
Der Fakultät Mathematik und Naturwissenschaften

der Technischen Universität Dresden

Solving multi-physics problems using

adaptive finite elements with

independently refined meshes

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

von

Siqi Ling

geboren am 18. September 1987

in Shanghai, China

Tag der Einreichung:

Tag der Verteidigung:

Gutachter: Prof. Dr. rer. nat. Axel Voigt

Technische Universität Dresden

Prof. Dr.-Ing. Jeronimo Castrillon

Technische Universität Dresden

Abstract

In this thesis, we study a numerical tool named multi-mesh method within the

framework of the adaptive finite element method. The aim of this method is to minimize

the size of the linear system to get the optimal performance of simulations. Multi-mesh

methods are typically used in multi-physics problems, where more than one component

is involved in the system. During the discretization of the weak formulation of partial

differential equations, a finite-dimensional space associated with an independently refined

mesh is assigned to each component respectively. The usage of independently refined

meshes leads less degrees of freedom from a global point of view.

To our best knowledge, the first multi-mesh method was presented at the beginning

of the 21st Century. Similar techniques were announced by different mathematics re-

searchers afterwards. But, due to some common restrictions, this method is not widely

used in the field of numerical simulations. On one hand, only the case of two-mesh

is taken into scientists’ consideration. But more than two components are common in

multi-physics problems. Each is, in principle, allowed to be defined on an independent

mesh. Besides that, the multi-mesh methods presented so far omit the possibility that

coefficient function spaces live on the different meshes from the trial and test function

spaces. As a ubiquitous numerical tool, the multi-mesh method should comprise the

above circumstances. On the other hand, users are accustomed to improving the per-

formance by taking the advantage of parallel resources rather than running simulations

with the multi-mesh approach on one single processor, so it would be a pity if such an

efficient method was only available in sequential. The multi-mesh method is actually

used within local assembling process, which should not be conflict with parallelization.

In this thesis, we present a general multi-mesh method without the limitation of the

number of meshes used in the system, and it can be applied to parallel environments

as well. Chapter 1 introduces the background knowledge of the adaptive finite element

method and the pioneering work, on which this thesis is based. Then, the main idea of

2

the multi-mesh method is formally derived and the detailed implementation is discussed

in Chapter 2 and 3. In Chapter 4, applications, e.g. the multi-phase flow problem and

the dendritic growth, are shown to prove that our method is superior in contrast to the

standard single-mesh finite element method in terms of performance, while accuracy is

not reduced.

3

Kurzfassung

Diese Arbeit beschäftigt sich mit der Multi-Mesh-Methode, die auf dem Gebiet

der adaptiven Finiten-Elemente-Methode Anwendung findet. Das Ziel der Multi-Mesh-

Methode ist es, die Größe des durch die Assemblierung entstehenden linearen Glei-

chungssystems zu verringern, um damit der eine optimale Performance zu erreichen.

Diese Methode wird insbesondere in multiphysikalischen Problemen eingesetzt, die aus

mehr als einer Komponente bestehen. Durch sie wird jeder einzelnen Komponente bei

der Diskretisierung der schwachen Form der partiellen Differentialgleichungen ein end-

lichdimensionaler Raum mit einem unabhängig verfeinerten Gitter zugeordnet. Dadurch

verringern sich die Freiheitsgrade der Diskretisierung. Nach unserer Kenntnis wurde eine

erste Multi-Mesh-Methode Anfang des 21. Jahrhunderts vorgestellt und durch ähnlich

Methoden darauffolgend ergänzt. Jedoch konnte sich die Multi-Mesh-Methode nie ganz

durchsetzen. Einerseits verwendete man nur Two-Mesh-Techniken, was jedoch bei mul-

tiphysikalischen Problemen mit mehreren Komponenten eine starke Einschränkung be-

deutet. Anderseits erlaubten bisherige Multi-Mesh-Methoden nicht, dass die Räume der

Koeffizientenfunktionen auf anderen Gittern leben als die Räume der Ansatz- und Test-

funktionen. Als universell anwendbares numerisches Werkzeug sollte auch die Multi-

Mesh-Methode solche Fälle berücksichtigen. Weiterhin ist es unabdingbar für das mo-

derne wissenschaftliche Rechnen, die Methode auf parallele Berechnungsverfahren zu

erweitern, um damit eine weitere Performancesteigerung zu gewährleisten. Um den For-

derungen Rechnung zu tragen, erweitern wir in dieser Arbeit das bisherige Verfahren

und beschreiben damit eine allgemeine Multi-Mesh-Methode zur Verwendung beliebig

viele Gitter, die auch parallele Berechnungen erlaubt. In Kapitel 1 erläutern wir die

wichtigsten Grundlagen für dieses Gebiet und beschreiben außerdem die Pionierarbeit,

die hierfür geleistet wurde. Die Grundidee dieser Methode wird hergeleitet und detail-

liert implementiert in den Kapiteln 2 und 3. Schließlich beschreiben wir im Kapitel 4 die

Anwendung der Methode auf Mehrphasenströmungen und Dendritenwachstum. Dabei

4

zeigen wir, dass die Multi-Mesh-Methode einfachen Single-Mesh-Verfahren in Bezug auf

die Effizienz weit überlegen ist, ohne die Genauigkeit des Verfahrens zu beeinträchtigen.

5

Acknowledgement

Three years have past since I became a member of the Institute of Scientific Com-

puting at the Technische Universität Dresden. I was not original in this field and it was

a great challenge for me. Fortunately, everyone in the institute is very nice and kind. I

could get help whenever I asked for. I really had a wonderful time here and now I am

one step away from the end. I am not the one who likes saying goodbye but when the

time comes, everyone has to move on.

I would like to express my sincere thanks to my supervisor, Prof. Dr. rer. nat.

Axel Voigt, who offered me this valuable opportunity to work in such a nice group. It is

because of his help that I managed to customize the topic and the idea of my research

field, otherwise these three years would be much more difficult. Besides my supervisor,

my colleagues also supported me throughout my work and I would like to appreciate

them. Thank to Dr. Simon Praetorius who introduced me to the theory of the finite

element method and our toolbox AMDiS. I have asked numerical questions to him within

the past three years and he always replied me with patience. Thank to Dr. Wieland

Marth for his multi-phase flow problem, which is a very important section in this thesis.

It was a great pleasure to collaborate with him. Furthermore, I would like to thank

Dipl.-Math. Andreas Naumann, Dr. Sebastian Aland, Dipl.-Math. Matthias Wagner,

M.Sc. Francesco Alaimo and those whoever helped me. I also want to thank the Center

for Advancing Electronics Dresden (cfaed) for the three-year funding, especially the nice

co-workers from the Orchestration Path. Moreover, I would like to thank all those who

helped me in proofreading this thesis. Last but not least, thank to my family for their

understanding and support of my study in Dresden.

6

Contents

1 Introduction 9

1.1 Finite element method . 10

1.1.1 History . 10

1.1.2 Finite element discretization . 11

1.1.3 Adaptive method . 12

1.2 AMDiS . 13

1.2.1 FEM toolboxes . 13

1.2.2 Basic concepts in AMDiS . 14

1.3 Multi-mesh concepts . 17

1.3.1 Motivation and history . 17

1.3.2 Idea of the multi-mesh method . 19

2 General multi-mesh method with arbitrary number of meshes 23

2.1 General multi-mesh concept . 24

2.1.1 Coupling terms in the system of PDEs 24

2.1.2 Multi-mesh traversal . 27

2.1.3 Transformation matrices . 28

2.1.4 Coefficient function spaces . 29

2.1.5 Test and trial function spaces . 30

2.2 Software concepts . 33

2.3 Summary . 38

3 Parallel multi-mesh Concept 41

3.1 Parallel multi-mesh adaption loop . 42

3.2 Parallel DOF enumeration . 44

3.3 Software concepts . 46

3.3.1 Parallel data containers . 46

3.3.2 Parallel algorithms . 48

3.4 Summary . 52

7

4 Numerical experiments 57

4.1 Multi-phase flow problem . 58

4.1.1 Governing equations . 58

4.1.2 Numerical approach . 61

4.1.3 Adaptivity . 62

4.1.4 Performance and accuracy . 65

4.1.5 Parallelization . 67

4.2 Dendritic growth . 68

4.2.1 Governing equations . 68

4.2.2 Adaptivity . 69

4.2.3 Performance . 70

5 Conclusion and outlook 74

Bibliography 77

8

CHAPTER 1

Introduction

Scientific computing is a rapidly growing multi-disciplinary field that solves complex

physical problems by exploiting advanced computing capabilities. Various mathematical

methods are used within this field. One of the most prominent challenges in scientific

computing is the solution of partial differential equations (PDEs). For this task, the

finite element method (FEM) is proved to be one of the most integrated and popular

numerical tools. The theme of this thesis is about a numerical approach named multi-

mesh method, which is an advanced sub-method used in the assembling process of the

finite element method.

This chapter is divided into three parts. First, in Section 1.1, we give a brief

overview on the finite element method, which includes the history of FEM, the solution

of an example PDE using FEM, and some more discussion on adaptivity and error

estimation theory, which are very important features of today’s FEM. From Section 1.2

we go deeper into the implementation. Different kinds of finite element toolboxes are

mentioned, but we mainly focus on our library: Adaptive MultiDimensional Simulations

(AMDiS), including its basic concepts and data structures. Although the idea presented

in this thesis is not restricted to any specific finite element software, we give explanations

by means of the terminology and the notations used in AMDiS since all the work is

implemented within the AMDiS framework. Moreover, the “software concepts” sections

in Chapter 2 and 3 are directly related to the implementation details. In Section 1.3,

we return to our subject, the multi-mesh method, its history and variants. The pioneer

work, on which this thesis is based, is also introduced.

9

1.1 Finite element method

1.1.1 History

When we talk about the history of the finite element method, it is hard to target the

precise father and the birthday of this method, but we do distinguish several pioneers

who have contributed to the invention of FEM. In the early 1940s, the first FEM-style

calculation on a triangular net for the piecewise linear approximation of the stress func-

tion in the torsion problem was presented in R.Courant’s paper. In 1950s, M.J.Turner

et al. at Boeing generalized and perfected the direct stiffness method where the trian-

gular element stiffness matrix was introduced. Inspired by Turner’s work, J.H.Argyris

was the first in constructing a displacement-assumed continuum element. R.W.Clough

continued convergence studies on stress components and contributed to popularize the

ideas by giving the name “finite element method”. O.C.Zienkiewicz clarified and further

systematically developed the potential energy minimisation theory from R.Courant and

published the first text book about the finite element method in 1957. All these men-

tioned scientists [34] are largely responsible for the popularization of FEM from aircraft

structural engineering to a wider range of new application fields such as metal forming,

electromagnetics, geomechanics, biology, etc.

One common way to get a more precise approximation is to increase the number

of elements on the mesh. Smaller elements help to minimize the discretization error,

but on the other hand, overall simulation time increases as a result of more computing

elements. In order to keep a balance between accuracy and efficiency, the adaptive

method was introduced. It was first addressed by Babuška and Rheinboldt in 1970s

[2]. They showed the possibilities of economic error estimation and indicated a desired

accuracy of the numerical solution could be reached by subdivion of meshes. Later in

the 1980s and 1990s, a great deal of effort was contributed to the design of adaptive

method and error estimation theory, following the pioneering work of Babuška. This

subject became a widely popular research area, in which adaptive methods such as h-

refinement (changing the number of elements on the mesh), p-refinement (changing the

degree of interpolation functions) and h-p combinations, error estimation procedures

such as a priori and a posteriori error estimators, were investigated. In 1980s and 1990s,

a booming activity in the design of different kinds of a posteriori error estimators was

fostered. Today, a posteriori error estimators are well developed for a large class of

simple linear elliptic model problems. For more details on the history of finite element

methods, we refer to JL.Meek [34] and O.C.Zienkiewicz [54].

When the finite element method first came out, computers were so expensive that

only large industrial companies could afford them. But with the growing accessibility

of computational resources as well as the perfection and the popularization of FEM, it

has become a well-developed numerical instrument in both science and engineering for

10

modelling natural systems in physics, chemistry, biology and so on.

1.1.2 Finite element discretization

The finite element method discretizes the components of PDEs by finite element

spaces. A finite element space V has three factors. First, a geometry domain Ω consisting

of finite elements. Second, a set of global basis functions denoted as χ= {χ1, ..., χn},
which is used to approximate the true solution. Third, a mapping from element-wise

local basis functions to global basis functions. In order to illustrate the discretization via

the finite element space V, we consider the following second order differential equation

with Dirichlet boundary conditions as an example. The equation reads as:

−∇ ·A∇u+ b · ∇u+ cu = f in Ω (1.1a)

u = 0 on ∂Ω (1.1b)

, where A ∈ L∞(Ω;Rd×d), b ∈ L∞(Ω;Rd), c ∈ L∞(Ω) and f ∈ L2(Ω). The same

kind of equations result from a linearization of nonlinear elliptic problems. Note that in

the AMDiS environment, each part of the equation split by a plus operator is called an

“operator term”. Thus, ∇·A∇u, b·∇u and cu are called second, first and zero order terms

respectively. To get a variational formulation (weak formulation), we multiply both sides

of the PDE by a function v, which is called test function, such that v = 0 on ∂Ω. After

integration by parts, we have the weak formulation of the original equation as:∫
Ω
f(x)v(x)dx =

∫
Ω
∇ v(x) ·A(x)∇u(x) + v(x)b(x) · ∇u(x) + c(x)v(x)u(x) dx (1.2)

Then, we partition the domain Ω to a set of finite elements S = {s1, ..., sm}, where m

is the total element number. We denote our finite element space of globally continuous,

piecewise polynomial functions Pn as V := {uh ∈ H1
0 : uh|s ∈ Pn ∀s ∈ S}, where n is

the polynomial degree. We thus obtain: find uh ∈ V such that:

∫
Ω
f(x)v(x)dx =

∫
Ω
∇ v(x) ·A(x)∇uh(x) + v(x)b(x) ·∇uh(x) + c(x)v(x)uh(x) dx (1.3)

Furthermore, we define χ = {χ1, ..., χn} to be the basis of V. We can replace uh by

the linear combination uh =
n∑
j
ujχj with uj the unknown real coefficients. Using these

relations and breaking up the domain in the partitions of Ω, we rewrite Eq. (1.3) as:

11

∑
s∈S

∫
s
fχi =

n∑
j=1

uj

(∑
s∈S

∫
s
∇ χi ·A∇χj

)
+

n∑
j=1

uj

(∑
s∈S

∫
s
χib · ∇χj

)
+

n∑
j=1

uj

(∑
s∈S

∫
s
cχiχj

)
∀χi ∈ χ

(1.4)

The whole n equations can be written in the form of a matrix. The resulting matrix

is called global stiffness matrix. Finally, we can obtain the approximate solutions after

applying appropriate solver methods.

1.1.3 Adaptive method

Today, most finite element codes use adaptively refined meshes. Adaptivity has

become one of the key attributes of an efficient finite element method. In this section, we

focus on adaptivity and error estimation theory. We start with a sketch of the algorithm

of adaptive finite element methods (AFEMs), shown in Fig 1.1. At the starting point,

the algorithm requires three input data: a system of PDEs associated with boundary

conditions, predefined basis functions, and a mesh representing the geometry. The main

body of the algorithm is a loop named “adaption loop”, which includes five components:

assembler, solver, estimator, marker and adaptivity [35]. The interesting component

in terms of error estimation theory is the error estimator, which serves as an indicator

where the difference between the approximate solution and the exact solution caused

from discretization in a specified norm is relatively large. It computes the global error

by collecting the local error on each element. Basically, there are two types of error

estimation procedures: a priori error estimators and a posteriori error estimators. For

review, we refer to T.Grätsch [20]. The first a posteriori error estimator we use is

the residual error estimator. we adopted the indicator described by K.Eriksson and

C.Johnson [16] and R.Verfürth [47]. Depending on the finite element solution uh, the

form reads as:

η(uh) =
∑
s∈S

(
c1Rs(uh) + c2

∑
e⊂∂s

Je(uh)

)
(1.5)

where Rs is the residual on element s and Je the jump residual defined on the edge e

of element s. c1 and c2 are the constants corresponding to the element residual and

the jump terms. Another a posteriori error estimator we use is the recovery estimator,

which is based on the recovery gradient of the solution. Note that the gradient of the

finite element solution is in general discontinuous across the inter-element boundaries.

The recovery gradient is a smoothed continuous version of this gradient [48].

In the case of a relatively large overall error, the fourth component, the marker, is

used to identify the parts of the mesh, where the estimated error should be decreased,

12

1.assemblerstart 2.solver 3.estimator

threshold4.marker5.adaptivity
YesNo

end

Figure 1.1: Sketch of adaptive finite element methods

according to the result of the estimator. Global refinement, maximum strategy, equidis-

tribution strategy and guaranteed error reduction strategy are the four h-refinement

marking strategies implemented in AMDiS. Then, adaptivity follows directly after the

marking, performing refinement or coarsening on the mesh.

