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Zusammenfassung

In dieser Arbeit wird ein Vorkonditionierer zur Verbesserung der Konvergenzeigenschaften von
Krylov-Unterraum-Verfahren hergeleitet und analysiert. Der Vorkonitionierer ist angepasst an
Gleichungssysteme, die aus der Diskretisierung der Phase-Field Crystal (PFC) Gleichung ent-
stehen.

Das PFC Modell wurde entwickelt, um das Verhalten von Festkörpern auf atomaren Längen-
skalen und deren Dynamik auf diffusiven Zeitskalen zu beschreiben. Dazu wurde eine Evolutions-
gleichung in einem Ordnungsparameter, der Teilchendichte, hergeleitet. Stationäre Lösungen
dieser Gleichung beschreiben die Anordnung kolloidaler Teilchen in regelmäßigen Gittern, wie
beispielsweise kubisch innenzentrierte Gitter und kubisch flächenzentrierte Gitter in 3D, so-
wie hexagonale Anordnungen in 2D. Neben den statischen kristallinen Strukturen beschreibt
das PFC Modell die Entwicklung hin zu diesen Zuständen. Schmelz- und Kristallisationspro-
zesse, Dynamik von Korngrenzen, Nukleationsprozesse und Dendritenwachstum sind nur eine
kleine Auswahl von Phänomenen die analysiert und beobachtet werden können. Dabei ordnet
man das PFC Modell zwischen mikroskopischen Beschreibungen der Bewegung und Interakti-
on individueller Partikel und einer makroskopischen Evolution eines vergröberten Phasenfeldes
ein. Der mikroskopische Ansatz basiert typischerweise auf einer Newton’schen Bewegungsglei-
chung für alle Teilchen. In der Phasenfeldbeschreibung, andererseits, sind atomistische Details
verloren gegangen und es werden nur makroskopische Phänomene in einer effektiven Art und
Weise beschrieben. In den Phase-Field Crystal Modellen versucht man nun die Vorteile beider
Grenzmodelle zu kombinieren. Es werden individuelle Partikel und deren Interaktion in einem
kontinuierlichen Modell beschrieben. Damit erlaubt es dieses Modell das Langzeitverhalten einer
großen Anzahl an Teilchen zu studieren.

Der Entwicklungsprozess der Teilchendichte im PFC Modell wird beschrieben durch eine
partielle Differentialgleichung, die sich aus einem H−1-Gradientenfluss einer Approximation der
helmholtzschen freien Energie des Teilchensystems ableitet. Wachstumsprozesse von Korngren-
zen und Langzeitstudien erfordern einerseits die feine Auflösung von Zeitskalen, z.B. während
einzelne Teilchen sich umordnen, bei der Keimbildung in einem Phasenübergang, oder dem
Zusammenstoßen/-wachsen von Teilchenclustern. Auf der anderen Seite werden Wachstumspro-
zesse immer langsamer, was eine Zeitschrittänderung von mehreren Größenordnungen, während
eines Entwicklungsprozesses, verlangt. Große örtliche Gebiete müssen aufgelöst werden, um bei-
spielsweise Korngrenzen und das Wachstum von Dendriten zu beobachten. Dabei entstehen
Teilgebiete, in denen die Teilchendichte weitestgehend konstante Werte annimmt und andere
Teilgebiete, in denen sich periodische, regelmäßig oszillierende Strukturen bilden. Zur effizienten
Behandlung beider Anteile sind dazu angepasste Gitter in einer Diskretisierung notwendig. In
dieser Arbeit wird eine Finite-Elemente Diskretisierung, kombiniert mit einer Rosenbrock Zeit-
diskretisierung, auf die PFC Gleichung angewendet. Der entwickelte Vorkonditionierer erlaubt
es die resultierenden Gleichungssysteme effizient – auch in parallelen Rechnungen mit mehreren
tausend Prozessoren – zu lösen. Darüber hinaus wird untersucht wie sich der Vorkonditionie-
rer verhält, wenn man die PFC Gleichung in verschiedene Richtungen modifiziert und auch die
Orts- und Zeitauflösung variiert. Dies führt letztendlich auf eine Verallgemeinerung des Ansatzes
für eine große Klasse von Evolutionsgleichungen, auch für Modelle höherer Ordnung, wie eine
erhaltende Lifshitz-Petrich Gleichung, die am Ende dieser Arbeit betrachtet wird.
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Summary

In this thesis a preconditioner for the linear system arising from a finite-element discretization
of the Phase-Field Crystal (PFC) equation is developed and analyzed.

The PFC model is established as a phenomenological model for solid state phenomena on an
atomistic scale with dynamics acting on diffusive time scales. It predicts various static patterns
of the arrangement of colloidal particles. Appart from this, it describes the dynamical formation
of these structures. Freezing and crystallization processes, grain-boundary dynamics, nucleation
processes, (dendritic) growth, and grain growth are just a small selection of dynamical phenom-
ena that were analyzed.

The evolution process in the PFC model is described by a partial differential equation arising
as a H−1-gradient flow of an approximation of the Helmholtz free-energy of the particle system.
For growth phenomena and long-time studies, on the one hand, a detailed resolution of time
scales must be provided, e.g., when particles rearrange, during nucleation of the crystal, or in the
freezing transition. On the other hand, the evolution process gets slower and slower. An adaptive
timestepping scheme must be provided that allows for timestep changes of orders of magnitude
during the evolution. Large spatial scales must be resolved, to study grain-boundaries and den-
dritic growth phenomena in the Phase-field Crystal model. There, regions with nearly constant
particle density can be found next to regions with periodic oscillating patterns. Adaptive grids
in the spatial discretization of the equation are necessary, to allow for an efficient solution of
the problem. In this work a finite-element discretization in space, combined with a Rosenbrock
time-discretization is formulated and an efficient preconditioner for the linear system is devel-
oped and analyzed. Variations in the model formulation, and in temporal and spatial resolutions,
may influence the properties of the developed preconditioner. Thus, a numerical study in various
directions is provided.

The developed preconditioner additionally is generalized to a class of higher order equations
in the expansion of the Helholtz free-energy. This allows to construct a preconditioner for the
Cahn-Hilliard, Phase-Field Crystal, and Lifshitz-Petrich equation in the same framework.
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Introduction

T he Phase-Field Crystal (PFC) model was introduced as a phenomenological model for solid
state phenomena on an atomistic scale [7878, 7979] with dynamics acting on diffusive time-

scales. It is formulated in terms of one order-parameter, namely a one-particle number density.
This either leads to a homogeneous field, to describe an isotropic liquid phase, or provides rich
non-constant periodic or symmetric patterns that give rise to various molecular/colloidal crys-
talline phases, such as face centered cubic phase (FCC), body centered cubic phase (BCC),
hexagonal close packed phase (HCP), and columnar phases in three spatial dimensions; and
a triangular phase, honeycomb phase and stripe phase in two spatial dimensions. Apart from
the static patterns, the Phase-Field Crystal model describes the dynamical formation of these
structures. Freezing and crystallization processes, grain-boundary dynamics [7979, 3939, 174174], nu-
cleation processes [2929, 2626, 107107, 3030], (dendritic) growth [9090, 289289, 249249], and grain growth [2727] are
just a small selection of dynamical phenomena that are analyzed using the PFC model. Also
topics in biology were viewed in the context of the Phase-Field Crystal model (see, e.g., [88, 1010]).
An overview about various applications can be found in the recently published review papers
[8585, 2323].

The PFC model can be ranged in between microscopic models, which describe the motion
and interaction of individual particles, and mesoscopic/macroscopic models, which describe the
evolution of a coarse-grained phase-field variable. The microscopic approach, thereby, implements
Newton’s equations of motion, the Langevin equations or stochastically equivalent the Fokker–
Planck or Smoluchowski equation, respectively, for the time evolution of an N -body probability
density. The phase-field description, on the other hand, looses the atomistic details and can
describe only macroscopic phenomena in an effective manner. Apart from the difference in
detailedness of the models, there is a big disparity in the level of numerical complexity of the
approaches. Where the stochastic models have to resolve not only the individual particles by few
to many degrees of freedom, it also needs to resolve temporal scales, ranging from the motion
due to stochastic collisions with solvent molecules to macroscopic motion and arrangement of
thousands of individual items. The phase-field models are advantageous in this context, since
they describe a large number of particles in a coarse-grained continuous field variable. The
evolution of macroscopic structures, which would involve millions to billions of particles, can
thus easily be examined [5858]. In Phase-Field Crystal models one tries to combine the advantages
of both ends of the range, i.e., resolve individual particles and its interactions in a continuum
model on coarse-grained time-scales, that allows not only to handle a big number of particles
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but also to describe the long-time behavior of the system.

Dynamic density functional theory

Basis for PFC models is the dynamic density functional theory (DDFT) [165165, 195195, 215215, 2020, 101101]
that describes the evolution of a one-particle number density %(x, t) by a generalized diffusion
equation

∂t%(x, t) = M0∇ ·
(
%(x, t)∇δFH[%(x, t)]

δ%(x, t)

)
(1)

with M0 a diffusion coefficient and FH the Helmholtz free-energy. Mathematically, this evolution
equation is equivalent to a conserved Wasserstein gradient flow [130130, 131131, 44, 194194] to minimize the
functional FH. A classical result of static density functional theory (DFT) states the existence
of a grand canonical free-energy Ω[µ, %(x)], whose minimizer corresponds to the equilibrium
one-particle density %(x) and, evaluated at this %, the energy represents the corresponding equi-
librium grand canonical free-energy of the inhomogeneous system [8585]. Although the existence
is stated, the form of the functional is unknown. Nevertheless, we have the relation

Ω[µ, %] = FH[%]− µV %̄

with V the volume of the system, µ chemical potential as the thermodynamic conjugate to %, i.e.,
µ = δFH[%]

δ% , with the mean density %̄, and a representation of FH in terms of three contributions,

FH[%] = Fid[%] + Fexc[%] + Fext[%].

The ideal solution part Fid[%] and an external energy part Fext[%] may be given explicitly, whereas
the excess free-energy contribution Fexc[%], which describes the individual particle interactions, is
not known in general. Fext[%] may include external contributions such as a gravitational potential
or wall potentials.

In the DDFT the excess free-energy part is approximated by various expansion. An approxi-
mation that leads to the Phase-Field Crystal model basically is a functional Taylor expansion of
the energy with the second variation further expanded in powers of the density gradient. Details
about the expansion can be found, e.g., in [8585, 268268] and in shortened form in Section 2.1Section 2.1. Instead
of evolving the one-particle density % directly, a reparametrization in terms of a shifted density
variation ψ is used (see Section 2.2.5Section 2.2.5) that finally leads to a dimensionless approximate form of
the functional FH:

FH[%(ψ)] ' Fsh[ψ] =

∫
1

4
ψ4 +

1

2
ψ(r + (1 + ∆)2)ψ dx (2)

with a phenomenological expansion coefficient r. The functional Fsh[ψ] is also known as Swift-
Hohenberg energy [247247]. Minimizing this functional with respect to variations in ψ, using a
constant mobility approximation of the dynamical equation (11), results in the classical PFC
equation formulated by Elder and Grant [7878]

∂tψ = M0∆
(
ψ3 + (r + (1 + ∆)2)ψ

)
. (3)

Solution methods for this 6th order nonlinear parabolic partial differential equation are developed
and analyzed on this work.
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Discretization of the classical PFC equation

The common spatial discretization methods for the PFC equation (33) used in literature are
finite-difference discretizations [5959, 113113, 119119, 3535, 291291, 5454] and spectral methods [251251, 8383], which
are combined with a semi-implicit time-discretization.

The spectral methods, based on a fast Fourier transform in the plane two-dimensional
and three-dimensional domain [112112], or based on a spherical harmonics transform, when dis-
cretized on a spherical surface [179179, 2828], are basically restricted to periodic geometries. Non-
linearities in the equation are difficult to handle and are often simply taken explicitly in the
time-discretization, i.e., an implementation of a pseudo-spectral method. Nonlinear Galerkin
schemes [111111, 136136] and advanced operator splitting techniques [251251], combined with additional
stabilization techniques [8383], might be an improvement to the classical pseudo-spectral approach.
However, the geometric restrictions limit the applicability of these approaches. We will show sim-
ulations in nonperiodic and nonrectangular domains, such as a circular disc (see Section 4.2.4Section 4.2.4),
a triangular sector of a larger domain (see Section 5.2Section 5.2), the surface of a ball (see Section 4.1Section 4.1),
or on a complicated manifold such as a Schwarz-P surface [189189] (see Section 4.1.2Section 4.1.2).

Finite-difference discretizations are very common to discretize PDEs like equation (33) because
of its simplicity in the implementation. Apart from this, efficient linear solvers, like Multi-Grid
methods [119119, 5151, 261261], can easily be adopted to these discretization or arise naturally. Although
easily implementable for simple geometries, complex boundaries make this method also more
complex. Partial differential equations living on surfaces can be implemented [223223, 261261] but
need special techniques and a discretization of the neighborhood of the surface. We here follow
a different approach.

