product rule and the identity divS B = ∇SH to finally get

rotS (π∂tv̂) = ∂t rotS v̂ + vν divS (B (ν × v̂))− vν (ν × v̂) · ∇SH

+ RotS vν · (Bv̂) . (3.7)
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3 Vorticity-stream function approach

3.3 Transformation

The starting point is the incompressible surface Navier-Stokes equation in its
extended form (2.33)-(2.34) with f̂ = 0 for simplicity, i. e.

π∂tv̂ + ∇v̂v̂− vνBv̂− vν∇Svν = −∇Sp+ 1
Re

(
−∆dRv̂ + 2κv̂ +∇S (vνH)

)
− 2

Re divS (vνB) (3.8)

divS v̂− vνH = 0 (3.9)

on the evolving surface S. Note that we here assume that the velocity is tangen-
tial for simplicity and thus the penalty term vanishes identically. The approach
in [NVW12] uses the ansatz v̂ = RotS ψ with the stream function ψ. The present
case is different since the divergence of the velocity field v̂ is nonzero. Therefore,
we consider

v̂ = RotS ψ +∇SΦ (3.10)

with a scalar potential function Φ, which also accounts for non-divergence free
contributions of the velocity vector field v̂. The ansatz in equation (3.10) is
based on the Hodge decomposition (see [AMR88]) and is only valid for surfaces
with genus g(S) = 0 in the present form. For further details on this limitation
we refer to the following Section 3.4.
The first step of the transformation is done by inserting equation (3.10) into
equation (3.9), i. e.

∆SΦ− vνH = 0 ,

which yields a scalar-valued surface PDE for the potential Φ. The second step
involves the momentum equation (3.8) and uses the curl operator rotS (·) to
obtain an equation for the stream function ψ. Thus, we apply the curl operator
rotS (·) to equation (3.8) and use the substitution

φ = ∆Sψ (3.11)
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3.3 Transformation

T rotS T used equations

π∂tv̂ ∂tφ+ vν divS (B (RotS Φ−∇Sψ)) (3.1), (3.2), (3.6),
+vν (J (H,Φ) +∇SH · ∇Sψ) (3.7), (3.10), (3.11)
+ RotS vν · (B (RotS ψ +∇SΦ))

∇v̂v̂ divS (φ∇SΦ) + J (ψ, φ) (3.1), (3.2), (3.3),
(3.4), (3.5), (3.6),
(3.10), (3.11)

vνBv̂ vν rotS (B (RotS ψ +∇SΦ)) (3.10), (3.4)
+ (B (RotS ψ +∇SΦ)) · RotS vν

vν∇Svν 0 (3.1), (3.4)

∇Sp 0 (3.1)

−∆dRv̂ ∆Sφ (2.14), (3.1), (3.2),
(3.10), (3.11)

κv̂ divS (κ∇Sψ) + J (κ,Φ) (3.1), (3.2), (3.3),
(3.4), (3.6), (3.10)

∇S (vνH) 0 (3.1)

divS (vνB) − divS (ν × divS (vνB)) (2.5)

Table 3.1: Term-by-term transformation of the incompressible surface Navier-Stokes
equation (3.8)-(3.9).

with the so-called vorticity φ, since the resulting equation is a fourth order
surface PDE. Accordingly, Table 3.1 provides the transformation term-by-term.

Finally, we obtain the vorticity-stream function approach of the incompress-
ible surface Navier-Stokes equation (3.8)-(3.9) as system of three scalar-valued
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surface PDEs for the stream function ψ, the vorticity φ and the potential Φ, i. e.

∂tφ+ J (ψ, φ) + divS (φ∇SΦ) = vν (divS (B (∇Sψ − RotS Φ))− J (H,Φ))

+ vν (rotS (B (RotS ψ +∇SΦ))−∇SH · ∇Sψ)

+ 1
Re (∆Sφ+ 2 divS (κ∇Sψ) + 2J (κ,Φ))

+ 2
Re divS (ν × divS (vνB)) (3.12)

φ = ∆Sψ (3.13)

∆SΦ = vνH (3.14)

with appropriate initial conditions ψ (·, t) |t=0 = ψ0(·), φ (·, t) |t=0 = φ0(·) and
Φ (·, t) |t=0 = Φ0(·).

Remark. Consider the surface S to be stationary, i. e. vν = 0. Immediately,
equation (3.14) yields Φ = 0. Thus, we obtain

∂tφ+ J (ψ, φ) = 1
Re (∆Sφ+ 2 divS (κ∇Sψ)) (3.15)

φ = ∆Sψ (3.16)

for the stream function ψ and the vorticity φ. This system of equations coincides
with the system proposed in [NVW12].

3.4 Limitations

In [NVW12] the surface vorticity-stream function approach for arbitrary sta-
tionary surfaces has been introduced. In that context, the word “arbitrary”
has to be restricted to “arbitrary surfaces with genus g(S) = 0” as shown in
[NRV17, RV18b]. In the following we give some more detailed comments on this
issue, which are partially taken from [NRV17]. Thereby, this section is restricted
to stationary surfaces S with vν = 0 for simplicity.
The surface vorticity-stream function approach proposed by [NVW12] is based
on the Hodge decomposition theorem (see [AMR88]) of the velocity field v̂ which
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can be written as

v̂ = v̂div + v̂rot + v̂harm (3.17)

on a general surface S with a divergence free vector field v̂div, a curl free vector
field v̂rot and a divergence as well as curl free vector field v̂harm. The first
two parts are usually rewritten as v̂div = RotS ψ and v̂rot = ∇SΦ with scalar
functions ψ and Φ as above. Since we require incompressibility of v̂, i. e. divS v̂ =
0, it can easily be verified that the curl free part v̂rot vanishes identically, i. e.

0 = divS v̂ = divS v̂div + divS v̂rot + divS v̂harm = divS ∇SΦ = ∆SΦ ,

which leads to the trivial solution for Φ. Furthermore, on spherical surfaces
(g(S) = 0) we can drop the harmonic part since it is not possible to write
a vector field that is divergence and curl free except of the zero vector field.
Finally, the substitution v̂ = RotS ψ holds in the case g(S) = 0.
On surfaces with g(S) 6= 0 the situation changes and the harmonic part v̂harm

does not vanish in general. To demonstrate this property we use the torus
which has genus g(S) = 1 and can be described by the levelset function q(x) =
(
√
x2 + z2 −R)2 + y2 − r2, with x = (x, y, z)T ∈ R3, major radius R and minor

radius r. Here, we use R = 2 and r = 0.5. Let ϕ and θ denote the standard
parametrization angles on the torus. Then, the two basis vectors can be written
as ∂ϕx as well as ∂θx and read in Cartesian coordinates ∂ϕx = (−z, 0, x) as
well as ∂θx = (− xy√

x2+z2 ,
√
x2 + z2− 2,− yz√

x2+z2 ), which are schematically shown
in Figure 3.2. We find two (linear independent) harmonic vector fields on the
torus

v̂harm
ϕ = 1

4 (x2 + z2)∂ϕx

v̂harm
θ = 1

2
√
x2 + z2

∂θx ,

which are shown in Figure 3.1. It can be easily verified that divS v̂harm
ϕ =

rotS v̂harm
ϕ = 0 as well as divS v̂harm

θ = rotS v̂harm
θ = 0.

First, we construct an example velocity field on the torus, which has zero har-
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v̂harm
ϕ v̂harm

θ

|v̂harm
ϕ,θ |

0.17

0.15

0.12

0.10

Figure 3.1: Harmonic vector fields v̂harm
ϕ (left) and v̂harm

θ (right) on a torus. The
arrows are rescaled for better visualization. The color coding is according to the
absolute value of the respective harmonic vector field.

∂ϕx

∂θx

ψ

3.14

−3.14

1 2 3
−4
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0

2

4

θ/π

ψ

Figure 3.2: Left: Streamlines and values of the discontinuous stream function ψ to
represent the velocity field v̂ = ∂ϕx on the torus and the two basis vectors ∂ϕx and
∂θx. Right: Plot of the stream function values over the gray contour line in the left
figure.

monic parts but causes a discontinuity in the substituting scalar functions. Thus,
let v̂ = ∂ϕx, which has zero divergence and non-zero curl. The Hodge decompo-
sition (3.17) leads to v̂rot = v̂harm = 0. In that case, the substitution v̂ = RotS ψ
holds, which is a first order differential equation for the scalar function ψ. The
analytical solution of this equation reads ψ(θ) = −1

4 sin(θ) + θ − π in local co-
ordinates. The linear contribution causes a discontinuity at θ = 2π, which is
shown in Figure 3.2 together with the streamlines of v̂ = ∂ϕx (contour lines of
the stream function ψ).
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In the next example we consider the vorticity-stream function formulation (3.15)
and (3.16) with the mean of the two harmonic vector fields as initial condition,
i. e. v̂0(x) = 1

2(v̂harm
ϕ +v̂harm

θ ), on the same torus. Following the Hodge decompo-
sition (3.17) we have the initial conditions φ0 = ψ0 = 0 and thus only the trivial
solution over time. To also cover the harmonic parts, a different approach to
numerically solve the incompressible surface Navier-Stokes equation is proposed
in Chapter 4. There, we will use the same example for comparison with an
alternative discretization technique based on discrete exterior calculus (DEC)
from [NRV17]. For further details we refer to Chapter 4.

3.5 Geometric interactions in flow fields on
stationary surfaces

First, we concentrate on stationary surfaces S, i. e. surfaces with vν = 0. There-
fore, equations (3.15) and (3.16) are considered and discretized by using the
surface finite element method [DE13], which has already been tested for the
considered equations in [NVW12].

3.5.1 Numerical approach

Let T be a conforming surface triangulation of mesh size hM such that

Sh =
⋃
T∈T

T

is an interpolation of the surface S and let the time interval (0, tend] with end
time tend be divided into a sequence of discrete times 0 < t0 < t1 < ... with time
step width τm = tm− tm−1. Furthermore, we define the discrete time derivative
dτv

m := 1
τm

(vm − vm−1) for an arbitrary time-dependent function v. Thereby,
vm corresponds to the respective function at time t = tm, i. e. vm := v(·, tm). Let
further L2(Sh) denotes the space of square-integrable functions on Sh, Ck(Sh)
the space of k-times continuously differentiable functions on Sh and Pr(T ) the
set of polynomial functions of degree r on a triangle T ∈ T . We introduce the
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surface finite element space

Vh =
{
v ∈ C0(Sh) | v|T ∈ P1(T ), ∀T ∈ T

}
,

which is used twice as trail and test space. Furthermore, let (·, ·) denote the
standard scalar product on L2(Sh). Thus, the surface finite element approxi-
mation of the equations (3.15) and (3.16) reads: Find φm, ψm ∈ Vh such that
∀α, β ∈ Vh(

dτφ
m + J

(
ψm−1, φm

)
, α

)
= 1

Re

(
−∇Sφm − 2κ∇Sψm , ∇Sα

)
(
φm , β

)
= −

(
∇Sψm , ∇Sβ

)
.

Within this semi-implicit discretization, we assume κ to be given analytically
or computable at the required accuracy. The implementation is done in the
adaptive finite element toolbox AMDiS [VV07, WLPV15]. As linear solver
a BiCGStab(l) method with l = 2 and a Jacobi preconditioner is used. To
efficiently distribute the workload on many-core-platforms, we additionally use
a domain decomposition approach.

3.5.2 Simulation results

The goal of this section is to demonstrate the analogies of the incompressible
surface Navier-Stokes equation with known results for defect interactions men-
tioned in Section 2.3 and to show the complex interplay of topology, geometry,
defect interactions and hydrodynamics.
We first come back to the unit sphere and consider the interaction of two +1
defects (vortices). We consider the solution for two vortices located in the north
pole (0, 0, 1)T and south pole (0, 0,−1)T , given by ψ(x) = z and φ(x) = −2z
with x = (x, y, z)T ∈ S. This is a known analytic solution for the stationary
problem. We consider a perturbed solution and specify the initial condition for
the vorticity as φ(x) = −2z̃ with x̃ = Rx ∈ S. Thereby, R = R(η) denotes a
rotation matrix around the x-axis with a space dependent angle η = η(x) = z

2 .
The initial condition for the stream function ψ can then be computed by solving
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Figure 3.3: Left: Streamlines for the initial condition (top) and the reached steady
state solution (bottom) for Re = 1. Center: Vortex trajectories on the sphere for
Re = 100. The red points (left and center) indicate the respective initial positions
of the vortices. Right: Geodesic distance between the two vortices over time for
various Reynolds numbers. The gray arrows indicate increasing Reynolds number
and viscosity.

the surface Poisson problem according to equation (3.16). Figure 3.3 (left) gives
an illustration of the perturbed flow field with two vortices. The vortices are
known to repel each other and their interaction energy depends linearly on
the vortex separation distance [PL96]. Figure 3.3 (right) shows the dynamics
towards the analytic solution, where the vortices are maximally separated, for
different Reynolds numbers. For Re = 1 the vortices approach their maximal
separation directly, as shown in Figure 3.3 (left). This is no longer the case for
an increased Reynolds number. Figure 3.3 (center) shows the vortex trajectories
for Re = 100. The dependency of the time needed to reach the stationary state
on the Reynolds number is shown in Figure 3.3 (right). As larger the Reynolds
number, as longer it takes to reach the stationary state.
This stationary state represents a so-called Killing vector field, i. e. a rotating
flow which does not dissipate. As shown in [NRV17], the incompressible surface
Navier-Stokes equation (3.15)-(3.16) is a dissipative system, i. e. d

dtF
kin ≤ 0 with

the kinetic energy Fkin := 1
2
∫
S ‖v̂‖

2 dS. The equality in this equation holds, if
Re → ∞ or the deformation tensor vanishes identically. The latter defines the
property of a Killing vector field, which can be realized on rotational symmetric
surfaces such as the sphere. The analogy in the flat case is a bi-periodic domain
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hM |Fkin
0 −Fkin(10)| EOC
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Figure 3.4: Left: Values of the error in the kinetic energy and the experimental order
of convergence (EOC) for different mesh sizes hM (maximum circumcircle diameter
of all triangles) at time t = 10. Right: Visualized error in the kinetic energy against
meshsize hM.

in which a constant velocity vector field in one direction is defined. This system
also does not dissipate. We will use this property in some of the following
examples.

However, in the next example we investigate the numerical dissipation which oc-
curs due to the approximation error of the temporal and spatial discretization.
Again, the sphere is considered where the Killing vector field can be analytically
written as v̂K(x) = (y,−x, 0)T with coordinates x = (x, y, z)T ∈ S. The corre-
sponding analytical form for the stream function is ψK(x) = z and for the the
vorticity is φK(x) = −2z which are used as initial conditions. We let the flow
evolve for various mesh sizes hM and compute the error in the kinetic energy
Fkin at time t = 10, i. e. |Fkin

0 −Fkin(10)| where Fkin
0 is exact kinetic energy and

Fkin(10) is the kinetic energy at time t = 10. The timestep is considered to be
τ = τm = 0.1. Figure 3.4 shows the computed error in the kinetic energy, which
essentially shows second order convergence in the mesh size hM.

Next, we consider three simple examples which are adapted from [TVN10] to
investigate geometric interactions. The first considers a circular domain with a
bump, slightly placed outside the center, the second a circular domain with a
Gaussian saddle and the third the Enneper disk, a minimal surface with van-
ishing mean curvature H. Within the first two cases the surface is represented
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3.5 Geometric interactions in flow fields on stationary surfaces

by

S =
{

(x, y, z)T ∈ R3 | x2 + y2 < r2, z = h(x, y)
}

with r = 1 and a height-function h specifying the bump

h(x, y) = αr0 exp
(
−(x−mx)2 + (y −my)2

2r2
0

)
(3.18)

with α = 2.5, r0 = 0.2 and position (mx,my)T , or the Gaussian saddle

h(x, y) = α

r0

(
(x−mx)2 − λ(y −my)2

)
exp

(
−(x−mx)2 + (y −my)2

2r2
0

)
(3.19)

with α = 1.5, λ = 0.99, r0 = 0.2 and position (mx,my)T . The Enneper disk is
parameterized over the circular domain S with h(x, y) = 0 and r = 1.5 by

x̃ = 1
3

(1
3x

3 − xy2 − x
)

ỹ = 1
3

(
−1

3y
3 + yx2 + y

)
z̃ = 1

3
(
x2 − y2

)
.