In principle, it is possible to adopt different strategies for different components.

Even within one component, strategies are allowed to be combined. For instance, a

marker marks an element to be refined if at least one strategy has marked the element

to be refined. On the contrary, an element is coarsened if all strategies have marked it

to be coarsened.

After the adaptivity, the adaption loop goes back to the assembling and a new iter-

ation begins. The loop stops only if the global error is under the threshold (a predefined

tolerance) or the number of iterations exceeds the given maximum value.

1.2 AMDiS

1.2.1 FEM toolboxes

Today, people can find hundreds of finite element packages and toolboxes on the

Internet. The specification of those toolboxes varies from one to another. Each has its

own advantages and drawbacks. Some of the packages are designed for general prob-

lems, others are highly specialized for some specific partial differential equations. They

are also implemented in different kinds of languages, commonly in Matlab, Fortran

and C/C++, etc. Here, we give a link of the commercial and open-source FEM pack-

ages accumulated by wikipedia: https://en.wikipedia.org/wiki/List_of_finite_

element_software_packages. In this thesis, we are working with AMDiS. It is an open

source finite element library developed in the institute of scientific computing, TU Dres-

den, which supports the solution of a large class of stationary and instationary systems

of PDEs.

13

https://en.wikipedia.org/wiki/List_of_finite_element_software_packages
https://en.wikipedia.org/wiki/List_of_finite_element_software_packages

Within the last 15 years, many developers have already put their effort into mak-

ing AMDiS both user-friendly and efficient by means of well-designed abstract data

structures and modern software concepts. AMDiS supports operator splitting, problem

coupling, time discretization schemes (implicit, semi-implicit, explicit Euler scheme),

boundary conditions (Dirichlet, Neumann, periodic, etc) and so on. Further discretiza-

tion schemes, e.g. mixed-element, Taylor-Hood method, multi-mesh method, are also at

users’ hands. In terms of solution methods, we did not restrict ourselves to one specific

linear solver, but instead, we presented a framework that allows the implementation of

a large class of direct and iterative solver methods with standard and problem-based

preconditionings.

Some of the AMDiS software concepts are initially derived from ALBERTA [40], the

most important of which are introduced in the next section. Nowadays, AMDiS goes far

beyond ALBERTA. It supports the distribution of geometric information and a broad

range of parallel solvers, based on distributed memory systems. Nice weak and strong

scalability are shown for up to 16.000 processors (so far we have tested).

Due to high level of abstraction in AMDiS, users do not need to pay attention to the

details of the adaption loop and all the inner components. They can start simulations

just by a call to the function adapt. But beforehand they have to write their partial

differential equations, provide a specific domain, and choose the strategies, which are

suitable for their applications. In the background, AMDiS takes the usage of the available

hardware resources and performs all the computing for users. See the AMDiS Tutorial

[49] for more information on how to solve PDEs with AMDiS.

1.2.2 Basic concepts in AMDiS

For the readers of this thesis, it is better to have a fundamental knowledge about

the implementation, which is introduced in this section. We try to answer the questions

such as “What kind of elements are used in AMDiS?” and “How does a mesh look like

in the storage of memory?”, etc.

1.2.2.1 Elements and meshes

Like in other FEM toolboxes, an AMDiS mesh is formed by the union of elements.

Those elements are simplices (triangles in 2D and tetrahedrons in 3D) and any two of

them are either disjoint or share a common boundary. The coarsest unrefined mesh is

called a “macro mesh”. It consists of macro elements that are provided in a geometry

information file named “macro file”. In Fig 1.2(c), a 2D macro mesh of a squared domain

is shown, which is built of four macro triangles. Note that we only allow conforming

meshes, i.e. there is no hanging node on meshes. Fig 1.2(b) shows a hanging node in 2D.

One of the neighbor triangles sharing a common edge is refined, while another is not.

14

Then, the midpoint on the refinement edge, which does not properly belong to both of

the triangles, is the hanging node. The refinement algorithm we use is responsible for

keeping meshes conforming.

The refinement strategy in AMDiS is the bisection algorithm. When one element

is marked to be refined, the longest edge is marked as the refinement edge. Then, the

element is split into a left-child and a right-child by cutting the refinement edge at

its midpoint. For the simplicity to distinguish the refinement edge, the vertices of the

element are enumerated in a fixed sequence. In our convention, the left vertex of the

longest edge is given index 0, and the remaining vertices are numbered counter clockwise,

see Fig 1.2(a). In 3D, the enumeration of vertices depends on the type of the tetrahedron

[40]. The index of the newly generated vertex at the midpoint of the refinement edge

has the highest local index within both children elements. Note that children elements

are no longer macro elements. Typically, if more than one mesh is used, those meshes

come from the same macro mesh, but with a different refinement set.

After refinement is performed on a macro element recursively, a refinement hierarchy

is created and stored in the form of a binary tree, recording the information whether

it is a left- or right-child for each refinement level. Then, the refinement hierarchy of

the whole mesh is represented by a bunch of binary trees. The binary tree of macro

element 0 in Fig 1.2(c) is shown in (d). The refinement hierarchy is one of the most

important information, which is frequently in use, for example, for mesh repartitioning

and status recovery. Thus, we need a more compact format than a binary tree. The

format we developed is called “Mesh Structure Code”. The origin of this concept comes

from [48]. The idea is that we traverse the binary tree using pre-order traversal, and for

each refinement level, we store a 1 if the corresponding element is refined and a 0 if not.

The resulting binary sequence can be interpreted as one (unsigned long) integer value

that can be sent across processors efficiently. If the integer capacity is reached, then an

array of integer is used. The lower part of Fig 1.2(d) shows the mesh structure code of

the binary tree of macro element 0.

(a)

left right

0 1

2

(b)
hanging
node

15

(c) (d)
Refinement

0

1

2

3

0

1

2

3

110111000

Figure 1.2: (a) Local vertex indices of a triangle is shown. A linear (dashed red) and a

Quadratic (black) Lagrange basis functions are defined on the triangle. The

potential bisection of this triangle is also shown. (b) a hanging node in 2D

(c) a macro mesh consisting of four macro elements before and after mesh

refinement (d) the refinement hierarchy of macro element 0 in (c) and the

corresponding mesh structure code

1.2.2.2 Degrees of freedom

Instead of explicit storage, global basis functions are commonly constructed from

the sum of all local basis functions that share the corresponding global indices. So,

the third factor of the finite element space V, the mapping from local to global basis

functions, is used, which is denoted as GVs (i) → {1, ..., n}, i = 1, ..., nB, where n is the

total number of global basis functions and nB depends on the dimension and the function

we choose. The mapping returns the corresponding global index of local index i, located

on element s. In AMDiS, the mapping GVs (i) is done by storing the global indices at the

element nodes, which are named degrees of freedom (DOFs). A DOF can be located at

vertices, edges, faces or in the center of an element. When different polynomial degrees

are used for different components, multiple sets of DOFs are used. Fig 1.2(a) shows a

triangle with two sets of DOFs for a linear degree (dashed) and a quadratic degree (solid)

Lagrange basis functions, which is typically used in the mixed finite element method of

the Navier-Stokes problem.

“DOF matrix” and “DOF vector” are the components of linear systems, whose

indices are degrees of freedom as the names imply. A DOF matrix represents a global

stiffness matrix and a DOF vector represents a vector of coefficient related to a special

function basis, e.g. the variables in PDEs, whose approximate solutions are built from

the stored coefficients. As it is possible to share one mesh between different finite element

spaces, it is also possible to share one element space between multiple DOF matrices

and vectors.

16

1.2.2.3 Summary

We have given a brief introduction about some basic concepts used in AMDiS. The

relationship of these concepts is apparent from the AMDiS standard output file: AMDiS-

Refinement-Hierarchy (ARH), see Table 1.2. As long as we have those information,

we are able to recover simulation status from the last breakpoint. The capability of

serialization and deserialization brings us convenience in handling large-scale adaptive

simulations, e.g. the dendritic growth problem discussed in 4.2.

Field Description

. FOR Macro[i], i = 0, . . . ,#el-1 #el: number of macro elements

#bits number of structure code bits

code-data structure code

. FOR fe[j], j = 0, . . . ,#fes-1 #fes: number of finite element spaces
#val number of values per vector

. FOR k = 0, . . . ,#vec-1 #vec: number of vectors[
veckj [p] veckj : the kth vector of fe[j] , p = 0, . . . ,#val-1

Table 1.2: Basic concepts in the storage of ARH file

1.3 Multi-mesh concepts

1.3.1 Motivation and history

In multi-physics problems, multiple physical components are involved in the system,

e.g. velocity and pressure in the fluid dynamics problem, phase and thermal in the den-

dritic growth problem, etc. On one hand, the inner connection between the components

is represented by the operator terms in the equation, which couple these components

together (called “coupling term” in this thesis). On the other hand, the components be-

have independently with each other within the domain due to their intrinsic properties.

We take the dendritic growth problem as an example to illustrate the potential difference

of the behavior between components. The model we use is a phase field model. The

two components in the system are a phase field variable denoted as φ and a thermal

field variable denoted as u. In Fig 1.3, the comparison between the meshes used for the

17

two components separately is shown. Here, it is enough for us to know that there is a

huge difference in terms of the refinement hierarchy. The reason of the difference will be

discussed in Section 4.2. In this case, the application of the standard single-mesh finite

element method might not be appropriate. For each component, the corresponding mesh

also contains the refinement hierarchies from other components. As a consequence, the

size of the final linear system increases, and so as the computation time.

φ u

Figure 1.3: Different behavior of the phase field variable φ and the thermal field variable

u

To solve this problem, the multi-mesh method was developed. The main idea is to

use independently refined meshes for each component. The resulting linear system is

usually much smaller, when compared to the system in the single-mesh case. Thus, the

overall computation time is largely saved. The usage of multiple, independently refined

meshes to discretize different components in the system of PDEs is not new. To our best

knowledge, A.Schmidt [39] was the first one who considers this method for the adaptive

solution of coupled systems. R.Li et al. [10] also presented a similar method origi-

nally used for solving optimal control problems. Within their implementation, different

meshes are a different subset of the “Hierarchy Geometry Tree”: a tree data structure

representing the deepest global-refined mesh. P.Solin et al. [42, 44] applied a multi-mesh

method in linear thermoelasticity problems and also transient heat and moisture transfer

problems. Later, the multi-mesh method was proved to be useful in more multi-physics

applications [21, 27, 28, 43].

Although the multi-mesh technique is introduced, in none of these publications the

method is formally derived. Furthermore, implementation issues are not discussed and

detailed runtime comparison between the single- and the multi-mesh methods is missing.

In contrast, T.Witkowski [51] presented a multi-mesh method in 2012, in which both the

theory and the implementation of the multi-mesh method are described in detail. The

18

work presented in this thesis is based mainly on his work. So a short introduction of the

multi-mesh approach of T.Witkowski is given in the following section.

1.3.2 Idea of the multi-mesh method

As discussed, two components, e.g. φ and u, are assigned to two meshes. We denote

S
′

to be the mesh for φ and S
′′

the mesh for u. Note that the usage of different meshes

also means the usage of different finite element spaces. We further denote χs
′
φ to be the

local basis functions for φ and χs
′′
u for u. The local integrals to be evaluated on each

element resulting from second, first and zero order terms are:

∫
s′∈S′ ,s′′∈S′′

∇χs′φ ·A∇χs
′′
u dx ,

∫
s′∈S′ ,s′′∈S′′

χs
′
φ b · ∇χs

′′
u dx and

∫
s′∈S′ ,s′′∈S′′

χs
′
φ cχ

s′′
u dx

There is no straightforward method to calculate the integrals since they now live on a

pair of elements from two meshes. The element pair from mesh S
′

and S
′′

is denoted

as {s′ , s′′} where s
′ ∈ S

′
and s

′′ ∈ S
′′
. In order to solve this problem, we first need

to make an assumption. We assume that any element s
′ ∈ S′ is either a sub-element

of an element s
′′ ∈ S

′′
, or vice versa. This is not a restrict precondition since it is

always fulfilled if standard refinement algorithms such as the bisection or the red-green

refinement are performed on the same macro mesh. Under this assumption, our idea

is that we always evaluate the integrals on the smaller element and replace the local

basis functions of the larger element by a linear combination of the basis functions of

the smaller one. For example, if s
′

is smaller than s
′′
, the zero order integral is replaced

by: ∫
{s′ ,s′′}

χs
′
φ cχ

s′′
u =

∫
s′
χs
′
φ c(
∑
i

ciχ
s′
φ) (1.6)

, where ci is the coefficient. This is possible if we discretize φ and u by polynomial

functions of the same degree. Fig 1.4(a) shows χs0, the basis function on index 0 of

element s, is substituted by the linear combination of the local basis functions of its left

child sl. In the case of indirect child-parent relationship between s
′

and s
′′
, we adopt

the same idea recursively.

An easy way to calculate the transformation between basis functions is to use the

transformation matrix, which can perform the transformation of all the basis functions

one element has simultaneously. The transformation matrix for the right child is denoted

as Cr, left as Cl. For example, Fig 1.4(b) and (c) shows the transformation matrix Cr
from the right child sr to s for linear and quadratic polynomial degree, respectively. The

illustrated transformation is based on the standard triangle.

The content above has already been implemented in AMDiS. The special assembling

process is called “Virtual Mesh Assembling” [51]. From a technical point of view, in

19

order to save unnecessary memory usage, the pair of elements from different meshes is

provided in a virtual way. Furthermore, there is no need of redundant calculation of Cl
and Cr at runtime. Since they cost nearly no space, Cl and Cr can be pre-calculated

and stored in global static variables for all the combinations of polynomial degrees and

dimensions. The multi-mesh approach is well defined and implemented on top of the

AMDiS codes and it can be extended to other adaptive finite element codes with minimal

effort. For more information on this topic, we refer to [51] and in Section 2.1, a more

general multi-mesh approach will be introduced.

20

(a)
χs0

χsl0 χsl1

1
2χ

sl
1

sl

s

χs0 = χsl0 + 1
2χ

sl
1

(b)
χsr2

χs2, χ
sr
1 χs0

χs1, χ
sr
0

sr

s

Cr

 χsr0 = −x+ y

χsr1 = 1− x− y
χsr2 = 2x

 =

 χs0 = x

χs1 = y

χs2 = 1− x− y



Cr =

 0 0 0.5

1 0 0.5

0 1 0



(c)
χs5, χ

sr
2

χs2, χ
sr
1 χs0

χs1, χ
sr
0

χs3, χ
sr
5

χs4

χsr3

χsr4

Cr



χsr0 = x− y + 2x2 − 4xy + 2y2

χsr1 = 1− 3x− 3y + 2x2 + 4xy + 2y2

χsr2 = −2x+ 8x2

χsr3 = 8x− 8x2 − 8xy

χsr4 = −8x2 + 8xy

χsr5 = −4x+ 4y + 4x2 − 4y2


=



χs0 = −x+ 2x2

χs1 = −y + 2y2

χs2 = 1− 3x− 3y + 2x2 + 4xy + 2y2

χs3 = 4y − 4xy − 4y2

χs4 = 4x− 4x2 − 4xy

χs5 = 4xy



Cr =



0 0 0 −0.125 −0.125 0

1 0 0 −0.125 0.375 0

0 1 0 0 0 0

0 0 0 0.5 0 1

0 0 0 0.5 0 0

0 0 1 0.25 0.75 0


Figure 1.4: (a) In 1D, the basis function χs0 restricted to the left child sl is represented by

the linear combination of the local basis functions of the left child χsl . (b) In

2D, the basis functions of triangle s are represented by the linear combination

of the local basis functions χsr of the right child sr. The corresponding

transformation matrix Cr is shown on the right. (c) the same situation as

(b) but with quadratic polynomial degree.

22

CHAPTER 2

General multi-mesh method with

arbitrary number of meshes

In Section 1.3, we have introduced variants of the multi-mesh method. Their im-

plementation varies from one to another, but the basic ideas are almost the same, and

they are all restricted to two-component applications. However, more than two compo-

nents are common in multi-physics problems, e.g. multi-component reaction diffusion

problems and multi-phase flow problems, etc. Each component, in principle, is allowed

to be defined on an individual mesh. Furthermore, in some mathematics models where

multiple problems are coupled together, it is practical to assign each problem an in-

dependently refined mesh, while within the same problem, a single mesh is shared by

all the components just like the standard method. Here, again, the number of coupled

problems does not have to be two. The situation becomes more interesting if coefficient

function spaces are also involved in the system besides the test and trial function spaces.

In the multi-mesh case, it is possible that one of the coefficient function spaces lives on

a different mesh from the test and trial function spaces, and it is not clear how to eval-

uate integrals under this circumstance. In none of the existing publications, the above

issues are addressed. Our aim is to make the multi-mesh method a general approach for

multi-physics problems, thus all the loopholes should be plugged. In this chapter, we

present a general multi-mesh method in Section 2.1, including several sub-topics, e.g. the

multi-traversal algorithm (Section 2.1.2) and the solution for coefficient function spaces

(Section 2.1.4). Section 2.2, on the other hand, gives more information on the software

concepts and the implementation issues.