We consider a discretization in space using the finite-element method and a discretization
in time using either a semi-implicit Euler discretization or a Rosenbrock discretization. The
advantage of finite-element schemes is that complex geometries, local refinement, and surface
PDEs can be implemented with little or no modifications of the basic scheme.

Recently, the PFC model has been coupled to other field variables, such as flow [200200, 202202, 258258],
orientational order [33, 203203], and mesoscopic phase-field parameters [138138]. This limits the appli-
cability of spectral methods due to the lack of periodic boundary conditions in these applica-
tions. On the other hand, simulations in complex geometries have been considered, e.g., colloids
in confinements motivated by studies of DDFT [1414], crystallization on embedded manifolds
[3131, 2828, 1212, 228228], or particle-stabilized emulsions, where the PFC model is considered at fluid-
fluid interfaces [1010, 1111]. These applicabilities also limit the use of spectral and finite-difference
methods or make them sometimes even impossible. The finite-element method provides high
flexibility concerning complex geometries and coupling to other partial differential equations.

Solving the linear systems

Basic steps of finite-element methods include refinement and coarsening of a mesh, error estima-
tion, assembling of a linear system and solving the linear system. Most previous finite-element
simulations for the PFC model [2929, 3131, 200200] have implemented direct solvers for the last step,
which however restrict the system size due to the high memory requirements and allow only com-
putations in 2D and small systems in 3D. Well-established solution methods for linear systems,
such as iterative Krylov-subspace solvers, like CG, MINRES, GMRES, TFQMR, BiCGStab, are
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not directly applicable for the PFC equation, do not converge, or converge very slowly, if used
without or with standard preconditioners, like Jacobi or ILU preconditioners.

In this thesis, we propose a block-preconditioner for the discretized PFC equations (33) and its
variants/modifications. The preconditioner is analyzed with respect to convergence of a GMRES
method. Additionally the influence of modifications of the classical equation is investigated.

Structure of the thesis

This thesis is organized as follows: In Chapter 1Chapter 1 the classical PFC equation, as introduced by
Elder et al. [7878], is discretized using finite-elements in space and a Rosenbrock method in time. A
preconditioner for the block linear system is formulated and two variants of its implementation
are discussed. The analysis, based on a spectral transform of the continuous PDE system, is
given and timestep restrictions for the time-discrete equations are found. Numerically, the pre-
conditioner is analyzed for crystallization processes and a study of parallel scalability is shown.

In Chapter 2Chapter 2 a modification of the classical PFC model is introduced. An advected Phase-
Field Crystal model, coupled to the Navier-Stokes equations, is formulated and analyzed. The
influence of the coupling to the flow to the preconditioner is discussed and numerically examined.
A further modification is motivated by the work of [5555], i.e., to allow the description of individual
particles by a Vacancy PFC model. An advected Vacancy PFC model is numerically solved and
applied to test cases examining the sedimentation process of colloidal particles. The arising linear
systems can again be solved using a preconditioned Krylov-subspace method. Numerical studies
on the stability of the preconditioner with respect to the modification of the PFC system are
performed.

Chapter 3Chapter 3 considers a further modification of the classical PFC model. The coupling of trans-
lational density to an orientational order-parameter is developed and numerical simulations are
performed. This coupling introduces a liquid crystal PFC model. The stability of liquid crys-
talline phases and coexistences between those phases are numerically investigated. For two classes
of time-discretizations of the coupled nonlinear PDE system the developed PFC preconditioner
can be applied. The last section of this chapter extends the apolar liquid crystal PFC model to
include a particle polarization, to describe polar liquid crystals. The system of coupled equations
is numerically solved and classical phases are visualized.

The following Chapter 4Chapter 4 restricts the classical and modified PFC equations to an explicitly
or implicitly described surface and to a complex geometry, which additionally can evolve. The
implicit geometric restriction introduces nonconstant factors in all the terms of the PFC equa-
tion. This modification complicates the solution process of the linear system. The preconditioner
is modified accordingly and numerical simulations are carried out. A final formulation of a hy-
drodynamic model incorporates the advected Vacancy PFC model, a Cahn-Hilliard equation to
describe the evolving domain, and a diffuse-domain approach.

In Chapter 5Chapter 5 we recapitulate the PFC preconditioner and extend the approach to a larger
class of equations. The Cahn-Hilliard and Phase-Field Crystal preconditioner can be found as
special cases of a generalized formulation. To test the approach, a higher order equation is exam-
ined, the Quasi-Crystal PFC model, and the general preconditioner is applied and numerically
investigated.

Finally, in Chapter 6Chapter 6 alternative solution method for the Phase-Field Crystal equation are
highlighted and explained. In cooperation with the developed preconditioner or as a separate
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solution approach these methods may be reasonable extensions of current solver methods. Cur-
rently, the developed problem-dependent PFC preconditioner shows higher efficiency and is thus
the method of choice.

The thesis is completed with a conclusion and outlook to further developments in the direc-
tion of PFC preconditioners and alternative solver approaches.





CHAPTER 1

Solving the Phase-Field Crystal equation

W e develop a preconditioner for the linear system arising from a finite-element discretization
of the Phase-Field Crystal (PFC) equation. This has been published in [201201]. The PFC

model serves as an atomic description of crystalline materials on diffusive time scales and thus
offers the opportunity to study long time behavior of materials with atomic details. This requires
adaptive time stepping and efficient time discretization schemes, for which we use an embedded
Rosenbrock method.

To resolve spatial scales of practical relevance, parallel algorithms are also required, which
scale to a large number of processors. The developed preconditioner provides such a tool. It is
based on an approximate factorization of the system matrix and can be implemented efficiently.
The preconditioner is analyzed in detail and has shown to speed up the computation drastically.

1.1 Modelling

We consider the original model introduced in [7878], which is a conserved gradient flow of a Swift-
Hohenberg energy and serves as a model system for a regular periodic wave-like order-parameter
field that can be interpreted as particle density. Here, the Swift-Hohenberg energy is given in a
simplified form:

Fsh[ψ] =

∫
Ω

1

4
ψ4 +

1

2
ψ(r + (1 + ∆)2)ψ dx , (1.1)

where the order-parameter field ψ describes the deviation from a reference density. The param-
eter r can be related to the temperature of the system, and Ω ⊂ Rm, m = 1, 2, 3 corresponds
to the spatial domain. According to the notation in [268268] we consider the H−1-gradient flow of
Fsh, the PFC2-model,

∂tψ = ∆
δFsh[ψ]

δψ
(1.2)
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and a Wasserstein gradient flow [130130] of Fsh, the PFC1-model, as a generalization of (1.21.2),

∂tψ = ∇ ·
(
M(ψ)∇δFsh[ψ]

δψ

)
(1.3)

with a mobility function M(ψ) = ψ−ψmin ≥ 0 with the lower bound 11 ψmin = −1.5. By calculus
of variations and splitting of higher order derivatives, we find a set of second order equations,
which will be analyzed in the subsequent sections:

ψ\ = ψ3 + (1 + r)ψ + 2∆ψ + ∆ψ[ ,

∂tψ = ∇ · (M(ψ)∇ψ\) , in Ω× [0, T ] (1.4)

ψ[ = ∆ψ ,

for a time interval [0, T ]. To close the problem formulation we require an initial condition
ψ(t = 0) = ψ0 in Ω̄ and boundary conditions on ∂Ω, e.g., homogeneous Neumann boundary
conditions

∂nψ = ∂nψ
[ = M(ψ)∂nψ

\ = 0 on ∂Ω.

The H−1-gradient flow as well as the Wasserstein gradient flow lead to conserved dynamics
of the field ψ, in contrast to the non-conserved Swift-Hohenberg equation ∂tψ = −δFsh[ψ]/δψ.
This also explains the name conserved Swift-Hohenberg equation, which is often used in the
literature, cf. [247247, 254254].

1.2 Discrete equations

To transform the partial differential equations (1.41.4) into a system of linear equations, we dis-
cretize in space using finite-elements and in time using a backward Euler discretization as well
as a Rosenbrock discretization scheme.

Let Ω ⊂ Rm be a regular domain (m = 1, 2, 3) with a conforming triangulation Th(Ω)
with h = maxT∈Th(hT ) a discretization parameter describing the maximal element size22 in the
triangulation. We consider simplicial meshes, i.e., made of line segments in 1D, triangles in 2D,
and tetrahedra in 3D. Let

Vh := {v ∈ H1(Ω) ; v|T ∈ Pp(T ), ∀T ∈ Th(Ω)}

be the corresponding finite-element space, with Pp(T ) the space of local polynomials of degree
≤ p, where we have chosen p = 1, 2 in our simulations. In the following we use the notation
P 1, P 2 for the Lagrange finite-element spaces with p = 1 and p = 2, respectively. The problem
(1.41.4) in discrete variational form can be stated as follows: Find ψ\h, ψh, ψ

[
h ∈ L2(0, T ; Vh) with

ψh(t = 0) = ψ0 ∈ L2(Ω), s.t.

(ψ\h − ψ
3
h − (1 + r)ψh, ϑh)Ω + (2∇ψh +∇ψ[h,∇ϑh)Ω

+ (∂tψh, ϑ
′
h)Ω + (M(ψh)∇ψ\h,∇ϑ

′
h)Ω (1.5)

+ (ψ[h, ϑ
′′
h)Ω + (∇ψh,∇ϑ′′h)Ω = 0 , ∀ϑh, ϑ′h, ϑ′′h ∈ Vh ,

1The lower bound ψmin = −1.5 is due to the scaling and shifting of the order-parameter from a physical density
with lower bound 0. See also Section 2.2.5Section 2.2.5 for a detailed derivation of this value.

2The element size hT of a simplex T corresponds to the length of the longest edge in the element.



Solving the Phase-Field Crystal equation 9

with (u, v)Ω :=
∫

Ω u · v dx.

In the following let 0 = t0 < t1 < . . . < tN = T be a discretization of the time interval [0, T ].

Let τk := tk+1 − tk be the timestep width in the k-th iteration, and ψk ≡ ψh(tk), ψ
\
k ≡ ψ\h(tk),

and ψ[k ≡ ψ[h(tk) the discrete functions at time tk. Applying a semi-implicit Euler discretization
to (1.51.5) results in a time and space discrete system of equations as follows.

Let ψ0 ∈ L2(Ω) be given. For k = 0, 1, . . . , N − 1 find ψ\k+1, ψk+1, ψ
[
k+1 ∈ Vh, s.t.

a(e)
(
(ψ\k+1, ψk+1, ψ

[
k+1), (ϑh, ϑ

′
h, ϑ
′′
h)
)

:= (ψ\k+1 − (1 + r)ψk+1, ϑh)Ω + (2∇ψk+1 +∇ψ[k+1,∇ϑh)Ω

+
(
ψk+1, ϑ

′
h

)
Ω

+ (τkM(ψk)∇ψ\k+1,∇ϑ
′
h)Ω

+ (ψ[k+1, ϑ
′′
h)Ω + (∇ψk+1,∇ϑ′′h)Ω

= (ψ3
k, ϑh)Ω +

(
ψk, ϑ

′
h

)
Ω

=:
〈
F (e), (ϑh, ϑ

′
h, ϑ
′′
h)
〉

∀ϑh, ϑ′h, ϑ′′h ∈ Vh.

(1.6)

Instead of taking ψ3
k explicitly, it is pointed out in [2929] that a linearization of this nonlinear

term stabilizes the system and allows for larger timestep widths. Therefore, we replace (ψ3
k, ϑh)Ω

by (3ψ2
kψk+1 − 2ψ3

k, ϑh)Ω. Thus, (1.61.6) is transformed into

a
(
(ψ\k+1, ψk+1, ψ

[
k+1), (ϑh, ϑ

′
h, ϑ
′′
h)
)

:= (ψ\k+1 − (1 + r)ψk+1 − 3ψ2
kψk+1, ϑh)Ω + (2∇ψk+1 +∇ψ[k+1,∇ϑh)Ω

+
(
ψk+1, ϑ

′
h

)
Ω

+ (τkM(ψk)∇ψ\k+1,∇ϑ
′
h)Ω

+ (ψ[k+1, ϑ
′′
h)Ω + (∇ψk+1,∇ϑ′′h)Ω

= (−2ψ3
k, ϑh)Ω +

(
ψk, ϑ

′
h

)
Ω

=:
〈
F, (ϑh, ϑ

′
h, ϑ
′′
h)
〉
, ∀ϑh, ϑ′h, ϑ′′h ∈ Vh.

(1.7)

Let {θi} be a basis of Vh, then we can define the system matrix A and the right-hand-side
vector b, for the linear system Ax = b, as

A =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 , b =

b0

b1

b2

 ,

with each block defined via

[Aij ]kl = a
(
ejθl, eiθk

)
, [bi]j =

〈
F, eiθj

〉
,

where ei is the ith Cartesian unit vector.