All of the three cases require the presence of boundaries in order to induce one
+1 defect and study its geometric interaction. More precisely, on the circular
boundary ∂S, we specify φ = 2c for the vorticity and ψ = c

2r
2 for the stream

function with a constant c. This induces a tangential velocity at the boundary
∂S and thus a vortex within S. We further specify zero initial conditions for
the vorticity φ and the stream function ψ and let the flow evolve. Figure 3.5
shows the reached steady state solutions. All results show the same qualitative
influence by the Gaussian curvature as described for superfluids in [TVN10]. In
the first case, the bump leads to a lower velocity above the vortex (visible by a
larger spacing between the contour lines of the stream function ψ), which creates
a higher pressure and pushes the vortex away from the bump. Competing with
the boundary condition, which favors the vortex to be in the center, this leads
to a stationary profile with the vortex placed off the center. The second case is
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Figure 3.5: Stationary solution for the circular domain with a bump (left), the circular
domain with a Gaussian saddle (center) and the Enneper disk (right). Shown are the
contour lines for ψ. The color coding is according to the geometric potential UG.

a vortex-trapping surface. The geometric potential has its absolute minimum in
the center of the saddle, which attracts the vortex, independent of the position
of the Gaussian saddle on the disk. The third case considers a minimal surface.
In this example, the vortex is attracted to the middle of the surface. All these
examples nicely demonstrates the vortex-geometry interaction.

We will now consider an example in which topological defects, geometric in-
teractions and defect interactions are present. We use a geometry which is
topologically equivalent to the sphere, but with non-constant Gaussian curva-
ture, i. e. a common test case in computer graphics, the Stanford bunny. To
make flow simulations on this geometry feasible, the original mesh had to be
improved and the surface had to be smoothed to remove sharp corners. The
obtained geometry still contains regions with large positive and negative Gaus-
sian curvature. We start our simulation with noise as initial condition for the
vorticity φ and use a fixed Reynolds number Re = 1. Figure 3.6 (left) shows
the simulation result in which the defect positions becomes stationary. Note
that dissipation still takes place due to lack of rotational symmetry of the ge-
ometry. In this state, we observe high velocity differences and three +1 defects
(vortices) as well as one −1 defect (saddle), see Figure 3.6 (center). Thus, we
obtain ∑i indV (di) = 1 + 1 + 1− 1 = 2 = χ(S) and therefore a different realiza-
tion of the Poincaré-Hopf theorem. These stationary positions of the defects are
reached for all considered realizations of the initial conditions and are clearly a
result of the strong influence of the Gaussian curvature on the flow. Figure 3.6
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UG
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Figure 3.6: Left: Streamlines of the flow field on the Stanford bunny with the green
marked positions of the different defects. Numbers 1 to 3 indicate vortices (+1 defects)
and number 4 indicates a saddle point (−1 defect). Center: Identified defects with
rescaled streamlines and different flow directions (red and blue arrows) according to
different realizations of the noise initial condition. Right: Geometric potential UG
with identified local minima (red points).

(right) shows the respective geometric potential UG. The geometry has many
hyperbolic and elliptic points but the most influencing regions are the two min-
ima of the geometric potential UG located in the left and the right ear. Another
local minimum is located on the nose, see Figure 3.6 (right). These positions
agree very well with the positions of the vortices in Figure 3.6 (center). All
+1 defects (labeled ”1”, ”2”, ”3”) are placed on extreme values of the Gaussian
curvature, while the -1 defect (labeled ”4”) appears at a saddle, both in agree-
ment with the discussed linear contribution in equation (2.21). For less viscous
fluids, other regions of the surface (e. g. local extreme values of the geometric
potential UG) influence the flow field such that additional vortices can occur and
the solution might converge towards a different realization of the Poincaré-Hopf
theorem. However, a quantitative analysis of this influence seems not feasible
for the considered geometry.
As already analyzed in the examples from above the vortices in the flow field
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Figure 3.7: Top: Distances on the ellipsoid (left) together with the streamlines at
times t = 0, 4, 8, 12, 16 and 20 for the rotating flow (left to right). Results are shown
for Re = 10. Bottom: Kinetic energy Fkin against time t (left) and the height for the
upper vortex hz against time t for various Reynolds numbers Re.

repel each other and are attracted by regions of high Gaussian curvature. To
further quantify these phenomena we consider an ellipsoid, represented by the
levelset function q(x) = (x/a)2 + (y/b)2 + (z/c)2, with x = (x, y, z)T ∈ R3,
a = b = 0.5 and c = 1.5. We consider the initial solutions ψ0(x) = y + 0.1z
and use the timestep τ = τm = 0.1. Figure 3.7 shows the geometric properties,
the streamlines at various times for Re = 10 as well as the kinetic energy over
time and the position of one vortex over time for various Reynolds numbers.
The flow converges to a Killing vector field with the vortices located at the high
Gaussian curvature regions. However, these positions also favors the long range
interaction between the vortices, since they maximize their distance. Thus, we
cannot argue on a geometric interaction. The time to reach the Killing vector
field strongly depends on the Reynolds number Re, the lower Re the faster it is
reached.
The next example considers a biconcave shape, represented by the levelset func-
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Figure 3.8: Top: Distances on the biconcave shape (left) together with the Gaussian
curvature (right). Middle: Streamlines at times t = 0, 7, 14, 21, 28, 35, 42, 49, 56 and
200 (left to right, top to bottom) for the rotating flow. Results are shown for Re = 10.
Bottom: Two examples for the vortex trajectories for Re = 10 (left) and Re = 100
(center) and kinetic energy Fkin against time t for various Reynolds numbers Re
(right).

tion q(x) = (a2 + x2 + y2 + z2)3 − 4a2(y2 + z2) − c4, with x = (x, y, z)T ∈ R3,
a = 0.72 and c = 0.75. We consider the initial solution ψ0(x) = y + z and use
the timestep τ = τm = 0.1. Figure 3.8 shows the geometric properties together
with the trajectories of the upper vortex for different Reynolds numbers, the
streamlines at various times, a plot of the Gaussian curvature and the kinetic
energy over time. Again, the flow converges to a Killing vector field with the
vortices located at the high Gaussian curvature regions. Here, the location of
the vortices clearly is a result of the geometric interaction, as their distance is
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3 Vorticity-stream function approach

not maximized, see Figure 3.8 (top, left). Again, the time to reach the Killing
vector field strongly depends on the Reynolds number Re, the lower Re the
faster it is reached.

The results on numerical dissipation, the ellipsoid and the biconcave shape
are validated against a different discretization technique of the incompressible
surface Navier-Stokes equation based on discrete exterior calculus (DEC) in
[NRV17]. The vortex trajectories and kinetic energy values over time are almost
indistinguishable for both discretizations. For more details we refer to [NRV17].

3.6 Manipulating flow fields through shape
changes

Next, we consider a surface evolution in normal direction, i. e. vν 6= 0, and as-
sume that the surface area remains (at least globally) conserved. This require-
ment follows from our incompressibility assumption and is a typical constraint
for, e. g., lipid bilayer membranes [Hel73]. Thus, the full system of equations
(3.12), (3.13) and (3.14) is considered.

3.6.1 Numerical approach

As in Section 3.5.1, the above system of equations (3.12), (3.13) and (3.14) is
discretized in time by a semi-implicit Euler scheme. We adapt the notation
of Section 3.5.1 and introduce the surface finite element approximation. Let
T = T (t) be a conforming triangulation of the surface S = S(t) of mesh size
hM and let Sh be an interpolation of S such that

Sh =
⋃
T∈T

T

at time t = tm. We consider each space, set and quantity at time t = tm

and therefore omit indexing with the timestep number m for better readability
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(unless it is explicitly needed). The surface finite element space reads

Vh =
{
v ∈ C0(Sh) | v|T ∈ P1(T ), ∀T ∈ T

}
.

Note that Ck(Sh), Pr(T ), L2(Sh) and the standard L2 scalar product (·, ·) can
analogously be defined as in Section 3.5.1. The finite element space Vh is thereby
used twice as trail and test space. First, we solve equation (3.14) for the potential
Φm in each timestep and equations (3.12) as well as (3.13) for the stream function
ψm and the vorticity φm afterwards. Thus, the finite element approximation
reads: For m = 1, 2, 3, . . . find Φm ∈ Vh such that ∀γ ∈ Vh(

−∇SΦm , ∇Sγ
)

=
(
vνH , γ

)
.

Furthermore, find φm, ψm ∈ Vh such that ∀α, β ∈ Vh(
dτφm + p · ∇Sψm + J

(
ψm−1, φm

)
− g , α

)
= 1

Re

(
−∇Sφm + 2κ∇Sψm , ∇Sα

)
+
(
M∇Sψm + φm∇SΦm + q , ∇Sα

)
(
φm , β

)
= −

(
∇Sψm , ∇Sβ

)
,

where we have used the discrete time derivative dτ from Section 3.5.1 and the
abbreviations

M := vν
(
ν ×Rot(ν)T − B

)
p := B∇Svν + vν∇SH− (ν × B rotS(vν))

q := vνB rotS(Φm) + vνν × (B∇SΦm)− 2
Reν × divS (vνB)

g := −vνJ (H,Φm) + 2
ReJ (κ,Φm)− B rotS(vν) · ∇SΦm

+∇Svν · (B rotS(Φm)) ,

where Rot(ν) is a generalized curl operator with components [Rot(ν)]ij =
(RotS(νj))i. The components of the generalized cross product ν × A with a
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Figure 3.9: Evolution of v̂ for the evolving bump (top row) and the evolving Gaussian
saddle (bottom row) for t = 2, 14, 26, 38 and 50 (left to right) visualized as noise
concentration field aligned to the velocity field v̂. The color coding is according to
the geometric potential UG.

matrix A are determined by [ν ×A]ij := (ν ×Aej)i, where ej is the j-th unit
vector in R3. Again, the Gaussian curvature κ, the mean curvature H, the
shape operator B and the normal vector ν are assumed to by given analytically
or computable at the required accuracy in each timestep. As in Section 3.5, the
implementation is done in the adaptive finite element toolbox AMDiS [VV07,
WLPV15] with the domain decomposition approach and a BiCGStab(l) method
with l = 2 and a Jacobi preconditioner to solve the resulting linear systems.

3.6.2 Simulation results

To demonstrate the strong influence through shape changes, we modify the
considered examples for the stationary circular domain and let the bump and
the Gaussian saddle evolve. First, we use α = α(t) in the considered height
profile with α(0) = 0 and α(T ) = 2.5 or 1.5, for the bump, i. e. equation (3.18),
and the Gaussian saddle, i. e. equation (3.19), respectively. Figure 3.9 shows the
evolution of the velocity field, which adapt to the changing geometry leading
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Figure 3.10: Top row: Evolution of v̂ for the rotating bump for t = 2, 11, 19, 27 and
36 (left to right and top to bottom) visualized as noise concentration field aligned
to the velocity field v̂ (left) and evolution of the bump location (mx,my)T and the
vortex location (x, y)T for a full period of rotation (right). Bottom row: Evolution
of v̂ for the rotating Gaussian saddle for t = 2, 11, 19, 27 and 36 (left to right and
top to bottom) visualized as noise concentration field aligned to the velocity field v̂
(left) and evolution of the saddle location (mx,my)T and the vortex location (x, y)T
for a full period of rotation (right). The color coding is according to the geometric
potential UG.

to the same stationary solution as in the stationary case in Section 3.5.2. As
a second example, we let the bump and the Gaussian saddle rotate around
the center with (mx,my)T = (mx(t),my(t))T and a constant angular velocity,
see Figure 3.10. In that case the geometric forces are higher than the inertial
forces and the center of the vortex follows the center of the Gaussian saddle, see
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Figure 3.11: Evolution of v̂ for the accelerated rotation of the Gaussian saddle for
t = 2, 7, 10, 12 and 14 (left to right and top to bottom) visualized as noise concentration
field aligned to the velocity field v̂ (left) and evolution of the Gaussian Saddle location
(mx,my)T and the vortex location (x, y)T (right). The color coding is according to
the geometric potential UG.

Figure 3.10 (bottom, right). A different behavior is shown in Figure 3.11. Here,
we use an initially higher angular velocity which also increases over time. In
that case the inertial forces are higher than the geometric forces and the vortex
is placed off the center of the Gaussian saddle. Figure 3.12 shows the Reynolds
number against the angular velocity phase diagram, where the dependency of
the geometric on the inertial forces can be observed.

3.7 Conclusion

The mathematical formulation of an incompressible fluid on a curved evolving
surface is considered, for which the surface vorticity-stream function formula-
tion is derived. The geometric terms in the incompressible surface Navier-Stokes
equation induce a strong coupling between topology, geometry, defect interac-
tions and hydrodynamics. On closed surfaces, topological constraints might
require the presence of defects in the flow field. These defects interact with each
other and respond to the local curvature as well as shape changes of the geom-
etry. This leads to a highly nonlinear coupling, which can induce non-uniform
surface flow and thus opens new possibilities to manipulate the interfacial hy-
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Figure 3.12: Reynolds number against angular velocity phase diagram. Here it is as-
sumed that the vortex is placed off the Gaussian saddle if ||(mx,my)T −(x, y)T || ≥ 0.1
(red circles). Blue crosses indicate high geometric influences through vortex trapping.

drodynamics. We have demonstrated this interplay on various examples using
a surface vorticity-stream function formulation, which is numerically solved by
using the standard surface finite element method. Within the numerical treat-
ment we have assumed all geometric quantities, such as the mean and Gaussian
curvature, H and κ, the shape operator B and the normal vector ν, to be given
analytically or computable at the required accuracy. For the example of the
Stanford bunny we have used gradient recovery strategies to approximate the
shape operator and the mean and Gaussian curvature. For more general surfaces
or generalizations of the model, in which the normal velocity vν is not specified
but follows from conservation laws, the computation of H, κ, B and ν requires
more care.
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4 Solving the incompressible
surface Navier-Stokes
equation

Due to the limitations of the proposed vorticity-stream function approach in Chap-
ter 3, we consider a numerical approach for the incompressible surface Navier-Stokes
equation, which is applicable on surfaces with arbitrary genus g(S). The approach is
based on the Cartesian extension of the equation, a Chorin projection method and
discretization in space by surface finite elements. We study the experimental order
of convergence of the proposed Chorin projection method and compare simulation re-
sults with discrete exterior calculus simulations on a torus. The interplay of the flow
field with the topology is demonstrated by showing realizations of the Poincaré-Hopf
theorem on n-tori. Additionally, the strong influence of shape changes on the flow
field is shown in an example based on a non-uniform evolution of the nonic surface.
The main content of this chapter is based on the author’s publication [RV18b], but is
extended to evolving surfaces.
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4 Solving the incompressible surface Navier-Stokes equation

4.1 Model formulation

The vorticity-stream function formulation from Chapter 3 is very appealing
since the pressure is dropped, the saddle point structure of the equations is
removed and the incompressibility constraint is automatically fulfilled. But the
main disadvantage, namely that this method is restricted to surfaces with genus
g(S) = 0, requires further numerical approaches to circumvent this issue. One
possibility is to directly solve the incompressible surface Navier-Stokes equation
(2.28)-(2.29) by using discrete exterior calculus, see, e. g., [NRV17], which is not
the purpose of this chapter. Here, we propose an approach based on the extended
version of the incompressible surface Navier-Stokes equation (2.33)-(2.34). This
allows us to split the vector-valued problem into a set of coupled scalar-valued
problems for each component for which, e. g., surface finite elements can be used.
Thus, we recall the alternative form of the incompressible surface Navier-Stokes
equation (2.35)-(2.36) with f̂ = 0, i. e.