23

2.1 General multi-mesh concept

2.1.1 Coupling terms in the system of PDEs

To illustrate the multi-mesh technique, we consider a reaction-diffusion problem,

which is used to simulate the change of the concentration of chemical substances in

space Ω and time t. The problem contains three substances, denoted as u = u(x, t),

v = v(x, t) and w = w(x, t). Substances u and v react with each other and substance

w reacts with both u and v. Besides that, function f is part of the reaction of u, and

function g is part of the reaction of v. The equations are shown as follows:

∂tu = ∇ · (∇u) + vu+ f(u) in Ω× [0,∞) (2.1a)

∂tv = ∇ · (∇v) + uv + g(v) in Ω× [0,∞) (2.1b)

∂tw = ∇ · (∇w) + wuv in Ω× [0,∞) (2.1c)

with u = 0 , v = 0 , w = 0 on ∂Ω × [0,∞) and the initial conditions u(t = 0) =

u0 , v(t = 0) = v0 , w(t = 0) = w0 in Ω. We use the same way of discretization

as described in Section 1.1.2. Additionally, we use the semi-implicit Euler method to

perform time discretization. For the simplicity, we use the old solutions from the last

iteration to approximate the true values of f and g. The above equations change to: for

n = 0, 1, 2, ...,∞:

un+1

τ
−∇ · (∇un+1)− vn+1un+1 = f(un) +

un
τ

in Ω× [0,∞) (2.2a)

vn+1

τ
−∇ · (∇vn+1)− un+1vn+1 = g(vn) +

vn
τ

in Ω× [0,∞) (2.2b)

wn+1

τ
−∇ · (∇wn+1)− wn+1un+1vn+1 =

wn
τ

in Ω× [0,∞) (2.2c)

Then, we choose to linearize the term vn+1un+1 in Eq. (2.2a) as unvn+1, the term

un+1vn+1 in Eq. (2.2b) as vnun+1, and the term wn+1un+1vn+1 in Eq. (2.2c) as

wnvnun+1. The standard variational formulation of this system is: for n = 0, 1, 2, ...,∞,

24

find (un+1, vn+1, wn+1) ∈ H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω) such that:

∫
Ω

un+1

τ
φ dx+

∫
Ω
∇un+1 · ∇φ dx−

∫
Ω
unvn+1φ dx =

∫
Ω
f(un)φ dx+

∫
Ω

un
τ
φ dx

(2.3a)∫
Ω

vn+1

τ
ψ dx+

∫
Ω
∇vn+1 · ∇ψ dx−

∫
Ω
vnun+1ψ dx =

∫
Ω
g(vn)ψ dx+

∫
Ω

vn
τ
ψ dx

(2.3b)∫
Ω

wn+1

τ
ϑ dx+

∫
Ω
∇wn+1 · ∇ϑ dx−

∫
Ω
wnvnun+1ϑ dx =

∫
Ω

wn
τ
ϑ dx (2.3c)

∀φ ∈ H1
0 (Ω), ∀ψ ∈ H1

0 (Ω),∀ϑ ∈ H1
0 (Ω)

Moreover, we adopt the multi-mesh method during space discretization. Three different

meshes, S0, S1 and S2, are derived from the same domain Ω and are used for u, v and w

respectively. We define V0, V1 and V2 to be the spaces of piecewise polynomials defined

on S0, S1 and S2: V i = {vh : vh ∈ H1
0 , vh|s ∈ Pn ∀s ∈ Si} with i = 0, 1, 2. The question

changes to: for n = 0, 1, 2, ...,∞, find (uhn+1 , vhn+1 , whn+1) ∈ V0 × V1 × V2 such that:

∫
Ω

uhn+1

τ
φ dx+

∫
Ω
∇uhn+1∇φ dx−

∫
Ω
uhnvhn+1φ dx =

∫
Ω
f(uhn)φ dx+

∫
Ω

uhn
τ
φ dx

(2.4a)∫
Ω

vhn+1

τ
ψ dx+

∫
Ω
∇vhn+1∇ψ dx−

∫
Ω
vhnuhn+1ψ dx =

∫
Ω
g(vhn)ψ dx+

∫
Ω

vhn
τ
ψ dx

(2.4b)∫
Ω

whn+1

τ
ϑ dx+

∫
Ω
∇whn+1∇ϑ dx−

∫
Ω
whnvhnuhn+1ϑ dx =

∫
Ω

whn
τ
ϑ dx (2.4c)

∀φ ∈ V0, ∀ψ ∈ V1, ∀ϑ ∈ V2

Then, we define the basis of V0, V1 and V2 as {χS0
1 , ..., χS0

m0
}, {χS1

1 , ..., χS1
m1
} and {χS2

1 , ..., χS2
m2
}.

The approximate solutions can be written as the linear combinations: uh(x) =
m0∑
i=1

ciχ
S0
i (x),

vh(x) =
m1∑
i=1

diχ
S1
i (x) and wh(x) =

m2∑
i=1

eiχ
S2
i (x). The question changes to: for n =

25

0, 1, 2, ...,∞, find (uhn+1 , vhn+1 , whn+1) ∈ V0 × V1 × V2 such that:∫
Ω

uhn+1

τ
χS0
i dx+

∫
Ω
∇uhn+1∇χ

S0
i dx−

∫
Ω
uhnvhn+1χ

S0
i dx =∫

Ω
f(uhn)χS0

i dx+

∫
Ω

uhn
τ
χS0
i dx i = 1, ...,m0

(2.5a)∫
Ω

vhn+1

τ
χS1
i dx+

∫
Ω
∇vhn+1∇χ

S1
i dx−

∫
Ω
vhnuhn+1χ

S1
i dx =∫

Ω
g(vhn)χS1

i dx+

∫
Ω

vhn
τ
χS1
i dx i = 1, ...,m1

(2.5b)∫
Ω

whn+1

τ
χS2
i dx+

∫
Ω
∇whn+1∇χ

S2
i dx−

∫
Ω
whnvhnuhn+1χ

S2
i dx =∫

Ω

whn
τ
χS2
i dx i = 1, ...,m2

(2.5c)

Finally, we replace the approximate solutions by the basis functions. The question again

changes to: for each time iteration, find the unknown coefficients ci, di and ei such that:

m0∑
j=1

cj

∑
s∈S0

∫
s

χS0
j

τ
χS0
i

+

m0∑
j=1

cj

∑
s∈S0

∫
s
∇χS0

j · ∇χ
S0
i

−
m1∑
j=1

dj

(∑∫
{s0,s1}

uhnχ
S1
j χ

S0
i

)
=
∑
s∈S0

∫
s
f(uhn)χS0

i +
∑
s∈S0

∫
s

uhn
τ
χS0
i

i = 1, ...,m0 (2.6a)

m1∑
j=1

dj

∑
s∈S1

∫
s

χS1
j

τ
χS1
i

+

m1∑
j=1

dj

∑
s∈S1

∫
s
∇χS1

j · ∇χ
S1
i

−
m0∑
j=1

cj

(∑∫
{s0,s1}

vhnχ
S0
j χ

S1
i

)
=
∑
s∈S1

∫
s
g(vhn)χS1

i +
∑
s∈S1

∫
s

vhn
τ
χS1
i

i = 1, ...,m1 (2.6b)

m2∑
j=1

ej

∑
s∈S2

∫
s

χS2
j

τ
χS2
i

+

m2∑
j=1

ej

∑
s∈S2

∫
s
∇χS2

j · ∇χ
S2
i

−
m0∑
j=1

cj

(∑∫
{s0,s1,s2}

whnvhnχ
S0
j χ

S2
i

)
=
∑
s∈S2

∫
s

whn
τ
χS2
i

i = 1, ...,m2 (2.6c)

26

We can see from the above equations that all the integrals resulting from the dif-

fusion terms live on the same mesh, either S0, S1 or S2, while the integrals resulting

from the coupling reaction terms are defined on the union of elements from different

meshes. The reaction term in Eq. (2.1a) produces an integral over S0 and S1. The

reaction term in Eq. (2.1b) produces an integral over S1 and S2. Note that the most

complex situation comes from the reaction term in Eq. (2.1c), whose resulting integral

crosses over three meshes. The additional mesh comes from its coefficient whnvhn , which

contains vhn , a coefficient function living on mesh S1 (see more in Section 2.1.4). From

the given example, we find out that the evaluation of the integral can be defined on any

subset of the meshes, depending on the given equations, which needs to be handled in a

different way than the standard method.

2.1.2 Multi-mesh traversal

We denote the integral over m meshes as
∑∫

{s0,s1,...,sm−1}. Based on the fact

that the integral over an element s can be replaced by the sum of the integrals over

its sub-parts s′ and s′′, if s = s′ ∪ s′′, we can evaluate
∑∫

{s0,s1,...,sm−1} on the finest

mesh:
∑∫

{s0,s1,...,sm−1} =
∑∫

s∗
, where s∗ = min{s0, s1, ..., sm−1} in terms of the size of

elements. This is only possible under the assumption that all meshes come from the same

macro mesh and they are refined by standard refinement algorithms. The assumption

is exactly the same as the two-mesh case described in Section 1.3.2. Then, to build

the relationship between the elements from different meshes, we introduced a so-called

multi-mesh traversal algorithm. Fig 2.1 shows a three-mesh traversal example, which

is implemented based on the combination of three synchronized pre-order traversals.

Note that we use both color and font to distinguish the elements from different meshes.

First, the algorithm goes from the root element to the left sub-tree until a leaf element

is found. The resulting element union in the first iteration is {s0, s1, s2} = {0, 0, 0}.
Then, we know that the right child of the element on S0 corresponding to element 0

has not been traversed. So as the element on S1. Thus, meshes S0 and S1 will move

to their next elements, while S2 stays at element 0. The resulting element union in the

second iteration is {s0, s1, s2} = {1, 1, 0} and the algorithm will continue until all the leaf

elements are traversed. The multi-mesh traversal is a generalization of the dual-traversal

introduced by T.Witkowski [51], but we introduced new data structures and algorithms

to make the traversal as efficient as possible, see Section 2.2.

From a global point of view, there are two ways to perform the multi-mesh traversal:

either we perform the multi-mesh traversal for each operator term one after another,

creating an union of elements for each operator term separately, or we traverse all the

meshes at once for all terms. We adopt the second idea due to performance reasons.

27

1

0 3

2 1

0
2 0

2

1

S0 S1 S2

0 31 2

2

0 1

0

21

1st 2nd 3th 4th 1st 2nd

3th

4th

1st

2nd

3th 4th

Figure 2.1: A simple example of the multi-mesh traversal with three meshes S0, S1 and

S2 is shown. All the meshes consist only of one macro triangle and they

are refined with different refinement sets. The corresponding binary trees

and the order of the traversed elements in each iteration are shown at the

bottom.

2.1.3 Transformation matrices

In Section 1.3.2, we have already introduced the concept of the transformation

matrix, denoted as C. During the assembling process, we need to compute the trans-

formation matrices not only between parents and their direct children, but also between

those indirect element-pairs. One efficient way to calculate the matrices recusively is to

take the usage of the refinement paths between these elements. The idea is presented

first by T.Witkowski [51]. Formally, an element pair can be defined by the tuple:

(s1, s2) = (s2, {α0, ..., αn}) = (s2, α) αi ∈ {L,R}

where s2 is the larger element of the pair and α is the refinement path from s2 to the

smaller element s1. We use L to denote a left child and R a right child. Then, the

28

transformation matrix is defined by:

C(∅) = I

C({α0, ..., αn}) =

{
CL · C({α1, ..., αn}), if α0 = L

CR · C({α1, ..., αn}), if α0 = R
(2.7)

The refinement path α is calculated during the multi-mesh traversal. The traversal

itself has no information on the operator terms, so it has no idea which elements are

needed for the evaluations of integrals. But it does not mean that we have to store the

refinement paths between any two elements in the union {s0, s1, ..., sm−1}. As already

discussed, our idea is to calculate the integral on the finest mesh and to replace the

basis functions on larger elements by the linear combination of the basis functions on

the finest element s∗. So we only need to store the refinement paths from all the other

elements to s∗, and this is calculated in each iteration of the traversal.

2.1.4 Coefficient function spaces

In this section, we focus on the situation, where coefficient function spaces live on

a different mesh from either the test or trial function space. In general, the overall

coefficient in the AMDiS environment is represented by random operator combinations

of vectors of coefficient related to some basis functions, denoted as:

ξ(x) = ξ(ξ0(x), ξ1(x), ...)

If we take the integral
∫
{s0,s1,s2}whnvhnχ

S0
j χ

S2
i from Eq. (2.6c) as an example, then

ξ0(x) = whn , ξ1(x) = vhn and the only operator here is the multiplication. To evaluate

ξ(x) is to evaluate each ξi(x) separately, followed by the operations that are specified by

the operator combinations. The evaluation of ξi(x) is performed on the finest element

with the barycentric coordinate λs∗ :∫
s
ξi (x = x(λs∗)) ≈

∑
j

wjχ
S(i)
j (λs∗j)

, where wj is the real coefficient. We can see that ξi is possible to live on any mesh

S(i) ∈ {S0, S1, ..., Sm−1}. But, the evaluation is based on the barycentric coordinate

of the finest element λs∗ . There are two possibilities to solve the problem. The first

one is that we replace λs∗ by the barycentric coordinate of the element from mesh S(i),

denoted as λs(i), and then evaluate χ
S(i)
j directly on λs(i). This is possible since s∗ is the

smallest element, which is contained inside the element from mesh S(i), according to our

assumption. One opportunity to perform the transformation between the barycentric

coordinates is to first transform λs∗ to the global coordinate, then to transform the

29

global coordinate back to λs(i). The second possibility is that we replace χ
S(i)
j by the

linear combination of the basis functions on s∗:

χ
S(i)
j (λs(i)) =

∑
k

dkχ
s∗
k (λs∗)

, where dk is the coefficient. Fortunately, we have already the transformation matrix

between the element on S(i) and the finest element s∗ since the transformation matrix

from each element in the element union {s0, ..., sm−1} to s∗ is already calculated by the

multi-mesh traversal algorithm. Thus, we can simply use it to evaluate ξi(x). That’s

the reason why we adopt the second approach. Using this strategy, we ensure that the

coefficient function spaces ξ(x) can be handled efficiently and we concentrate only on

the test and trial function spaces in the next section.

2.1.5 Test and trial function spaces

After the element matrix, denoted as Mel, is calculated, we need to apply the

transformation matrix C. The situation is a little bit different from the coefficient

function spaces since we now need to distinguish between four cases, depending on

whether or not the elements of the trial and test function spaces are the finest one

s∗. Here, we take a zero order integral as an example to illustrate the deduction. The

integral is denoted as
∫
{s0,s1} χ

s1
ψj
χs0φi , where χs0φ represents the basis of the test function

and χs1ψ the basis of the trial function.

• CASE 1: Both χs0φ and χs1ψ live on the finest element s∗.

The situation goes back to the single-mesh case, so we do not need to put any

additional effort.

• CASE 2: Only the trial function χs1ψ lives on the finest element while χs0φ not.

We have χs0φj =
nB∑
i
cjiχ

s1
ψi

for j = 0, ..., nB, then the result matrix M is equal to

the element matrix Mel in the single-mesh case with an additional multiplication

of the transformation matrix C from the left side. The mathematical deduction is

listed below:

30

M =


∫

{s0,s1}
χs1ψ0

χs0φ0 ...
∫

{s0,s1}
χs1ψnB

χs0φ0

...∫
{s0,s1}

χs1ψ0
χs0φnB

...
∫

{s0,s1}
χs1ψnB

χs0φnB



=


∫

s1∈S1

χs1ψ0

∑
i

(c0iχ
s1
ψi

) ...
∫

s1∈S1

χs1ψn

∑
i

(c0iχ
s1
ψi

)

...∫
s1∈S1

χs1ψ0

∑
i

(cnBiχ
s1
ψi

) ...
∫

s1∈S1

χs1ψn

∑
i

(cnBiχ
s1
ψi

)



=

 c00 ... c0nB

...

cnB0 ... cnBnB

 ∗


∫
s1∈S1

χs1ψ0
χs1ψ0

...
∫

s1∈S1

χs1ψ0
χs1ψnB

...∫
s1∈S1

χs1ψnB
χs1ψ0

...
∫

s1∈S1

χs1ψnB
χs1ψnB


= C ∗Mel

• CASE 3: Only the test function χs0φ lives on the finest element while χs1ψ not.