Introducing the shortcuts M :=
(
(θj , θi)Ω

)
ij

and K :=
(
(∇θj ,∇θi)Ω

)
ij

for mass and stiffness-

matrix, KM(ψ) :=
(
(M(ψ)∇θj ,∇θi)Ω

)
ij

for the mobility matrix, and for the nonlinear term

N(ψ) :=
(
(−3ψ2θj , θi)Ω

)
ij

, we can express A as

A =

 M −(1 + r)M + N(ψk) + 2K K
τkKM(ψk) M 0

0 K M

 . (1.8)
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We the same way we find that b0 =
(
(−2ψ3

k, θj)Ω

)
j
, b1 = Mψk, and b2 = 0. Using this, we

define a new matrix B := KM−1K to decouple the first two equations from the last equation,
i.e.,

A′ =
[

M −(1 + r)M + N(ψk) + 2K−B
τkKM(ψk) M

]
. (1.9)

With x = (ψ\k+1,ψk+1,ψ
[
k+1)>, x′ = (ψ\k+1,ψk+1)>, and b′ = (b0,b1)>, where the discrete

coefficient vectors correspond to a discretization with the same basis functions as the matrices,
i.e.,

ψh =
∑
i

ψiθi with coefficients ψ = (ψi)i ,

and ψ\,ψ[ in a same manner, we have

(1.71.7) ⇔ Ax = b ⇔ A′x′ = b′, Mψ[k+1 = −Kψk+1.

The reduced system (1.91.9) can be seen as a discretization of a partial differential equation in-
cluding the bi-Laplacian, i.e.,

∂tψ = ∇ · (M(ψ)∇ψ\), with ψ\ = ψ3 + (1 + r)ψ + 2∆ψ + ∆2ψ.

1.2.1 Rosenbrock time-discretization

In several publications higher order time-stepping schemes for the PFC equation were proposed,
considering energy stability and adaptive step-size control, cf. [5959, 119119, 102102, 8383, 3636, 294294, 9797].
Here we apply a more general framework to obtain a time discretization with high accuracy and
stability with an easy step size control. Therefore, we replace the discretization (1.61.6) and (1.71.7)
respectively, by an (embedded) Rosenbrock time-discretization scheme, cf. [219219, 160160, 109109, 190190,
142142, 141141, 207207, 128128, 129129].

Consider the abstract general form of a differential algebraic equation, M∂tx = F[x], with a
linear (mass-)operator M, possibly singular, and a (nonlinear) differential operator F. Using the
notation JF(x)[y] := d

dεF[x + εy]
∣∣
ε=0

for the Gâteaux derivative of F at x in the direction y, we
can write a general Rosenbrock scheme

1

τkc
Myki − JF(xk)[yki ] = F[xki ] +

i−1∑
j=1

cij
τk

Mykj , for i = 1, . . . , s (1.10)

xki = xk +

i−1∑
j=1

aijy
k
j , (ith stage solution)

xk+1 = xk +

s∑
j=1

mjy
k
j , (timestep update) (1.11)

x̂k+1 = xk +
s∑
j=1

m̂jy
k
j

with coefficients c, aij , cij ,mi, m̂i, and timestep width τk. The coefficients mi and m̂i build up
linear-combinations of the intermediate solutions of two different orders. This can be used to
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estimate the timestep error and control the timestep width. Details about step-size control can
be found in [109109, 141141]. The coefficients used for the PFC equation are based on the Ros3Pw
scheme [207207] and are listed in Table 1.1Table 1.1. This W-method has three internal stages, i.e., s =
3, and is strongly A-stable. Interpreted as Rosenbrock-method, it is of order three. It avoids
order reduction when applied to semidiscretized parabolic PDEs and is thus applicable to our
equations.

c = 0.78867513459481287 c11 = −c22 = c
a21 = 2 c21 = −2.53589838486225
a22 = 1.57735026918963 c31 = −1.62740473580836
a31 = 0.633974596215561 c32 = −0.274519052838329
a33 = 0.5 c33 = −0.0528312163512967

m1 = 1.63397459621556 m̂1 = 1.99444650053487
m2 = 0.294228634059948 m̂2 = 0.654700538379252
m3 = 1.07179676972449 m̂3 = m3

Table 1.1 – A set of coefficients for the Ros3Pw Rosenbrock scheme translated into the modified form
of the Rosenbrock method used in (1.101.10). All coefficients not given explicitly are set to zero.

In the case of the PFC system (1.41.4) we have x = (ψ\, ψ, ψ[)> and M = diag(0, 1, 0). The
functional F applied to x is given by

F[x] =

−ψ\ + (1 + r)ψ + 2∆ψ + ∆ψ[

0

−ψ[ + ∆ψ


︸ ︷︷ ︸

FLin[x]

+

 ψ3

∇ · (M(ψ)∇ψ\)
0

 . (1.12)

For the Jacobian of F in the direction y = (dψ\, dψ, dψ[)> we find

JF(x)[y] = FLin[y] +

 3ψ2dψ
∇ · (M(ψ)∇dψ\) +∇ · (dψ∂ψ(M(ψ))∇ψ\)

0


(assuming M(ψ) = ψ − ψmin)

= FLin[y] +

 3ψ2dψ
∇ · (M(ψ)∇dψ\) +∇ · (dψ∇ψ\)

0

 .
By multiplying with test functions ϑ = (ϑ, ϑ′, ϑ′′)> and integrating over Ω, we derive the weak

form of (1.101.10): For i = 1, . . . , s find yki ∈
(
L2(0, T ; Vh)

)3
, s.t.

1

τkc
(Myki ,ϑ)Ω − JF(xk)[yki ,ϑ] = F(xki )[ϑ] +

i−1∑
j=1

cij
τk

(Mykj ,ϑ)Ω , ∀ϑ ∈ (Vh)3 (1.13)
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with the linear form F(·)[·],

F(x)[ϑ] =
[
(−ψ\ + (1 + r)ψ, ϑ)Ω − (2∇ψ +∇ψ[,∇ϑ)Ω − (ψ[, ϑ′′)Ω − (∇ψ,∇ϑ′′)Ω

]
+ (ψ3, ϑ)Ω − (M(ψ)∇ψ\,∇ϑ′)Ω

=: FLin(x)[ϑ] + (ψ3, ϑ)Ω − (M(ψ)∇ψ\,∇ϑ′)Ω

and the bi-linear form JF(·)[·, ·],

JF(x)[y,ϑ] = FLin(y)[ϑ] + (3ψ2dψ, ϑ)Ω − (M(ψ)∇dψ\ + dψ∇ψ\,∇ϑ′)Ω.

Using the definitions of the elementary matrices M,K,KM, and N, from above, and intro-
ducing F(ψ\) :=

(
(θj∇ψ\,∇θi)Ω

)
ij

, we obtain the Rosenbrock discretization in matrix form for
the ith stage iteration: M −(1 + r)M + 2K + N(ψk) K

τkKM(ψk)
1
cM + τkF(ψ\k) 0

0 K M


︸ ︷︷ ︸

AR

yki = bRi , (1.14)

with bRi the assembled right-hand-side vector of (1.131.13), with a factor τk multiplied to the second
component. The system matrix AR in each stage of one Rosenbrock time iteration is very similar
to the matrix derived for the simple backward Euler discretization in (1.81.8), up to a factor 1

c in
front of a mass-matrix and the derivative of the mobility term F. The latter can be removed in
the case of the PFC2 model (1.21.2), where F = 0 and KM = K.

1.3 Precondition the linear systems

To solve the linear system Ax = b, or ARy = bR, linear solvers must be applied. Since direct
solvers, like UMFPACK [6565], MUMPS [1616], or SuplerLU DIST [146146], suffer from fast increase
of memory requirements and bad scaling properties for massively parallel problems33, iterative
solution methods are required. The system matrix A, or AR respectively, is non-symmetric,
non-positive definite and non-normal, which restricts the choice of applicable solvers. We here
use a GMRES algorithm [226226] or its flexible variant FGMRES [224224], to allow for preconditioners
with (nonlinear) iterative inner solvers, like a CG method. In [236236] on overview about recent
developments in Krylov-subspace methods was given that highlights the necessity of flexible
variants of various solvers.

Instead of solving the linear system Ax = b directly, we consider the modified system
AP−1(Px) = b, i.e.,a right preconditioning of the matrix A. A natural requirement for the
preconditioner P is that it should be simple and fast to solve P−1v for arbitrary vectors v, since
it is applied to the Krylov basis-vectors in each iteration of the (F)GMRES method.

We propose a block-preconditioner P for the 2× 2 upper left block matrix A′ of A based on
an approach similar to a preconditioner developed for the Cahn-Hilliard equation [4949]. Therefore,
we first simplify the matrix A′ and the corresponding reduced system AR′ of AR, respectively,

3In Section 6.1Section 6.1 an alternative direct approach is explained, which reduces the amount of required memory.
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by considering a fixed timestep width τk = τ and using a constant mobility approximation,
i.e., KM ≈ M0K, with M0 = 〈M(ψ)〉 the mean of the mobility coefficient M(ψ), and F = 0.
For simplicity, we develop the preconditioner for the case M0 = 1 and c = 1 only44. For small
timestep widths τ the semi-implicit Euler time-discretization (1.61.6) is a good approximation of
(1.141.14), so we neglect the non-linear term N(ψ). What remains is the reduced system

A′′ :=
[

M −(1 + r)M + 2K−B
τK M

]
.

By adding a small perturbation to the diagonal of A′′, we find a matrix having an explicit
triangular block-factorization. This matrix, proposed as a preconditioner for the original matrix
A′, reads

P :=

[
M 2K−B
τK M− δK + δB

]
=

[
M 0
τK M + δK

] [
I M−1(2K−B)
0 M−1(M− 2δK + δB)

]
(1.15)

with δ :=
√
τ . In each (F)GMRES iteration, the preconditioner is applied to a vector (b0,b1)>,

which means solving the linear system Px = b, in four steps:

(1) My0 = b0 , (2) (M + δK)y1 = b1 − τKy1 ,

(3) (M− 2δK + δB)x1 = My1 , (4) x0 = y0 +
1

δ
(y1 − x1).

Since the overall system matrix A has a third component, which was removed for the construction
of the preconditioner, the third component b2 of the vector has to be preconditioned as well.
This can be performed by solving:

(5) Mx2 = b2 −Kx1.

In step (3) we have to solve

Sx1 := (M− 2δK + δKM−1K)x1 = My1 , (1.16)

which requires special care, as forming the matrix S explicitly is no option, as the inverse of the
mass-matrix M is dense and thus the matrix S, as well. In the following subsections we give two
approximations to solve this problem.

1.3.1 Diagonal approximation of the mass matrix

Approximating the mass-matrix by a diagonal matrix leads to a sparse approximation of S.
Using the ansatz M−1 ≈ diag(M)−1 =: M−1

D the matrix S can be approximated by

SD := (M− 2δK + δKM−1
D K).

By estimating the eigenvalues of the generalized eigenvalue problem λSDx = Sx we show,
similarly as in [4848], that the proposed matrix is a good approximation.

4In Section 4.2.4Section 4.2.4 a variant of the preconditioner is analyzed that includes a non-trivial mobility.



14 1.3. Precondition the linear systems

Theorem 1. The eigenvalues λ of the generalized eigenvalue problem λSDx = Sx are bounded
by bounds of the eigenvalues µ of the generalized eigenvalue problem µMDy = My for mass-
matrix and diagonal approximation of the mass-matrix.

Proof. We follow the argumentation of [4848, Section 3.2].

Using the matrices D̂ := M
1
2 M−1

D M
1
2 and K̂ := M− 1

2 KM− 1
2 we reformulate the eigenvalue

problem λSDx = Sx as

λM
1
2 (I− 2δK̂ + δK̂D̂K̂)M

1
2 x = M

1
2 (I− 2δK̂ + δK̂K̂)M

1
2 x. (1.17)

Multiplying from the left with x>, dividing by ‖M
1
2 x‖2 and defining the normalized vector

y := M
1
2 x/‖M

1
2 x‖ results in a scalar equation for λ:

λ(1− 2δk + δk2d) = 1− 2δk + δk2

with the Rayleigh quotients k = y>K̂y/(y>y) and d = y>D̂y/(y>y). Assuming that (1−2δk+
δk2d) 6= 0 we arrive at

λ =
1− 2δk + δk2

1− 2δk + δk2d
,

where the difference in the highest order terms of the rational function is the factor d. From the
definition of d and D̂, bounds are given by the bounds of the eigenvalues of µMDv = Mv.

In [278278] concrete values are provided for linear and quadratic Lagrangian finite-elements on
triangles and linear Lagrangian elements on tetrahedra. For the latter, the bound d ∈ [0.3924, 2.5]
translates directly to the bound for λ, i.e., λ ∈ [0.3924, 2.5], and thus SD provides a reasonable
approximation of S.

Remark 1. Other diagonal approximations based on lumped mass-matrices could also be used,
which however would lead to different eigenvalue bounds. C

1.3.2 Relation to a Cahn-Hilliard system

An alternative to the diagonal approximation can be achieved by using the similarity of step (3)
in the preconditioning with the discretization of a Cahn-Hilliard equation [5252, 4949]. This equation
can be written using higher order derivatives:

∂tc = ∆(c3)−∆c− η∆2c ,

with η a parameter related to the interface thickness. For an Euler discretization in time with
timestep width τ ′ and finite-element discretization in space as above, we find the discrete equa-
tion (

M− τ ′K + τ ′ηB− τ ′N′(ck)
)
ck+1 = Mck.