π∂tv̂ + ∇v̂v̂− vνBv̂− vν∇Svν = −∇Sp+ 1
Re (RotS rotS v̂ + 2κv̂ + 2H∇Svν)

− 2
ReB∇Svν − αv (v̂ · ν)ν

divS v̂− vνH = 0

on S = S(t) with the initial condition v̂ (·, t) |t=0 = v̂0(·). As in Chapter 2, v̂
denotes the extended surface velocity, p the surface pressure, π the tangential
projection operator, B the shape operator,H the mean curvature, κ the Gaussian
curvature, vν the normal velocity, ν the surface normal vector, Re the surface
Reynolds number and αv the penalization parameter to weakly ensure the ex-
tended velocity v̂ to be tangential. Furthermore, we use the alternative version
of the transport term ∇v̂v̂ from Section 3.1, i. e. ∇v̂v̂ = 1

2∇S(v̂·v̂)+rotS v̂ν×v̂,
and p̄ = p+ 1

2 v̂ · v̂ to obtain

π∂tv̂ + rotS v̂ν × v̂− vνBv̂ = −∇S p̄+ 1
Re (RotS rotS v̂ + 2κv̂)

+ fG − αv (v̂ · ν)ν (4.1)

divS v̂− vνH = 0 , (4.2)
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where we used the abbreviation

fG := 2
Re (H∇Svν − B∇Svν) + vν∇Svν (4.3)

for better readability. The advantage of equations (4.1) and (4.2) is that they
can be solved for each component v̂x, v̂y, v̂z of v̂ = (v̂x, v̂y, v̂z)T and p̄ using
standard approaches for scalar-valued problems on surfaces, such as the surface
finite element method [DE07b, DE07a, DE13], levelset approaches [BCOS01,
GBS06, SV08, DE08], diffuse interface approximations [RV06] or trace finite
element methods [Reu14].
In order to numerically solve equations (4.1) and (4.2) we will later use the
standard surface finite element method. Within this method, the RotS rotS v̂
term in equation (4.1) leads to a heavy workload in terms of implementation
and assembly time, since 36 second order operators, 72 first order operators and
36 zero order operators have to be considered. This effort can drastically be
reduced by rotating the velocity field by an anlge of π/2 in the tangent space.
Instead of v̂, we consider the rotated velocity ŵ := ν× v̂ as unknown and apply
ν× to equation (4.1). Thus, we obtain

π∂tŵ− divS ŵν × ŵ = −RotS p̄+ 1
Re (∇S divS ŵ + 2κŵ)

− vνν × (B (ν × ŵ)) + f⊥G − αw (ŵ · ν)ν (4.4)

rotS ŵ− vνH = 0 (4.5)

with the initial condition ŵ (·, t) |t=0 = ν×v̂0(·) =: ŵ0(·). Thereby, we have used
f⊥G := ν× fG and the identities rotS v̂ = − divS ŵ, divS v̂ = rotS ŵ, v̂ = −ν× ŵ
as well as ν × (ν × v̂) = −v̂. Additionally, we added the respective penalty
term to weakly ensure the rotated velocity ŵ to be tangential. The ∇S divS ŵ
term now contains only nine second order terms and the remaining terms are of
similar complexity as in equations (4.1) and (4.2). Note that in the language of
exterior calculus system (4.4)-(4.5) is the so-called Hodge dual formulation of
equations (4.1) and (4.2).

Remark. Consider the surface S to be stationary, i. e. vν = 0. Immediately,
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fG = f⊥G = 0 and thus we obtain

∂tv̂ + rotS v̂ν × v̂ = −∇S p̄+ 1
Re (RotS rotS v̂ + 2κv̂)− αv (v̂ · ν)ν (4.6)

divS v̂ = 0 . (4.7)

Analogously, the rotated version is given by

∂tŵ− divS ŵν × ŵ = −RotS p̄+ 1
Re (∇S divS ŵ + 2κŵ)− αw (ŵ · ν)ν (4.8)

rotS ŵ = 0 . (4.9)

4.2 Numerical approach

4.2.1 Chorin projection algorithm

First, we state the Chorin projection algorithm for the non-rotated system (4.1)-
(4.2). Afterwards, we show that this method is also applicable for the rotated
formulation (4.4)-(4.5). Let 0 = t0 < t1 < t2 < . . . be a sequence of discrete
times with time step width τm := tm − tm−1, where m denotes the time step
number. The fields v̂m = v̂(·, t)|t=tm , ŵm = ŵ(·, t)|t=tm and p̄m = p̄(·, t)|t=tm
correspond to the time-discrete functions at time tm. All other quantities are
considered at time t = tm in the following time discrete equations, i. e. ν =
ν(·, t)|t=tm , π = π(·, t)|t=tm , H = H(·, t)|t=tm , κ = κ(·, t)|t=tm , B = B(·, t)|t=tm
and vν = vν(·, t)|t=tm . Therefore, we omit indexing with the timestep number for
better readability (unless it is explicitly needed). Following [Cho68], we ignore
the pressure gradient term in equation (4.1) to find a so-called intermediate
velocity v̂? and replace equation (4.2) by a Poisson equation to determine the
pressure p̄m in each time step. Furthermore, let dv̂

τm := 1
τm

(v̂? − πv̂m−1) be the
discrete time derivative of the velocity v̂. Analogously, we define the discrete
time derivative of the rotated velocity ŵ by dŵ

τm := 1
τm

(ŵ? − πŵm−1). Thus,
by using a semi-implicit Euler time stepping scheme we finally get the following
time discrete problem for the non-rotated equations (4.1) and (4.2):

Problem 4.1. Let v̂0 be a sufficiently smooth initial velocity field. For m =
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1, 2, 3, . . . find

(i) v̂? such that

dv̂
τm + rotS v̂?ν × v̂m−1 − vνBv̂? = 1

Re (RotS rotS v̂? + 2κv̂?)

+ fG − αv (v̂? · ν)ν ,

(ii) p̄n+1 such that

τm∆S p̄m = divS v̂? − vνH ,

(iii) v̂m such that

v̂m = v̂? − τm∇S p̄m .

The new velocity v̂m, determined by Problem 4.1, satisfies the incompressibility
condition (4.2), i. e.

divS v̂m = divS (v̂? − τm∇S p̄m) = divS v̂? − τm∆S p̄m

= divS v̂? − (divS v̂? − vνH) = vνH .

However, the corresponding scheme for the rotated formulation (4.4)-(4.5) fol-
lows by defining ŵ? = ν × v̂? and applying ν× to the equation in step (i) of
Problem 4.1 as above. Thus, we obtain:

Problem 4.2. Let v̂0 be a sufficiently smooth initial velocity field and let ŵ0 :=
ν × v̂0. For m = 1, 2, 3, . . . find

(i) ŵ? such that

dŵ
τm − divS ŵ?ν × ŵm−1 = 1

Re (∇S divS ŵ? + 2κŵ?) + f⊥G

− vνν × (B (ν × ŵ?))− αw (ŵ? · ν)ν ,
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(ii) p̄m such that

τm∆S p̄m = rotS ŵ? − vνH ,

(iii) ŵm such that

ŵm = ŵ? − τm RotS p̄m ,

(iv) v̂m such that

v̂m = −ν × ŵm .

One of the main advantages of the projection scheme is that the equations
has no longer a saddle point structure. This typically opens a broader set
of applicable linear solvers (especially iterative solvers for large systems), if
finite elements for spacial discretization are used. In contrast to the original
saddle point problem, the pressure is determined by a Poisson equation in the
projection scheme. However, on surfaces with boundaries or in flat space, this
requires the specification of boundary conditions for the pressure. This directly
affects the velocity on the boundaries due to the pressure correction step in the
above algorithms. In other words, the numerical error of the Chorin projection
scheme drastically increases in the near of the boundaries in that cases. This is
a remarkable disadvantage and maybe the reason, why it is less often used in
numerical simulations in bounded domains. In all cases of this thesis, in which
the Chorin projection algorithm is used, this issue is implicitly circumvented,
since only surfaces without boundaries are considered.

4.2.2 Pressure relaxation schemes

As already stated, the equation to determine the pressure p̄ in step (ii) of Prob-
lem 4.1 and Problem 4.2 is a Poisson equation. Sometimes, especially when the
timestep width τm is small or the right hand side is big compared to the left
hand side, solving this equation requires more care. In the following, we present
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4.2 Numerical approach

two possible improvements to handle these issues – one, which iterates over the
correction steps and another, which introduces a relaxation scheme.

Algorithm 4.1 (Iteration). If the steps (ii) and (iii) of Problem 4.1 are nu-
merically solved, an approximation error emerge in the solution of these equa-
tions. Therefore, we loop over the correction step by the following scheme. For
l = 1, 2, 3, ..., successively solve

τm∆S p̄m,l = divS v̂?,l−1 − vνH (4.10)

v̂?,l = v̂?,l−1 − τm∇S p̄m,l (4.11)

with v̂?,0 = v̂? determined by step (i) of Problem 4.1. Finally, the equations
in steps (ii) and (iii) of Problem 4.1 are replaced by the equations (4.10) and
(4.11) and the new velocity is given by v̂m := v̂?,l for l → ∞. The same idea
can be easily applied for Problem 4.2. The corresponding scheme reads: For
l = 1, 2, 3, ..., successively solve

τm∆S p̄m,l = rotS ŵ?,l−1 − vνH (4.12)

ŵ?,l = ŵ?,l−1 − τm RotS p̄m,l (4.13)

with ŵ?,0 = ŵ? determined by step (i) of Problem 4.2 and the equations in steps
(ii) and (iii) of Problem 4.2 are replaced by the equations (4.12) and (4.13).
The new rotated velocity is given by ŵm := ŵ?,l for l→∞.

Algorithm 4.2 (Relaxation [NRV18]). The solution of the equation in step (ii)
of Problem 4.1 can be seen as the steady-state solution of a heat conduction equa-
tion with a source/sink term determined by the right hand side of this equation,
i. e.

∂t̃p̄
m − τm∆S p̄m = − divS v̂? + vνH

for t̃ → ∞, where t̃ is the time on a newly introduced relaxation timescale.
Therefore, we discretize this equation in time by an implicit Euler scheme, i. e.

1
τ̃

(
p̄m,l − p̄m,l−1

)
− τm∆S p̄m,l = − divS v̂? + vνH , (4.14)
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4 Solving the incompressible surface Navier-Stokes equation

where τ̃ denotes the relaxation timestep with and l the relaxation timestep num-
ber. Finally, the equation in step (ii) of Problem 4.1 is replaced by equation
(4.14) and p̄m := p̄m,l for l → ∞ is used in the pressure correction step (ii) of
Problem 4.1. The same idea can be easily applied for Problem 4.2 with rotS ŵ?

instead of divS v̂? in equation (4.14).

In this setting, a combination of both algorithms would also be possible. More
precisely, Algorithm 4.1 can be applied to Algorithm 4.2 by iterating over equa-
tion (4.14). However, we expect a similar convergence behavior as for Algo-
rithm 4.1 and therefore consider both algorithms in the following separately.

4.2.3 Space discretization

For the discretization in space we apply the surface finite element method for
scalar-valued problems [DE13] for each component of the velocity field v̂ and
ŵ, respectively. Therefore, let Sh = Sh(t) be an interpolation of the surface
S = S(t) such that

Sh :=
⋃
T∈T

T

with a conforming surface triangulation T = T (t) of mesh size hM at time t = tm.
Here, we consider each space, set and quantity at time t = tm and therefore omit
indexing with the timestep number m for better readability (unless it is explicitly
needed). We use globally continuous, piecewise linear Lagrange surface finite
elements and thus the finite element space reads

Vh =
{
v ∈ C0(Sh) | v|T ∈ P1(T ), ∀T ∈ T

}
with Ck(Sh) the space of k-times continuously differentiable functions on Sh and
Pr(T ) the set of polynomial functions of degree r on T ∈ T . The finite element
space Vh is thereby used twice as trail and test space for the pressure p̄ and the
velocities v̂ and ŵ. Furthermore, let (·, ·) denote the standard scalar product
on L2(Sh) with L2(Sh) the space of square-integrable functions on Sh.
The resulting fully discrete system of Problem 4.1 reads: For m = 1, 2, 3, . . . find
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4.2 Numerical approach

v̂? = (v̂?x, v̂?y, v̂?z)T ∈ V 3
h and p̄m ∈ Vh such that ∀u = (ux,uy,uz)T ∈ V 3

h ,∀q ∈ Vh(
dv̂
τm + rotS v̂?ν × v̂m−1 − vνBv̂? − fG + αv (v̂? · ν)ν , u

)
= − 1

Re

(
rotS v̂? , rotS u

)
+ 2

Re

(
κv̂? , u

)
(
τm∇S p̄m − v̂? , ∇Sq

)
=
(
vνH , q

)
,

from which v̂m can be computed according to step (iii) in Problem 4.1. Note
that the corresponding finite element approximation for the i-th component of v̂?

follows by testing with u = ξei for ξ ∈ Vh, where ei is the i-th unit vector in R3.
The resulting fully discrete system of Problem 4.2 reads: For m = 1, 2, 3, . . . find
ŵ? = (ŵ?

x, ŵ?
y, ŵ?

z)T ∈ V 3
h , p̄

m ∈ Vh such that ∀u = (ux,uy,uz)T ∈ V 3
h ,∀q ∈ Vh(

dŵ
τm − divS ŵ?ν × ŵm−1 + vνν × (B (ν × ŵ?))− f⊥G + αw (ŵ? · ν)ν , u

)
= 1

Re

(
divS ŵ? , divS u

)
+ 2

Re

(
κŵ? , u

)
(
τm∇S p̄m + ν × ŵ? , ∇Sq

)
=
(
vνH , q

)
,

from which ŵm and v̂m can be computed according to steps (iii) and (iv) in
Problem 4.2. Again, testing with u = ξei for ξ ∈ Vh yields the corresponding
finite element approximation for the i-th component of ŵ?.

In the following simulations, we additionally use the pressure relaxation schemes
from Section 4.2.2, i. e. Algorithm 4.1 and Algorithm 4.2, but omit its finite
element formulation, which can be analogously derived as above. In order to
assemble and solve the resulting system, we again use the finite element toolbox
AMDiS [VV07, WLPV15] with a domain decomposition approach to work on
many-core-platforms. As linear solver we have used a BiCGStab(l) method with
l = 2 and a Jacobi preconditioner. In the following, we exclusively consider the
systems and algorithms for the rotated velocity ŵ due to the expected reduced
numerical cost. This reduction is quantified in Section 4.2.4.
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Figure 4.1: Continuity equation error ‖ divS v̂− vνH‖2 against time t (left) and con-
tinuity equation error ‖ divS v̂ − vνH‖2,∞ against timstep width τ (right) for both
Algorithm 4.1 and Algorithm 4.2. Thereby, ‖ · ‖p denotes the spatial Lp norm and
‖ · ‖p,q denotes Lp norm in space and Lq norm in time.

4.2.4 Validation and comparison

First, we present a convergence study to numerically show the convergence in the
timestep width τm for both Algorithm 4.1 and Algorithm 4.2. An ellipsoid with
major axes (0.7, 0.7, 1.2) is considered as starting geometry, which evolves by
decreasing the third axis parameter to a sphere according to Figure 6.5 in Chap-
ter 6. Thereby, the two other parameters are chosen such that they are equal to
each other and the surface area is globally conserved over time. Furthermore,
we use a constant timestep width τ = τm and a fixed timestep-to-meshsize-ratio
τ/hM = 2 with mesh size hM to have a constant Courant-Friedrichs-Lewy (CFL)
condition for each considered timestep width. The Reynolds number Re is con-
sidered to be Re = 1 and the penalty parameter to ensure the tangentiality is
choosen as αw = 103. The evolution of the ellipsoid starts and ends smoothly
following a half period of a sine function (cf. Figure 6.5 of Chapter 6) in the
time period [0, 20]. We compute the solution of both projection methods, i. e.
Algorithm 4.1 and Algorithm 4.2, for various timesteps and plot the error in
the continuity equation ‖ divS v̂ − vνH‖ with a respective norm ‖ · ‖ against
the time t as well as against the timestep width τ in Figure 4.1. Note that the
continuity equation is not computed explicitly. In Table 4.1 the experimental
order of convergence (EOC) in the timestep width τ is computed, where – as
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4.2 Numerical approach

τ
Iteration Relaxation

‖ divS v̂− vνH‖ EOC ‖ divS v̂− vνH‖ EOC

0.1560 6.43 · 10−3 − 8.70 · 10−3 −
0.0936 3.56 · 10−3 1.16 3.88 · 10−3 1.58
0.0668 2.45 · 10−3 1.11 2.61 · 10−3 1.18
0.0425 1.51 · 10−3 1.07 1.58 · 10−3 1.11
0.0298 1.05 · 10−3 1.02 1.09 · 10−3 1.05
0.0211 0.80 · 10−3 0.81 0.81 · 10−3 0.84

Table 4.1: Experimental order of convergence (EOC) for the continuity equation error
‖ divS v̂−vνH‖ with respect to the timestep width τ . Thereby, ‖ · ‖ := ‖ · ‖p,q denotes
Lp norm in space and Lq norm in time.

DOFs tv̂/ms tŵ/ms tv̂/tŵ
1158 271 5 55
2310 544 8 65
4614 1123 16 72
9222 2200 32 70

18438 4369 69 63
36870 8818 157 56
73734 17920 327 55 20 40 60 80
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Figure 4.2: Assembly times tv̂ and tŵ (in ms) for the two second order operators
RotS rotS v̂ and ∇S divS ŵ, respectively, as a function of the number of DOFs.

in Figure 4.1 – linear convergence in τ can be observed. Algorithm 4.2 yields
the same numerical results as the original projection method, i. e. Algorithm 4.1
with only one iteration.
However, both finite element approximations of Problem 4.1 and Problem 4.2
lead to the same results, but the computational cost for Problem 4.2 is reduced
drastically. To quantify this reduction we compare the assembly time for the
second order operators in Problem 4.1 and Problem 4.2, i. e. RotS rotS v̂ and
∇S divS ŵ, respectively. We consider a sphere and vary the triangulation T .
Figure 4.2 shows the assembly time as a function of degrees of freedom (DOFs).
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|v̂|
0.12

0.02

Figure 4.3: Velocity field v̂ = −ν × ŵ at t = 0, 2, 10, 30 and 60 (left to right).
The arrows are rescaled for better visualization. The color coding is according to the
absolute value of the velocity v̂.