We have χs1ψj
=

nB∑
i
cjiχ

s0
φi

for j = 0, ..., nB, then the result matrix M is equal to the

element matrix Mel in the single-mesh method with an additional multiplication

of the transpose of the transformation matrix, denoted as CT , from the right side:

M =


∫

{s0,s1}
χs1ψ0

χs0φ0 ...
∫

{s0,s1}
χs1ψnB

χs0φ0

...∫
{s0,s1}

χs1ψ0
χs0φnB

...
∫

{s0,s1}
χs1ψnB

χs0φnB



=


∫

s0∈S0

∑
i

(c0iχ
s0
φi

)χs0φ0 ...
∫

s0∈S0

∑
i

(cnBiχ
s0
φi

)χs0φ0

...∫
s0∈S0

∑
i

(c0iχ
s0
φi

)χs0φnB
...

∫
s0∈S0

∑
i

(cnBiχ
s0
φi

)χs0φnB



=


∫

s0∈S0

χs0φ0χ
s0
φ0

...
∫

s0∈S0

χs0φ0χ
s0
φnB

...∫
s0∈S0

χs0φnB
χs0φ0 ...

∫
s0∈S0

χs0φnB
χs0φnB

 ∗
 c00 ... cnB0

...

c0nB ... cnBnB


= Mel ∗ CT

• CASE 4: Neither χs0φ nor χs1ψ lives on the finest element.

We denote the local basis of the finest element as χs∗θ , then we have χs0φj =
∑
i
cjiχ

s∗
θi

and χs1ψj
=
∑
i
c′jiχ

s∗
θi

for j = 0, ..., nB. Case 2 and 3 are actually contained in this

cases:

31

M =


∫

{s0,s1}
χs1ψ0

χs0φ0 ...
∫

{s0,s1}
χs1ψnB

χs0φ0

...∫
{s0,s1}

χs1ψ0
χs0φnB

...
∫

{s0,s1}
χs1ψnB

χs0φnB



=


∫
s∗

∑
i

(c′0iχ
s∗
θi

)
∑
i

(c0iχ
s∗
θi

) ...
∫
s∗

∑
i

(c′nBi
χs∗θi)

∑
i

(c0iχ
s∗
θi

)

...∫
s∗

∑
i

(c′0iχ
s∗
θi

)
∑
i

(cnBiχ
s∗
θi

) ...
∫
s∗

∑
i

(c′nBi
χs∗θi)

∑
i

(cnBiχ
s∗
θi

)



=

 c00 ... c0nB

...

cnB0 ... cnBnB

 ∗


∫
s∗

χs∗θ0χ
s∗
θ0

...
∫
s∗

χs∗θ0χ
s∗
θnB

...∫
s∗

χs∗θnB
χs∗θ0 ...

∫
s∗

χs∗θnB
χs∗θnB

 ∗
 c′00 ... c′nB0

...

c′0nB
... c′nBnB


= C ∗Mel ∗ C ′T

For general first and second order terms where the derivative is involved, we have:

∇χs0φ = ∇(
∑
i

wiχ
s∗
θi

) =
∑
i

∇(wiχ
s∗
θi

) =
∑
i

wi∇χs∗θi

Because these operations are linear operations, the rules of zero order terms are also

applicable for first and second order terms, which is a very nice characteristic for us.

Last but not least, we also need to take the right side of the equations into account. The

situation is even simpler since only the test function space is involved. So the deduction

is omitted.

In summary, we illustrate the new assembling algorithm in Algorithm 1. First of all,

we assemble the operators, whose trial function, test function and coefficient functions

are defined on the same mesh, by calling the standard single-mesh functions. Note

that we are still under a multi-mesh traversal, it is likely that a mesh will stay on the

former element although the traversal moves to the next iteration; hence, line 6 uses an

additional If-statement to present the codes from duplicated computation. Then, the

algorithm checks at line 11 whether there is an operator, whose test and trial functions

live on different meshes, or at least one of the coefficients lives on a different mesh. If

this is the case, the presented multi-mesh assembling is used for those operators and it

is shown in Algorithm 2. We did not give the single-mesh assembling algorithm, but if

the basic ideas introduced in the previous sections are clear, one can easily find out that

line 5− 6 and 10− 17 are the additional steps for the multi-mesh method.

32

Algorithm 1 General assembling in the multi-mesh case

Require: stack : traverse stack of all meshes, matrix : stiffness matrix

1: while stack is empty == false do

2: for all matrix do

3: get test function mesh and trial function mesh from matrix

4: get coefficient function mesh from operator

5: if test mesh == trial function mesh == coefficient mesh then

6: if a new element on mesh then

7: assemble non-coupled terms of matrix

8: assemble non-coupled terms of vector

9: end if

10: end if

11: if coupling term exists then

12: assemble coupling terms of matrix

13: assemble coupling terms of vector

14: end if

15: end for

16: end while

2.2 Software concepts

In this section, we show how the multi-mesh concept is implemented in AMDiS.

We start from the multi-mesh traversal. In order to record the traversed elements of

meshes in each iteration, we introduced a list of elements, with each element in the

list coming from an individual mesh. The concept is similar to the union of elements

{s0, s1, ..., sm−1} described in Section 2.1.2. The only difference is that the elements in

the list are sorted by their refinement levels in descending order. As a consequence,

the elements with the smallest difference in volume are neighbors in the list. We will

give the explanation later. We have already known that some meshes might stay on

the former elements from the last iteration. The decision, whether a mesh goes to the

next element snext or stays at the former one, denoted as scurr, is related to the volume

of elements. If scurr has the smallest volume scurr = s∗, in the next iteration, the

corresponding mesh will update its status (replace the former element by a new one). If

not, the corresponding mesh of scurr stays until the sum of the volume of the traversed

elements of the finer neighbor (the mesh where ssmall lives on) is equal to the volume of

scurr. The notation of the elements is shown in Fig 2.2. If we do not sort the list, we

have to search, which element is ssmall, for each element in the list. Another benefit of

the sorted list is the accessibility of the finest element s∗ since it always appears at the

33

Algorithm 2 Assembling of the coupling terms

Require: si: element list of the current iteration, matrix : stiffness matrix

1: get the finest element sel in si

2: get the mesh Sel and the element stiffness matrix Mel of sel
3: for all term on matrix do

4: for all coefficient of vectors in term do

5: get transformation matrix Cco

6: evaluate the integral on sel using Cco

7: end for

8: calculate and sum up all the integrals to Mel

9: end for

10: if test mesh != Sel then

11: get transformation matrix C

12: Mel = C ∗Mel

13: end if

14: if trial mesh != Sel then

15: get transformation matrix C ′

16: Mel = Mel ∗ C ′T

17: end if

18: add Mel to matrix

head of the list.

element list · · · · · ·s0(s∗) s1 ssmall scurr

snext

sbig sm−1

Figure 2.2: Element notations in an element list of m meshes

scurr: the current element under discussion

ssmall: the element in the list, which has the next smaller volume of scurr
snext: the next element to be traversed on the same mesh as scurr
s∗: the finest element in the list

From the implementation point of view, the comparison of the element volume is

based on the refinement level of elements. We denote l(i) as the refinement level of the

ith element in the list. Then, for each mesh, it holds a remaining volume denoted as

34

RV , which is calculated during each iteration as follows:

RV =

{
0 if i = 0

RV − 1
2l(i−1)−l(i) if i > 0

(2.8)

The initial value of RV is set to 1. Status update is triggered when RV goes to zero. Fig

2.3 shows a two-mesh example of the calculation of RV . The remaining volume RV of

the left-side mesh is always zero since the corresponding element is always the finer one,

so the traversal on the left-side mesh moves to the next element in each iteration. We

are interested in, when the traversal on the right-side mesh goes from the left element

to the right one, and the answer is already shown in the figure. Note that the number

shown in the element is the corresponding refinement level. When there are more than

two meshes in the list, a reverse iterator is used to check RV from the end of the element

list because if the coarser mesh moves to the next element, so as the meshes, which are

finer or equal to the coarse one.

iteration 1 RV = 1− 1
24−2 = 3

4RV = 0
4 2

iteration 2 RV = 3
4 −

1
24−2 = 1

2RV = 0
4

2

iteration 3 RV = 1
2 −

1
23−2 = 0

3

RV = 0
2

iteration 4 RV = 1 ...RV = 0
2 2

i = 0 i = 1

Figure 2.3: Two-mesh example of the volume comparison method based on the refine-

ment level of elements

Now, our task is to implement the above concepts based on the existing codes.

In AMDiS, the traversal of a binary tree is managed by the class TraverseStack.

Any element data that can be computed during the mesh traversal will not be stored

35

in the memory. These data include the Jacobian of the barycentric coordinates, the

vertex coordinates, the neighbor information, etc. Which kind of information is collected

depends on the given assembling flag. During the traversal, the requested data are

computed and written into an object called ElInfo. Our multi-mesh traversal is mainly

based on TraverseStack and ElInfo. The new classes we introduced are as follows

(see also the class diagram in Fig 2.4):

• MultiTraverse is the main class for users to manage the multi-mesh traversal.

It provides almost the same interface as TraverseStack does. Internally, it

contains a vector of TraverseStacks for each mesh. It is this class that handles

the status of traversed meshes using a MultiElInfo object.

• MultiElInfo is responsible for the counting of RV . It stores a sorted list of

ElInfos, but it stores also an unsorted ElInfo list and a mesh index list, which

are only used internally. To conclude, this class serves as a helper class used for

the multi-mesh traversal.

• ElInfos is a generalized version of ElInfo, which can be created from MultiEl-

Info by its get sorted member function. ElInfos inherits only the sorted ElInfo

list and it marks the mesh of the test and trial function spaces by member variables

row idx and col idx or by functions row and col. This class serves as a lightweight

interface object for other functions and classes such as the member function as-
semble of DOFVector and DOFMatrix, getElementMatrix of Operator, calcu-
lateElementMatrix of Assembler and so on.

A code comparison between the single- and the multi-mesh traversals is shown in

Fig 2.5. The user interface is almost the same. In the multi-mesh case, we call

36

Traverse stack;

ElInfo *elInfo = stack.traverseFirst(mesh, level, flag);

while (elInfo) {

// do work with elInfo

elInfo = stack.traverseNext(elInfo);

}

MultiTraverse stack;

MultiElInfo multiElInfo;

stack.setFillSubElemMat(true, basisFcts);

bool cont = stack.traverseFirst(meshes, levels, flags, multiElInfo);

while (cont) {

// do work with multiElInfo

cont = stack.traverseNext(multiElInfo);

}

Figure 2.5: Single and multi Traversal usage example

traverseFirst from MultiTraverse with the parameters: a vector of meshes, the levels

of the meshes to be traversed and the assembling flags. MultiTraverse provides an

interface named setFillSubElemMat. In most instances, the first parameter is set to

true, indicating that we want to calculate the transformation matrices between larger

elements and the smallest one during the traversal. This depends on the basis functions

that are used, which are given in the second parameter. setFillSubElemMat should be

called before the start of the traversal. Then, in the traversal loop body, each ElInfo

can call getSubElemCoordsMat to get its transformation matrix.

Besides the multi-mesh traversal, the way of the implementation of the transfor-

mation matrix is also a crucial point in terms of computing efficiency. As already

discussed, we stored the transformation matrices between direct children and parents

in static variables. For those indirect element-pairs, we implemented a software cache

to store transformation matrices since the calculation of transformation matrices can

considerably increase the time of the assembling process if there is an extremely large

gap between the refinement levels. The cache itself is stored in ElInfo regardless of

the dimension. This approach is a trade-off between time and space, but the overall

memory usage of the cache is around 2 MB in all our tests, thus there is no need to

implement an upper bound and a replacement method for the cache. Algorithm 3 of

class ElInfo shows how to obtain a transformation matrix from the refinement path.

From the implementation point of view, a refinement path is actually a 64 bit integer

data type, which stores 1 for a right child and 0 for a left child, bitwise. Note that in

the algorithm, the recursive computation of the transformation matrix starts from the

37

end of the refinement path. That is why Cr and Cl are multiplied from the right side,

which looks opposite but actually the same as described in Eq. (2.7).

Algorithm 3 ElInfo.getSubElemCoordsMat

Require: basisFct : a function pointer of the basis function, transformMatrices: the

cache, path: the refinement path

1: if path not ∈ transformMatrices then

2: C = I

3: Cl = transformMatrices[0]

4: Cr = transformMatrices[1]

5: for i = 0; i < path.length; i++ do

6: if path & (1 << i) then

7: C = C ∗ Cr
8: else

9: C = C ∗ Cl
10: end if

11: end for

12: transformMatrices[path] = C

13: end if

14: return transformMatrices[path]

2.3 Summary

One restriction of our multi-mesh method is that the linear combination replacement

of the basis functions is limited to the same polynomial degree. This is clear since it is

impossible to replace a quadratic basis function by the linear combination of linear basis

functions. So the multi-mesh method is not suitable for the Navier-Stokes equations

with a standard Taylor-Hood element, i.e. second order Lagrange finite elements for the

velocity and linear Lagrange finite elements for the pressure. One alternative is that we

use standard linear finite elements for both fields, but with a different mesh. In 2D, the

mesh for the velocity is refined twice more than the mesh for the pressure. In 3D, the

velocity mesh has to be refined three times to get the corresponding refinement structure

[6].

The general multi-mesh method provides the possibility for handling more than

two meshes, but at the cost of a more complicated assembling process. The calculation

and the application of the transformation matrix and the multi-mesh traversal spend

additional time. So, whether or not this method will bring us performance speedup

depends on the degree the number of DOFs can be saved. In principle, the larger the

difference between the refinement sets of the meshes involved in the system, the better

38

the performance simulations can achieve. Sometimes, users need to use the multi-mesh

traversal outside the assembling. Then, the number of times the multi-mesh traversal

is called should be as small as possible. In the best case, everything can be performed

within one single traversal. This is a good habit since the traversal might take quite

a long time when the number of meshes is relatively large. To conclude, there is no

doubt that the multi-mesh approach will bring benefits if applications are appropriate

and users are careful with their implementation.

39

F
igu

re
2
.4

:
C

la
ss

d
iagram

of
th

e
classes

related
to

m
u

lti-m
esh

traversal

CHAPTER 3

Parallel multi-mesh Concept

Parallelization of the finite element codes became quite popular in the eighties to

make best use of available computing platforms: clusters, grids, etc. These infrastruc-

tures can be distinguished into two main categories by the organization of physical

memory [37]. The first category is made up of physically shared memory systems, where

all processors have direct access to the same memory and data communication is done by

shared variables. The second one is made up of physically distributed memory systems,

where all processors have a private memory and data communication between each other

is done via some message protocols, e.g. message passing interface (MPI) [41]. But there

exist also many hybrid organizations, for example, a virtually shared memory on top of

a physically distributed memory system. The very first numerical approaches are based

on the shared memory systems. But the memory size of a single processor seems to

be too small to be sufficient with the growth of problem sizes. So in recent years, the

tendency is to increase the number of cores on the chip, where each core has a private

memory space.

Nowadays, high performance computing (HPC) systems contain computing nodes

consisting of multiple CPUs, which by themselves include multiple cores. Computing

nodes such as graphics processing units (GPUs) that consist of several hundreds or even

thousands of relatively simple cores are quite common. Typically, these systems are

based on a programming model called “single program, multiple data” (SPMD), i.e.

multiple processors simultaneously execute the same program with different data. The

simultaneous execution does not mean that each line of codes is executed synchronized

between processors, though. Additional parallel communications and synchronizations

are necessary.

The domain decomposition method is one of the most popular SPMD models used

for the finite element method. It fits well into the distributed memory architecture

41

[46, 11]. The entire computational domain is split into several sub-domains, each of

which is distributed to one core. Most of the work on sub-domains is independent from

other sub-domains, thus computation can be performed in parallel to obtain performance

speedup. Domain decomposition methods are classified to two groups: overlapping

ones, e.g. the Schwarz alternating method and the additive Schwarz method [12], and

non-overlapping ones, e.g. finite element tearing and interconnect (FETI), Dual-Primal

FETI Method (FETI-DP) [17, 26, 13] and the balancing domain decomposition (BDDC)

[30, 31, 32]. In AMDiS, we adopt the non-overlapping domain decomposition strategy

[52, 50].

To our best knowledge, we are the first to introduce the multi-mesh method into the

parallel environment. In Section 3.1, we present our main idea of the parallel multi-mesh

from the perspective of the adaption loop. Section 3.2 introduces the parallel DOF map-

ping, which is used for the DOF enumeration. In Section 3.3, the software concepts and

the algorithms are introduced in detail. Though, our method is implemented in C++,

none of the presented data structures or algorithms is limited to a specific programming

language. The general concepts are portable to other FEM toolboxes.

3.1 Parallel multi-mesh adaption loop

The domain decomposition method leads to not only the challenge of data parti-

tion and distribution, but also the challenge of the redefinition of numerical algorithms.