Setting η := 1
2 and τ ′ := 2δ, and neglecting the Jacobian operator N′, we recover (1.161.16). A

preconditioner for the Cahn-Hilliard equation (see [4949, 4848, 2424]) thus might help to solve the
equation in step (3), which we rewrite as a block system[

M M− ηK
τ ′K M

](
∗
x1

)
=

(
0

My1

)
, (1.18)
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with Schur complement S. Using the proposed inner preconditioner Â0 of [4949, p. 13]:

Â0 :=

[
M −ηK
τ ′K M + 2

√
τ ′ηK

]
,

with Schur complement SCH := M + 2
√
τ ′ηK + τ ′ηKM−1K as a direct approximation of (1.181.18)

and (1.161.16), i.e.,
SCHx1 = (M + 2

√
δK + δKM−1K)x1 = My1 , (1.19)

we arrive at a simple two step procedure for step (3):

(3.1) (M +
√
δK)z = My1 , (3.2) (M +

√
δK)x1 = Mz.

With the following theorem it is shown that for small timestep widths τ the matrix SCH is
indead a good approximation of S.

Theorem 2. The eigenvalues λ of the generalized eigenvalue problem λSCHx = Sx satisfy

λ ∈ [(1−
√
δ)/2, 1].

Proof. We follow the proof of [193193, Theorem 4] and denote by λ the eigenvalue of S−1
CHS with the

corresponding eigenvector x. We have M symmetric and positive definite and hence I+
√
δM−1K

positive definite and thus invertible.

S−1
CHSx = λx

⇒ (M + 2
√
δK + δKM−1K)−1(M− 2δK + δKM−1K)x = λx

⇒ (I +
√
δM−1K)−2

(
I− 2δM−1K + δ(M−1K)2

)
x = λx.

Thus, for each eigenvalue µ of M−1K we have µ ∈ R≥0 and

λ(µ) := (µ2 + 2δµ+ δ)(µ+
√
δ)−2

an eigenvalue of S−1
CHS and since M−1K is similar to M1/2M−1KM−1/2, which is symmetric,

all eigenvalues are determined.
With algebraic arguments and

√
δ > 0 we find

λ(µ) ≤ µ2 + (
√
δ)2

(µ+
√
δ)2
≤ 1

and ∇λ = 0 for µ, δ ↘ 0. This leads to the lower bound 1−
√
δ

2 ≤ λ(µ).

We can write the matrix P = P(S) in terms of the Schur complement matrix S:

P(S) =

[
M δ−1(M− S)
τK δK + S

]
. (1.20)

Inserting SCH instead of S gives the precondition-matrix for the Cahn-Hilliard approximation

PCH := P(SCH) =

[
M −2

√
δK−B

τK M + (δ + 2
√
δ)K + δB

]
.
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1.4 Convergence analysis of the Krylov-subspace method

To analyze the proposed preconditioners for the GMRES algorithm, we have a look at the norm
of the residuals rk(A) = b −Axk of the approximate solution xk obtained in the k-th step of
the GMRES algorithm. In our studies, we are interested in estimates of the residual norm of the
form

‖rk‖
‖r0‖

= min
p∈Πk

‖p(A)r0‖
‖r0‖

≤ min
p∈Πk

‖p(A)‖2 (1.21)

with Πk := {p ∈ Pk : p(0) = 1} and r0 the initial residual. The right-hand side corresponds to an
ideal-GMRES bound that excludes the influence of the initial residual. In order to get an idea of
the convergence behavior, we have to estimate/approximate the right-hand-side term by values
that are attainable by analysis of A. Replacing A by AP−1 we hope to get an improvement in
the residuals.

A lower bound for the right-hand side of (1.211.21) can be found by using the spectral mapping
theorem p(σ(A)) = σ(p(A)), as

min
p∈Πk

max
λ∈σ(A)

|p(λ)| ≤ min
p∈Πk

‖p(A)‖2 (1.22)

(see [260260, 7171]) and an upper bound can be stated by finding a set S(A) ⊂ C associated with A,
so that

min
p∈Πk

‖p(A)‖2 ≤ C min
p∈Πk

max
λ∈S(A)

|p(λ)| , (1.23)

where C is a constant that depends on the condition number of the eigenvector matrix, the
ε-pseudospectra of A, or on the fields of values of A.

Both estimates contain the min-max value of p(λ) on some set S. In [209209, 7171] it is shown
that the limit

lim
k→∞

[
min
p∈Πk

max
λ∈S
|p(λ)|

]1/k

=: ρS

exists, where ρS is called the estimated asymptotic convergence factor related to the set S. Thus,
for large k we expect a behavior for the right-hand side of (1.211.21) like

ρkσ(A) . min
p∈Πk

‖p(A)‖2 . CρkS(A).

The tilde indicates that this estimate only holds in the limit k →∞.

In the next two sections, we will summarize known results on how to obtain the asymptotic
convergence factors ρS and the constant C in the approximation of the relative residual bound.

1.4.1 The convergence prefactor

The constant C plays an important role in the case of non-normal matrices, as pointed out by
[8484, 260260], and can dominate the convergence in the first iterations. It is shown in Section 1.5Section 1.5 that
the linear part of the operator matrix related to A is non-normal and also the preconditioned
operator related to Q := AP−1 is non-normal. Thus, we have to take a look at this constant.
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Let V be the matrix of normalized right eigenvectors of A and Λ a diagonal matrix containing
the eigenvalues on its diagonal. If A is diagonalizable, i.e., A = VΛV−1, then

min
p∈Πk

‖p(A)‖2 ≤ κ(V) min
p∈Πk

max
λ∈σ(A)

|p(λ)| (1.24)

holds true, with the condition number κ(V) = ‖V‖2‖V−1‖2 of the eigenvector matrix (see, e.g.,
[8484]). Thus the constant is given by C ≡ κ(V). If the matrix is not diagonalizable this estimate
is not applicable.

As can be seen in Figure 1.1Figure 1.1 the convexification of σ(A) contains the origin. It follows that

0 ∈W (A) :=

{
x∗Ax

x∗x

∣∣∣∣ x ∈ C3,x 6= 0

}
with W (A) the field of values of A. This set is convex and contains σ(A). So known convergence
bounds related to the field of values can not be used.

An estimate of the convergence constant, applicable for general non-normal matrices, is
related to the ε-pseudospectrum σε(A) of the matrix A. This can be defined by the spectrum
of a perturbed matrix [260260, 8484]

σε(A) :=
{
z ∈ C

∣∣ z ∈ σ(A + E), ‖E‖2 ≤ ε
}
.

Let Γε := ∂σε be an union of Jordan curves approximating the boundary of σε, then

min
p∈Πk

‖p(A)‖2 ≤
|Γε|
2πε

min
p∈Πk

max
λ∈Γε
|p(λ)| ≤ |Γε|

2πε
min
p∈Πk

max
λ∈σε(A)

|p(λ)|, (1.25)

and thus C ≡ |Γε|
2πε , with |Γε| the length of the curve Γε [260260]. This estimate is approximated,

using the asymptotic convergence factor for large k, by

min
p∈Πk

‖p(A)‖2 .
|Γε|
2πε

ρkΓε ≤
|Γε|
2πε

ρkσε(A). (1.26)

This constant gives a first insight into the convergence behavior of the GMRES method for
the PFC matrix A and the preconditioned matrix Q.

1.4.2 The asymptotic convergence factor

The asymptotic convergence factor ρS , where S is a set in the complex plane, e.g., S = σ(A),
or S = σε(A), can be estimated by means of potential theory [7171, 137137]. Therefore, we have
to construct a conformal mapping Φ : C → C of the exterior of S to the exterior of the unit
disk with Φ(∞) =∞. We assume that S is connected. Otherwise, we will take a slightly larger
connected set. Having S ⊂ C \ {0} the convergence factor is then given by

ρS =
1

|Φ(0)|
. (1.27)

Let S = [α, β] be a real interval with 0 < α < β and κ := β
α , then a conformal mapping from

the exterior of the interval to the exterior of the unit circle is given by

Φ(z) =
2z − κ− 1− 2

√
z2 − (κ+ 1)z + κ

κ− 1
, (1.28)
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(see [7171]55), and gives the asymptotic convergence factor

ρ[α,β] =

√
κ− 1√
κ+ 1

, (1.29)

which is a well known convergence bound for the CG method for symmetric positive definite
matrices with κ = λmax

λmin
the spectral condition number of the matrix A.

By using Chebyshev polynomials an exact representation of the min-max value in the case
of intervals can be formulated (see [225225]),

min
p∈Πk

max
λ∈S0

|p(λ)| = 2
ρk[α,β]

1 + ρ2k
[α,β]

< 2ρk[α,β] ,

where the difference is of order O(ρ2k
[α,β]).

In the next section, we will apply the given estimates for the asymptotic convergence factor
and for the constant C to the Fourier transform of the operators that define the PFC equation,
in order to get an estimate of the behavior of the GMRES solver.

1.5 Spectral analysis of the preconditioner

We analyze the properties and quality of the proposed preconditioner by means of a Fourier anal-
ysis, following the approach of [9898]. We therefore consider an unbounded or periodic domain Ω,
respectively and introduce continuous operators A,A0, and P associated with the linear part FLin

of (1.121.12), the linear part of the 6th order non-splitted version of (1.21.2), and the preconditioner,
respectively, for M(ψ) ≡ 1:

A[x] :=

ψ\ − (1 + r)ψ − 2∆ψ −∆ψ[

−τ∆ψ\ + ψ

ψ[ −∆ψ

 ,
A0[ψ] := ψ − τ∆

(
(1 + r)ψ + 2∆ψ + ∆2ψ

)
with x = (ψ\, ψ, ψ[). The operator that represents the preconditioner reads

P[x] :=

 ψ\ − 2∆ψ −∆2ψ
−τ∆ψ\ + ψ − δ∆ψ + δ∆2ψ

ψ[ −∆ψ

 .
Using the representation of P(S) in (1.201.20), we can also formulate the operator that determines
the Cahn-Hilliard approximation of P by inserting SCH:

PCH[x] :=

 ψ\ + 2
√
δ∆ψ −∆2ψ

−τ∆ψ\ + ψ + (δ + 2
√
δ)∆ψ + δ∆2ψ

ψ[ −∆ψ

 .
5In [7171] the sign of the square root is wrong and thus the exterior of the interval is mapped to the interior of

the unit circle. In formula (1.281.28) this has been corrected.
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We denote by k = (k1, k2, k3) the wave vector with k2 = k2
1 +k2

2 +k2
3. The Fourier transform

of a function u = u(r) will be denoted by û = û(k) and is defined as

F : u(r) 7→ û(k) =

∫
R3

e−i(k·r)u(r) dr.

Using the inverse Fourier transform, the operators A,A0,P, and PCH, applied to x and ψ re-
spectively, can be expressed as

A[x] = F−1(Ax̂), A0[ψ] = F−1(A0ψ̂), P[x] = F−1(Px̂), and PCH[x] = F−1(PCHx̂)

with x̂ = (ψ̂\, ψ̂, ψ̂[) and A0,A,P, and PCH the symbols of A0,A,P, and PCH, respectively. These
symbols are written in terms of the wave vector k:

Ax̂ =

 1 −(1 + r) + 2k2 k2

τk2 1 0
0 k2 1


ψ̂\ψ̂
ψ̂[

 , (1.30)

A0ψ̂ =
(
1 + τ [(1 + r)k2 − 2k4 + k6]

)
ψ̂, (1.31)

Px̂ =

 1 2k2 − k4 0
τk2 1− δk2 + δk4 0
0 k2 1


ψ̂\ψ̂
ψ̂[

 , (1.32)

PCHx̂ =

 1 −2
√
δk2 − k4 0

τk2 1 + (δ + 2
√
δ)k2 + δk4 0

0 k2 1


ψ̂\ψ̂
ψ̂[

 . (1.33)

In Figure 1.1Figure 1.1 the eigenvalue symbol curves of A restricted to a bounded range of frequencies,
together with the distribution of eigenvalues of an assembled matrix66 A, using quadratic finite-
elements on a periodic tetrahedral mesh with grid size h = π/4, is shown. The qualitative
distribution of the eigenvalues is similar for symbol curves and assembled matrices and changes
as the timestep width increases.

For small τ , the origin is excluded by the Y-shape profile of the spectrum. Increasing τ leads
to a surrounding of the origin. This does not necessarily imply a bad convergence behavior.