The time is the mean value of multiply runs of the assembly routine. The results
indicate a reduction by a factor of approximately 50.

Next, we compare the numerical solution of Problem 4.2 in combination with
Algorithm 4.1 with an example considered in [NRV17, Figure 7.8] using DEC.
It uses a nontrivial solution based on harmonic vector fields with divS v̂ = 0
and rotS v̂ = 0, which can exist on surfaces with g(S) 6= 0. Here, we use the
same setting as in Section 3.4 and consider a torus, which has genus g(S) = 1
and can be described by the levelset function q(x) = (

√
x2 + z2−R)2 + y2− r2,

with x = (x, y, z)T ∈ R3 with x = (x, y, z) ∈ R3, major radius R and minor
radius r. We use R = 2 and r = 0.5. Let ϕ and θ denote the standard
parametrization angles on the torus. Thus, the two basis vectors can be written
as ∂ϕx = (−z, 0, x) as well as ∂θx = (− xy√

x2+z2 ,
√
x2 + z2 − 2,− yz√

x2+z2 ) and the
two (linear independent) harmonic vector fields on the torus are given by

v̂harm
ϕ = 1

4 (x2 + z2)∂ϕx

v̂harm
θ = 1

2
√
x2 + z2

∂θx

according to Section 3.4. The example considers the mean of the two harmonic
vector fields as initial condition, i. e. v̂0 = 1

2(v̂harm
ϕ + v̂harm

θ ), and shows the
evolution towards a Killing vector field, which is proportional to the basis vector
∂ϕx. The surface Reynolds number is Re = 10. Figure 4.3 shows the results
obtained with the fully discrete scheme of Problem 4.2 in combination with
Algorithm 4.1 with time step width τm = 0.1 and penalization parameter αw =
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Figure 4.4: L2,2 norm of the error between the velocity field v̂ and the velocity field
v̂DEC from [NRV17] using the DEC approach against the penalty parameter αw (left)
and L2,2 norm of the normal component of the rescaled velocity field v̄ = v̂/‖v̂‖L2

against the penalty parameter αw (right). Lp,q thereby denotes the Lp norm in space
and Lq norm in time. The blue diamond indicates the penalty parameter αw used for
visualization in Figure 4.3 and in the following examples.

3000 on the same mesh as considered in [NRV17]. For the Gaussian curvature
κ we use the analytic formula. In Figure 4.4 (left) we compare v̂ with v̂DEC for
various αw. Thereby, v̂DEC is the solution of the (local) incompressible surface
Navier-Stokes equation (2.28)-(2.29) with vν = 0 from [NRV17] using the DEC
approach. Within this approach, the velocity v̂DEC has a zero normal component
by default. Again, first order convergence in αw can be obtained. In Figure 4.4
(right) we consider the rescaled velocity field v̄ = v̂/‖v̂‖L2 in order to show that
the penalization of the normal component v̄ · ν is numerically satisfied. Using
Algorithm 4.2 instead of Algorithm 4.1 leads to the same numerical results.

4.3 Simulation results

The Poincaré-Hopf theorem (2.19) relates the topology of the surface to analytic
properties of a vector field on it. For vector fields v̂ on the surface S with only
finitely many zeros (defects), it holds

∑
i

indV (di) = 2− 2g(S)
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4 Solving the incompressible surface Navier-Stokes equation

Figure 4.5: Velocity field v̂ = −ν × ŵ for the 1-torus at t = 0, 5, 10, 15, 25 and 100
(left to right and top to bottom) visualized as noise concentration field aligned to the
velocity field v̂. The red squares and blue circles are indicating +1 defects (vortices)
and −1 defects (saddles), respectively.

with indV (di) the index/winding number of v̂ at defect position di and the
genus g(S) of the surface S, cf. equation (2.19). To highlight this relation we
consider n-tori for n = 1, 2, 3 with genus 1, 2 and 3, respectively. Obviously,
the simulation results have to fulfill the Poincaré-Hopf theorem in each time
step, but they will also provide a realization of the theorem which depends on
geometric properties and initial conditions. Similar relations have already been
considered for surfaces with g(S) = 0 in Chapter 3 and [RV15, RV18a, NRV17].
A general form of a levelset function for a n-torus can be written as qn(x) =∏n
i=1 T (x − mi) − (n− 1) δ with a constant δ > 0 and the midpoints of the

tori mi ∈ R3 for i = 1, . . . , n. In the following examples we consider the fully
discrete scheme for Problem 4.2 in combination with Algorithm 4.1 and use
Re = 10, τ = τm = 0.1, αw = 3000, R = 1 and r = 0.5. For the Gaussian
curvature κ we use the analytic formula. The initial condition is considered
to be v̂0 = RotS ψ0 = ν × ∇Sψ0 with ψ0 = 1

2 (x+ y + z) which ensures the
incompressibility constraint.
Figure 4.5 shows the time evolution on the 1-torus with m1 = 0. The initial
state has four defects, two vortices with indV (di) = +1, indicated as red dots,
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Figure 4.6: Velocity field v̂ = −ν × ŵ for the 2-torus at t = 0, 10, 20, 30, 50 and 100
(left to right and top to bottom) visualized as noise concentration field aligned to the
velocity field v̂. The red squares and blue circles are indicating +1 defects (vortices)
and −1 defects (saddles), respectively.

and two saddles with indV (di) = −1, indicated as blue dots (one vortex and
one saddle are not visible). These defects annihilate during the evolution. The
final state is again a Killing vector field without any defects, which yields a valid
realization of the Poincaré-Hopf theorem (2.19).

For n > 1 the rotational symmetry is broken and Killing vector fields are no
longer possible. Thus, we expect dissipation of the kinetic energy and conver-
gence to v̂ = 0 for any initial condition. Figure 4.6 shows the time evolution on
a 2-torus where we have used the midpoints m1 = (−1.2, 0, 0)T and m2 = −m1

as well as δ = 1. The initial state has two vortices and four saddles and thus

∑
i

indV (di) = −2 .

Two vortex-saddle pairs annihilate and the final defect configuration consists of
two saddles located at the center of the 2-torus (one is not visible). The velocity
field decays towards v̂ = 0. Figure 4.7 shows the time evolution on a 3-torus
with δ = 10 and midpoints m1 = (−1.2,−0.75, 0), m2 = (1.2,−0.75, 0) and
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4 Solving the incompressible surface Navier-Stokes equation

Figure 4.7: Velocity field v̂ = −ν × ŵ for the 3-torus at t = 0, 10, 20, 30, 50 and 100
(left to right and top to bottom) visualized as noise concentration field aligned to the
velocity field v̂. The red squares and blue circles are indicating +1 defects (vortices)
and −1 defects (saddles), respectively.

m3 = (0, 1.33, 0). Initially, we have three vortices and seven saddles and thus

∑
i

indV (di) = −4 ,

which is also fulfilled for the final defect configuration with two vortices and
six saddles at the center of the 3-torus (one vortex and three saddles are not
visible). Again, the velocity field decays towards v = 0.
In order to show the differences in the evolution on the n-tori before and after
the final defect configuration is reached, we consider the H1 semi-norm | · |1 of
the rescaled velocity field v̄ = v̂/‖v̂‖2 with the L2 norm ‖ · ‖2. If the defects do
not move, this quantity is constant. Figure 4.8 shows the evolution of |v̄|1 over
the time t together with the decay of the kinetic energy Fkin = 1

2
∫
S ‖v̂‖2 dS,

which indicates a higher rate of dissipation for a surface with higher genus g(S).
These results clearly show the strong interplay between topology, geometric
properties and defect positions.
Now, we take the surface evolution into account and make use of a so-called
nonic surface, see [NNPV18], which can be described as follows. Let xS be the
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Figure 4.8: H1 semi-norm | · |1 of the rescaled velocity field v̄ = v̂/‖v̂‖L2 against
time t (left) and normalized kinetic energy Fkin/Fkin

max against time t (right), where
Fkin

max is the maximum value of the kinetic energy Fkin over time. The colored dots
are indicating the time points at which the defects reach their final position and only
viscous dissipation takes place or a Killing vector field is reached. We identify these
points if the decay rate of the H1 semi-norm of the rescaled velocity field v̄ reaches
0.001% of its maximum value over time.

standard parametrization of the unit sphere S and let

fC,r(z) := C

4 z
2
(
(z + 1)2(4− 3z) + r(z − 1)2(4 + 3z)

)
with z ∈ R. The parametrization of the nonic surface is given by

x = xS + fC,r(cos θ)e1 −B sin θ sinϕe2

with the standard parametrization angles ϕ, θ of the unit sphere and the R3

unit vectors e1, e1 in x- and y-direction, respectively. The parameters C, B and
r define the shape of the nonic surface. For B = C = 0 the parametrization
x describes the unit sphere which motivates a surface evolution including the
unit sphere and the nonic surface. Therefore, we consider the time dependent
parameters

C = C(t) = 1
2(1− cos(2π(t− t0)/T ))Cd

B = B(t) = 7/20C(t)

r = r(t) = 1
2(1− cos(2π(t− t0)/T ))rd
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Figure 4.9: Left: Velocity field v̂ = −ν × ŵ on the evolving nonic surface at t =
0.5, 0.75, 1.0, 1.25, 1.5 and 3.5 (left to right and top to bottom) visualized as noise
concentration field aligned to the velocity field v̂. Right: Kinetic energy Fkin against
time t. Dashed lines indicate begin and end of the surface evolution. The color coding
is according to the absolute value of the velocity field v̂.

for t ∈ (t0, t0 + T ) with Cd = 1.1, rd = 0.95, t0 = 0.5 and T = 1. For t < t0 and
t > t0 +T we specify C = B = r = 0. To ensure global surface area conservation
over time, x is rescaled in each time step such that the surface area is equal to
the surface area of x|t=0. This leads to a surface evolution from the unit sphere
to the nonic surface and vice versa until the unit sphere is reached again. We
start with a Killing vector field for the velocity v̂ on the sphere, i. e. v̂0 = RotS ψ0

where ψ0 = 2.5 (x+ y) with x = (x, y, z)T ∈ S, and fix the Reynolds number to
be Re = 5. All other parameters are treated as in the previous examples. Due to
the scaling of the geometry for the global area conservation we cannot make use
of the analytic formula for the geometric quantities. Therefore, we compute the
normal vector ν from the discrete surface mesh, from which the shape operator
B and the curvatures H and κ can be computed according to Chapter 2. The
simulation results for various times together with the surface kinetic energy
over time is shown in Figure 4.9. The reached steady state solution after the
evolution is again a Killing vector field at a lower energy level which is caused
by the surface evolution itself and viscous dissipation during the non-constant
Gaussian curvature period. Interestingly, the vortices in the final configuration
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are significantly located off the vortex positions of the initial condition. Thus,
besides dissipation the surface evolution causes a rotation of the killing vector
field.
For further results on evolving surfaces, we refer to Chapter 6 where the incom-
pressible surface Navier-Stokes equation on an evolving surface within a model
for surface liquid crystals is used.

4.4 Conclusion

A discretization approach for the incompressible surface Navier-Stokes equation
on general evolving surfaces independent of the genus g(S) is proposed. The
approach only requires standard ingredients which most finite element imple-
mentations can offer. It is based on a reformulation of the equation in Cartesian
coordinates, penalization of the normal component, a Chorin projection method
and discretization in space by the standard surface finite element method for
each component. A further rotation of the velocity field leads to a drastic reduc-
tion of the complexity of the equation and the required computing time. The
fully discrete scheme is described in detail and its accuracy is validated against
a numerical solution based on DEC on a 1-torus, which has been considered in
[NRV17, Figure 7.8]. Furthermore, a convergence study for the proposed Chorin
projection method is presented and the interesting interplay between the topol-
ogy of the surface, its geometric properties and defect dynamics in the flow field
is shown on n-tori for n = 1, 2, 3. Additionally, a non-uniform surface evolution
of the sphere based on the nonic surface is used in order to rotate a Killing
vector field.

71





5 Inextensible Newtonian fluid
interfaces in viscous fluids

In this chapter, we consider an extension of the vorticity-stream function approach
from Chapter 3 to model lipid membranes surrounded by viscous fluids. In the present
setting the membranes are assumed to be stationary. We validate the results of the
model and the numerical approach, which is based on a diffuse interface approxi-
mation, an operator splitting approach and a semi-implicit adaptive finite element
discretization, against observed flow patterns in vesicles. These vesicles are adhered
to a solid surface and are subjected to shear flow. The influence of the Gaussian
curvature on the surface flow pattern on ellipsoidal vesicles is discussed.

The main content of this chapter is taken from the author’s publication [RV16].
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5 Inextensible Newtonian fluid interfaces in viscous fluids

5.1 Overview

Lipid membranes behave as viscous fluids under physiological conditions. This
interface fluidity is essential, e. g., for the mobility of proteins [SD75], fluid
domains [CKV07] and lateral reorganizations [SV04]. However, even if the im-
portance of membrane fluidity is recognized, it is only rarely accounted for in
continuum modeling approaches. This might be due to the difficulty of solving
and even formulating the governing equations for the membrane fluid flow.
Here, we consider an inextensible two-dimensional Newtonian fluid interface of
arbitrary curvature embedded in a bulk fluid. In other words, an inextensible
fluid interface has the property that it cannot be stretched or compressed. From
a mathematical point of view this is equivalent to the incompressibility condition
as used in the prior chapters. Thus, the model can be seen as an incompressible
two-phase flow problem with an incompressible surface Navier-Stokes equation
as interface condition. Similar problems within the Stokes limit and for special
geometries have been considered in [HMS+08, AD09, HL10, WG12, RDA13,
HSWKG13]. Here, we focus on the coupling with the bulk fluid, but restrict
the interface to be stationary. This already allows a comparison with an exper-
iment [VMV07, HSWKG13] in which a vesicle was adhered to a solid surface
and was subjected to a simple shear flow. The induced flow in the membrane
has two vortices, which is due to the inextensibility of the membrane and in
contrast to the toroidal circulation that would occur in the related problem of a
drop of immiscible fluid attached to a surface and subject to shear flow [DV87].
The observed membrane and bulk flow patterns have already been theoretically
predicted by [WG12, HSWKG13] using a Stokes approximation and a special
hemispherical geometry of the vesicle. We will use these results to validate our
numerical approach for the full Navier-Stokes problem with arbitrary curvature.

5.2 Sharp interface equations

Let S be a closed two-dimensional stationary interface separating two domains
Ω1 ⊂ R3 and Ω2 ⊂ R3. The hydrodynamic equations for an incompressible fluid
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5.2 Sharp interface equations

in the outer phase Ω1 and the inner phase Ω2 read

ρi (∂tVi + (Vi · ∇) Vi) = −∇Pi + ηi∆Vi

∇ ·Vi = 0 ,

where Vi is the fluid velocity, Pi the pressure, ρi the density and ηi the dynamic
viscosity in Ωi. Both systems are coupled through the no-slip interface condition

Vi|S = v̂

with the interfacial velocity v̂ on S, which results as solution of the incom-
pressible surface Navier-Stokes equation on S. Hence, we recall the dimensional
formulation (2.26)-(2.27) for a stationary surface S with vν = 0, i. e.

ρS (∂tv̂ + ∇v̂v̂) = −∇Sp+ ηS
(
−∆dRv̂ + 2κv̂

)
+ f̂ (5.1)

divS v̂ = 0 , (5.2)

which is already extended to Cartesian coordinates according to Section 2.4
and Section 2.5, respectively. Thereby, v̂ denotes the extended velocity field, p
the interfacial pressure, f̂ the extended external forces, ρS the surface density,
ηS the surface dynamic viscosity, ∆dR the Laplace-deRham operator and κ

the Gaussian curvature. Note that by default the surface velocity v̂ in system
(5.1)-(5.2) is not necessarily tangential and a suitable penalty term according
to Section 2.4 has to be considered. We will use the vorticity-stream function
approach from Chapter 3 and thus we assume the velocity v̂ to be tangential
without loss of generality, see Chapter 3 for details. The force acting on an
interfacial fluid surrounded by a bulk fluid is defined by the tangential part of
the jump in the bulk stress tensor over the interface S, i. e.

f̂ = π JΣνK (5.3)

with the projection operator π = I − ν ⊗ ν, the normal vector ν and JΣνK =
(Σ2ν −Σ1ν) |S , see [AD09] for details. The bulk stress tensor in Ωi is defined
by Σi = −PiI + 2ηiDi with the rate-of-strain tensor Di = 1

2

(
∇Vi + (∇Vi)T

)
.
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5 Inextensible Newtonian fluid interfaces in viscous fluids

By using πν = 0 it can be easily shown that the forcing term (5.3) reduces to

f̂ = 2π JηDνK , (5.4)

which means that this force is independent of the bulk pressure and only consid-
ers velocity gradients. Finally, the complete system of equations in its dimen-
sional form now reads

ρi (∂tVi + (Vi · ∇) Vi) = −∇Pi + ηi∆Vi

∇ ·Vi = 0

Vi|S = v̂

ρS (∂tv̂ + ∇v̂v̂) = −∇Sp+ ηS
(
−∆dRv̂ + 2κv̂

)
+ 2π JηDνK

divS v̂ = 0 ,

(5.5)

which has to be equipped with appropriate initial and boundary conditions.