For the first challenge, we use a mesh consisting of a subset of the macro elements to

represent a sub-domain, and use local DOF matrices and vectors to represent the local

stiffness matrices and vectors. For the second challenge, we need to reconsider those

algorithms inside the adaption loop. Most of them are relatively simple to be paral-

lelized. Assembler, error estimator and marker can first be performed on each local

processor independently, and then be followed by an MPI gather communication over

all sub-domains. But the situation is totally different for solvers. Parallel solvers require

a globally successive enumeration of local data in order to establish the global linear

system. In the multi-mesh case, the construction of the globally successive enumeration

becomes even more complicated since now data come from different meshes. The parallel

management of multiple meshes also makes the algorithms more error-prone. In this sec-

tion, we first introduce the main idea of our parallel multi-mesh method, beginning with

a parallel multi-mesh adaption loop. For comparison, the parallel single-mesh adaption

loop is shown in Table 3.1.

The parallel adaption loop contains additional parallel steps compared to the former

version introduced in Section 1.1.3. At the beginning of the simulation, the domain

decomposition is performed on each processor by reading the whole domain from the

macro file and then cutting off the macro elements, which do not belong to themselves.

42

1: initialize parallelization

2: assemble, solve, estimate

3: while tolerance not reached do

4: adapt mesh

5: if load out of balance then

6: repartition mesh

7: end if

8: assemble, solve, estimate

9: end while

Table 3.1: Single-mesh parallel adaption loop

Which macro elements belong to which processors is hinted by third party partitioners.

In AMDiS, we use Zoltan [8, 9] and ParMETIS [25, 24, 38].

If the initial tolerance is not reached, local adaptive refinement is performed on sub-

domains. Local processors have no information on the refinement of their neighbors, so

it is likely that the refinement sets along the left and the right sides of the sub-domain

boundary do not match with each other, generating hanging nodes from a global point of

view. In order to prevent this from happening, a check of the boundaries between every

two processors is used in parallel, directly after local refinement. If the check successfully

detects the hanging nodes, one side of the sub-domain boundary, which has a coarser

refinement set, will be refined so that it has the same refinement hierarchy as the opposite

side. This procedure is called “parallel mesh adaption”, or simply “parallel adaption”,

which is implemented via the mesh structure code introduced in Section 1.2.2.1. Because

of the parallel adaption, a parallel mesh in AMDiS is never coarser than its sequential

version.

If the distribution of workload gets out of balance after the completion of the parallel

adaption, users have the opportunity to use the mesh repartitioning algorithm to assign

a more balanced partition for their simulations. But the mesh repartitioning itself causes

much heavier communications compared to the parallel adaption, because not only the

boundary but also the entire refinement structures of the macro elements need to be

transferred between processors. So it is not practical to perform the repartitioning as

soon as possible. An alternative way is to perform the repartitioning if the load keeps

imbalanced for a certain number of iterations, e.g. 25 or even more.

Based on the above knowledge, we present a parallel multi-mesh adaption loop.

First of all, we recall the prerequisite of the multi-mesh method mentioned in 2.1.1: the

multi-mesh method is only feasible if the meshes are derived from the same macro mesh.

So similarly, if we want to run the multi-mesh method on multiple processors, each

43

processor should have identical subsets of the macro mesh, i.e. meshes must share the

same partition, from the very beginning. Otherwise, we have to migrate macro elements

between processors before the assembling process, which only wastes parallel resources.

Then, the local mesh adaption is performed on each mesh, and each processor checks the

interior boundaries one mesh after another. The imbalancing factor is now calculated

via the sum of the number of leaf elements of all the meshes one processor has. If the

load is not balanced, just like the parallel initialization, a new partition is shared for all

meshes among all processors. The repartitioning of meshes is also preformed one after

another. Last but not least, the interface of solvers needs to be modified to allow DOFs

from different meshes. To conclude, we do not need any modification on the content

of the multi-mesh method since it is a pure local method. The difficulty of the parallel

multi-mesh method lies in, how to handle multiple meshes in parallel. Table 3.2 shows

the parallel multi-mesh adaption loop, where changes are marked underlined.

1: initialize parallelization

2: multi assemble, solve, estimate

3: while tolerance not reached do

4: independently adapt meshes

5: if load out of balance then

6: repartition meshes

7: end if

8: multi assemble, solve, estimate

9: end while

Table 3.2: Multi-mesh parallel adaption loop

3.2 Parallel DOF enumeration

As mentioned before, we use the non-overlapping domain decomposition method in

parallel. The resulting sub-domains intersect only on the interface. The DOFs located on

the interface is shared between sub-domains. Within each sub-domain, interface DOFs

exist in its local linear system. But from the perspective of the parallel solver, the local

interface DOFs, that correspond to the same global DOF, along with their contributions,

are merged together in the global linear system. In our convention, we set the owner of

the interface DOFs to be the sub-domain, which has a higher processor ID.

In AMDiS, we have introduced three different sets of indices for the DOFs. The

finite element method requires the first one to assemble local matrices and vectors, which

is called local index set. The indices in this set must be enumerated with a continuous

44

sequence. For those solver methods, which cannot be applied in a pure local way, we

need to enumerate all the DOFs across sub-domains to get the second index set, named

global index set. The global index set must satisfy the condition that the local indices

of those interface DOFs, corresponding to the identical global DOFs, are mapped into

the same global indices. The global index set is continuous across sub-domains. Third,

when there is more than one component involved in the system of PDEs, we need to

distinguish those DOFs that belong to different components. The new index set, which

takes multiple components into consideration, is called matrix index set. The matrix

index is the final global linear system index, which is unique over all sub-domains and

components. In AMDiS, “Parallel DOF mapping” is responsible for the mapping from

local DOF indices to matrix ones, or from global DOF indices to matrix ones.

If the finite element spaces have the same polynomial degree, we only need to store

one copy of the DOF mapping to build up the matrix index set. When mixed finite

elements are used for different components, different DOF mappings have to be used

for each component separately. The parallel management of multiple meshes is also

responsible for the enumeration of the DOFs that belong to different meshes. The main

difference between the single- and the multi-mesh methods in the process of the DOF

enumeration is that even if two components are discretized by finite element spaces

with the same polynomial degree, they cannot share a common DOF mapping if they

are defined on different meshes. This is clear since DOFs on different meshes are by

definition different DOFs and the components might have completely different sets of

DOFs if the corresponding mesh refinement hierarchies are different.

The enumeration rules are as follows: for each sub-domain, we define Di = {1, ..., di}
to be the set of all DOF indices in processor i. The subset D̄i ⊂ Di contains all DOF

indices that are owned by the current processor. We denote the number of DOFs in D̄i

as nRanki = |D̄i|. We assume that D̄i is also a continuous set of indices to simplify

the following definitions. Furthermore, we denote the smallest global index of DOFs on

rank i as rStarti, which is defined by:

rStarti =


0 if i = 0
i−1∑
p=0

nRankp if i > 0
(3.1)

In terms of the global indices, in order to establish the relationship between the interface

DOFs which correspond to the same global DOF, we define the mapping Rji (d) = e, d ∈
Di, e ∈ Dj if local indices d in Di and e in Dj have such relationship. Then, the global

indices are defined as:

globalIndex(i, d) =

{
rStarti + d if d ∈ D̄i

globalIndex(j, d′) if d /∈ D̄i,Rji (d) = d′
(3.2)

45

In terms of the matrix indices, we take multiple components into account. We denote

rRanki on component j to be rRankji , rStarti on component j to be rStartji . There are

two possibilities to traverse the DOFs: either we first traverse the DOFs of component

1 on all processors, and then go to component 2, 3, ..., or we first traverse all the DOFs

processor 1 has for all the components, and then go to processor 2, 3, ... and so on. In

AMDiS, we chose the second possibility. Then, the matrix index of component j on

processor i can be written as:

matIndex(i, j, d) =


n∑
p=1

rStartpi +
j−1∑
p=1

nRankpi + d if d ∈ D̄i

matIndex(k, j, d′) if d /∈ D̄i,Rki (d) = d′
(3.3)

where n is the total number of components. A simple DOF indices enumeration example

is shown in Fig 3.1, where two components with linear finite element spaces are defined

on meshes S0 and S1 separately. Note that the three DOF index sets are distinguished

by different colors.

3.3 Software concepts

In parallel, distributed meshes are the input data, and the linear system is the

output data. Building a path between the input and output data is the main job of the

parallel codes. We already introduced the strategy of the parallel DOF enumeration, but

it is not the whole story. In this section, we want to go deeper into the implementation.

3.3.1 Parallel data containers

We start with the introduction of the basic data structures [52] used in parallel.

These classes are mainly data containers, which carry information about domain parti-

tion, boundaries and communication data. The most important classes are introduced

below:

• MeshDistributor is in charge of moving the macro mesh elements between

processors using mesh structure codes. Besides that, nearly all the parallel work is

encapsulated inside the class, e.g. parallel initialization, mesh repartitioning, etc.

• MeshPartitioner is responsible for the management of a partition map, whose

keys indicate macro element indices and value processor IDs. As long as we have

the mapping, we can move macro elements, together with their refinement sets

and associated values, to the specified processors via MeshDistributor. In

order to create the map, AMDiS internally transforms the AMDiS mesh to the

mesh structures recognizable by third-party partition libraries.

46

• ElementObjectDatabase uses the partition map from MeshPartitioner to

record the ownership information for each macro element. Then, it breaks down

the ownership information to the level of vertices, edges or faces, which are used

by InteriorBoundary.

• InteriorBoundary creates a set of boundary objects for each sub-domain. A

boundary object is a geometry part of an element shared across processors. The

boundary objects are subdivided into two groups: those that are owned by the

processor and those that are only part of the sub-domain but owned by other

processors. After InteriorBoundary is created, we can build the data to be

communicated between processors. InteriorBoundary is stored on each pro-

cessor although the mesh is partitioned.

• DofComm object can be used to synchronize the DOF values between neighbor sub-

domains via point-to-point communication. It has the knowledge of the interface

DOFs, but it has no global view on the entire domain. DOFs from different finite

element spaces can be handled within one DofComm as long as the finite spaces live

on the same mesh. Assuming that an InteriorBoundary is already initialized,

we can easily create a DofComm object without any additional communication.

• ParallelDofMapping is the implementation of the strategy of the parallel DOF

enumeration discussed in Section 3.2. In most cases, each ParallelSolver con-

tains one ParallelDofMapping. Typically, if a parallel solver asks for the DOF

indices mapping, it will register its ParallelDofMapping to MeshDistrib-

utor in its constructor.

• ParallelSolver is the end point of the information flow, which is a general

solver interface provided for a large class of parallel solvers, for example, “Portable,

Extensible Toolkit for Scientific Computation” (PETSc) [5, 4, 3] and “Matrix Tem-

plate Library” (MTL) [19, 18]. Child classes of this class can transform the linear

system from the AMDiS format to their own formats and solve the linear system

inside the inherited function solveLinearSystem.

For more review, I refer to T.Witkowski [52]. Among all the classes, MeshDis-

tributor is the most important. On one hand, it is the only class users get in

touch with, if they want to run their simulations in parallel. On the other hand,

except for ParallelDofMapping, all the other above software concepts have asso-

ciation or aggregation relationship with MeshDistributor. To get a better under-

standing, we subdivide the data containers inside MeshDistributor into two groups:

those only related to macro meshes and those related to DOFs. Fig 3.2 shows the

information flow through parallel data structures. The classes above the dashed line,

MeshPartitioner, ElementObjectDatabase and InteriorBoundary, belong

47

to the first group, which need a rebuilding after the mesh repartitioning, while the classes

below the dashed line, DofComm, ParallelDofMapping and BoundaryDofInfo, are

DOF-related structures, which need a rebuilding after the mesh adaption.

For the first group, the situation is relatively simple since the carried information

is identical for all meshes, e.g. the macro boundaries between sub-domains. Most of

the algorithms in the first group can be directly reused. We only need to store for each

mesh the pointers to itself and to the macro elements. The second group is responsible

for the management of DOFs. BoundaryDofInfo records the geometrical information

about boundary DOFs. We will not discuss it in detail since it is only used by some

specific solvers. DofComm can handle all the DOFs defined on the same mesh regardless

of the finite element spaces. Now, we have multiple meshes, an easy modification is

to use a map between the meshes and the DofComm objects. However, this method

is not suitable for ParallelDofMapping since we want to have exactly one matrix

index set at the end, so we created a nested class, named ComponentDofMap, inside

ParallelDofMapping to strictly separate the DOF mappings between components,

that are defined on different meshes. Later, solvers can access the DOF mapping easily

via ComponentDofMap to build the global linear system. To sum up, Fig 3.3 lists the

class diagram of the classes discussed above.

3.3.2 Parallel algorithms

• checkMeshChange (Algorithm 4)

Algorithm 4 MeshDistributor.checkMeshChange

Require: meshes: vector of mesh pointer

1: for all mesh in meshes do

2: if mesh changes from last iteration then

3: repeat

4: parallel mesh adaption

5: until no more refinement on mesh

6: updateDofRelatedStruct(mesh)

7: end if

8: end for

9: MPI Barrier()

10: updateLocalGlobalNumbering()

11: if load is not balanced then

12: repartition all the meshes

13: end if

48

Now, we move our concentration to the redefinition of parallel algorithms. We have

already shown some of the important member functions of MeshDistributor in the

class diagram Fig 3.3. In this section, we use the function checkMeshChange with all

its sub-functions, as a concrete example to illustrate how the management of multiple

meshes is implemented in AMDiS.

One of the main tasks of checkMeshChange is the parallel mesh adaption. But it

does more than just fixing hanging nodes. When the additional parallel mesh refinement

on the interior boundaries causes the emergence of new DOFs, it should be reflected in

the final large sparse linear system. Till line 8, all the meshes have preformed their

recursive refinement so that the meshes are guaranteed to be conforming meshes. The

sub-function updateDofRelatedStruct inside the loop will be discussed below. From the

beginning of line 11, we check the load-balancing and if the imbalancing factor is above

the threshold, the mesh repartitioning is performed, as mentioned before.

• updateDofRelatedStruct (Algorithm 5)

Algorithm 5 MeshDistributor.updateDofRelatedStruct

Require: mesh: mesh pointer

1: mesh.dofCompress()

2: createBoundaryDofs(mesh)

3: updateDofsToDofMapping(mesh)

The parallel mesh adaption invalidates the DOF-related data structures. So up-
dateDofRelatedStruct is in charge of updating the DOF containers by flushing the DOFs,

which are newly created, into the containers. At line 1 we call dofCompress of the mesh

to eliminate all holes of unused DOF indices for each finite element space, more details

see S.Vey [48]. After dofCompress, we call createBoundaryDofs to recreate the DofComm

and if necessary, the BoundaryDofInfo as well. At the end, we flush all the DOFs to

ParallelDofMapping by updateDofsToDofMapping.

• updateDofsToDofMapping (Algorithm 6)

49

Algorithm 6 MeshDistributor.updateDofsToDofMapping

Require: mesh: mesh pointer, dofMaps: vector of parallel DOF mapping

1: for all dofMap in dofMaps do

2: get all finite element spaces dofMapSpaces defined on mesh in dofMap

3: if dofMapSpaces not empty then

4: get dofComm from dofMap

5: dofMap.clear(mesh)

6: for feSpace in dofMapSpaces do

7: get DOFall belonging to this feSpace

8: get DOFrecv from dofComm[feSpace]

9: dofMap[feSpace].insertRankDof(DOFrecv)

10: dofMap[feSpace].insertNonRankDof(DOFall −DOFrecv)
11: end for

12: end if

13: end for

In updateDofsToDofMapping, we first traverse all the ParallelDofMappings,

which have been registered in MeshDistributor. Then, if the finite element space

of the stored ComponentDofMap object inside ParallelDofMapping lives on the

exact same mesh as the one given in the function parameter, we need to update this

ComponentDofMap. In line 7 − 10, we start to traverse all the DOFs on the finite

element space, denoted as feSpace. During traversal, we distinguish between rank DOFs

and non-rank ones and flush them into separate groups for the simplicity of the usage of

our DOF enumeration method. This can easily be done by a DofComm object. That is

why updateDofsToDofMapping is called after createBoundaryDofs in checkMeshChange.

The DOF set which includes all the DOFs belonging to feSpace is denoted as DOFall.

It is available via getAllDofs of the mesh, and the DOFs received from DOF commu-

nicators: DOFrecv are by definition non-rank DOFs. Then, rank DOFs are calculated

by DOFall −DOFrecv. After updateDofsToDofMapping is finished, both DofComm and

ParallelDofMapping are up-to-date.

• updateLocalGlobalNumbering (Algorithm 7)

50

Algorithm 7 MeshDistributor.updateLocalGlobalNumbering

Require: dofMaps: vector of parallel DOF mapping

1: for all dofMap in dofMaps do

2: dofMap.update()

3: end for

4: if has periodic boundary then

5: create periodic DOF mappings

6: for all dofMap in dofMaps do

7: dofMap.computeMatIndex()

8: end for

9: end if

The last sub-function in checkMeshChange we have not discussed yet is updateLo-
calGlobalNumbering, which is responsible for the DOF enumeration. Note that there

is a MPI barrier operation across all sub-domains before we call updateLocalGlobal-
Numbering in checkMeshChange. This step cannot be omitted since the parallel DOF

enumeration only makes sense after all the sub-domains have already updated their

ParallelDofMappings. updateLocalGlobalNumbering starts the enumeration for

each ParallelDofMapping by calling its member function update. Line 4 − 9 are

only used when a periodic boundary condition exists.