1.5.1 Critical timestep width

For larger timestep widths τ we can even get the eigenvalue zero in the continuous spectrum,
i.e., the time-discretization gets unstable. In the following theorem this is analyzed in detail and
a modification is proposed that shifts this critical timestep width limit. This modification will
be used in the rest of the paper

6Since a finite-element mass-matrix has eigenvalues far from the continuous eigenvalue 1, depending on the
finite-elements used, the grid size and the connectivity of the mesh, the overall spectrum of A (which contains
mass-matrices on the diagonal) is shifted on the real axis. In order to compare the continuous and the discrete

spectrum, we have therefore considered the diagonal preconditioned matrix Â = diag(A)−1A that is a blockwise
diagonal scaling by the inverse of the diagonal of mass-matrices.
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eigenvalues of an assembled FEM matrix
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Figure 1.1 – Eigenvalues of the diagonally preconditioned finite-element matrix Â = diag(A)−1A, i.e.,
a discretization of the continuous operator A multiplied with the inverse of its diagonal, and the three
eigenvalues of the symbol A visualized as restricted symbol curves. Left: Spectrum for timestep width
τ = 0.1, Right: Spectrum for timestep width τ = 1.

Theorem 3. Let A0 be given as in (1.311.31) and r < 0 then the spectrum σ(A0) contains zero in
case of the critical timestep width

τ ≥ τ∗ :=
27

2(
√
α− 1)(

√
α+ 2)2

(1.34)

with α = 1− 3r.

Let ψ̄ ∈ R. The spectrum of the modified operator Â0, given by

Â0 :=
(
1 + τ [(3ψ̄2 + 1 + r)k2 − 2k4 + k6]

)
, (1.35)

contains zero only in the case of ψ̄2 < −r
3 . Then the critical timestep width is given by (1.341.34)

with α = 1− 3r − 9ψ̄2.

Remark 2. The modified operator Â0 can be derived by linearizing ψ3 around a constant ref-
erence density ψ̄:

ψ3 ≈ 3ψ̄2ψ − 2ψ̄3.

Adding this as an approximation of the nonlinear term to the system (1.311.31) leads to the operator
symbol (1.351.35). C

Remark 3. If we take ψ̄ as the constant mean value of ψ over Ω, where r has the physical
meaning of an undercooling of the system, then the relation |ψ̄| =

√
−r/3 is related to the

solid-liquid transition in the phase-diagram of the PFC model, i.e., |ψ̄| >
√
−r/3 leads to stable

constant solutions, interpreted as a liquid phase, and |ψ̄| <
√
−r/3 leads to an instability of the

constant phase, interpreted as a crystalline state. An analysis of the stability condition can be
found in [5959, 7979] among others. C
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Remark 4. In [279279, 119119] an unconditionally stable discretization is provided that changes the
structure of the matrix, i.e., the negative 2k4 term is moved to the right-hand side of the equation.
In order to analyze also the Rosenbrock scheme we cannot take the same modification into
account. The modification shown here is a bit similar to the stabilization proposed in [8383], but
the authors have added a higher order term Ck4 instead of the lower order term C ′k2 in (1.351.35).
C

Proof. (of Theorem 3Theorem 3). We analyze the eigenvalues of Â0 and get the eigenvalues of A0 as a
special case for ψ̄ = 0. The eigenvalue symbol Â0 gets zero whenever

Â0 = 0 ⇔ τ =
−1

(3ψ̄2 + 1 + r)k2 − 2k4 + k6
.

The minimal τ ∈ R>0, denoted by τ∗, that fulfills this equality is reached at

k2 =
2

3
+

1

3

√
1− 3r − 9ψ̄2 =:

2

3
+

1

3

√
α.

Inserting this into τ gives

τ∗ :=
27

2(
√
α− 1)(

√
α+ 2)2

.

We have α ≥ 0 for |ψ̄| ≥ 1
3

√
1− 3r and τ∗ > 0 ⇔ α > 1 ⇔ ψ̄2 > −r

3 by simple algebraic
calculations.

On account of this zero eigenvalue, we restrict the spectral analysis to small timestep widths
τ . For r = −0.35, as in the numerical examples below, we get the timestep width bound 0 <
τ < τ∗ ≈ 2.6548 for the operator A0 and with ψ̄ = −0.34 we have 0 < τ < τ∗ ≈ 312.25 for
Â0, hence a much larger upper bound. In the following, we will use the modified symbols for all
further calculations, i.e.,

Â =

 1 −(3ψ̄2 + 1 + r) + 2k2 k2

τk2 1 0
0 k2 1

 , (1.36)

and remove the hat symbol for simplicity, i.e., Â → A, Â0 → A0.
Calculating the eigenvalues of the preconditioner symbol Q := AP−1 and QCH := AP−1

CH

directly gives the sets

σ(Q) =

{
1, 1,

τ(k6 − 2k4 + (3ψ̄2 + 1 + r)k2) + 1

τk6 + (
√
τ − 2τ)k4 −

√
τk2 + 1

∣∣∣ k ∈ Rm
}

(1.37)

σ(QCH) =

{
1, 1,

τ(k6 − 2k4 + (3ψ̄2 + 1 + r)k2) + 1

τk6 + (
√
τ + 2τ3/4)k4 + (

√
τ + 2τ1/4)k2 + 1

∣∣∣ k ∈ Rm
}

(1.38)

with values all on the real axis (for τ > 0). Similar to the analysis of A0 we get a critical
timestep width, i.e., eigenvalues zero, for τ ≥ τ∗. The denominator of the third eigenvalue of
σ(QCH) is strictly positive, but the denominator of σ(Q) can reach zero. This would lead to
bad convergence behavior, since divergence of this eigenvalue would lead to divergence of the
asymptotic convergence factor in (1.291.29).
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The critical timestep width, denoted by τ \, that allows a denominator with value zero is
given by τ = (−k4 +2k2)−2, which is minimal positive for k2 = 1 and gives τ \ = 1. Thus, for the
preconditioner P we have to restrict the timestep width to τ ∈ (0,min(τ \, τ∗)). This restriction
is not necessary for the preconditioner PCH.

1.5.2 The asymptotic convergence factor

Since the third eigenvalue of Q in (1.371.37) and QCH in (1.381.38) is a real interval ⊂ R+, for τ in the
feasible range (0,min(τ \, τ∗)), we can use formula (1.291.29) to estimate an asymptotic convergence
factor for the lower bound on minp∈Πk ‖p(Q∗)‖2. For fixed r = −0.35 and various values of ψ̄
minimum and maximum of (1.371.37) and (1.381.38) are calculated numerically. Formula (1.291.29) thus
gives the corresponding estimated asymptotic convergence factor (see the left plot of Figure 1.2Figure 1.2).
For step widths τ less than 1 we have the lowest convergence factor for the operator Q and the
largest for the original operator A0. The operator QCH has slightly greater convergence factor
than Q but is more stable with respect to an increase in timestep width.

The stabilization term 3ψ̄2 added to A0 and A in (1.351.35) and (1.361.36) respective, influences the
convergence factor of A0 and Q only slightly, but the convergence factor of QCH is improved a
lot, i.e. the critical timestep width is shifted toward positive infinity.

The upper bounds on the convergence factor are analyzed in the next section.
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Figure 1.2 – Left: Asymptotic convergence factor for operators A0,Q, and QCH. In dashed lines, the
dependence on the mean density ψ̄-modification (1.351.35) is shown. Right: Comparison of the convergence
factor related to the spectrum and ε-pseudospectrum is shown. This corresponds to lower and upper
bounds of the actual asymptotic convergence factor.

1.5.3 Analysis of the pseudospectrum

As can be seen by simple calculations, the symbol A is non-normal:(
A>A−AA>

)
2,0

= k2
(
(3ψ̄2 + 1 + r)− 2k2

)
6= 0
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for a matrix entry at row 2 and column 0. For slightly more complex calculations it can be shown
that also Q := AP−1 and QCH := AP−1

CH are non-normal:(
Q>Q−QQ>

)
2,2

=
(
Q>CHQCH −QCHQ>CH

)
2,2

= k4 6= 0.

For non-normal matrices we have to analyze the ε-pseudospectrum in order to get an estimate
of convergence bounds for the GMRES method, as pointed out in Section 1.4.1Section 1.4.1.

Using the Matlab toolbox Eigtool provided by [288288], we can calculate the pseudospectra
σε and approximations Γε of its boundaries with single closed Jordan curves for all wave-numbers
ki ∈ [0, kmax]. The maximal frequency used in the calculations is related to the grid size h of
the corresponding triangulation, kmax = π

h . In all the numerical examples below, we have used
a grid size h = π

4 that can resolve all the structures sufficiently well, and thus we get kmax = 4,
which leads to ‖k‖max =

√
mkmax.

The ε-pseudospectrum of Q and QCH can be seen in Figure 1.3Figure 1.3 for various values of ε. The
pseudospectrum of QCH gets closer to the origin than that of Q, since the eigenvalues get closer
to the origin as well. The overall structure of the pseudospectra is very similar.

� = 10

�4

� = 10

�3:7

� = 10

�3:4

� = 10

�3:1

� = 10

�2:8

� = 10

�2:5

0 0:5 1 1:5

�0:4

�0:2

0

0:2

0:4

<e

=

m

0 0:5 1 1:5

�0:4

�0:2

0

0:2

0:4

<e

=

m

Figure 1.3 – ε-pseudospectra of the preconditioned matrices for various values of ε. Left: σε(Q), Right:
σε(QCH), for τ = 0.1 and k in the restricted range [0, |k|max]. The dashed lines correspond to the zero-axis
and indicate the origin.

For the convergence factor corresponding to the pseudospectra, we compute the inverse
conformal map Ψ = Φ−1 of the exterior of the unit disk to the exterior of a polygon S0 ap-
proximating the set S = σε, by the Schwarz-Christoffel formula, using the SC Matlab toolbox
[7373, 7272]. A visualization of the inverse map Ψ for the pseudospectrum of A and Q can be found
in Figure 1.4Figure 1.4.

Evaluating the asymptotic convergence factor depending on the ε-pseudospectrum of the
matrices is visualized in Figure 1.5Figure 1.5. The calculation is performed for fixed timestep width τ = 0.1
and parameters r = −0.35 and ψ̄ = 0.

Increasing ε increases the radius of the sphere like shape around point 1. For a simple disc the
convergence factor is proportional to the radius (see [7171]), thus we find increasing convergence
factors also for our disc with the tooth. When ε gets too large the pseudospectrum may contain
the origin that would lead to useless convergence bounds, since then ρσε > 1 in (1.271.27). If ε gets
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Figure 1.4 – Inverse conformal map Ψ of the unit disk to the exterior of a polygon enclosing the ε-
pseudospectrum of A and Q for one ε and a restricted range of frequencies. For both plots the ε value is
chosen small enough to have 0 in the exterior of the peudospectrum.

too small, the convergence constant C in (1.251.25) is growing rapidly, since |Γε| is bounded from
below by the eigenvalue interval length, i.e., |Γε| ≤ 2(β−α) = 2

(
max(σ(Q))−min(σ(Q))

)
, and

we divide by ε. Thus, the estimates also are not meaningful in the limit ε→ 0.

An evaluation of the constant C for various values ε can be found in the left plot of Figure 1.5Figure 1.5.
It is a log-log plot with constants in the range [102, 104].

For all ε > 0 the upper bound (1.251.25) is valid, so we have chosen ε = 10−3 and plotted
the resulting estimated asymptotic convergence factor in relation to the lower bound, i.e., the
convergence factor corresponding to the spectrum of the matrices, in the right plot of Figure 1.2Figure 1.2.
The upper bound is just slightly above the lower bound. Thus, we have a convergence factor
for Q that is in the range 0.2 − 0.3 (for τ = 0.1 and r = −0.35) and for the matrix QCH in
the range 0.45− 0.55, that is much lower than the lower bound of the convergence factor of A0

(approximately 0.99).

So both the preconditioner P and PCH improve the asymptotic convergence factor a lot and
we expect fast convergence also in the case of discretized matrices.

1.6 Numerical studies

We now demonstrate the properties of the preconditioner numerically. We consider a simple
crystallization problem in 2D and 3D, starting with an initial grain in a corner of a rectangular
domain. The solution of the PFC equation in the crystalline phase is a periodic wave-like field
with specific wave length and amplitude. In [7979, 124124] a single mode approximation for the PFC
equation in 2D and 3D is provided. These approximations show a wave length of d := 4π/

√
3,

corresponding to a lattice spacing in a hexagonal crystal in 2D and a body-centered cubic
crystal in 3D. We define the domain Ω as a rectangle/cube with edge length, a multiple of the
lattice spacing: Ω = [N ·d ]2,3, with N ∈ N>0. Discretizing one wave with 10 gridpoints leads to a
sufficient resolution. Our grid size therefore is h = d

10 ≈
π
4 throughout the numerical calculations.
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Figure 1.5 – Left: Estimated convergence prefactor C := |Γε|
2πε for the matrix Q = AP−1 and QCH =

AP−1
CH with r = −0.35 and τ = 0.12, plotted in logarithmic scale for ε and C. Right: Estimated asymptotic

convergence factor ρσε(Q) = |Φσε(Q)(0)|−1 and ρσε(QCH) analogously. The legend in the left plot is valid
also for the right plot.

We use regular simplicial meshes, with h corresponding to the length of an edge of a simplex
for linear elements and twice its length for quadratic elements, to guarantee the same number
of degrees of freedom (DOFs) within one wave.