Next, we nondimensionalize the system of equations (5.5) and follow the same
notation as in Section 2.5.3. For the bulk pressure we use the scale ρil∗2/t∗2.
Thus, the bulk hydrodynamic equations and the boundary conditions of system
(5.5) transforms to

ρil
∗

t∗2

(
∂̃tṼi +

(
Ṽi · ∇̃

)
Ṽi

)
= −ρil

∗

t∗2
∇̃P̃i + ηi

l∗t∗
∆̃Ṽi

1
t∗
∇̃ · Ṽi = 0
l∗

t∗
Ṽi|S = l∗

t∗
˜̂v .

For the nondimensionalization of the surface hydrodynamic equations in the
system (5.5) we use the same ideas as for the system (2.28)-(2.29) with the
nondimensional surface force

˜̂f = t∗

ρS l∗
2π̃

r
ηD̃ν̃

z
= 2

Reπ̃
r
η?D̃ν̃

z

with the dynamic viscosity ratio η?i = ηil
∗/ηS . Henceforth, we drop the ”∼“-

notation and consider each variable, quantity and operator in its nondimensional
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5.2 Sharp interface equations

form. Further manipulation and using the bulk Reynolds number ReB
i = ρil

∗2

ηit∗

finally yields the nondimensional bulk hydrodynamic equations of the system
(5.5)

∂tVi + (Vi · ∇) Vi = −∇Pi + 1
ReB

i

∆Vi

∇ ·Vi = 0

and the nondimensional surface hydrodynamic equations of system (5.5)

∂tv̂ + ∇v̂v̂ = −∇Sp+ 1
Re

(
−∆dRv̂ + 2κv̂ + 2π Jη?DνK

)
divS v̂ = 0 .

(5.6)

According to Section 3.1 and [NVW12], we transform equation (5.6) into a
vorticity-stream function formulation by using the substitution v̂ = RotS ψ, i. e.

∂tφ+ J (ψ, φ) = 1
Re

(
∆Sφ+ 2 divS

(
κ∇Sψ + f̂⊥

))
φ = ∆Sψ

(5.7)

on S with the stream function ψ, the vorticity φ and f̂⊥ := ν ×π Jη?DνK. The
formulation (5.7) has been analyzed in detail in Chapter 3 and [NVW12] in the
absence of external forces.
Summing up, the sharp interface equations of the complete system in nondi-
mensional form now read

∂tVi + (Vi · ∇) Vi = −∇Pi + 1
ReB

i

∆Vi in Ωi

∇ ·Vi = 0 in Ωi

Vi|S = RotS ψ on S

∂tφ+ J (ψ, φ) = 1
Re

(
∆Sφ+ 2 divS

(
κ∇Sψ + f̂⊥

))
on S

φ = ∆Sψ on S

(5.8)

with appropriate initial and boundary conditions. In general, S is a closed
interface, which requires only the specification of standard boundary conditions
for the outer velocity V1. However, in order to reproduce the experiment in
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5 Inextensible Newtonian fluid interfaces in viscous fluids

Ω1

Ω2
S

γ̇

Figure 5.1: Schematic computational domain Ω1, Ω2 and S to consider the experimen-
tal setting in [VMV07, HSWKG13]. The red arrows indicate the shear flow through
the domain and γ̇ denotes the shear rate. At the bottom the vesicle is adhered to a
solid wall.

ϕ
−1 1

ϕ ≈
−1

ϕ ≈ 1

ν

∼ ε

Figure 5.2: Implicit description of the computational domain Ω = Ω1 ∪ S ∪ Ω2 using
a phase field function ϕ, together with the adaptively refined mesh. Note that the
height of the bounding box is not proportional to the rest of the domain due to visual
clarity.

[VMV07, HSWKG13], we need to consider adhesion of the interface to a solid
surface, see Figure 5.1. Thus, we specify at the solid surface V1 = V2 = 0, as
well as ψ = 0 and ∂nψ = 0.

5.3 Diffuse interface equations

To efficiently solve the coupled bulk/surface problem in equation (5.8), we use
the diffuse domain/diffuse interface approximation proposed in [RV06, LLRV09].

78



5.3 Diffuse interface equations

We consider a phase field ϕ, which implicitly describes the interface S by ϕ = 0,
the outer bulk domain Ω1 by ϕ ≈ 1 and the inner domain Ω2 by ϕ ≈ −1, e. g.

ϕ(x) = tanh
(

1√
2ε
d(x)

)
.

Thereby, 0 < ε� 1 is a small interface parameter, which defines the width of the
diffuse interface, and d(x) is a signed distance function describing the minimal
distance of x ∈ Ω to the interface S with Ω = Ω1 ∪ S ∪ Ω2, see Figure 5.2.
The interface conditions Vi|S = RotS(ψ) are incorporated through penalty like
forcing terms, cf. [LLRV09]. Thus, the diffuse bulk Navier-Stokes equations read

∂tVi + (Vi · ∇) Vi = −∇Pi + 1
ReB

i

∆Vi + Fi(Vi, ψ) in Ω

∇ ·Vi = 0 in Ω

with

F1(V1, ψ) = −β1

2 (1− ϕ)(V1 − RotS(ψ))

F2(V2, ψ) = −β2

2 (1 + ϕ)(V2 − RotS(ψ))

with typically large penalty parameters βi. We use in our numerical examples
βi = 10

ReB
i ε

2 , which was justified asymptotically in [FRGV12]. We further assume
that the interface velocity v̂ = RotS(ψ) is defined in the whole domain Ω and
has a constant extension normal to the interface S. The vorticity-surface stream
function formulation (5.7) is extended to Ω according to the diffuse interface
approach proposed in [RV06] and reads

B(ϕ) (∂tφ+ J (ψ, φ)) = 1
Re∇ ·

(
B(ϕ)

(
∇φ+ 2κ∇ψ + 2f̂⊥

))
B(ϕ)φ = ∇ · (B(ϕ)∇ψ)

in Ω where B(ϕ) ∼ (ϕ2 − 1)2 defines an approximation of an interface delta
function, which restricts the solution to the surface S. Note that in this formu-
lation all geometric quantities have to be extended to Ω, which can be achieved
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5 Inextensible Newtonian fluid interfaces in viscous fluids

by constant normal extension off the surface S. The two bulk velocities V1 and
V2 allow to compute the jump in the stress tensor in the forcing term f̂⊥ accord-
ing to equation (5.4), which again is extended constantly in normal direction off
the surface S.
The combination of these equations defines a diffuse domain/diffuse interface
approximation of the sharp interface equations (5.8), which can be justified by
matched asymptotic expansions, see [TLL+09]. The coupled system reads

∂tVi + (Vi · ∇) Vi = −∇Pi + 1
ReB

i

∆Vi + Fi(Vi, ψ)

∇ ·Vi = 0

B(ϕ) (∂tφ+ J (ψ, φ)) = 1
Re∇ ·

(
B(ϕ)

(
∇φ+ 2κ∇ψ + 2f̂⊥

))
B(ϕ)φ = ∇ · (B(ϕ)∇ψ)

(5.9)

in Ω and combines three Navier-Stokes equations, two in the bulk phases and
one in the vorticity-stream function formulation on the interface. Again, system
(5.9) has to be supplemented by appropriate initial and boundary conditions.
At the solid surface we specify again V1 = V2 = 0 as well as ψ = 0 and ∂nψ = 0.

5.4 Numerical approach

To solve the system (5.9) we use a finite element approach. An operator splitting
technique is applied to solve both bulk Navier-Stokes systems and the surface
flow problem separately. We also use a semi-implicit Euler time stepping scheme.
Thus, let the time interval (0, tend] with end time tend be divided into a sequence
of discrete times 0 < t0 < t1 < ... with time step width τm = tm−tm−1, where the
subscript denotes the timestep number. We define the discrete time derivative
dτvm := 1

τm
(vm − vm−1) for an arbitrary time dependent function v. Thereby,

vm corresponds to the respective function at time t = tm, i. e. vm := v(·, tm).
Let T be a conforming triangulation of mesh size hM such that

Ωh =
⋃
T∈T

T
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5.4 Numerical approach

is an interpolation of Ω. The finite element spaces read

Vh =
{
v ∈ C0(Ω̄) | v|T ∈ P2(T ) ∀T ∈ T , v|∂Ω = 0

}
Mh =

{
q ∈ L2(Ω) | q|T ∈ P1(T ) ∀T ∈ T

}
Yh =

{
η ∈ C0(Ω̄) | η|T ∈ P1(T ) ∀T ∈ T

}
with Ck(Ω̄) the space of k-times continuously differentiable functions on Ω̄, Pr(T )
the set of polynomial functions of degree r on T ∈ T and L2(Ω) the space of
square-integrable functions on Ω. Moreover, the standard L2 scalar product is
denoted by (·, ·). Thus, the finite element approximation of the coupled system of
equations (5.9) now reads: Find Vm

i ∈ V 3
h , P

m
i ∈Mh such that ∀Ui ∈ V 3

h ,∀Qi ∈
Mh(

dτVm
i + (Vm−1

i · ∇)Vm
i , Ui

)
=
(
Pm
i , ∇ ·Ui

)
− 1

ReB
i

(
∇Vm

i , ∇Ui

)
+
(

Fi(Vm
i , ψ

m−1
h ) , Ui

)
(
∇ ·Vm

i , Qi

)
= 0

and find φm, ψm ∈ Yh such that ∀η, ξ ∈ Yh(
B(ϕ)

(
dτφm + J

(
ψm−1, φm

))
, η

)
= − 1

Re

(
B(ϕ) (∇φm + 2κ∇ψm) , ∇η

)
− 2

Re

(
B(ϕ)f̂⊥,m , ∇η

)
−
(
B(ϕ)∇ψm , ∇ξ

)
=
(
B(ϕ)φm , ξ

)

with f̂⊥,m = ν × π Jη?DmνK. In order to ensure the solvability of the resulting
linear system, we replace B(ϕ) by max(B(ϕ), δ) in the second order terms with a
small regularization parameter 0 < δ � 1, see [RV06]. In the following numerical
examples we specify δ = 10−7. A general discussion of the numerical treatment
of the boundary conditions for the stream function ψ and the vorticity φ at
the solid surface is given in [EL96]. We consider an approach of [Cal02], which
has already been adapted to the diffuse domain/diffuse interface approximation
and validated in [PGRPV17]. Here, we explicitly specify ∂nψ = 0 and ∂nφ = 0
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5 Inextensible Newtonian fluid interfaces in viscous fluids

on the solid surface and treat the Dirichlet condition ψ = 0 implicitly using a
penalty approach.
The following simulations have been computed using the finite element toolbox
AMDiS [VV07, WLPV15] with an adaptively refined mesh, with a high reso-
lution along the diffuse interface, with mesh size hM ≈ 3

√
2ε/5. This leads to

approximately 7 to 8 points along the normal direction across the diffuse in-
terface. We use Taylor-Hood finite elements for both Navier-Stokes equations,
i. e. quadratic finite elements for the velocity components and linear finite el-
ements for the pressure variable. For the surface stream function formulation
linear finite elements are employed. A domain decomposition approach enables
to perform simulations with a large number of degrees of freedom with an ac-
ceptable cost. A parallel iterative solver BiCGStab(l) with l = 2 and a Jacobi
preconditioner is used in order to solve the resulting linear systems.

5.5 Simulation results

5.5.1 Experimental validation

In [HSWKG13] the experimental setup of [VMV07] was used to determine mem-
brane viscosity. Two types of vesicles – liquid ordered (Lo) and liquid disor-
dered (Ld) – are adhered to a solid surface and are considered under shear
flow. Here, we use the same setup in order to compare the experimental data
as well as their simulation data and the results of our approach. We use the
length scale l∗ = 20µm and the time scale t∗ = 1

5.2s. The computational domain
Ω = [−2, 2]2 × [0, 4] is used and a hemispherical geometry for the vesicle with
radius R = 1 is located at the origin. Thus, the signed distance function used to
define ϕ is d(x) = |x| − R. We consider a shear flow boundary condition with
shear rate γ̇ = 1

2 on top of Ω and no slip boundary conditions on the solid sur-
face at the bottom. On all other boundaries we employ homogeneous Neumann
conditions, which can be justified by the relatively large spatial extension of the
domain compared to the vesicle size. Table 5.1 concludes the used material and
nondimensional parameters. We start with zero initial condition and let the flow
evolve until a steady state is reached.
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5.5 Simulation results

Parameter Lo Ld

ηS 17.47 · 10−9 kg
s 9.56 · 10−9 kg

s

ρS 20 · 10−3 kg
m2

η1, η2 10−3 kg
ms

ρ1, ρ2 103 kg
m3

η?1, η?2 1.14 2.09
Re 2.38 · 10−3 4.35 · 10−3

ReB
1 , ReB

2 2.08 · 10−3

Table 5.1: Material parameters for the experimental setup proposed in [HSWKG13]
and nondimensional parameters used for simulation. The length scale l∗ is set to
20 · 10−6m and the timescale t∗ is 1

5.2s.

shear flow direction

Figure 5.3: Two dimensional velocity (projected to the plane and rescaled for visual-
ization) of the sliced Ld vesicle at height levels z = 0.3, 0.5, 0.7 (from left to right)
for ε = 0.01. The green arrows indicate the inner velocity V2 and the blue arrows
indicate the outer velocity V1. Shear direction is from left to right.

Figure 5.3 shows the inner velocity V2 on plane cuts at different height levels
through the vesicle. In Figure 5.4 (left) a visualization based on streamlines of
the inner velocity V2 is shown and in Figure 5.4 (right) the flow field of the
fluid interface is visualized. All these results qualitatively coincide with the
experimental as well as the simulation data in [HSWKG13].

In order to compare the results quantitatively, we use the velocity profile through
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|V2|

0.01 0.02 0.03 0.04

|v̂|

0.02 0.03 0.04 0.05

Figure 5.4: Streamlines of the inner velocity V2 (left) and streamlines of the surface
fluid viewed from top (right) for ε = 0.01.
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present sim. (ε = 0.02)
present sim. (ε = 0.01)

Figure 5.5: Quantitative comparison of experimental as well as model data reported
in [HSWKG13] and the simulation of the present model for different values of ε and
both vesicle types Lo (left) and Ld (right). Thereby, v denotes the component of the
velocity field parallel to the shear flow. The dashed part of each colored lines indicates
the interface region for the respective simulation. We here considered the interpolated
velocity V = 1

2 ((1 + ϕ)V1 + (1− ϕ)V2). The experimental as well as the model data
(black lines and black circles, respectively) are extracted from [HSWKG13].

the vesicle apex, see Figure 5.5. The experimental as well as the model data,
which is obtained using a Stokes approximation, (black lines and black circles,
respectively) are extracted from [HSWKG13]. The numerical convergence of
our phase field approach to the experimental data for ε → 0 can be observed.
The velocity profile inside the vesicle, as well as the slope discontinuity at the
membrane are nicely resolved. Table 5.2 shows the experimental order of con-
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Lo Ld

ε ‖V− v̂‖2,S EOC ‖V1 −V2‖2,S EOC ‖V− v̂‖2,S EOC ‖V1 −V2‖2,S EOC

0.10 0.0142 − 0.0145 − 0.0142 − 0.0145 −
0.09 0.0123 1.30 0.0126 1.30 0.0124 1.30 0.0127 1.29
0.08 0.0112 0.82 0.0115 0.84 0.0112 0.82 0.0115 0.83
0.07 0.0101 0.77 0.0103 0.78 0.0101 0.77 0.0103 0.78
0.06 0.0089 0.82 0.0091 0.83 0.0089 0.82 0.0091 0.83
0.05 0.0078 0.70 0.0080 0.71 0.0079 0.69 0.0080 0.70
0.04 0.0063 1.01 0.0064 1.02 0.0063 1.01 0.0064 1.01
0.03 0.0049 0.83 0.0050 0.84 0.0050 0.82 0.0050 0.83
0.02 0.0033 1.01 0.0033 1.01 0.0033 1.01 0.0034 1.00
0.01 0.0016 1.00 0.0017 0.99 0.0017 0.99 0.0017 0.97

Table 5.2: Experimental order of convergence (EOC) for both the Lo and the Ld vesicle
and different errors ‖V − v̂‖2,S and ‖V1 −V2‖2,S . Thereby, ‖ · ‖2,S denotes the L2

norm over the interface S.

vergence (EOC) for different errors and both vesicle types Lo and Ld. We use
the errors in the L2 norm ‖V− v̂‖2,S and ‖V1−V2‖2,S on the interface S to get
a measure for the approximation of the boundary conditions at the interface. In
all cases a linear convergence rate is observed.