• update (Algorithm 8)

Algorithm 8 ParallelDofMapping.update

Require: mesh: mesh pointer, compDofMaps: vector of component DOF mappings

1: for all compDofMap in compDofMaps do

2: if mesh of compDofMap == mesh then

3: compDofMap.update()

4: end if

5: end for

6: nRankDofs = computeRankDofs()

7: nLocalDofs = computeLocalDofs()

8: nOverallDofs = computeOverallDofs()

9: rStartDofs = computeStartDofs()

10: computeMatIndex()

This is a member function of ParallelDofMapping, which is almost the last

function triggered by checkMeshChange. Inside, each ComponentDofMap object will

51

call its own update to calculate the individual nRank and rStart (see Section 3.2) by

MPI group communications and also the global index set via sub-function computeGlob-
alMapping. Then, in line 6 − 9, the overall nRank, rStart are calculated by gathering

the data from each component, on the basis of which, the most important matrix index

set is computed via computeMatIndex. Indices of rank DOFs can be calculated directly

by Eq. (3.3), while indices of non-rank DOFs are calculated by their owner processors,

and then exchanged via DofComm to other processors. Finally, a new globally successive

DOF index set over all sub-domains is established after the parallel mesh adaption.

3.4 Summary

In this chapter, we introduced the basic idea of the parallel multi-mesh method. The

idea comes from the combination of the mesh adaption loop and the pre-conditions of our

multi-mesh method. Then, we pointed out the difficulty in handling multiple meshes in

parallel, especially the difficulty in the management of the degrees of freedom associated

with the meshes. To solve this problem, we presented the parallel DOF enumeration

strategy. In the last section, we showed our detailed implementation of the parallel data

structures and the algorithms. Here, instead of concentrating on the distribution and the

communication of meshes, we discussed more on the establishment of the global linear

system, which includes one very important function: checkMeshChange. Although it is

impossible to show everything within one single function, it does cover the most critical

content we want to explain.

Note that the presented strategy of the load-balancing is not perfect, especially for

those simulations, where problems with individual solvers are coupled together. Since

each problem has its own linear system, the computation of the weights of sub-domains

might not be useful. What we do is that we sum up the number of DOFs on all the

meshes as the weights. But in the situation we discussed, the DOFs on the other meshes

belong to other problems, which will not appear in the linear system of this problem.

We have to admit that the overall imbalancing factor cannot reflect the true status of

workload for each problem separately. Actually, we cannot expect all the problems to

be optimal after assigning the same partition to them.

There is no doubt that the parallel mesh adaption and the mesh repartitioning in

the multi-mesh case cost more overhead than the standard method. We are wondering,

whether or not in the worst case the overhead can dominate the whole parallel perfor-

mance. In the next chapter, we will show a numerical example related to this topic and

at least in this example, we find out that the costs of multiple meshes will not be the

bottleneck in parallel.

52

0 1

23

4

0 0

12

3

(a) (b)

S S

0 0

12

3

1 0 0

12

31 4

(c) (d)

S0

4

S1

0 2

3

5

4

1 0 2

34

51 6

(e) (f)

S0

6

S1

0 4

56

7

1 2 9

1011

123 13

(g) (h)

S0

8

S1

Figure 3.1: DOF indices enumeration in different stages: (a) local indices on macro mesh

S (b) local indices after parallelization, with two sub-domains marked by the

blue dashed circles (smaller circle represents processor 1, larger processor

2) (c) local indices of component 1 defined on S0 after local adaption (d)

local indices of component 2 defined on S1 after local adaption (e) global

indices of component 1 (f) global indices of component 2 (g) matrix indices

of component 1 (h) matrix indices of component 2

gray: local idx, bubbles: global idx, champagne: matrix idx

macroMesh MeshPartitioner MeshDistributor
mesh structures partition map

ElementObjectDb

partition map

InteriorBoundary
macro element info

mesh n DOFComm n

boundary object

ParallelDofMapping
boundary DOF

ParallelSolver

DOF mapping

Figure 3.2: Two information flows through parallel data structures, starting from the

geometry

54

F
ig

u
re

3
.3

:
C

la
ss

d
ia

gr
am

of
th

e
m

ai
n

p
ar

al
le

l
cl

as
se

s

55

56

CHAPTER 4

Numerical experiments

To show that the multi-mesh approach is superior in contrast to the standard single-

mesh finite element method, in this chapter, we illustrate some simulation examples. In

Section 4.1, we consider the dynamics of deformable objects in flow. These objects could

be bubbles, cells or particles. In all cases, the objects are fluid like with an interface

surrounding them. The main content in this section comes from the publication [29].

We first introduce the hydrodynamic phase field model, which was originally presented

by W.Marth [33]. The main idea of this model and the numerical approach can be found

in Section 4.1.1 and Section 4.1.2. In terms of the mesh adaption, we found out that it is

reasonable to combine this model with the multi-mesh concept presented in this thesis.

The way how we achieved the combination is introduced in Section 4.1.3. Finally, in

Section 4.1.4, we show that the resulting simulation can be more efficient without losing

accuracy and we analyse why this is the case. By the illustration of the multi-phase flow

problem, we want to emphasize the advantage of the arbitrary-number-of-mesh attribute

of the multi-mesh approach.

In Section 4.2, we consider a dendritic growth problem in 2D using a phase-field

model. The order of the sections is organized in the same way as the multi-phase

flow problem, but here, we want to emphasize the advantage of the parallel multi-mesh

method. The simulation is split into several time periods. Each period is executed by

a different number of processors. We show that even in a parallel environment, the

multi-mesh method is still better than the standard method.

57

4.1 Multi-phase flow problem

We are interested in the dynamics of deformable objects in flow. A huge class of

two-phase flow problems can be formulated in this situation and has been considered

by various numerical approaches, like the Navier-Stokes-Cahn-Hilliard equations and so

on. Most of these studies consider only one object and its deformation is a result of

the hydrodynamic interaction. The situation becomes more complex if more objects

are involved. In addition to the mentioned hydrodynamic interaction, the objects also

interact with each other, which requires the computation of the distance between the

object. As they are deformable and thus can have complex shapes this becomes a

nontrivial task.

We concentrate here on phase field models using an auxiliary variable φ describing

the interface between the objects and the surrounding fluid implicitly. For each object i,

we use a phase field variable φi and take only account for short range steric interactions.

An efficient way to describe these interactions in a local manner is proposed. We will

consider an example, which could be interpreted as a model for interacting red blood

cells.

4.1.1 Governing equations

The diffuse interface formulation uses the auxiliary phase fields φi that distinguish

the inside and the outside of each object labeled with index i = 1, . . . , N . The phase

field variables are defined as

φi(t,x) := tanh

(
ri(t,x)√

2ε

)
(4.1)

where ε characterizes the thickness of the diffuse interface and ri(t,x) denotes the signed-

distance function between x ∈ Ω, in the considered case a bounded domain in IR2 and its

nearest point on Γi(t) the interface of object i. Depending on ri we consider the inside

with φi ≈ 1 and the outside with φi ≈ −1. The interface Γi(t) is then implicitly defined

by the zero level set of φi. We consider φ = maxx∈Ω(φ1, . . . , φN), which defines the

object phase φ ≈ 1, the fluid phase φ ≈ −1, and the interfaces Γ as the zero level set of

φ. The dynamics are governed by equations that couple these phase fields to the actual

physical degrees of freedom. We consider a free energy E(φ1, . . . , φN), to be specified

below, and use a H−1-gradient flow, which together with the convective term due to the

underlying fluid velocity v read for each i = 1, . . . , N

∂tφi + v · ∇φi = γ∆φ\i (4.2)

with a small positive mobility coefficient γ and the chemical potentials

φ\i =
δE(φ1, . . . , φN)

δφi
. (4.3)

58

The extended incompressible Navier-Stokes equation, which accounts for a local inex-

tensibility constraint (∇Γ · v = 0 on Γ) reads

ρ(∂tv + v · ∇v) +∇p− 1

Re
∇ · (νD) =

N∑
i=1

φ\i∇φi +∇ · (|∇φ|
2

Pλlocal) + F (4.4)

∇ · v = 0 (4.5)

with density ρ = 1, viscosity ν = (1−φ)/2 +
∑N

i=1(νi/ν0)(φi + 1)/2, deformation tensor

D = ∇v+(∇v)T , pressure p, projection operator P = I−(∇φ⊗∇φ)/|∇φ|2, applied force

F and Reynolds number Re = ρUL/ν0, with characteristic velocity U and characteristic

length L. Different densities could be handled in a similar way but are omitted here for

simplicity. The Lagrange multiplier λlocal is determined by solving the equation

ξε2∇ · (φ2∇λlocal) +
|∇φ|

2
P : ∇v = 0 (4.6)

with ξ > 0 a parameter independent of ε. This phase-field approximation for the in-

extensibility constraint was introduced in [1]. The considered energy is a Helfrich-type

energy for each phase field φi

Ei(φi) =
1

2ReBei

∫
Ω

1

ε

(
ε∆φi −

1

ε
(φ2
i − 1)(φi +H0)

)2

dΩ, (4.7)

with bending capillary numbers Bei = (4/3)
√

2ν0UL
2/bN,i, with the bending rigidity

bN,i, see [14]. In addition we consider penalty energies of the form

Ei,area(φi) =
ci

2ReBei
(A0

i −A(φi))
2, (4.8)

with penalty parameters ci, to ensure global area conservation of the interfaces. The

initial and desired area of object i are denoted by A0
i and A(φi) =

∫
Ω
ε
2 |∇φi|

2 + 1
4ε(φ

2
i −

1)2dΩ, respectively. The penalty term helps to control the accumulation of errors, as

shown in [15, 1].

We also require an object-object interaction energy Eint and thus the coupling of all

phase field variables φ1, . . . , φN . The interaction is a function of the distances between

the objects, which can become tedious to compute as the objects can have complex

shapes. We here consider only steric interactions to prevent coalescence or overlapping

of objects and model a short range repulsion by a Gaussian potential. Using Eq. (4.1),

the signed distance function rj , measuring the signed distance from any point in Ω to

the interface Γj can be computed within the diffuse interface region as

rj = − ε√
2

ln
1 + φj
1− φj

∀x : |φj(x)| < 1. (4.9)

59

We thus can write the interaction potential within the phase-field description as

Ei,int(φ1, . . . , φN) =
1

ReIn

∫
Ω
B(φi)

N∑
j=1
j 6=i

wjdΩ (4.10)

with B(φi) = 1
ε (φ

2
i − 1)2 being nonzero only within the diffuse interface around Γi, the

interaction function

wj =

exp
(
−1

2(ln
1+φj
1−φj)2

)
, if |φj(x)| < 1

0 otherwise
(4.11)

and In = (4/3)
√

2ν0U/α the interaction number, with α > 0 the strength of the repulsive

interaction. The overall interaction energy thus reads

Eint(φ1, . . . , φN) =

N∑
i=1

Ei,int(φ1, . . . , φN) (4.12)

and we obtain

E(φ1, . . . , φN) =

N∑
i=1

(Ei(φi) + Ei,area(φi)) + Eint(φ1, . . . , φN) (4.13)

and thus
δE(φ1, . . . , φN)

δφi
=
δEi(φi)
δφi

+
δEi,area(φi)

δφi
+
δEint(φ1, . . . , φN)

δφi
(4.14)

with

δEi(φi)
δφi

=
1

ReBei
ψi

ψi = ∆µi −
1

ε2
(3φ2

i + 2H0φ− 1)µi

µi = ε∆φi −
1

ε
(φ2
i − 1)(φi +H0)

δEi,area(φi)
δφi

=
ci

ReBei
κi(A0

i −A(φi))

κi = ε∆φi −
1

ε
(φ2
i − 1)φi

δEint(φ1, . . . , φN)

δφi
=

1

ReIn
(B′(φi)

N∑
j=1
j 6=i

wj + w′i

N∑
j=1
j 6=i

B(φj))

with

w′i =


2

φ2i−1
ln 1+φi

1−φi exp
(
−1

2(ln 1+φi
1−φi)

2
)
, if |φi(x)| < 1

0 otherwise.

60

The overall system to be solved consists now of the N higher order convection-

reaction-diffusion equations for the phase field variables φi Eq. (4.2) with (4.3) and

(4.14), the extended incompressible Navier-Stokes equations, Eq. (4.4) and (4.5) for

velocity v and pressure p and the equation for the Lagrange multiplier λlocal, Eq. (4.6).

4.1.2 Numerical approach

4.1.2.1 Time discretization

In order to discretize in time, we explore an operator splitting approach. In an

iterative process we first solve the flow problem and substitute its solution into the

phase-field equations, which are then solved separately with a parallel splitting method.

We split the time interval I = [0, T] into equidistant time instants 0 = t0 < t1 < . . . and

define the time steps τ := tn+1 − tn. We define the discrete time derivative dt·n+1 :=

(·n+1 − ·n)/τ , where the upper index denotes the time step number and e.g vn := v(tn)

is the value of v at time tn. For each system, a semi-implicit time discretization is used,

which together with an appropriate linearization of the involved non-linear terms leads

to a set of linear system in each time step.

4.1.2.2 Space discretization

We apply the finite element method to discretize in space, where a P 2/P 1 Taylor-

Hood element is used for the flow problem, all other quantities are discretized in space

using P 2 elements. In each time step we solve:

1. the flow problem for vn+1, pn+1 and λn+1
local

dtv
n+1 + (vn · ∇)vn+1 =

−∇pn+1 +
1

Re
∇ · (νnDn+1) +

N∑
i=1

φ\i
n
∇φni +∇ · (|∇φ

n|
2

Pnλn+1
local) + F,

∇ · vn+1 = 0

ξε2∇ · ((φn)2∇λn+1
local) +

|∇φn|
2

Pn : ∇vn+1 = 0

where νn = ν(φn) and Pn = I− ∇φ
n⊗∇φn
|∇φn|2

61

2. the phase field equations for φn+1
i , i = 1, . . . , N

dtφ
n+1
i + vn+1 · ∇φn+1

i = γ∆φ\i
n+1

,

φ\i
n+1

=
1

ReBei
ψn+1
i +

ci
ReBei

(A0
i −A(φni))κni

+
1

ReIn

B′(φni)
N∑
j=1
j 6=i

wnj + wn
′
i

N∑
j=1
j 6=i

B(φnj)

 ,

ψn+1
i = ∆µn+1

i − 1

ε2
(3(φn+1

i)2 + 2H0φ
n+1
i − 1)µn+1

i ,

µn+1
i = ε∆φn+1

i − 1

ε
((φn+1

i)2 − 1)(φn+1
i +H0)

with κni = ε∆φni − 1
ε ((φ

n
i)2 − 1)φni . We linearize the non-linear terms by a Taylor

expansion of order one, e.g. ((φn+1
i)2−1)φn+1

i = ((φni)2−1)φni +(3(φni)2−1)(φn+1
i −

φni).

4.1.3 Adaptivity

The problem involves various length scales: large scales related to the computational

domain, intermediate scales related to the size of the objects, and small length scales

related to the diffuse interface width, which is of order ε. In order to effectively resolve

these length scales, we need to consider adaptive mesh refinement. We here only account

for a heuristic criteria to dynamically refine the diffuse interface of each object. The

criteria is a critical value for the gradient of the phase field variables φ\i, which is adjusted

to guarantee 8 grid points across the diffuse interface. An analog strategy is used for

coarsening, with the coarsest possible mesh still fine enough to resolve the flow field.

Other criteria, based on error estimates can be used in the same manner.

While adaptive mesh refinement has become a standard tool in phase field modeling

and is one of the reasons why the approach can compete with other numerical meth-

ods to solve interface problems, there are further possibilities to improve the efficiency.

When the standard single-mesh finite element method is used, we define each phase field

variable φn+1
i , i = 0, , , N − 1 and the velocity variables vx and vy on the same mesh, as

shown in the upper part of Fig 4.1. We can see that each phase field uses the same mesh

with the refinement set to be the union of the refinement on all diffuse interfaces, among

which only the interface of itself (marked in red) makes sense. The extra refinement does

nothing but enlarge the final linear system. It is more reasonable to define each object

on an independently refined mesh to reduce the overall computational time. So we use

N meshes and refine the meshes to resolve the diffuse interface region for each phase

field variable respectively. However, the refinement set of the velocity field remains the

same as in the single-mesh case, as shown in the lower part of Fig 4.1.

62

• Single mesh

...

φ0 φ1

vx (vy)

• Multi mesh

...