1.6.1 General problem setting and results

As system parameters we have chosen values corresponding to a coexistence of liquid and crys-
talline phases: 2D (ψ̄ = −0.35, r = −0.35), 3D (ψ̄ = −0.34, r = −0.3). Both parameter sets are
stable for large timestep widths, with respect to Theorem 3Theorem 3. Figure 1.6Figure 1.6 shows snapshots of the
coexistence regime of liquid and crystal is shown for 2D and 3D calculations.

Figure 1.6 – Intermediate state of growing crystal, starting from one corner of the domain. Shown is the
order parameter field ψ. Left: Ω = [20d]2, number of DOFs: 263,169, calculated on 1 processor; Right:
Ω = [12d]3, number of DOFs: 101,255,427, calculated on 3,456 processors.

In steps (1), (2), (3), and (5) of the preconditioner solution procedure, linear systems have
to be solved. For this task we have chosen iterative solvers with standard preconditioners and
parameters as listed in Table 1.2Table 1.2. The PFC equation is implemented in the finite-element frame-
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work AMDiS [273273, 216216] using the linear algebra backend MTL4 [103103, 6767, 104104] in sequential
calculations and PETSc [3232] for parallel calculation for the block-preconditioner (1.151.15) and the
inner iterative solvers. As an outer solver, a FGMRES method is used with restart parameter
30 and modified Gram-Schmidt orthogonalization procedure. The spatial discretization is done
using Lagrange elements of polynomial degree p = 1, 2 and as time discretization the implicit
Euler or the described Rosenbrock scheme is used.

precon. steps matrix solver precond. rel. tolerance

(1),(5) M PCG diag 10−3

(2) M + δK PCG diag 10−3

(3.1), (3.2) M +
√
δK PCG diag 10−3

(3) M− 2δK + δKM−1
D K PCG diag 20 (iter.)

Table 1.2 – Parameters for the inner solvers of the preconditioner with Cahn-Hilliard approximation
SCH and in the last line for the diagonal approximation SD of the matrix S. The preconditioner named
‘diag’ indicates a Jacobi preconditioner. We have solved each inner system up to a relative solver tolerance
given in the last column of the table. Only in the case of the matrix SD it is more efficient to use a fixed
number of iteration.

The first numerical test compares a PFC system solved without a preconditioner to a system
solved with the developed preconditioner. In Figure 1.7Figure 1.7 the relative residual in the first timestep
of a small 2D system is visualized. For increasing timestep widths the FGMRES solver without
preconditioner (dashed lines) shows a dramatic increase of the number of iterations up to a
nearly stagnating curve for timestep widths greater than 0.5. On the other hand, we see in solid
lines the preconditioned solution procedure that is much less influenced by the timestep widths
and reaches the final residual within 20 to 30 iterations. A detailed study of the influence of the
timestep width can be found below. For larger systems, respective systems in 3D, we get nearly
no convergence for the non-preconditioned iterations.

Next, we consider the solution procedure of the sub-problems in detail. Table 1.3Table 1.3 shows a
comparison between an iterative preconditioned conjugate gradient method (PCG) and a direct
solver, where the factorization is calculated once for each sub-problem matrix per timestep. The
number of outer iterations increases when we use iterative inner solvers, but the overall solution
time decreases since a few PCG steps are faster than the application of an LU-factorization to
the Krylov vectors. This holds true in 2D and 3D for polynomial degree 1 and 2 of the Lagrange
basis functions.

We now compare the two proposed preconditioners regarding the same problem. Table 1.4Table 1.4
shows a comparison of the approximation of the sub-problem (3) by either the diagonal mass-
matrix approximation SD or the Cahn-Hilliard preconditioner approximation SCH. In all cases,
the number of outer solver iterations needed to reach the relative tolerance and also the time
for one outer iteration is lower for the SCH approximation than for the SD approximation.

In the following, we thus use the preconditioned solution method with SCH and PCG for the
sub-problems. We analyze the dependence on the timestep width in detail and compare it with
the theoretical predictions and show parallel scaling properties.
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Figure 1.7 – Relative residual of the solver iterations. Solid lines show preconditioned solver iterations
and dashed lines iterations without a preconditioner. The systems is Ω = [d]2, h = π

4 .

direct iterative
dim. m poly. degree p time [sec] #iterations time [sec] #iterations

2D
1 6.11 14 1.65 14
2 5.89 14 3.04 15

3D
1 41.72 17 3.36 18
2 35.24 17 9.62 19

Table 1.3 – Comparison of the number of iterations and time to solve the linear system averaged
over 20 timesteps for the preconditioner matrix SCH with timestep width τ = 0.1. Sub-problems of the
preconditioner are solved with iterative solvers as in Table 1.2Table 1.2 or with the direct solver UMFPACK. The
benchmark configuration is a problem with approximately 66,000 DOFs and grid size h = π/4.

1.6.2 Influence of timestep width

In Table 1.5Table 1.5 the time to solve the linear system averaged over 20 timesteps is listed for various
timestep widths τ . All simulations are started from the same initial condition that is far from
the stationary solution. It can be found that the solution time increases and also the number
of outer solver iterations increases. In Figure 1.9Figure 1.9, this increase in solution time is visualized for
various parameter sets for polynomial degree and space dimension. The behavior corresponds
to the increase in the asymptotic convergence factor (see Figure 1.2Figure 1.2) for increasing timestep
widths.

We have analyzed whether a critical timestep width occurs in the two approximations of S
(see Figure 1.8Figure 1.8). The diagonal approximation SD is spectrally similar to the original precondi-
tioner S that has shown the critical timestep width τ \ = 1. In the numerical calculations, SD

shows a critical value around the analytical value, but it varies depending on the finite-element
approximation of the operators. For linear Lagrange elements we see τ \ ≈ 2 and for quadratic
element τ \ ≈ 0.6. The Cahn-Hilliard approximation SCH does not show a timestep width, where
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SCH SD
dim. m poly. degree p time [sec] #iterations time [sec] #iterations

2D
1 1.65 14 2.72 16
2 3.04 15 7.03 20

3D
1 3.36 18 8.14 21
2 9.62 19 81.49 55

Table 1.4 – Comparison of the number of iterations and time to solve the linear system averaged over 20
timesteps for the preconditioner with diagonal approximation SD of S, and Cahn-Hilliard approximation
SCH. Sub-problems of the preconditioner are solved with iterative solvers as in Table 1.2Table 1.2. The benchmark
configuration is a problem with approximately 66,000 DOFs, timestep width τ = 0.1 and grid size of
h = π/4.

2D 3D
timestep width τ time [sec] #iterations time [sec] #iterations

0.01 2.50 13 8.01 17
0.1 3.05 15 9.62 19
1.0 4.53 19 14.29 24
10.0 10.81 47 34.94 58

Table 1.5 – Comparison of time to solve the linear system averaged over 20 timesteps for various timestep
widths τ for a 2D and a 3D system. The benchmark configuration is a problem with polynomial degree
p = 2 with approximately 66,000 DOFs.

the number of outer iterations explodes, at least in the analyzed interval τ ∈ [10−3, 101]. The
difference in the finite-element approximations is also not so pronounced as in the case of SD.

While in all previous simulations an implicit Euler discretization was used, we now will
demonstrate the benefit of the described Rosenbrock scheme, for which the same preconditioner
is used. Adaptive time stepping becomes of relevance, especially close to the stationary solution,
where the timestep width needs to be increased rapidly to reduce the energy Fsh[ψ] further. In
order to allow for large timestep widths the iterative solver and preconditioner, must be stable
with respect to an increase in this parameter.

In Figure 1.10Figure 1.10 the system setup and evolution for the Rosenbrock benchmark are shown. We
use 10 initial grains randomly distributed and oriented in the domain and let the grains grow
until a stable configuration emerges. When growing grains touch each other, they build grain
boundaries with crystalline defects. The orientation of the final grain configuration is shown in
the right plot of Figure 1.10Figure 1.10 with a color coding with respect to an angle of the crystal cells
relative to a reference orientation.

The time evolution of the timestep width obtained by an adaptive step size control and the
evolution of the corresponding solver iterations is shown in the left plot of Figure 1.11Figure 1.11. Small
grains grow until the whole domain is covered by particles. This happens in the time interval
[0, 200], where small timestep widths are required. From this time, the timestep width is increased
a lot by the step size control since the solution is in a nearly stable state. The number of outer
solver iterations increases with increasing timestep width, as expected. Timestep widths up to
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18 in the time evolution are selected by the step size control and work fine with the proposed
preconditioner.

In the right plot of Figure 1.11Figure 1.11, the relation of the obtained timestep widths to the solution
time is given. Increasing the timestep widths increases also the solution time, but the increasing
factor is much lower than that of the increase in timestep width, i.e., the slope of the curve is
much lower than 1. Thus, it is advantageous to increase the timestep widths as much as possible
to obtain an overall fast solution time.

1.6.3 Parallel calculations

We now demonstrate parallel scaling properties. Figure 1.12Figure 1.12 shows strong and weak scaling
results. All simulations are done in 3D and show results for the time to solve the linear system
in comparison with a minimal number of processors that have the same communication and
memory access environment. The efficiency of this strong scaling benchmark is about 0.8–0.9
depending on the workload per processing unit. The efficiency of the weak scaling is about
0.9–0.95, slightly better than the strong scaling.

#processors p total DOFs time [sec] #iterations

48 1,245,456 13.62 24
96 2,477,280 13.57 24
192 4,984,512 13.83 25
384 9,976,704 14.97 25

Table 1.6 – Average number of iterations and solution time for weak scaling computations.



30 1.7. Conclusion

2D domain p = 1

3D domain p = 2

*
bC

10

�3

10

�2

10

�1

10

0

10

1

0

5

10

15

20

25

30

35

timestep width �

s

o

l

u

t

i

o

n

t

i

m

e

[

s

e




℄

* * * *
*

*

* * *
* *

*

*

bC bC bC
bC

bC

bC

bC bC
bC

bC

bC

bC

10

�3

10

�2

10

�1

10

0

10

1

10

15

20

25

30

35

40

45

50

55

60

timestep width �

n

r

.

o

f

i

t

e

r

a

t

i

o

n

s

* * *

*

*

*

* * *

*
*

*

*

bC bC bC

bC

bC

bC

bC bC bC

bC

bC

bC

Figure 1.9 – Left: Solution time per timestep iteration for various timestep widths τ averaged over 20
timesteps. Right: Number of outer iterations per timestep for various timestep widths τ averaged over 20
timesteps. The four curves show the dependence on dimension (2D or 3D) and on polynomial degree p
of the Lagrange basis functions.

Figure 1.10 – Grain growth simulation. Left: Initial grains that do not touch each other. Center: Grown
grains with different orientation and grain boundaries. Right: Coloring of the different crystal orientations.
The coloring fails at the boundary of the domain.

In Table 1.6Table 1.6 the number of outer solver iterations for various system sizes is given. The
calculations are performed in parallel on a mesh with constant grid size but with variable domain
size. By increasing the number of processors or the number of DOFs in the system the number
of solver iterations remains almost constant. Also the solution time changes only slightly.

Larger systems up to 3,456 processors also show that the preconditioner does not perturb the
scaling behavior of the iterative solvers. All parallel computations have been done on JUROPA
at JSC.

1.7 Conclusion

In this chapter we have developed a block-preconditioner for the discretized Phase-Field Crystal
equation. It leads to a precondition procedure in five steps that can be implemented by compo-
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Figure 1.11 – Left: Time series of timestep width (solid line) and outer solver iterations (dashed line)
for a simulation using a Rosenbrock scheme with automatic step size selection. Right: Evolution of the
solution time for increasing timestep widths. The time is measured relative to the time for the minimal
timestep width. The data is extracted from the simulation of the grain growth, see Figure 1.10Figure 1.10.

sition of simple iterative solvers. Additionally, we have analyzed the preconditioner in Fourier-
space and in numerical experiments. We have found a critical timestep width for the original
preconditioner and have proposed a variant with an inner Cahn-Hilliard preconditioner, which
does not show this timestep limit. Since most of the calculations were performed in parallel, a
scaling study was provided, that shows, that there is no negative influence of the preconditioner
on the scaling properties. Thus, large scale calculations in 2D and 3D can be performed.

Modifications of the classical PFC equation, motivated in the introduction, toward liquid
crystalline phases [203203] and flowing crystals [176176, 200200, 202202], might change the behavior of the
preconditioner. Thus, we need to perform studies on the influence of the modifications to the
convergence of the iterative solvers. These studies are performed in the next chapters.
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CHAPTER 2

Hydrodynamics of interacting particles within the PFC model

A number of dynamic density functional theories were developed to describe the dynamics
of the one-particle density of atomic fluids. We review an approach that accounts for

particle advection by a flowing solvent and make further approximations, using a locally advected
Phase-Field Crystal model to describe the particles in a solvent. This model is coupled to the
Navier-Stokes equations, which account for the evolution of the surrounding fluid.