5.5.2 Ellipsoidal shaped vesicle

Since our approach is not limited to a hemispherical shape we consider an ellip-
soidal shape for the vesicle. The ellipsoid is represented by the levelset function
q(x) = (x/a)2 + (y/b)2 + (z/c)2, with x = (x, y, z)T ∈ R3. The function q(x)
can be transformed into a signed distance function d(x) using, e. g., the methods
proposed in [SVV05, BR06]. In the following simulations we use the coefficients
a = 0.8, b = 1.2 and c = 0.9 and rotate the ellipsoid around the z-axis (height
axis) by an angle of π/5 to break the symmetry. As for the hemispherical vesicle,
also the ellipsoid is in equilibrium if the volume |Ω2| is conserved, the contact
angle with the solid bottom is π and the membrane is inextensible. Hence, also
for this configuration our assumption of a stationary profile is fulfilled. All other
parameters remain unchanged and we consider the Ld vesicle.
We visualized the inner flow field in Figure 5.6 (top row) in form of plane
cuts at different height levels through the vesicle. In contrast to a hemisphere
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shear flow direction

|v̂|

0.02 0.03 0.04 0.05

κ

0.4 1.2 2.0 2.8

UG

0.0 0.25

Figure 5.6: Top row: Two dimensional velocity (projected to the plane and rescaled
for visualization) for the sliced ellipsoidal vesicle at levels z = 0.3, 0.5, 0.7 (from left
to right) for ε = 0.01. The green arrows indicate the inner velocity V2 and the blue
arrows indicate the outer velocity V1. Bottom row: Streamlines of the surface fluid
(left), Gaussian curvature κ (center) and the geometric potential UG (right) viewed
from top for the ellipsoid and ε = 0.01. Shear direction is from left to right.

as used in the prior section the ellipsoidal shape has a non-constant Gaussian
curvature κ (see Figure 5.6) and therefore a direct influence on the surface
flow field. The influence of the geometry on the flow field can be analyzed
by an effective geometric interaction which depends linearly on the geometric
potential UG defined by the surface Laplace equation ∆SUG = κ, see Chapter 3
and [TVN10, RV15, RV18a] for details. Due to this interaction, vortices in a
flow field are typically attracted to peaks and valleys, i.e local maxima of the
Gaussian curvature. The steady state interfacial flow field is shown in Figure 5.6
(bottom row, left) in form of the surface streamlines. The two vortices are
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y
x

Ellipsoid a b c

1 0.990 1.0 0.9
2 0.892 1.1 0.9
3 0.800 1.2 0.9
4 0.712 1.3 0.9
5 0.627 1.4 0.9
6 0.544 1.5 0.9
7 0.464 1.6 0.9

Figure 5.7: Left: Considered ellipsoidal shapes visualized as contour lines of the phase
field function in the bottom plane. Middle: Table with axes parameters for the
considered ellipsoids. Right: Ellipsoidal surface with surface streamlines, the center
of one vortex (red dot) and highest curvature point (blue dot), the major and minor
axis of the projected ellipsoid, and the measured values d and α.

shifted towards the regions of high Gaussian curvature κ, see Figure 5.6 (bottom
row, center and right) which shows the Gaussian curvature κ and the geometric
potential UG for the ellipsoidal shaped vesicle. However, already the specified
no-slip boundary condition on the substrate prohibit the vortices to be located
at the points of highest Gaussian curvature. Furthermore, the surface flow field
is influenced by the bulk flow. Thus, if this shift in the location of the vortices
is a result of the geometric potential or has its origin in the bulk flow or the
specified boundary conditions remains open. To identify the effect we vary the
geometry. Thereby, we keep the height of the ellipsoid c = 0.9 constant to have
a comparable interaction with the bulk flow. Furthermore, we fix the area of the
ellipsoid, to maintain comparable surface flow properties. We only vary a and b,
see Figure 5.7 (left, middle). Figure 5.7 (right) shows the setting, with the red
dot being the center of one vortex and the blue dot being the point of highest
curvature on the major axis. We measure the geodesic distance d between both
points and the angle α. Both values should decrease with increasing curvature
effect. In Figure 5.8 the values of α and d are plotted for the different geometries
in comparison with the results obtained without the Gaussian curvature term
in the incompressible surface Navier-Stokes equation. Both values decrease for
more elongated ellipsoids and also the difference between the results with the
correct κ and with κ = 0 increases, which indicates the geometric contribution.
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Figure 5.8: The angle α (left) and geodesic distance d (right) as a function of the major
axis of the ellipsoid. In addition the results for κ = 0 in the surface Navier-Stokes
equation are shown for comparison for the same geometries.

5.6 Conclusion

We have introduced a model for a stationary fluidic interface in a viscous
fluid. The interfacial hydrodynamics are described by the incompressible surface
Navier-Stokes equation, for which we used the surface vorticity-stream function
approach introduced in Chapter 3. The basic ideas of [RV06] and [LLRV09] are
used to transform the model in a description with phase fields. We have validated
the results of the model on the experimental as well as model data provided in
[HSWKG13] and have shown the numerical convergence of our approach for the
interface parameter ε→ 0. Additionally, we have presented numerical examples
for interfaces with non-constant Gaussian curvature κ and the interaction with
the underlying geometry. The numerical approach is reliant on the inextensibil-
ity of the membrane. Without this constraint, simpler models can be built which
consider the membrane fluidity implicitly using a Boussinesq-Scriven interface
stress tensor, see e. g. [SPJVH11, RZ13, BGN15b, GBJL16]. The resulting inter-
facial flow patterns in these models, which consider droplets instead of vesicles
or cells, are qualitatively different and lead to toroidal circulation [DV87].
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6 Polar liquid crystals on
evolving surfaces

In this chapter, we consider the flow of polar liquid crystals whose molecular ori-
entation is subjected to a tangential anchoring on an evolving curved surface. The
underlying model is a simplified surface Ericksen-Leslie model, which has been derived
as a thin-film limit of the corresponding three-dimensional equations, recently. We
propose the numerical approach, which is based on the Cartesian extension of the cor-
responding equations, an operator splitting approach and a finite element discretiza-
tion in space. We study the strong interplay between hydrodynamics and topology,
geometric properties and defect dynamics in various numerical examples.

The main content of this chapter is taken from the author’s publication [NRV18].
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6 Polar liquid crystals on evolving surfaces

6.1 Overview

Liquid crystals (LCs) are partially ordered materials that combine the fluidity
of liquids with the orientational order of crystalline solids [dGP93, CL95]. Topo-
logical defects are a key feature of LCs if considered under external constraints.
In particular, on curved surfaces these defects are important and have been in-
tensively studied on a sphere [DSL00, BSZ10, SBX08, DSOdlC12, KLLFNV13,
NV12] and under more complicated constraints [Sta01, PvdS03, MRL+14]. LCs
on curved surfaces can be realized on various levels. One possibility is to pre-
pare a double emulsion of two concentric droplets [FNVU+07] for which the
intervening shell is filled with molecular or colloidal LCs, which show a planar
anchoring at the two curved interfaces [LLFNNB12, LNZ+13, LSRL11]. Also
experiments with air bubbles covered by microrods have been prepared and
studied [ZCLS08]. Moreover, topological defects for charged colloidal spheres
confined on a sphere were experimentally investigated [GKHC18]. Ellipsoidal
colloids bound to curved fluid-fluid interfaces with negative Gaussian curvature
[LSMS18] and spherical droplets covered with aspherical surfactants [YWSG18]
were explored. Even living and motile “particles” like cells [BKAS17] and sus-
pensions of microtubules and kinesin [KLS+14, EPC+18] were recently studied
on surfaces of different curvatures. In all these studies a tight coupling be-
tween topology, geometric properties and defect dynamics is observed. In equi-
librium, defects are positioned according to geometric properties of the surface
[LP92, Nel02, KRV11]. Creation and annihilation of defects can result from geo-
metric interaction, leading to different realizations of the Poincaré-Hopf theorem
(2.18) on topologically equivalent but geometrically different surfaces [NNPV18].

Most theoretical studies of these phenomena use particle methods. Despite the
interest in such methods, a continuous description would be more essential for
predicting and understanding the macroscopic relation between type and posi-
tion of the defects and geometric properties of the surface. Also the influence of
hydrodynamics and dynamic shape changes on these relations would be much
more appropriate to study within a continuous approach. However, a coherent
model, which accounts for the complex interplay between topology, geometry,
defect interactions and hydrodynamics, is still lacking. Here, we propose a min-
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6.2 Surface Ericksen-Leslie model

imal continuous surface hydrodynamic LC model, which contains the evolution
of the surface, tangential polar ordering and surface hydrodynamics. Recently,
this model has been derived as a thin-film limit of the simplified Ericksen-Leslie
model [LL00] in [NRV18]. We describe a numerical approach to solve this model
on general surfaces and demonstrate by simulations various expected and some
unexpected phenomena on ellipsoidal and toroidal surfaces. These phenomena
result from the tight coupling of the geometry with the velocity and the director
field. However, a full exploration of the rich nonlinear phenomena resulting from
this relation goes beyond the scope of this chapter. Here, we only highlight the
importance of the newly introduced geometric coupling terms in the equations.

6.2 Surface Ericksen-Leslie model

The Ericksen-Leslie model [Eri61, Eri76, Les68] is an established model for LCs,
whose relaxation dynamics are affected by hydrodynamics. In [LL00] a simplified
model was introduced and analyzed. This system already retains the main prop-
erties of the original Ericksen-Leslie model [LLW10, HW13, WZZ13, HLW14]
and is considered as a starting model to derive a surface hydrodynamic LC
model by means of a thin-film limit. Here, we briefly sketch the basic ideas of
the limiting process. For more details we refer to [NRV18]. We recall the gen-
eral notation from Chapter 2, i. e., let S(t) ⊂ R3 be a regular moving oriented
compact smooth Riemannian surface without boundaries and let Ωh(t) ⊂ R3 be
the corresponding neighborhood, which is called thin film from now on. The
thickness of the thin film is denoted by h and considered to be sufficiently small.
Again, the normal velocity of the surface vν is considered to be prescribed.
However, the simplified Ericksen-Leslie model [LL00] in the thin film Ωh reads

ρ (∂tV + (U · ∇) V) = −∇P + η∆V− λ∇ · σE (6.1)

∇ ·V = 0 (6.2)

∂tP + (U · ∇)P = ηp∆P − ωn
(
‖P ‖2

Ωh − 1
)
P . (6.3)

Here, V denotes the fluid velocity, U = V − W the relative fluid velocity
(relative to the observer velocity, which is denoted by W, see [NRV18]), P the
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6 Polar liquid crystals on evolving surfaces

director field, P the pressure, σE = (∇P )T ∇P the Ericksen stress tensor, ρ the
fluid density, η the dynamic viscosity, λ the competition between kinetic energy
and elastic potential energy, ηp the elastic relaxation time for the molecular
orientation field and ωn a penalty parameter to enforce ‖P ‖ = 1 weakly.

Next, we use the same notation as in Section 2.5.3 and nondimensionalize equa-
tions (6.1), (6.2) and (6.3). Hence, we consider the nondimensional parameters
λ̃ := λ t∗2

ρl∗4
, η̃p := ηp

t∗

l∗2
and ω̃n := ωnt

∗ as well as σ̃E := l∗2σE and P = P̃ . Thus,
the nondimensional form of equations (6.1), (6.2) and (6.3) reads

∂̃tṼ +
(
Ũ · ∇̃

)
Ṽ = −∇̃P̃ + ηt∗

ρl∗2
∆̃Ṽ− λ̃∇̃ · σ̃E

∇̃ · Ṽ = 0

∂̃tP̃ +
(
Ũ · ∇̃

)
P̃ = η̃p∆̃P̃ − ω̃n

(∥∥∥P̃ ∥∥∥2

Ωh
− 1

)
P̃ .

Finally, by dropping the ”∼“-notation for better readability and using the
Reynolds number Re = ρl∗2

ηt∗
the nondimensional version of equations (6.1), (6.2)

and (6.3) reads

∂tV + (U · ∇) V = −∇P + 1
Re∆V− λ∇ · σE (6.4)

∇ ·V = 0 (6.5)

∂tP + (U · ∇)P = ηp∆P − ωn
(
‖P ‖2

Ωh − 1
)
P . (6.6)

Henceforth, we consider each variable, geometric quantity and parameter in its
nondimensional form.

The system has to be equipped with appropriate initial conditions for the veloc-
ity, i. e. V (·, t) |t=0 = V0(·), and for the director field, i. e. P (·, t) |t=0 = P 0(·).
The boundary conditions are specified as follows. For the director field we use a
homogeneous Dirichlet condition for the normal component and a homogeneous
Neumann condition for the tangential components, i. e.

ν · P = 0 (6.7)

ν · ∇ (π∂ΩhP )i = 0 (6.8)
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on ∂Ωh, where π∂Ωh denotes the orthogonal projection into the boundary tangen-
tial space and ν the surface normal vector, which is considered to be extended
to the thin film Ωh, cf. Chapter 2 for details. For the velocity we specify a
homogeneous Navier boundary condition for the tangential components, i. e.

π∂Ωh

[(
∇V + (∇V)T

)
ν
]

= 0 (6.9)

on ∂Ωh. The boundary condition for the normal component of the velocity is
fixed by the Dirichlet condition ν ·V = vν on ∂Ωh. However, the thin film limit
h → 0 is achieved by Taylor expansions in orders of the thin film thickness h
of the equations (6.4), (6.5) as well as (6.6) and evaluating at the surface. By
applying this rigorous technique and using the boundary conditions (6.7), (6.8),
(6.9) as well as h→ 0 we obtain simplified surface Ericksen-Leslie model

π∂tv + ∇vv− vνBv− vν∇Svν = −∇Sp+ 1
Re

(
−∆dRv + 2κv +∇S (vνH)

)
− 2

Re divS (vνB)− λ divS σE
S (6.10)

divS v = vνH (6.11)

π∂tp + ∇vp = ηp
(
∆Bp− B2p

)
− ωn

(
‖p‖2

S − 1
)

p . (6.12)

Thereby, σE
S = (∇Sp)T ∇Sp + (Bp) ⊗ (Bp) is called the extrinsic surface Er-

icksen stress tensor. The detailed limiting process from above can be found in
[NRV18]. Thereby, it is noted that equations (6.10) and (6.11) coincide with
equations (2.28) and (2.29) from Chapter 2 with f = −λ divS σE

S . Again, the
system of equations (6.10), (6.11) and (6.12) has to be equipped with appropri-
ate initial conditions for the velocity, i. e. v (·, t) |t=0 = v0(·), and for the director
field, i. e. p (·, t) |t=0 = p0(·). The system combines the incompressible surface
Navier-Stokes equation from Section 2.5 with a weak surface Frank-Oseen model
[NNPV18] on an evolving surface. Eq. (6.12) with v = 0, vν = 0 and the
Laplace-deRham operator ∆dR instead of the Bochner Laplacian ∆B has been
derived as a thin-film limit in [NNPV18] and models the L2-gradient flow of a
weak surface Frank-Oseen energy. The different operators result from different
one-constant approximations in the Frank-Oseen energy, see [NRV18] for details.

93



6 Polar liquid crystals on evolving surfaces

Again, an additional geometric term B2p enters in this equation, if compared
with the corresponding model in flat space. This term results from the influence
of the embedding [NV12, SSV14, NNPV18]. The coupled system of equations
(6.10), (6.11) and (6.12) with vν = 0 can be considered as the surface counter-
part of the model in [LL00]. A related surface model has been proposed and
analyzed in [Shk02]. However, this model is derived from a variational principle
on a stationary surface and thus only contains intrinsic terms. It differs from
equations (6.10), (6.11) and (6.12) with vν = 0 by the extrinsic term B2p and
the extrinsic contribution in the surface Ericksen stress tensor (Bp)⊗ (Bp). We
will numerically demonstrate the influence of the additional geometric terms. If
vν 6= 0 further coupling terms occur. For a general discussion on transport of
vector-valued quantities on evolving surfaces we refer to [NV18].