φ0 φ1

vx (vy)

Figure 4.1: Mesh comparsion between single-mesh and multi-mesh approach for the

phase field φi, i = 0, , , N − 1 and the fluid field vx, vy

As our systems involve terms with more than one variable, again we need to consider

coupling terms between variables. Critical for all adaptive strategies, which involve

coarsening, is the handling of the time derivative, as information will be lost if φni

63

is simply interpolated onto the new mesh on which to solve for φn+1
i . This can be

circumvented by using the multi-mesh strategy, too.

We use the same adaptively refined mesh for the variables φn+1
i , φ\i

n+1
, ψn+1

i and

µn+1
i . We denote it by Sn+1

i . The only critical terms, which need further treatment in

the phase field equations are thus the terms

vn+1 · ∇φn+1
i , B′(φni)

N∑
j=1
j 6=i

wnj and wn
′
i

N∑
j=1
j 6=i

B(φnj),

as here vn+1, ωnj and φnj are defined on differently refined meshes. For the first term,

the velocity will be computed on the finest common mesh of all phase field variables,

denoted by Sn+1. It thus coincides with Sn+1
i within the diffuse interface region of φn+1

i ,

but away from the interface it is significantly finer. Interpolating vn+1 onto the mesh of

φn+1
i thus is no option, as information would be lost. We thus consider the multi-mesh

strategy for this term.

For the other two terms, we can also use the strategy of multi-mesh and it provides

us better performance than the standard method. But here we even have a better option

than the multi-mesh approach. We demonstrate a version, where the coupling terms of

variables can be handled by interpolating one variable onto the mesh of the other. Due

to the special structure of the coupling terms between the phase field variables this can

be handled without loss of information. What we do is that we interpolate φnj onto

the mesh of φn+1
i . This is correct since B′(φni) ≈ 0 and ωn

′
i ≈ 0 outside of the diffuse

interface region of φni . The summation terms will thus be considered as

I
Sn+1
i

Sn
i

(B′(φni))

N∑
j=1
j 6=i

I
Sn+1
i

Sn
j

(wnj) and I
Sn+1
i

Sn
i

(wn
′
i)

N∑
j=1
j 6=i

I
Sn+1
i

Sn
j

(B(φnj)),

with the interpolation operator I
Sn+1
i

Sn
i

: Sni → Sn+1
i .

Also in the Navier-Stokes equations we use the same adaptively refined mesh for

the variables vn+1, pn+1 and λn+1
local. Also φn we will be defined on that mesh and we

consider IS
n+1

Sn (φn). The only critical term thus is

N∑
i=1

φ\i
n
∇φni (4.15)

with all φni , more precisely I
Sn+1
i

Sn
i

(φni) defined on the coarser meshes Sn+1
i . We thus can

interpolate them on the finer Navier-Stokes mesh Sn+1 and perform the summation on

that mesh. We thus consider

N∑
i=1

IS
n+1

Sn
i

(φ\i
n
)IS

n+1

Sn
i

(∇φni).

64

Using interpolation for the coupling terms is a little bit faster than the full multi-mesh

approach. We will demonstrate the accuracy of the approach in the next section. The

only remaining terms, where the multi-mesh assembly has to be used, are the time

derivative ∂tφ
n+1
i and the convective term vn+1 · ∇φn+1

i . To ensure conservation of φi
the terms (φni , ξ

n+1
i), with φni defined on Sni and test function ξn+1

i defined on Sn+1
i , has

to be computed, virtually on the finest common mesh, see Section 2.1.3. This also holds

for the term (vn+1 ·∇φn+1
i , ξn+1

i), which is virtually assembled on the finer Navier-Stokes

mesh Sn+1.

4.1.4 Performance and accuracy

We consider a test case of a rectangular domain with thickness 20 µm and length

40 µm, with periodic boundary conditions on the in- and outflow, left and right, and

no-slip condition on the upper and lower wall. We set Re= 1.125 · 10−4, Bei = 5.3,

mobility γ = 10−5 and a viscosity ratio νi/ν0 = 1. Flow is considered through the force

term F = (1
Fr , 0)>, with Froude number Fr= 2.4 · 10−6 leading to a maximal velocity

of magnitude 10. We randomly place N objects in the domain. They have initially an

ellipsoidal shape and are arranged, such that they do not overlap. As the numerical

approach for one object has been validated in detail in [1], we here only compare the

solution obtained with the single-mesh and the multi-mesh approach. Fig 4.2 shows a

snapshot of the 0-level line of the phase field variables at the final time in comparison

with the single mesh simulation results.

t = 1.7 s
0 0.4 0.8 1.2 1.6
0

1

2

3

4

t in s

h
e
ig
h
t
x
2

multi mesh

single mesh

Figure 4.2: (left) Object shapes at final time, and (right) trajectories of center of mass

position for each object. Results for multi-mesh and single-mesh computa-

tions are compared for 9 objects.

The trajectories of the objects, their center of mass points, are shown as well in

comparison with the single mesh simulation results. By the end of the simulation,

65

those cells have at least passed the tunnel more than two and a half round periodically.

And both the object shapes and the trajectories of mass points are acceptable at that

timestep. More precisely, Fig 4.3 shows the L2-error over time for each trajectory.

object i ||e||2
1 0.000151

2 0.000300

3 0.001675

4 0.000218

5 0.000955

6 0.001123

7 0.000074

8 0.000690

9 0.000654

Figure 4.3: The point-wise error in the trajectories is measured over time for each ob-

ject (left). L2-error of the x2 coordinate, i.e. ||e||2 = (
∑NTS

n=1 (xn2,SM −
xn2,MM)2/xn2,SM)1/2 for each object, with SM - single mesh, MM - multi

mesh and NTS - number of time steps (right).

To get exactly the same solution is impossible since we do assign a mesh with a

coarser refinement set than before to each phase field variable, but we can see that there is

only little difference in accuracy, which can be neglected. Then, the question is, whether

the multi-mesh optimizes the performance. Table 4.1 lists the performance analysis.

The results show a factor of 2 in performance for the lowest number of objects, which

increases to a factor of 6 for the highest number of objects considered. The summation of

Eq. (4.15) in the Navier-Stokes (NS) equation is not done in the assembling step, but at

the end of the previous time step and provides the main contribution in others. Because

of this, slight speedup in the assembling of the Navier-Stokes equation is perceivable.

Now, we take a look at the solution of linear systems. We did not gain any speedup

in solving the Navier-Stokes equation. This is clear since we did not reduce any DOFs

on the fluid mesh. In line with our expectations, the solution of the phase field shows

significant speedup. The time of the solution is almost constant regardless of the number

of objects, which is far better when compared to the standard single-mesh finite element

method.

Note that in our example, the aim of the usage of the interpolation is to get the

optimal performance. The main improvement comes from the multi-mesh method but

66

not the interpolation. If we replace the fast interpolation by the full multi-mesh approach

for the term in Eq. (4.15), we can still get comparable results as before (see “multi(full)”

rows in Table 4.1), which is far away from the results of the standard method. The

accuracy and the overall speedup illustrate the applicability of the multi-mesh approach

and its huge potential for other applications with multiple phase field variables.

Table 4.1: Performance analysis of the single- and the multi-mesh strategy. The time

for assembly and solve for the phase field (PF) equation is for one variable.

The overall time accounts for this time times the number of objects. Times

for mesh refinement and coarsening are also considered in others. All times

are measured in sec and account for 100 time steps. The computation is done

on TAURUS 2, the high performance computer at ZIH at TU Dresden.

objects all assembly solve assembly solve others

NS NS PF 1 . . . n PF 1 . . . n

single 5 1.641 101,0 66,1 114,4 152,7 114,6

multi 5 699 66,1 69,0 45,4 46,8 88,9

multi(full) 5 830 78,4 79,5 56,8 54,9 99,1

single 9 4.870 213,0 115,8 192,8 267,8 328,6

multi 9 1.274 106,4 112,7 50,8 43,7 178,5

multi(full) 9 1.353 109,1 127,5 53,8 47,8 171,2

single 13 9.141 334,9 154,4 245,4 364,6 585,3

multi 13 1.877 136,5 156,3 54,8 42,7 286,8

multi(full) 13 2.047 144,0 178,5 61,0 47,9 272,9

single 17 14.943 493,5 198,1 303,5 468,3 862,6

multi 17 2.559 166,3 200,6 61,2 42,1 423,1

multi(full) 17 2.805 182,9 231,8 67,3 47,6 403,0

4.1.5 Parallelization

Even if the multi-mesh method is used, for the highest number of objects we con-

sidered, the time cost for these objects to perform one round of the periodic movement

is around 7 hours. We can further improve the performance if we can run the simulation

in parallel. We have two ideas to achieve parallelization. First, we can use the paral-

lel multi-mesh approach introduced in Chapter 3, adopting the domain decomposition

strategy. Then, the comparison of the solution time does not make too much sense since

we use a totally different kind of solver in parallel. Thus, the result is not given here.

The second idea is to run the simulation on multiple threads using OpenMP. Inside

each time iteration, we first run the Navier-Stokes problem in the main thread and then

67

run each phase field problem simultaneously via an OpenMP loop parallelization. The

overall time of the simulation under this strategy is shown in Table 4.2. The new results

show a factor of 13 for the highest number of objects. To conclude, the multi-mesh

method can be further combined with different kinds of parallel strategies, e.g. MPI,

OpenMP, or even both, without too much effort. Most of the time this is the optimal

solution we can achieve.

Table 4.2: Overall time in sec for different number of objects with the combination of

multi-mesh and OpenMP. The computation is done on TAURUS 2.

objects all time

5 376

9 569

13 786

17 1.163

4.2 Dendritic growth

The numerical example we consider here is the dendritic growth, which describes

the phenomenon that microstructures grow into multi-branching tree-like architectures

during the process of solidification. In the following section, we introduce the model we

use to solve the problem.

4.2.1 Governing equations

A powerful tool for describing the complex pattern evolution of the interface between

mother and new phases in nonequilibrium state is the phase-field model. The model was

originally proposed for simulating dendritic growth in undercooled pure melts and has

also been extended to the solidification of alloys and so on [45]. For more reviews, we

refer to [22, 7, 23, 36]. We adopted the model for quantitative simulations of the dendritic

structures introduced by A.Karma and WJ.Rappel [23]. The model in non-dimensional

form reads as follows:

A2(n)∂tφ = (φ− λu(1− φ2))(1− φ2) +∇ · (A2(n)∇φ)+

d∑
i=1

∂xi

(
|∇φ|2A(n)

∂A(n)

∂xiφ

)
(4.16)

∂tu = D∇2u+
1

2
∂tφ (4.17)

68

, where φ is the phase field variable and u is the thermal field variable. The parameter d

in the phase field equation represents the dimension, which can be 2 or 3. The parameter

D is the thermal diffusivity constant. λu(1−φ2))(1−φ2) is the non-linear coupling term

between φ and u in the phase field equation, where the parameter λ = D
a2

, in which a2

= 0.6267. Furthermore, function A is the anisotropy function and the form we use reads

as:

A(n) = (1− 3ε)

1 +
4ε

1− 3ε

d∑
i=1

φ4
xi

|∇φ|4

 (4.18)

, in which the coefficient ε controls the strength of the anisotropy and n = ∇φ
|∇φ| denotes

the normal to the solid-liquid interface. In this setting, the phase-field variable is −1

in the liquid and 1 in the solid domain, and the melting temperature is set to be zero.

We set u = −ξ as a boundary condition to specify an undercooling. For the phase-field

variable, we use zero-flux boundary conditions. The time integration is done using a

semi-implicit Euler method, which yield a sequence of nonlinear stationary PDEs:

A2(nn)

τ
φn+1 + f + g −∇(A2(nn)∇φn+1)− L [A(nn)] =

A2(nn)

τ
φn

un+1

τ
−D∇2un+1 −

1

2

φn+1

τ
=
un
τ
− 1

2

φn
τ

with f = φ3
n+1−φn+1, g = λ(1−φ2

n+1)2un+1 and L[A(nn)] =
d∑
i=1

∂xi

(
|∇φn+1|2A(nn)∂A(nn)

∂xiφn

)
Then, we linearize the involved terms f and g with

f ≈ (3φ2
n − 1)φn+1 − 2φ3

n

g ≈ λ(1− φ2
n)2un+1

L ≈
d∑
i=1

∂xi

(
|∇φn|2A(nn)

∂A(nn)

∂xiφn

)
to obtain a linear system for φn+1 and un+1 to be solved at each time step. The dis-

cretization scheme we use is exactly the same as [53].

4.2.2 Adaptivity

The motivation of the usage of the multi-mesh approach in this problem is clear,

due to the distinct solution behavior of the two components. The phase field variable

φ needs a very high resolution along the solid-liquid interface in order to control the

sensitive shape of the crystal, while in the region far away, it can be discretized with a

69

very coarse mesh since the value is almost constant (1 for solid and −1 for liquid). On

the contrary, the thermal field variable u has a relative smooth resolution everywhere in

the domain, but the resolution along the interface is much lower compared to φ, see also

Fig 1.3 or Fig 4.4. After the application of the multi-mesh method, we got the following

coupling terms that defined on both of the meshes:

λ(1− φ2
n)2un+1 and − 1

2

φn+1

τ

Since we adopt the full multi-mesh approach for these two terms, the multi-mesh as-

sembling process inside AMDiS takes charge of the whole routine. There is no further

modification necessary on the application-side. We only need to specify two refinement

sets for the two components in the initial file. In order to prove that even under the par-

allel environment, the multi-mesh method is still favorable than the standard method,

we tested the simulation with different number of processors. From a technical point of

view, the parallel computation of the dendritic growth is very challenging. As the mesh

changes in each iteration, the function checkMeshChange introduced in Section 3.3.2

must be called every time. The function itself includes: 1) the parallel mesh adaption to

eliminate hanging nodes, 2) the update of all DOF-related data structures 3) the mesh

repartitioning if necessary. Since the solid-liquid interface (the region with the most

elements) changes and gets longer with the growth of the dendrite, even if at one time-

point, the global workload is well-balanced over all sub-domains, it becomes imbalanced

rapidly in the next few steps. So the mesh repartitioning must be used in our case.

All these sub-algorithms inside checkMeshChange, which now handle multiple meshes,

must show good performance so that the efficiency of the parallel codes is comparable,

or even better than the efficiency of the sequential ones.

4.2.3 Performance

We considered a 2D dendrite using linear finite elements with the parameters: D =

1.0, ε = 0.05. For the mesh adaption, the equidistribution mark strategy with θR = 0.8

and θC = 0.2 was used. The tolerance for the phase field was set to tolφ = 0.5 and the

tolerance for the thermal field was tolu = 0.25. For the error estimator, only the jump

residuum was used. To speedup the computation, we have employed the symmetry of

the solution and limited the computation to the upper right quadrant with a domain

size of 1000 in each direction. Furthermore, we started the simulation from the initial

time 0 up to the end time 1.3 · 104 with the constant timestep τ = 1.0. Because of the

mesh adaption, we increased the number of processors during the whole simulation, see

Fig 4.4. The initial radius of the round solid field is set to 3, which is not evident in the

scale of the whole domain.

The recovery of the simulation is based on the ARH file introduced in Section 1.2.2.3.

We are also interested in the parallelization of the dendrite. Some related information

70

time nproc

0,0 - 800.0 2

800,0 - 2500,0 4

2.500,0 - 4.000,0 8

4.000,0 - 7.000,0 16

7.000,0 - 10.000,0 32

10.000,0 - 13.000,0 64

0,0 800,0 2.500,0 4.000,0

4.000,0 7.000,0 10.000,0 13.000,0

Figure 4.4: (left) Number of processors used over time and (right) the corresponding

simulation results at given timepoints

is given in Fig 4.5. On the left side, the mesh comparison between the phase field and

the thermal field at given timepoint is shown. The refinement structure of the mesh is

denoted by blue lines, and the partition of the mesh in each sub-domain is marked by

a different color. We can see that at this timepoint, both meshes are well-distributed.

Among all the partitions, the green one, which does not contain heavy refinement at

all, has the largest area, while the other partitions, which cover the interface region, are

much smaller. The good load-balancing is also visible by the low value of the imbalancing

factor near the first point, shown on the right side. We picked up the imbalancing factors

every 10 time steps. From the figure, we can see that during the following period of time,

we are able to control the workload in the multi-mesh case in the same extent as the

workload in the single-mesh case. The significant drop between neighbor points indicates

that a repartitioning took place in between.

We now consider the simulation in terms of performance. Fig 4.6 shows the complete

time comparison between the parallel single- and multi-mesh approaches. First of all,

we have a look at the overall speedup. The speedup begins with a negative value, i.e.

the single-mesh routine runs faster in the first time period. This is due to the fact that

the interface region of the phase field is too small at the beginning of the simulation,

then the difference between the number of DOFs on the phase field and the thermal

field is inconspicuous. As a result, the advantage of the multi-mesh method disappears.