In Section 2.1Section 2.1 we apply the approach to Brownian particles, e.g., coarse grained polymer
coils, in a solvent flowing around fixed obstacles, e.g., colloidal particles. Results were published
in [200200]. We compare the bow wave in the particle density in front of the obstacles, as well as the
wake behind it. The results qualitatively agree with full dynamic density functional theory results
and simulations based on the underlying Brownian dynamics. The much lower computational
cost of the Phase-Field Crystal approach provides an efficient way to couple fluid flow around
macroscopic fixed or moving objects with interacting particles in the solvent.

Section 2.2Section 2.2 extends this approach towards a coupling of the moving particles to the evolution
of the flow field of the surrounding fluid. There, we have developed a fully continuous model for
colloidal suspensions with hydrodynamic interactions. Some of the results were published in [202202].
The Navier-Stokes Phase-Field Crystal (NS-PFC) model combines ideas of dynamic density
functional theory with particulate flow approaches and is related to other dynamic density
functional theory approaches with hydrodynamic interactions. The derived system is used to
analyze colloidal crystallization in flowing environments, demonstrating a strong coupling in both
directions, between the crystal shape and the flow field. We further validate the model against
other computational approaches for particulate flow systems for various colloidal sedimentation
problems.

The PDE systems arising in both sections are discretized using finite-elements and the result-
ing linear systems are solved with iterative methods. Therefore, the preconditioner of Chapter 1Chapter 1
is analyzed, with respect to an extension by an advection term in the Phase-Field Crystal equa-
tion.
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2.1 A Phase-Field Crystal approach for particles in a flowing
solvent

Binary mixtures of colloids and non-adsorbing polymer coils are ideal model systems for the
study of phase behavior and equilibrium as well as non-equilibrium physics of multicomponent
systems.

The generalization of classical density functional theory to the case of non-equilibrium sit-
uation, known as dynamic density functional theory (DDFT), was first introduced by Marconi
and Tarazona [165165], and was recently extended to driven systems [213213] in the advected dynamic
density functional theory (aDDFT). The authors used this method to model colloidal parti-
cles moving through a polymer solution, or conversely, the flow of polymer coils around a fixed
macroscopic particle. The colloid deforms the flow field, as its hydrodynamic radius is greater
than zero.

Earlier studies of a similar system with conventional density functional theory (DFT) [195195]
have neglected this deformation and are therefore only valid for small obstacles of radius R� a,
where a is the effective radius of the polymer coils. A full DDFT model including the advection
of the solvent particles was analyzed by [213213].

In this chapter we present an approximation of the DDFT using a Phase-Field Crystal
(PFC) model, motivated by [213213] and [195195], and extend this approach by a transport term to
approximate the generalized aDDFT. In contrast to DDFT equations, the PFC model is given
by a local differential equation and can easily be solved in complex geometries.

In the following section the model is derived, starting from the Langevin equation of motion
for an ensemble of advected interacting Brownian particles. Using various approximation steps
we derive an advected PFC equation. Simulation results for the polymer density around one
colloidal particle are shown. For the comparison and relation to the results of Chapter 1Chapter 1 we
formulate the corresponding discrete equations and analyze a preconditioner applied to the
resulting linear system.

2.1.1 Model derivation

A continuum model considering the particle density in a flowing solvent is derived, starting from
an atomistic theory, as motived by [165165].

Fokker-Planck equation

We consider the Langevin equation of motion for an ensemble of N advected interacting Brow-
nian particles with position coordinates ~x = {x1,x2, . . . ,xN}, and mass m, immersed in an
incompressible fluid,

∂txi = u(xi, t) +
1

γ
(Fi(~x, t) + f i(t))

≈ u(xi, t)−
1

γ

(
∇xi

[∑
i

V1(xi, t) +
∑
i<j

V2(‖xi − xj‖)
])

+ f i(t) ,
(2.1)

with the external potential V1(xi, t), the pair interaction potential V2(‖xi − xj‖), flow field
u(xi, t), and a white-noise term f i(t) with homogeneous first moment and the second moment
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given by
〈fiα(t)fjβ(t′)〉 = 2γkBTδijδαβδ(t− t′)

with Bolzmann’s constant kB and temperature T . The parameter γ is related to a friction
coefficient. We assume here that the potential terms sum up to approximate the deterministic
force Fi acting on the ith particle.

The corresponding Fokker-Planck equation for a probability density, W (~x, t), which deter-
mines the probability of finding a set of N particles around the positions x1, . . . ,xN at time t,
reads

∂tW (~x, t) = LSW (~x, t) with LS(·) =
∑
i

∇xi ·
[(
−u(xi, t)−

1

γ
Fi(~x, t) +kBT∇xi

)
(·)
]

(2.2)

with initial conditions W (~x, t0) = δ(~x− ~x0) and appropriate boundary conditions.
Because we are not interested in the probability distribution of finding particles at all po-

sitions, but rather the probability of finding any particle at a given position, we can integrate
equation (2.22.2) over N − 1 of the N variables to obtain a one-particle number density. Therefore,
we introduce the n-particle density %(n) by integrating the probability density (N − n)-times,

%(n)(x1, . . . ,xn, t) =
N !

(N − n)!

∫
· · ·
∫
W (~x, t) dxn+1 . . . dxN .

Dropping the superscript for the one-particles density %(1) =: % and the subscript in the positions
we obtain the continuity equation

∂t%(x, t) +∇ ·
(
%(x, t) u(x, t)

)
= −∇ · j(x, t) (2.3)

with

γ j(x, t) = −%(x, t)∇V1(x, t)− kBT∇%(x, t)−
∫
%(2)(x,x′, t)∇V2(‖x− x′‖) dx′. (2.4)

If we neglect the pair-interaction term containing the two-particle density %(2), equations (2.32.3)
and (2.42.4) reduce to Fick’s diffusion equation in a flowing heat bath

∂t%(x, t) +∇ ·
(
%(x, t) u(x, t)

)
= −∇ · j(x, t) ,

βγ j(x, t) = −%(x, t)∇U1(x, t)−∇%(x, t)
(2.5)

with an external potential U1 := βV1 and coefficient β := (kBT )−1. This equation models the
flow of non-interacting particles.

Dynamic density functional theory

In classical dynamic density functional theory the flux j is related to the gradient of the varia-
tional derivative of an energy functional FH[%] := Fid[%] +Fext[%] +Fexc[%]. The first term in the
functional corresponds to an ideal solution part

Fid[%] = kBT

∫
%(x)(ln(%(x)Λm)− 1) dx ,
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where Λ is the thermal wavelength. A contribution for an external potential is

Fext[%] =

∫
%(x, t)V1(x, t) dx ,

whereas the excess free-energy for particle interactions Fexc[%] is unknown for general systems.
The authors of [213213] used this relation for the advected dynamic density functional theory to
obtain the evolution equation

∂t%(x, t) +∇ · (%(x, t) u(x)) = ∇ ·
(
γ−1%(x, t)∇δFH[%(x, t)]

δ%(x, t)

)
. (2.6)

Equation (2.62.6) still contains the unknown free-energy part Fexc and further approximations
are necessary. One approach to obtain Fexc is the mean-field approximation for very soft inter-
actions

Fexc[%] ≈ 1

2

∫∫
%(x)%(x′)∇V2(‖x− x′‖) dx dx′ .

In [213213] this approach is used to obtain a DDFT for particles in a flowing solvent. Even if
the approach is only valid for potential flows, in [195195], situations are described where it gives
good approximations in cases without detailed balance. This is confirmed in [213213] by considering
Stokes flows.

We will follow this route and further approximate equation (2.62.6). To derive more efficient
models which allow us to simulate more complex problems we consider a different way to ap-
proximate Fexc, than the mean field approach. Known approximations for hard and soft particles
include those based on the Rosenfeld fundamental measure theory [221221], (modified) weighted
density approximation [182182, 105105], and the Rumakrishnan-Yussouff (RY) approximation [204204]. In
this work we use the RY approximation.

Phase-Field Crystal model

Consider the relative density deviation from a constant reference liquid density: δ%(x) :=
%(x)− %L. The excess free part of the energy can be approximated in the RY-approximation by
expansion around the liquid density %L up to second order, in the sense of a functional Taylor
expansions

Fexc[%]− Fexc[%L] =: 4Fexc[%]

≈
∫
δ%(x)

δFexc[%L]

δ%(x)
dx +

1

2

∫∫
δ%(x) δ%(x′)

δ2(Fexc[%L])

δ%(x) δ%(x′)
dx dx′

= −kBT

∫
δ%(x)c(1)(x, %L) dx− kBT

2

∫∫
δ%(x)c(2)(x,x′, %L) δ%(x′) dx dx′ ,

with the direct correlation functions given by

c(1)(x, %) = −β δFexc[%]

δ%
and c(2)(x1,x2, %) =

δc(1)(x1, %)

δ%(x2)
= −β δ2(Fexc[%])

δ%(x1) δ%(x2)
.
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In the liquid reference fluid another form of c(1) can be found: c(1)(x, %L) = ln(%LΛm) − βµL
with µL the constant chemical potential of the reference liquid. The ideal gas part Fid of the
energy can be rewritten as

Fid[%]− Fid[%L] =: 4Fid[%] = kBT

∫
δ%
(

ln(%LΛm)− 1
)

+ %(x) ln
(%(x)

%L

)
dx.

Combining both, the ideal gas and the excess part of the energy (relative to the reference liquid
state), results in

4Fid[%(x)] +4Fexc[%(x)]

= kBT

∫
δ%(x)

(
βµL − 1

)
︸ ︷︷ ︸

f1(%(x))

+ %(x) ln
(%(x)

%L

)
︸ ︷︷ ︸

f2(%(x))

− 1

2

∫
δ%(x)c̄(2)(x,x′, %L) δ%(x) dx′︸ ︷︷ ︸

f3(%(x))

dx.

Because V2 depends on the distance ‖x− x′‖ only, this property is assumed to be true
also for the direct pair correlation function, especially in the liquid phase. So, we assume that
c(2)(x,x′, %L) = c̄(2)(‖x− x′‖) and the rotational symmetry of c̄(2) follows immediately.

Now consider the Fourier transformed correlation function by rewriting f3(%) as convolution
f3(%(x)) = 1

2 δ%(x)
[
c̄(2) ∗ δ%

]
(x). The correlation-function is rotationally symmetric. This leads

to a simplification of the Fourier-transform of c̄(2), i.e.,

F [c̄(2)] =: ĉ(k) =

∫
Rn
c̄(2)(‖x‖) cos(k · x) dx.

Expanding ĉ around k0 = 0 [8080] leads to

ĉ(k) = C0 + k2C2 + k4C4 + . . .

with k2 :=
∑

i k
2
i the square of the wave vector k. The coefficients with odd derivatives vanish

due to the choice of the expansion point. We can now write the Fourier transform of f3 as

F [f3(%)](k) =
1

2 · (2π)n

[
δ̂% ∗ (ĉ · δ̂%)

]
(k)

=
1

2 · (2π)n

[
δ̂% ∗

(
(C0 + C2(·)2 + C4(·)4 + . . .) · δ̂%

)]
(k) =: f̂3(%).

The inverse Fourier transform leads to the real space approximation, by truncating the expansion
at fourth order,

F−1[f̂3(%)](x) ≈ 1

2
δ%(x)(C0 − C2∆(·) + C4∆2(·)) δ%(x).

To relate the parameters Ci to those of other models, which assume constant mobility in
equation (2.62.6) on the right-hand side (e.g., the PFC2-model in [268268]), the ideal gas term in
the energy is expanded around the mean density %̄. We introduce a new variable ϕ(x, t) :=
(%(x, t)− %̄)/%̄ = (δ%(x, t)− %̄)/%̄+%L/%̄, the dimensionless density modulation, and truncate the
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expansions at fourth order. The expansions of fi(%) in terms of ϕ, neglecting all linear terms,
because they vanish by differentiation, yield

1

%̄

(
f1(%(x))− f1(%̄)

)
= ϕ(x, t)

(
βµL − 1

)
= (linear term) ,

1

%̄

(
f2(%(x))− f2(%̄)

)
≈ 1

2
ϕ(x, t)2 − 1

6
ϕ(x, t)3 +

1

12
ϕ(x, t)4 + (linear terms) ,

1

%̄

(
f3(%(x))− f3(%̄)

)
≈ 1

2
ϕ(x, t)(C0 − C2∆ + C4∆2)ϕ(x, t) + (linear terms).

The third term in the energy, 4Fext[%] =
∫
δ%V1 =:

∫
f4(%), contains the external potentials

and can also be expressed in terms of ϕ as 1
%̄

(
f4(%(x)) − f4(%̄)

)
= ϕ(x, t)V1(x, t). Finally, we

can define the total free-energy relative to the mean density by summation of the energy parts:
1
%̄

(
4FH[%]−4FH[%̄]

)
= 1

%̄

(
FH[%]− FH[%̄]

)
≈ F1[ϕ] with

βF1[ϕ] :=

∫
1

2
ϕ(x)2 − 1

6
ϕ(x)3 +

1

12
ϕ(x)4 dx

−
∫

1

2
ϕ(x)(C0 − C2∆ + C4∆2)ϕ(x) dx

+

∫
βM(ϕ(x))V1(x) dx ,

(2.7)

where M(ϕ) := % = (ϕ + 1)%̄, and the notation F1 comes from the original name PFC1-model
in [268268]. Now, the evolution equation with respect to ϕ can be derived from (2.62.6) as

∂tϕ(x, t) +∇ · (ϕ(x, t) u(x)) = ∇ ·
{
γ−1M(ϕ)∇δF1[ϕ(x, t)]

δϕ(x, t)

}
= ∇ ·

{
(βγ)−1M(ϕ)∇

(
ϕ(x, t)− 1

2
ϕ(x, t)2 +

1

3
ϕ(x, t)3

+ βM ′(ϕ)V1(x)− (C0 − C2∆ϕ(x, t) + C4∆2ϕ(x, t))
)}
.