Next, we introduce the Cartesian extension of the resulting system of vector-
valued surface PDEs (6.10), (6.11) and (6.12) according to Section 2.4. Thus,
the corresponding extended problem of equations (6.10) and (6.11) reads

π∂tv̂ + rotS v̂ν × v̂− vνBv̂ = −∇S p̄+ 1
Re (RotS rotS v̂ + 2κv̂)− λ divS σ̂E

S

+ fG − αv(v̂ · ν)ν (6.13)

divS v̂ = vνH (6.14)

with initial condition v̂ (·, t) |t=0 = v̂0(·), the extended surface Ericksen stress
tensor σ̂E

S = (∇Sp̂)T ∇Sp̂ + (Bp̂)⊗ (Bp̂) and the abbreviation

fG := 2
Re (H∇Svν − B∇Svν) + vν∇Svν

according to equation (4.3). Thereby, the alternative formulation of the viscous
terms as proposed in equation (2.30), the alternative version of the transport
term ∇v̂v̂ = 1

2∇S(v̂ · v̂) + rotS v̂ν × v̂ (cf. Section 3.1 and Chapter 4) and
p̄ = p + 1

2 v̂ · v̂ were used. Moreover, the corresponding extended problem of
equation (6.12) reads

π∂tp̂ + ∇v̂p̂ = ηp
(
∆Bp̂− B2p̂

)
− ωn

(
‖p̂‖2 − 1

)
p̂− αp (ν · p̂)ν (6.15)
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with initial condition p̂ (·, t) |t=0 = p̂0(·). The normal components v̂ ·ν and p̂ ·ν
are penalized by the additional terms αv(ν·v̂)ν and αp(ν·p̂)ν. Equations (6.13),
(6.14) and (6.15) can now be solved for each component of the velocity v̂, the
director field p̂ and the pressure p̄ using standard approaches for scalar-valued
problems on surfaces, such as the surface finite element method [DE07b, DE07a,
DE13], levelset approaches [BCOS01, GBS06, SV08, DE08] or diffuse interface
approximations [RV06]. However, to efficiently solve the incompressible surface
Navier-Stokes equation (6.13)-(6.14), we use the same trick as introduced in
Chapter 4. The numerical cost is drastically reduced by applying ν× to equation
(6.13) and considering the rotated velocity field ŵ := ν × v̂. Thus, the rotated
version of system (6.13)-(6.14) with normal penalization of the rotated velocity
ŵ reads

π∂tŵ− divS ŵν × ŵ = −RotS p̄+ 1
Re (∇S divS ŵ + 2κŵ) + f⊥G − αw (ŵ · ν)ν

− vνν × (B (ν × ŵ))− λν × divS σ̂E
S (6.16)

rotS ŵ− vνH = 0 (6.17)

with initial condition ŵ (·, t) |t=0 = ν × v̂0(·) =: ŵ0(·) and f⊥G := ν × fG.

6.3 Numerical approach

6.3.1 Time discretization

We consider a simple operator splitting approach and solve the system (6.16)-
(6.17) and the equation (6.15) iteratively in each time step. For the discretization
in time of equations (6.16) and (6.17) we again use the same approach proposed
in Chapter 4, i. e. the Chorin projection method Problem 4.2, and for equations
(6.15) we use a semi-implicit Euler time discretization. Let the time interval
(0, tend] with end time tend be divided into a sequence of discrete times 0 < t0 <

t1 < ... with time step width τm = tm− tm−1. Thereby, m denotes the time step
number. The vector field ŵm(x) corresponds to the respective rotated velocity
field ŵ(x, tm). All other quantities follow the same notation as in Chapter 4.
Furthermore, we define the discrete time derivatives dŵ

τm := 1
τm

(ŵ∗ − πŵm−1)
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6 Polar liquid crystals on evolving surfaces

and dp̂
τm := 1

τm
(p̂m − πp̂m−1), with π the projection to the surface at time

t = tm. Thus, we get the time-discrete version of system (6.16)- (6.17)

dŵ
τm − divS ŵ∗ν × ŵm−1 = 1

Re (∇S divS ŵ∗ + 2κŵ∗) + f⊥G − λν × divS σ̂E
S

− vνν × (B (ν × ŵ∗))− αw (ŵ∗ · ν)ν (6.18)

τm∆S p̄m = rotS ŵ∗ − vνH (6.19)

ŵm = ŵ∗ − τm RotS p̄m , (6.20)

where σ̂E
S is evaluated at the old timestep, i. e. σ̂E

S = (∇Sp̂m−1)T ∇Sp̂m−1 +
(Bp̂m−1)⊗ (Bp̂m−1), and the time-discrete version of equation (6.15)

dp̂
τm + ∇v̂mp̂m = ηp

(
∆Bp̂m − B2p̂m

)
− ωn

(
‖p̂m−1‖2 − 1

)
p̂m

− αp (ν · p̂m)ν . (6.21)

Note that we used a Taylor-0 linearization of the norm-1 penalization term in
(6.15) for better readability. In the following simulations this term is linearized
in time by a Taylor-1 expansion, see [NNPV18] for details. The transport term
in equation (6.15) as well as the term including the surface Ericksen stress tensor
in equation (6.13) are coupling terms in the operator splitting scheme. Addi-
tionally, we employ an adaptive time-stepping scheme, which is based on the
combination of changes in the surface Frank-Oseen energy, see the below equa-
tion (6.22), and the Courant-Friedrichs-Lewy (CFL) condition for fluid flows.

6.3.2 Space discretization

The considered extension of the tangential vector fields to the Euclidean space
allows us to apply the surface finite element method [DE13] for each component
of the respective vector field. Let Sh = Sh(t) denote the interpolation of the
surface S = S(t) such that

Sh :=
⋃
T∈T

T
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with a conforming surface triangulation T = T (t) of mesh size hM at time t = tm.
Here, we consider each space, set and quantity at time t = tm and therefore omit
indexing with the timestep number m for better readability (unless it is explicitly
needed). Furthermore, we introduce the finite element space

Vh =
{
v ∈ C0(Sh) | v|T ∈ P1(T ), ∀T ∈ T

}
with Ck(Sh) the space of k-times continuously differentiable functions on Sh and
Pr(T ) the set of polynomial functions of degree r on T ∈ T . The finite element
space Vh is thereby used twice as trail and test space. Let (·, ·) denote the
standard scalar product on L2(Sh) with L2(Sh) the space of square-integrable
functions on Sh. First, the surface finite element approximation of equations
(6.18) and (6.19) is solved, which reads: For m = 1, 2, 3, . . ., find ŵ∗ ∈ V 3

h , p
m ∈

Vh such that ∀u ∈ V 3
h ,∀q ∈ Vh(

dŵ
τm − divS ŵ?ν × ŵm−1 + vνν × (B (ν × ŵ?))− f⊥G + αw (ŵ? · ν)ν , u

)
= 1

Re

(
divS ŵ? , divS u

)
+ 2

Re

(
κŵ? , u

)
−
(
λσ̂E
S , ∇S (ν × u)

)
(
τm∇S p̄m + ν × ŵ? , ∇Sq

)
=
(
vνH , q

)
.

The corresponding finite element approximation for the i-th component of ŵ?

follows by testing with u = ξei for ξ ∈ Vh, where ei is the i-th unit vector in
R3. Accordingly, the resulting vector field ŵ∗ is used to determine ŵm by the
pressure correction step in equation (6.20). The transformation v̂m = −ν× ŵm

leads to the velocity field at the new timestep tm. Note that in the above
discrete system only the simple Chorin projection method is considered, i. e.
Algorithm 4.1 with only one iteration, due to better readability. In the following
simulations we additionally use the pressure relaxation scheme Algorithm 4.2,
for which the finite element approximation can be easily derived along the same
lines. Finally, the surface finite element approximation of equation (6.21) is

97



6 Polar liquid crystals on evolving surfaces

solved, which reads: For m = 1, 2, 3, . . ., find p̂m ∈ Vh such that ∀q ∈ V 3
h(

dp̂
τm + v̂mi Dip̂m , q

)
=
(
ηp∇Sp̂m , ∇Sq

)
−
(
ωn
(
‖p̂m−1‖2 − 1

)
p̂m , q

)
−
(
ηpB2p̂m + αp (ν · p̂m)ν , q

)
.

Again, testing with q = ξei for ξ ∈ Vh yields the corresponding finite element
approximation for the i-th component of p̂m . As is the previous chapters, the
resulting discrete systems are implemented in the finite element toolbox AMDiS
[VV07, WLPV15], where we additionally use a domain decomposition approach
to efficiently distribute the workload on many-core-platforms. As linear solver
for both systems a BiCGStab(l) method with l = 2 and a Jacobi preconditioner
is used.

6.4 Simulation results

In the following simulations we use λ = 0.5, αw = 102, ωn = 102 and αp = 105.
We compare the numerical solution of equations (6.13), (6.14) and (6.15) (the
so-called wet case) with the numerical solution of equation (6.15) with v̂ = 0 (the
so-called dry case). To highlight the differences we take the surface Frank-Oseen
energy

FP :=
∫
S

ηp
2
(
‖∇Sp̂‖2 + (Bp̂)2

)
+ ωn

4
(
‖p̂‖2 − 1

)2
+ αp

2 (p̂ · ν)2 dS (6.22)

and the surface kinetic energy

Fkin := 1
2

∫
S
‖v̂‖2 dS (6.23)

into account.
First, we consider a stationary (vν = 0) ellipsoidal surface with major axes pa-
rameters (0.7, 0.7, 1.2). We use the trivial solution as initial condition for the ve-
locity and for the director field p̂0 = ∇Sψ0/‖∇Sψ0‖, where ψ0 = x/10+y+z/10
and x = (x, y, z)T ∈ S. This generates an out-of-equilibrium solution with two
+1 defects – more precisely a source and a sink. Furthermore, we use Re = 0.5,
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Figure 6.1: Left: Evolution of the director field p̂ on a stationary ellipsoid of the dry
case (top row) and the wet case (bottom row) for t = 1, 2, 3, 4, 6 (left to right).
Right: Surface Frank-Oseen energy FP and surface kinetic energy Fkin against time
t for the dry and the wet case, respectively.

ηp = 0.6 and hM = 1.32 · 10−2. Figure 6.1 shows the influence of the hydro-
dynamics on the dynamical evolution of the director field. The two defects,
which fulfill the Poincaré-Hopf theorem (2.18), evolve towards the geometrically
favorable positions of high Gaussian curvature, the director field aligns with the
minimal curvature lines of the geometry and – as in flat space – the hydro-
dynamics enhances the evolution towards the equilibrium configuration, which
coincides for the dry and the wet case.
In the next example we consider a stationary torus with major radius R = 2,
minor radius r = 0.5 and the z-axis as symmetry axis. Again, we use the
trivial solution as initial condition for the velocity v̂ and a random (normalized)
vector field for the director field p̂. Here, we use the simulation parameters
Re = 1 and ηp = 0.4. The mesh size is fixed at hM = 2.74 · 10−2. All other
parameters are equal to that used in Figure 6.1. In Figure 6.2 we focus on the
annihilation of defects in one realization. Figure 6.2 (top) shows the evolution
of the director field p̂ for the dry and the wet case. Again in the wet case the
dynamic is enhanced, which is quantified by the stronger overall decay of the
surface Frank-Oseen energy, cf. Figure 6.2 (middle). Additionally, in Figure 6.2
(bottom) the corresponding flow field v̂ is shown for the considered annihilation
of a source (+1) and a saddle (−1) defect in the director field p̂. After all defects
are annihilated, which again is in accordance with the Poincaré-Hopf theorem
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Figure 6.2: Top: Evolution of the director field p̂ on a torus of the dry case (top row)
and the wet case (bottom row) for t = 0.3, 4.5, 6.6 (left to right). Middle: Surface
Frank-Oseen energy FP and surface kinetic energy Fkin against time t for the dry and
the wet case, respectively. Bottom: Velocity field v̂ for the annihilation of a source
(+1, left) and a saddle (−1, right) defect in the director field p̂ (red dots) for t = 3,
3.81, 4.05, 5.7 (left to right).

(2.18), the velocity field v̂ becomes a Killing vector field and the director field p̂
aligns with the minimal curvature lines of the geometry. The reached equilibrium
configurations coincide for both cases, the dry and the wet case.

While in the two previous examples the expected minimal energy configuration
was reached, we now consider an initial condition for which only a local minima
can be reached. We use p̂0 = ∇Sψ0/‖∇Sψ0‖, where ψ0(x) = exp (−(x−m)2/2)
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Figure 6.3: Top: Schematic defect positions of the initial condition (left) and the final
configuration (right) on a torus with the analytical initial condition for the director
field p̂ and zero initial condition for the velocity field v̂. Red dots are indicating +1
defects (sources or sinks) and blue dots are indicating −1 defects (saddles). Bottom:
Evolution of the director field p̂ in the wet case for t = 1, 5, 25 (left to right).
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Figure 6.4: Surface Frank-Oseen energy FP and surface kinetic energy Fkin against
time t for the analytical initial condition for the director field p̂ and the Killing vector
field as initial condition for the velocity v̂.

with x ∈ S and m = (R, 0, r)T ∈ R3, as initial condition for the director field.
This produces two ±1 defect pairs which are located in opposite position to each
other along the toroidal direction of the torus, again fulfilling the Poincaré-Hopf
theorem (2.18). Thereby, one pair is rotated by an angle of π/2 compared to the
other along the poloidal direction, see Figure 6.3. The parameters are adapted
to Re = 1, ηp = 0.4 and hM = 2.74 ·10−2. In a flat geometry with zero curvature
such defect pairs would annihilate. However, due to the geometric interaction in
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Figure 6.5: Left: Schematic description of the ellipsoid evolution for a half period
of oscillation. Descending gray scale indicates increasing time. The motion in the
second half of the oscillation is reversed, respectively. Right: Major axes parameters
for the ellipsoid over a full period of oscillation. The time of one oscillation period
is considered to be T = 160. The major axes parameters are chosen such that the
surface area of the ellipsoid is conserved over time.

the present case resulting from the difference of the Gaussian curvature inside
and outside of the torus, the reached nontrivial defect configuration is stable
and the two ±1 defect pairs remain over time. The −1 defects are attracted to
regions with negative Gaussian curvature, i. e. the inner of the torus, and +1
defects are attracted to regions with positive Gaussian curvature, i. e. the outer
of the torus, see Figure 6.3. The reached configuration, is a local minimum
with a significantly larger surface Frank-Oseen energy FP as the defect-free
configuration. In this example we did not find any significant difference between
the dry and the wet case, when the zero initial condition for the velocity v̂ is
used. However, if we use a Killing vector field for the velocity as initial condition,
i. e. v̂0(x) = 1/2(−y, x, 0)T with x = (x, y, z)T ∈ S, cf. [NRV17, RV18b], the
four defects start to rotate and cause a damping of the flow field, which converges
to zero. In other words, the defects in the director field produce an additional
contribution to the total surface stress tensor and therefore the kinetic energy
dissipates to zero, see Figure 6.4. Thus, the final configuration is just a rotation
of the configuration reached with v̂0 = 0.
Now, we let the ellipsoid from Figure 6.1 evolve by prescribing the normal veloc-
ity vν , such that the ellipsoid changes to a sphere and afterwards to an ellipsoid
with a different axis orientation and vice versa to obtain a shape oscillation. The
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Figure 6.6: Top: Evolution of the director field p̂ on a evolving ellipsoid of the dry
case (top row) and the wet case (bottom row) for t = 3, 40, 95, 145, 160 (left to right).
Bottom: Surface Frank-Oseen energy FP and surface kinetic energy Fkin against time
t for the first period of oscillation (left) and over five periods of oscillation (right) for
the dry and the wet case, respectively.

surface area remains constant during the evolution. Figure 6.5 shows schemat-
ically the evolution of the geometry and the axes parameters for one period of
oscillation. Here, we use the same simulation parameters and initial conditions
as considered in Figure 6.1. The evolution of the director field p̂ is shown in
Figure 6.6 (top), again for the dry (top row) and the wet case (bottom row). The
defect positions again reallocate at their geometrically favorable position. How-
ever, due to the change in geometry the time scale for the reallocation competes
with the time scale for the shape changes. The enhanced evolution towards the
minimal energy configuration with hydrodynamics becomes even more signifi-
cant in these situations. Already slight modifications of the geometry are enough
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6 Polar liquid crystals on evolving surfaces

to push the defect after crossing the sphere configurations (with no preferred
defect position) to the energetically favorable state. In the dry case there is a
strong delay and much stronger shape changes are needed to push the defect
to the energetically favorable position. First, an energy barrier for reallocating
the defect position has to be overcome, which is shown by the further increase
of the red line after the blue line has already dropped after crossing the sphere
configuration in Figure 6.6 (middle). The parameters and the initial condition
are chosen in such a way that in the dry case the defects do not quite reach the
position at the poles, if the shape evolution crosses the sphere. In the wet case
they have moved beyond. This results in a constant orientation in the dry case
and a flipping of the orientation of the director field in the wet case after each
oscillation. The final configuration in Figure 6.6 after completing one oscillation
cycle is energetically equivalent for the dry and the wet case, even if the orien-
tation of the director field p̂ differs. This behavior clearly depends on the used
parameters. However, it also demonstrates the strong influence hydrodynam-
ics might have in such highly nonlinear systems, where the topology, geometric
properties and defect dynamics are strongly coupled.
These examples together with the demonstrated energy reduction by creation
of additional defects in geometrically favored positions in [NNPV18], which is
expected to hold also for the wet case, lead to a very rich phase space, whose
exploration is beyond the scope of this chapter.