But, with the growth of the dendrite, the overall speedup rises and keeps at least 30%

until the end of the simulation. If we go deeper into more details, we find out that

the time for assembling the linear system is always more or less equal regardless of the

strategy we choose. This is somehow caused by the equilibrium between the reduction

of DOFs and the extra costs in the assembling process. On the contrary, the solver

71

7,0
00

7,0
50

7,1
00

7,1
50

7,2
00

7,2
50

7,3
00

10

20

30

40

time

im
b
al

an
ci

n
g

fa
ct

or

multi-mesh
single-mesh

Figure 4.5: (left) Mesh comparison between the phase field and the thermal field at

timepoint 7.000, 0 in the multi-mesh case, and (right) imbalancing factors of

the single- and the multi-mesh methods starting from timepoint 7.000, 0

and the error estimator are largely benefited from the saving of DOFs, especially the

solver, which enjoys a speedup up to 55% in performance. In line with our expectations,

the multi-mesh parallel mesh adaption costs more time than before. But, since the

parallel adaption itself is overwhelmed by the assembling, the solver, and even the error

estimator, and the overhead is actually not that much, it is totally acceptable for us.

On the other hand, the time for the mesh repartitioning is neglectable small due to

the fact that the function is only triggered every 20 iterations. To sum up, we proved

that the multi-mesh method is superior to the standard method even in the parallel

environment. Our method not only increases performance, but also reduces the memory

usage tremendously, which is always one of the bottlenecks in the simulation of large-

scale problems. This is explained in more detail in Table 4.3, where information on the

global matrix of the linear system at the last timepoint is shown.

single mesh multi mesh

DOFs 2.014.350 × 2 1.697.659 + 157.550

Matrix none zero values 56.137.808 25.332.378

Matrix size 7.65e+02 MB 3.47e+02 MB

BiCGStab iterations 119 87

Table 4.3: Information on the matrix of the linear system at the last timepoint

72

2p 4p 8p 16p 32p 64p

0

0.5

1

1.5

2
·104

O
ve

ra
ll

ti
m

e(
s)

multimesh singlemesh

2p 4p 8p 16p 32p 64p

0

1,000

2,000

3,000

4,000

S
u
m

as
se

m
b
li
n
g

ti
m

e(
s)

multimesh singlemesh

2p 4p 8p 16p 32p 64p

0

2,000

4,000

6,000

8,000

S
u
m

so
lv

er
ti

m
e(

s)

multimesh singlemesh

2p 4p 8p 16p 32p 64p

0

1,000

2,000

3,000

4,000
S
u
m

es
ti

m
at

or
ti

m
e(

s)

multimesh singlemesh

2p 4p 8p 16p 32p 64p

0

200

400

600

800

1,000

S
u
m

p
ar

al
le

l
ad

ap
ti

on
ti

m
e(

s)

multimesh singlemesh
0 10 20 30 40 50 60 70

0

20

40

60

nproc

sp
ee

d
u
p

(%
)

overall time
solver time

estimator time

Figure 4.6: The first five graphs are the time comparison of overall runtime, assembling,

solver, estimator, parallel adaption between the single- and the multi-mesh

methods. The last graph is the time speedup resulting from the multi-mesh

method. The computation is done on TAURUS 2.

73

CHAPTER 5

Conclusion and outlook

In the first part of this thesis, we introduced the basic concepts and an advanced

numerical tool, the multi-mesh method, implemented in the AMDiS environment. Ba-

sically speaking, the method uses independently adaptive meshes for different variables

in the systems of nonlinear, time-dependent PDEs in order to improve the efficiency of

adaptive finite element simulations. We pointed out that the current implementation of

the multi-mesh method is not complete. Then, the second part of the thesis filled the ab-

sent parts. First of all, we generalized the number of the meshes used in the multi-mesh

method from two to an arbitrary number, allowing the method to be applied to those ap-

plications, where more than two variables are involved. The generalization includes the

extension of the mesh traversal algorithm and also of the application of the transforma-

tion matrix. Besides that, we applied the concept of the transformation matrix further

to the situation, where a bunch of coefficient function spaces is attached to the operator

terms inside PDEs. Data structures and algorithms which allow to implement an effi-

cient generalized multi-mesh approach are introduced after the theory. Furthermore, we

pointed out that it would be a pity if this method was not available in parallel since users

are accustomed to improving performance by exploiting parallel resources rather than

using the multi-mesh strategy on one single processor. We discussed the possibility of the

combination of the multi-mesh method and the parallelization, and we found out that

the difficulty lies not in the method itself, but in the parallel management of multiple

meshes, including the enumeration of the DOFs defined on them. So, we temporarily

shifted our topic from the multi-mesh to our parallelization approach. We presented

the implementation of adaptively refined and distributed mesh data structures based on

mesh structure codes, and the parallel linear solution methods based on DOF-related

information containers. We also showed a very important parallel algorithm, the paral-

lel mesh adaption, in detail. In the last part of the thesis, we illustrated two numerical

74

experiments of the presented multi-mesh method to prove that our method is superior

in contrast to the standard single-mesh finite element method in terms of performance.

In the first example, we considered the multi-phase flow problem with a hydrodynamic

phase field model. In the second example, we considered the dendritic growth problem

with a phase field model. Both numerical results were shown with detailed analyses.

The multi-mesh method we presented is implemented on top of the existing codes in the

AMDiS environment, but it does not rely on any special data structure. So, in principle,

the main idea and the software concepts are also portable to any other finite element

toolbox.

We have several ideas to improve our work in the future, most of which are related

to the numerical applications. Although we already presented two problems in this

thesis, none of them includes the situation, where the coefficient function spaces live

on an independently refined mesh. We proved the correctness of the implementation of

the coefficient function spaces using simple examples, but so far we didn’t find a real

application, in which our approach shines. This can be one future task. Moreover,

we are lack of a 3D example. We tried to run the dendritic growth in 3D, but the

solution time is negligible compared to the assembling time. Thus, we didn’t obtain any

benefit from the multi-mesh approach. Fixing this problem can be another future task.

Further examples, that might enjoy large computational savings due to the usage of the

multi-mesh method, are also welcome, e.g. optimal control problems, diffuse interface

and diffuse domain approximations for PDEs to be solved on surfaces that are within

complicated domains, etc.

75

Bibliography

[1] S. Aland, S. Egerer, J. Lowengrub, and A. Voigt. Diffuse interface models of locally

inextensible vesicles in a viscous fluid. Journal of Computational Physics, 277:32–47,

2014.

[2] Ivo Babuška and Werner C Rheinboldt. A-posteriori error estimates for the fi-

nite element method. International Journal for Numerical Methods in Engineering,

12(10):1597–1615, 1978.

[3] S Balay, S Abhyankar, M Adams, J Brown, P Brune, K Buschelman, V Eijkhout,

W Gropp, D Kaushik, M Knepley, et al. Petsc users manual revision 3.5. Argonne

National Laboratory (ANL), 2014.

[4] Satish Balay, Kris Buschelman, William D Gropp, Dinesh Kaushik, Matthew G

Knepley, L Curfman McInnes, Barry F Smith, and Hong Zhang. Petsc. See

http://www. mcs. anl. gov/petsc, 2001.

[5] Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F Smith. Petsc, the

portable, extensible toolkit for scientific computation. Argonne National Laboratory,

2:17, 1998.

[6] Michel Bercovier and Olivier Pironneau. Error estimates for finite element method

solution of the stokes problem in the primitive variables. Numerische Mathematik,

33(2):211–224, 1979.

[7] William J Boettinger, James A Warren, Christoph Beckermann, and Alain Karma.

Phase-field simulation of solidification. Materials Research, 32(1):163, 2002.

[8] Umit V Catalyurek, Erik G Boman, Karen D Devine, Doruk Bozdağ, Robert T

Heaphy, and Lee Ann Riesen. A repartitioning hypergraph model for dynamic load

balancing. Journal of Parallel and Distributed Computing, 69(8):711–724, 2009.

77

[9] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay

Vaughan. Zoltan data management services for parallel dynamic applications. Com-

puting in Science & Engineering, 4(2):90–96, 2002.

[10] Yana Di and Ruo Li. Computation of dendritic growth with level set model using

a multi-mesh adaptive finite element method. Journal of Scientific Computing,

39(3):441–453, 2009.

[11] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An Introduction to Domain

Decomposition Methods: Algorithms, Theory, and Parallel Implementation, volume

144. SIAM, 2015.

[12] Maksymilian Dryja, Barry F Smith, and Olof B Widlund. Schwarz analysis of

iterative substructuring algorithms for elliptic problems in three dimensions. SIAM

journal on numerical analysis, 31(6):1662–1694, 1994.

[13] Maksymilian Dryja and Olof B Widlund. A feti-dp method for a mortar discretiza-

tion of elliptic problems. In Recent Developments in Domain Decomposition Meth-

ods, pages 41–52. Springer, 2002.

[14] Q. Du, C. Liu, R. Ryham, and X. Wang. A phase field formulation of the Willmore

problem. Nonlinearity, 18:1249–1267, 2005.

[15] Q. Du, C. Liu, and X. Wang. Simulating the deformation of vesicle membranes under

elastic bending energy in three dimensions. Journal of Computational Physics,

212:757–777, 2006.

[16] Kenneth Eriksson and Claes Johnson. Adaptive finite element methods for parabolic

problems i: A linear model problem. SIAM Journal on Numerical Analysis,

28(1):43–77, 1991.

[17] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel

Rixen. Feti-dp: a dual–primal unified feti method—part i: A faster alternative to

the two-level feti method. International journal for numerical methods in engineer-

ing, 50(7):1523–1544, 2001.

[18] Peter Gottschling and Andrew Lumsdaine. The matrix template library 4, 2009.

[19] Peter Gottschling, David S Wise, and Michael D Adams. Representation-

transparent matrix algorithms with scalable performance. In Proceedings of the 21st

annual international conference on Supercomputing, pages 116–125. ACM, 2007.

[20] Thomas Grätsch and Klaus-Jürgen Bathe. A posteriori error estimation techniques

in practical finite element analysis. Computers & structures, 83(4):235–265, 2005.

78

[21] Xianliang Hu, Ruo Li, and Tao Tang. A multi-mesh adaptive finite element ap-

proximation to phase field models. Communications in Computational Physics,

5(5):1012–1029, 2009.

[22] Alain Karma and Wouter-Jan Rappel. Phase-field method for computationally

efficient modeling of solidification with arbitrary interface kinetics. Physical Review

E, 53(4):R3017, 1996.

[23] Alain Karma and Wouter-Jan Rappel. Quantitative phase-field modeling of den-

dritic growth in two and three dimensions. Physical review E, 57(4):4323, 1998.

[24] George Karypis. Metis and parmetis. In Encyclopedia of Parallel Computing, pages

1117–1124. Springer, 2011.

[25] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis: Parallel graph parti-

tioning and sparse matrix ordering library. Version 1.0, Dept. of Computer Science,

University of Minnesota, 1997.

[26] Axel Klawonn, Olof B Widlund, and Maksymilian Dryja. Dual-primal feti meth-

ods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM

Journal on Numerical Analysis, 40(1):159–179, 2002.

[27] Damien Lebrun-Grandié, Jean Ragusa, Bruno Turcksin, and Pavel Solin. Adaptive

multimesh hp-fem for a coupled neutronics and nonlinear heat conduction problem.

In International Conference on Mathematics and Computational Methods Applied

to Nuclear Science and Engineering. American Nuclear Society, pages 8–12, 2011.

[28] Ruo Li. On multi-mesh h-adaptive methods. Journal of Scientific Computing,

24(3):321–341, 2005.

[29] Siqi Ling, Wieland Marth, Simon Praetorius, and Axel Voigt. An adaptive finite

element multi-mesh approach for interacting deformable objects in flow. Computa-

tional Methods in Applied Mathematics, 2016.

[30] Jan Mandel. Balancing domain decomposition. Communications in numerical meth-

ods in engineering, 9(3):233–241, 1993.

[31] Jan Mandel and Marian Brezina. Balancing domain decomposition for problems

with large jumps in coefficients. Mathematics of Computation of the American

Mathematical Society, 65(216):1387–1401, 1996.

[32] Jan Mandel and Bedřich Soused́ık. Bddc and feti-dp under minimalist assumptions.

Computing, 81(4):269–280, 2007.

79

[33] Wieland Marth, Sebastian Aland, and Axel Voigt. Margination of white blood cells:

a computational approach by a hydrodynamic phase field model. Journal of Fluid

Mechanics, 790:389–406, 2016.

[34] JL Meek. A brief history of the beginning of the finite element method. International

journal for numerical methods in engineering, 39:3761–3774, 1996.

[35] Ricardo H Nochetto, Kunibert G Siebert, and Andreas Veeser. Theory of adaptive

finite element methods: an introduction. In Multiscale, nonlinear and adaptive

approximation, pages 409–542. Springer, 2009.

[36] Wouter-Jan Rappel and Alain Karma. Quantitative phase-field modeling of den-

dritic growth in two and three dimensions. In APS March Meeting Abstracts, vol-

ume 1, page 1801, 1996.

[37] Thomas Rauber and Gudula Rünger. Parallel programming: For multicore and

cluster systems. Springer Science & Business Media, 2013.

[38] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and dynamic

multi-constraint graph partitioning. Concurrency and Computation: Practice and

Experience, 14(3):219–240, 2002.

[39] Alfred Schmidt. A multi-mesh finite element method for phase-field simulations.

Lecture Notes in Computational Science and Engineering, 32:208–217, 2003.

[40] Alfred Schmidt and Kunibert G Siebert. ALBERT: An adaptive hierarchical finite

element toolbox. Albert-Ludwigs-Univ., Math. Fak., 2000.

[41] Marc Snir. MPI–the Complete Reference: The MPI core, volume 1. MIT press,

1998.

[42] P Solin, J Cerveny, L Dubcova, and D Andrs. Adaptive multi-mesh hp-fem for

linear thermoelasticity problems. J. Comput. Appl. Math.(accepted).

[43] Pavel Soĺın, J Cerveny, Lenka Dubcova, and David Andrs. Monolithic discretization

of linear thermoelasticity problems via adaptive multimesh hp-fem. Journal of

computational and applied mathematics, 234(7):2350–2357, 2010.

[44] Pavel Solin, Lenka Dubcova, and Jaroslav Kruis. Adaptive hp-fem with dynamical

meshes for transient heat and moisture transfer problems. Journal of computational

and applied mathematics, 233(12):3103–3112, 2010.

[45] Toshio Suzuki, Machiko Ode, Seong Gyoon Kim, and Won Tae Kim. Phase-field

model of dendritic growth. Journal of Crystal Growth, 237:125–131, 2002.

80

[46] Andrea Toselli and Olof B Widlund. Domain decomposition methods: algorithms

and theory, volume 34. Springer, 2005.

[47] Rüdiger Verfürth. A posteriori error estimation and adaptive mesh-refinement tech-

niques. Journal of Computational and Applied Mathematics, 50(1):67–83, 1994.

[48] Simon Vey. Adaptive finite elements for systems of pdes: Software concepts, multi-

level techniques and parallelization. 2007.

[49] Simon Vey and Thomas Witkowski. AMDiS tutorial. TU Dresden., Math. Fak.,

2012.

[50] Axel Voigt and Thomas Witkowski. Hybrid parallelization of an adaptive finite

element code. Kybernetika, 46(2):316–327, 2010.

[51] Axel Voigt and Thomas Witkowski. A multi-mesh finite element method for la-

grange elements of arbitrary degree. Journal of Computational Science, 3(5):420–

428, 2012.

[52] T Witkowski, S Ling, S Praetorius, and A Voigt. Software concepts and numerical

algorithms for a scalable adaptive parallel finite element method. Advances in

computational mathematics, 41(6):1145–1177, 2015.

[53] Thomas Witkowski. Software concepts and algorithms for an efficient and scalable

parallel finite element method. 2013.

[54] OC Zienkiewicz. Origins, milestones and directions of the finite element method—a

personal view. Archives of Computational Methods in Engineering, 2(1):1–48, 1995.

81

	Introduction
	Finite element method
	History
	Finite element discretization
	Adaptive method

	AMDiS
	FEM toolboxes
	Basic concepts in AMDiS

	Multi-mesh concepts
	Motivation and history
	Idea of the multi-mesh method

	General multi-mesh method with arbitrary number of meshes
	General multi-mesh concept
	Coupling terms in the system of PDEs
	Multi-mesh traversal
	Transformation matrices
	Coefficient function spaces
	Test and trial function spaces

	Software concepts
	Summary

	Parallel multi-mesh Concept
	Parallel multi-mesh adaption loop
	Parallel DOF enumeration
	Software concepts
	Parallel data containers
	Parallel algorithms

	Summary

	Numerical experiments
	Multi-phase flow problem
	Governing equations
	Numerical approach
	Adaptivity
	Performance and accuracy
	Parallelization

	Dendritic growth
	Governing equations
	Adaptivity
	Performance

	Conclusion and outlook
	Bibliography