6.5 Discussion

Equations (6.10), (6.11) and (6.12) have been derived as a thin-film limit of a
three-dimensional simplified Ericksen-Leslie model in [NRV18]. In [Shk02] a sim-
ilar model was proposed, which differs from equations (6.10), (6.11) and (6.12)
on stationary surfaces (vν = 0) in the extrinsic contributions. Especially the
surface Ericksen stress tensor is considered to be σE

S = (∇Sp)T ∇Sp. To show
the strong difference between this intrinsic and the extrinsic surface Ericksen
stress tensor from above σE

S = (∇Sp)T ∇Sp + (Bp) ⊗ (Bp), we come back to
the stationary ellipsoid in Figure 6.1, but with slightly different parameters, i. e.
Re = 2, ηp = 0.3 and λ = 1. These parameters lead to a damped oscillation
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Figure 6.7: Surface Frank-Oseen energy FP and surface kinetic energy Fkin against
time t for the simulation of the damped oscillation of the defects around the minimal
defect configuration.

of the defects around the energetically favorable positions before they reach the
final state configuration as in Figure 6.1. In Figure 6.7 the differences in the
time evolution of the surface Frank-Oseen energy as well as the surface kinetic
energy for both cases, the intrinsic and extrinsic surface Ericksen stress, are
shown. The influence of the hydrodynamics is much stronger for the extrinsic
surface Ericksen stress. Together with the example in Figure 6.6 such differ-
ences in the dynamics might have a huge impact on the overall evolution, if also
shape changes are considered. We would also like to point out, that even if the
thin-film limit of the individual equations in system (6.10), (6.11) and (6.12),
namely the surface Navier-Stokes and the surface Frank-Oseen equation, are
known [RV15, RV18a, NNPV18], a naive transformation of the missing coupling
term from the three-dimensional formulation to its surface counterpart will not
be sufficient to obtain the extrinsic surface Ericksen stress term. Only a thin-
film limit of the complete model, with appropriate boundary conditions, will
lead to the full model, see [NRV18].

6.6 Conclusion

We have introduced a minimal model for surface LCs on evolving surfaces. This
model follows by a thin film limit of the three dimensional simplified Ericksen-
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6 Polar liquid crystals on evolving surfaces

Leslie model [LL00]. The basic ideas of the limiting process are briefly sketched
and the resulting local equations are extended to the Euclidean basis accord-
ing to Chapter 2. The surface finite element method is used to numerically
solve the final system of vector-valued surface PDEs for each component of the
respective vector field. Similar to Chapter 4 the rotated velocity field is consid-
ered to reduce the numerical effort and the Chorin projection method is applied
to the incompressible surface Navier-Stokes equation. In various numerical ex-
periments we have demonstrated the strong influence of the flow field on the
orientational ordering. On ellipsoidal and toroidal surfaces some expected and
unexpected phenomena were presented, in which a highly nonlinear coupling of
hydrodynamics, topology, geometric properties, shape changes and defect dy-
namics can be observed.
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7.1 Summary

In this thesis, we have studied the hydrodynamic behavior of fluid interfaces,
which are considered as two-dimensional evolving surfaces. We have introduced
the required notation, basic concepts for the appearance of defects in the flow
field and a general concept to numerically treat vector-valued surface PDEs in
Chapter 2. Moreover, the incompressible surface Navier-Stokes equation is de-
rived and introduced. The geometric terms in the resulting equation accounts
for a highly nonlinear interplay between topology, geometry, fluid properties and
defect dynamics, which can induce non-uniform surface flow patterns. In Chap-
ter 3, we have reformulated the incompressible surface Navier-Stokes equation
by the vorticity-stream function formulation. The resulting equations of this
alternative approach is a system of scalar-valued surface PDEs and therefore
the standard surface finite element method is used to discretize this system in
space. Furthermore, we have considered designed numerical examples, which
show the strong interplay between the geometry and the hydrodynamics. Ad-
ditionally, numerical examples on evolving surfaces are presented which show
the highly nonlinear dynamic behavior through geometric shape changes. The
vorticity-stream function approach is limited to surfaces, which are topologi-
cally invariant to a sphere, see Section 3.4. To circumvent this issue, a direct
discretization technique of the incompressible surface Navier-Stokes equation in
its original form has been considered in Chapter 4. More precisely, the approach
is based on the extended version of the equations, the Chorin projection method
and the standard surface finite element method. A numerical study of the ex-
perimental order of convergence for the proposed Chorin projection algorithm
is proposed. The accuracy of the fully discrete scheme is validated against a

107



7 Conclusion

numerical solution based on discrete exterior calculus on a torus from the lit-
erature. To demonstrate that this approach has the ability to work on more
general surfaces independent of the genus g(S), we have numerically studied
the interesting interplay between the topology of the surface and the hydro-
dynamics in the flow field on n-tori. Additionally, we have shown the strong
influence of shape changes to the flow field based on a non-uniform evolution
of the nonic surface. In the remaining chapters, two extensions of the proposed
methods have been considered. E. g. in Chapter 5, a model for a stationary
fluid interface in viscous fluids is derived. This system can be seen as two-phase
flow problem with an interface condition based on the incompressible surface
Navier-Stokes equation. We have used the vorticity-stream function formulation
for describing the interfacial hydrodynamics and the basic ideas of the diffuse
domain/diffuse interface approach in order to reformulate the whole system of
equations with phase fields. The results are compared with an experiment based
on vesicles in shear flow and the numerical convergence of the present approach
to the experimental data is shown. Moreover, the influence of the non-constant
Gaussian curvature of ellipsoidal shaped vesicles on the flow field is studied and
analyzed. A further extension is proposed in Chapter 6, which describes polar
liquid crystals on evolving surfaces. Here, the approach from Chapter 4 is used
in combination with an additional vector-valued surface PDE describing the ori-
entational ordering of the liquid crystals. Again, the general concept proposed
in Section 2.4 is applied to this additional equation. The resulting system is the
surface counterpart of the simplified Ericksen-Leslie model for describing polar
liquid crystals in flat space. Various examples are shown, which accounts for
the strong influence of the flow field on the orientational ordering. Furthermore,
we have studied some expected and unexpected phenomena on ellipsoidal and
toroidal surfaces, which again show the highly nonlinear coupling of hydrody-
namics, topology, geometric properties, shape changes and defect dynamics.

7.2 Outlook

The fluid film in the extension proposed in Chapter 5 is stationary. Considering
the fluid interface as free surface would enable a broader range of applications,
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e. g. vesicles under shear flow which are not adhered to a solid surface as consid-
ered in the experimental validation in Chapter 5. Thereby, the normal velocity
follows physical principles such as conservation laws, which typically yields an
additional surface PDE. Also the interaction of the interfacial and bulk hydro-
dynamics in spinodal decomposition in lipid bilayer membranes are of special
interest. This has already been considered in [FHH10] but for planar mem-
branes. However, both proposed approaches, i. e. the vorticity-stream function
approach from Chapter 3 and the direct numerical treatment of the incompress-
ible surface Navier-Stokes equation from Chapter 4, can be used in such physical
problems.
In Chapter 6 the polar ordering of liquid crystals is considered. Another ap-
proach to describe liquid crystals follows by investigating the nematic ordering,
where in contrast to the polar case the rod-like particles are seen without ori-
entation. A model without the interfacial hydrodynamic effects on stationary
surfaces has already been proposed in [NNP+18]. This typically involves tensor-
valued surface PDEs, which can be handled in a similar way as in Section 2.4
and [NNV18], respectively. The extension to the more general case of evolv-
ing surfaces can be easily done by using [NV18]. Taking hydrodynamic effects
into account requires the coupling of this tensor-valued equation with the in-
compressible surface Navier-Stokes equation. It is thereby noted that naively
coupling the individual equations, i. e. along the same lines as in the three-
dimensional case, is probably not sufficient. As in Chapter 6, we expect that
only the thin-film limit of the three-dimensional counterpart, e. g. the so-called
Beris-Edwards model [ADL13], yields the correct formulation on the evolving
surface – especially for the coupling terms.
All these polar/nematic models for liquid crystals can be extended to model
active liquid crystals on fluid interfaces. Such active suspensions transform
chemical into kinetic energy which is the reason why these systems are never
in equilibrium and the defects move randomly over the surface. Again, the
hydrodynamics and the geometry are expected key ingredients for the dynamic
behavior of the whole system and the tools provided within this theses can be
used for describing the hydrodynamic effects.
Also the flow patterns in such active systems by itself are of special interest,
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7 Conclusion

as considered, e. g., in [MSB+18]. Here, the activity of the system is included
in the surface stress tensor, which yields an extension of the incompressible
surface Navier-Stokes equation by higher order terms (in terms of powers of the
Laplacian). This causes a continuous energy input and the chaotic flow patterns.
The extension of the method proposed in Chapter 4 to these more general higher
order equations is ongoing work within a master’s thesis in this institute and
will be published elsewhere.
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[FRGV12] S. Franz, H.-G. Roos, R. Gärtner, and A. Voigt. A Note on the
Convergence Analysis of a Diffuse-domain Approach. Comput.
Meth. Appl. Mat., 12(2):153–167, 2012.

[GA18] B. J. Gross and P. J. Atzberger. Hydrodynamic flows on curved
surfaces: Spectral numerical methods for radial manifold shapes.
J. Comput. Phys., 371:663–689, 2018.

114



Bibliography

[GBJL16] J. Gounley, G. Boedec, M. Jaeger, and M. Leonetti. Influence
of surface viscosity on droplets in shear flow. J. Fluid Mech.,
791:464–494, 2016.

[GBS06] J. B. Greer, A. L. Bertozzi, and G. Sapiro. Fourth order partial
differential equations on general geometries. J. Comput. Phys.,
216:216–246, 2006.

[GKHC18] R. E. Guerra, C. P. Kelleher, A. D. Hollingsworth, and P. M.
Chaikin. Freezing on a sphere. Nature, 554:346, 2018.

[Hel73] W. Helfrich. Elastic Properties of Lipid Bilayers - Theory and
Possible Experiments. Z. Naturforsch. C, 28:693–703, 1973.

[HL10] M. L. Henle and A. J. Levine. Hydrodynamics in curved mem-
branes: The effect of geometry on particulate mobility. Phys. Rev.
E, 81:011905, 2010.

[HLL16] P. Hansbo, M. G. Larson, and K. Larsson. Analysis of
Finite Element Methods for Vector Laplacians on Surfaces.
arXiv:1610.06747, 2016.

[HLW14] J. Huang, F. Lin, and C. Wang. Regularity and Existence of
Global Solutions to the Ericksen–Leslie System in R2. Commun.
Math. Phys., 331(2):805–850, 2014.

[HMS+08] M. L. Henle, R. McGorty, A. B. Schofield, A. D. Dinsmore, and
A. J. Levine. The effect of curvature and topology on membrane
hydrodynamics. Europhys. Lett., 84(4):48001, 2008.

[HSWKG13] A. R. Honerkamp-Smith, F. G. Woodhouse, V. Kantsler, and
R. E. Goldstein. Membrane Viscosity Determined from Shear-
Driven Flow in Giant Vesicles. Phys. Rev. Lett., 111:038103, 2013.

[HW13] X. Hu and H. Wu. Long-time dynamics of the nonhomogeneous
incompressible flow of nematic liquid crystals. Commun. Math.
Sci., 11(3):779–806, 2013.

115



Bibliography

[HZE07] D. Hu, P. Zhang, and W. E. Continuum theory of a moving
membrane. Phys. Rev. E, 75:041605, 2007.

[JOR17] T. Jankuhn, M. A. Olshanskii, and A. Reusken. Incompressible
Fluid Problems on Embedded Surfaces: Modeling and Variational
Formulations. arXiv:1702.02989, 2017.

[Kam02] R. D. Kamien. The geometry of soft materials: a primer. Rev.
Mod. Phys., 74:953–971, 2002.

[KLG17] H. Koba, C. Liu, and Y. Giga. Energetic variational approaches
for incompressible fluid systems on an evolving surface. Quart.
Appl. Math., 75:359–389, 2017.

[KLLFNV13] V. Koning, T. Lopez-Leon, A. Fernandez-Nieves, and V. Vitelli.
Bivalent defect configurations in inhomogeneous nematic shells.
Soft Matter, 9:4993–5003, 2013.

[KLS+14] F. C. Keber, E. Loiseau, T. Sanchez, S. J. DeCamp, L. Giomi,
M. J. Bowick, M. C. Marchetti, Z. Dogic, and A. R. Bausch.
Topology and dynamics of active nematic vesicles. Science,
345(6201):1135–1139, 2014.

[KRV11] S. Kralj, R. Rosso, and E. G. Virga. Curvature control of valence
on nematic shells. Soft Matter, 7:670–683, 2011.

[Les68] F. M. Leslie. Some constitutive equations for liquid crystals. Arch.
Ration. Mech. An., 28(4):265–283, 1968.

[LL00] F.-H. Lin and C. Liu. Existence of Solutions for the Ericksen-
Leslie System. Arch. Ration. Mech. An., 154(2):135–156, 2000.

[LLFNNB12] T. Lopez-Leon, A. Fernandez-Nieves, M. Nobili, and C. Blanc.
Smectic shells. J. Phys.-Condens. Mat., 24(28):284122, 2012.

[LLRV09] X. Li, J. Lowengrub, A. Rätz, and A. Voigt. Solving PDEs in
complex geometries: A diffuse domain approach. Commun. Math.
Sci., 7(1):81–107, 2009.

116



Bibliography

[LLW10] F. Lin, J. Lin, and C. Wang. Liquid Crystal Flows in Two Di-
mensions. Arch. Ration. Mech. An., 197(1):297–336, 2010.

[LNZ+13] H.-L. Liang, J. Noh, R. Zentel, P. Rudquist, and J. Lagerwall.
Tuning the defect configurations in nematic and smectic liquid
crystalline shells. Phil. Trans. Roy. Soc. A, 371(1988), 2013.

[LP92] T. C. Lubensky and J. Prost. Orientational order and vesicle
shape. J. de Physique II, 2(3):371–382, 1992.

[LSMS18] I. B. Liu, N. Sharifi-Mood, and K. J. Stebe. Capillary Assembly
of Colloids: Interactions on Planar and Curved Interfaces. Annu.
Rev. Condens. Matter Phys., 9:283–305, 2018.

[LSRL11] H.-L. Liang, S. Schymura, P. Rudquist, and J. Lagerwall.
Nematic-Smectic Transition under Confinement in Liquid Crys-
talline Colloidal Shells. Phys. Rev. Lett., 106:247801, 2011.

[MCP+09] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun.
Energy-preserving integrators for fluid animation. ACM T.
Graphic., 28:38, 2009.

[MHS16] M. S. Mohamed, A. N. Hirani, and R. Samtaney. Discrete exterior
calculus discretization of incompressible Navier-Stokes equations
over surface simplicial meshes. J. Comput. Phys., 312:175–191,
2016.

[Miu17] T.-H. Miura. On singular limit equations for incompressible fluids
in moving thin domains. arXiv:1703.09698, 2017.

[MRL+14] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Zumer,
and I. I. Smalyukh. Mutually tangled colloidal knots and induced
defect loops in nematic fields. Nat. Mater., 13:258–263, 2014.

[MSB+18] O. Mickelin, J. S lomka, K. J. Burns, D. Lecoanet, G. M. Vasil,
L. M. Faria, and Jörn Dunkel. Anomalous Chained Turbulence in
Actively Driven Flows on Spheres. Phys. Rev. Lett., 120:164503,
2018.

117



Bibliography

[MT01] M. Mitrea and M. Taylor. Navier-Stokes equations on Lipschitz
domains in Riemannian manifolds. Math. Ann., 321(4):955–987,
2001.

[Nel02] D. R. Nelson. Toward a Tetravalent Chemistry of Colloids. Nano
Lett., 2(10):1125–1129, 2002.

[NNP+18] I. Nitschke, M. Nestler, S. Praetorius, H. Löwen, and A. Voigt.
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