This evolution equation is an approximation of the dynamic density functional theory, ob-
tained by expansion of the correlation function. It is related to the classical PFC equation,
extended by an advection term and non-constant mobility, and was first derived by Elder and
Grant [7979] with a slightly different parametrization.

To obtain the original Elder–Grant form of the PFC equation, we introduce a new variable
ψ := ϕ − 0.5 and perform a re-parametrization to new parameters r and ψ̄. The number of

parameters is reduced by setting the lattice constant to 1, i.e., to fix the ratio 2|C4|/C2
!

= 1.
Stability considerations give the sign of the last parameter, i.e., sign(C4) = −1. This leads to
the parameter relations

C0 := C2

(
9

2
− 1

2
(1 + r)

)
, C2 :=

1

6
, C4 := −1

2
C2.

Inserting this into the energy (2.72.7) and neglecting linear and constant terms, we arrive at the
proposed standard formulation that is the base for our simulations,

βF1[ψ(x)] = C

∫
1

2
ψ(x)

(
r + (1 + ∆)2

)
ψ(x) +

1

4
ψ(x)4 +M(ψ(x))U(x) dx (2.8)



Hydrodynamics of interacting particles within the PFC model 39

with C = (48/%̄)−1, and U(x) = (CkBT )−1V1(x), which is the rescaled external potential,
and with M(ψ) := % = %̄

(
1.5 + ψ

)
. This functional is strongly related to the Swift-Hohenberg

functional [247247]. The evolution equation of the simplified advected Phase-Field Crystal model
(aPFC) reads

∂tψ +∇ · (ψu) = ∇ ·
{
γ−1M(ψ)∇δF1[ψ]

δψ

}
= ∇ ·

{
M0M(ψ)∇µ

}
,

µ = ψ3 + (r + (1 + ∆)2)ψ +M ′(ψ)U

(2.9)

with M0 = C/(βγ).

2.1.2 Computational results

Numerical discretization

The evolution equations (2.52.5) and (2.92.9) are discretized using finite-elements in space and a semi-
implicit discretization in time. For the standard PFC part we follow the approach described in
[2929] and Section 1.2Section 1.2 and extend the scheme by a transport term and an external potential. The
advection-diffusion equation is discretized using a backward Euler scheme.

Following the notation in Chapter 1Chapter 1 we have a sequence of discrete equations. Let ψ0, c0 ∈
L2(Ω) be given. Furthermore, let N be the number of timesteps. For k = 0, 1, . . . , N − 1, find

ψk+1, ψ
\
k+1, ψ

[
k+1 ∈ Vh, s.t.

(ψ\k+1 −
(
(1 + r) + 3ψ2

k

)
ψk+1, ϑh)Ω + (2∇ψk+1 +∇ψ[k+1,∇ϑh)Ω = (−2ψ3

k +M ′(ψk)U, ϑh)Ω ,(
ψk+1, ϑ

′
h

)
Ω

+ τk(M(ψk)∇ψ\k+1 − ψk+1u,∇ϑ′h)Ω =
(
ψk, ϑ

′
h

)
Ω
, (2.10)

(ψ[k+1, ϑ
′′
h)Ω + (∇ψk+1,∇ϑ′′h)Ω = 0 , ∀ϑh, ϑ′h, ϑ′′h ∈ Vh

for the advected PFC equation and find ck+1, c
\
k+1 ∈ Vh, s.t.

(c\k+1 − ck+1, ϑh)Ω = (M ′(ck)U, ϑh)Ω ,(
ck+1, ϑ

′
h

)
Ω

+ τk(M(ck)∇c\k+1 − ck+1u,∇ϑ′h)Ω =
(
ck, ϑ

′
h

)
Ω
, ∀ϑh, ϑ′h ∈ Vh

(2.11)

for the advection-diffusion system.
The equations (2.102.10) and (2.112.11) lead to the linear systems Apfcx = bpfc and Adiffx′ = bdiff

with the solution components x = (ψ\k+1,ψk+1,ψ
[
k+1)> and x′ = (c\k+1, ck+1)> respectively,

where the corresponding matrices are given by

Apfc =

 M −(1 + r)M + N(ψk) + 2K K
τkKM(ψk) M− τkW 0

0 K M

 , Adiff =

[
M −M

τkKM(ck) M− τkW

]
(2.12)

and the right-hand-side vectors by

bpfc =


(
(−2ψ3

k +M ′(ψk)U, θj)Ω

)
j

Mψk
0

 , bdiff =

((
(M ′(ck)U, θj)Ω

)
j

Mck

)
,
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where W is a shortcut for the advection term, i.e., W =
(
(θju,∇θi)Ω

)
ij

.

Similar to the calculation of [213213], an external potential of exponential form is used, i.e.,

U(x) = ω1 · exp
(
−‖x‖

q

ωq2

)
, where the parameters ω1, ω2 and q are chosen in such a way that the

slope and interaction region depend on the colloid and polymer coils. This potential describes a
soft colloidal particle in the center of a domain. In the following we have set ω1 = 10, ω2 = 11,
and q = 6. For simplicity we set the mobility in the evolution equations to M(·) ≡ 1.

Validation of the advection scheme

To validate the approach we use a simple configuration with one colloidal particle fixed in the
center of a rectangular domain. We assume a steady flow around the particle, where viscous
forces dominate over initial forces in the fluid, i.e., we consider the low Reynolds number limit.
There are no additional external forces acting on the fluid and no geometric constraints, i.e.,
walls or other obstacles. Then the flow field around the colloidal particle with radius R is given
by the solution of the Stokes equation, which can be expressed analytically by [213213, 108108]

u(x) = c− 3R

4‖x‖

(
1 +

R2

3‖x‖2

)
c +

3R

4‖x‖3
x(x · c)

(
R2

‖x‖2
− 1

)
(2.13)

with c = c∞ ex the velocity at infinity distance from the obstacle. For R = 0 this reduces
to the uniform flow u(x) = c. More complex situations with more colloidal particles could
be handled using a superposition principle, or by solving the (non-stationary) Stokes equation
numerically. For non-stationary flow fields a direct coupling of the equations of fluid dynamics to
the equations of the simulation of interacting polymer particles in the solvent would be necessary.
Such coupling is crucial for the inclusion of the hydrodynamic forces between polymer coils
exerted on the solvent and s implemented and analyzed in the next major section.

Figure 2.1Figure 2.1 shows the density distribution ψ and c of the advected PFC-equation and the
advection-diffusion equation respectively, for a fluid flowing through the domain from left to
right. The density values are normalized, so that red corresponds to the maximal density in
front of the spherical obstacle and dark blue corresponds to the minimal density on the obstacle.
The obstacle, i.e., the colloidal particle, is visualized with a spherical ball in the center of the
domain. The characteristic first density wave can be seen in both simulations, but in the PFC
simulation several fading out waves follow the first one. The studies of [195195, 108108] indicate that
more than one such wave exists in the interacting case, as can be seen in their Brownian dynamics
simulations and DDFT calculations. For this reason we assume that in the interacting case the
wave like structure in front of the obstacle is more realistic than the single peak observed in the
simple diffusion case.

Proceeding from the qualitative comparison we now follow [213213] and analyze the dependency
of the density distribution on both, the radius of the colloid and the velocity of the fluid, for the
case of interacting and non-interacting particles. We use the same analytic Stokes flow (2.132.13)
with a far-field velocity depending on the reference value c∗ := c∞Dψ̄/r. First the radius of
the obstacle is fixed at R/D =: R∗ = 0.6, thus the colloid is bigger than the polymer coils.
The size D represents the interaction radius of the colloid, i.e., how close particles can approach
the obstacle boundary. The value can be approximated by D = R + d/2, where d = 4π/

√
3 is

the mean distance between the center of mass of polymer coils in the one-mode approximation
[7979, 268268].
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Figure 2.1 – Polymer density around a colloidal particle. Left: Phase-Field Crystal simulation with
R∗ = 0.6, c = 0.8, r = −0.1, and ψ̄ = −0.3. Right: Advection-diffusion simulation with R∗ = 0.6, c = 1.0,
and ψ̄ = −0.3. Red indicates high density, whereas blue indicates low density. The colloid in the center
is visualized as a gray ball.

Figure 2.2Figure 2.2 shows the density profile with non-interacting and interacting particles for a fixed
obstacle radius. The difference between the left and right plot of Figure 2.2Figure 2.2 is the formation
behavior of the first wave depending on the reference velocity. Where the non-interacting sim-
ulation shows a big increase of the first maximum for higher values c∗, in the interacting case
this is far less pronounced.

For the interacting case the maximum increases slightly with increasing c∗ and the change is
negligible on further increase of c∗. Behind the colloid, i.e., to the right of the obstacle, the wave
structure is also found. Because of the compressibility of the polymer coils in the solvent, the
distance of the maxima in front of the colloid shrinks slightly. Thus, the mean particle distance
d of the one-mode approximation is only an approximation of the Phase-Field Crystal particle
distance and is not constant over the domain.

The dependency of the density structure to the radius of the obstacle is plotted in Figure 2.3Figure 2.3,
again for non-interacting and interacting particles. There, the reference velocity is fixed at c∗ =
12. For radii bigger than the polymer coil radius, i.e., R∗ > 0.5, the density shows an additional
wave behind the obstacle, whereas for smaller radii one cannot see such an effect. For higher
velocities, i.e., lower values of R∗, the first maximum rises much more in the case of non-
interacting particles than in the case of interacting ones. The interesting observation is the
structure behind the colloid. For radii R∗ less than 0.5, i.e., the colloidal radius is less than the
interaction radius of the polymers, the bow wave does not show the oscillating structure, which
can be seen for larger radii. The wave is similar to the non-interacting case.

Preconditioner for the PFC-system

For the numerical validation we first apply the direct solver UMFPACK [6565] to the PFC system
directly, since the problems are small enough. The diffusion problem can be solved by simple
iterative Krylov-subspace methods, either in the 2x2 block system, or by rewriting the system
as a one component scalar equation, as it is done as part of the PFC preconditioner. Larger
problems with more than one obstacle need more efficient linear solvers for the PFC equation.
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Figure 2.2 – Density-profile of the solution for different reference velocities c∗ of the fluid, at fixed
radius R∗ = 0.6 of the obstacle. Left: Snapshots of the advection-diffusion equations for three different
reference velocities c∗. Right: For the same three reference velocities the corresponding PFC solution,
that represents the density profile in the interacting case.

Therefore, a preconditioned Krylov-subspace method is applied. Similar to the classical PFC
system the system-matrix Apfc can be simplified and approximated by a matrix P that can
easily be factorized in a product of two triangular matrices.

In [4949] a convective Cahn-Hilliard equation is analyzed with respect to the influence of the
advection term to the preconditioner. Assuming τk ∈ O(h2) and u ∈ O(1), the convection term
does not dominate the other terms in the diagonal block and can thus be neglected in the
preconditioner. We follow this approach and study the properties of the preconditioner with
increasing velocity c∗. The preconditioner matrix is chosen equal to P of equation (1.151.15) for the
classical PFC system.

In the validation of the advected PFC equation we have considered one spherical obstacle
with dimensionless radius R∗ in a flow field given by equation (2.132.13). Analyzing the developed
density waves around the obstacle, we have found steep gradients within a length scale d. The
finite-element discretization allows to use adaptive grids with fine resolution around the obstacle
and a coarse resolution far away from the obstacle. This may influence the properties of the
preconditioner, as well.

The influence of the velocity to the number of solver iterations of a FGMRES solver [224224]
is studied in Figure 2.4Figure 2.4. The same setup as for the validation is used and the number of solver
iterations is averaged over the first 20 timesteps for various refinement levels used to resolve
the obstacle. It shows that with increasing reference velocity c∗ the number of iterations also
increases, but this increase is nearly linear. Changing the mesh resolution around the obstacle
does not influence the solver significantly.
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Figure 2.3 – Density-profile of the solution for different radii R∗ of the obstacle, at fixed reference
velocity c∗ = 12 of the fluid. Left: Snapshots of the advection-diffusion equations for three different radii
R∗. Right: For the same three radii the corresponding PFC solution, that represents the density profile
in the interacting case.

2.1.3 Conclusion

We have proposed a local approximation to the DDFT formulation in [213213]. The formulation
provides an efficient way to treat interacting Brownian particles in a flowing solvent. Neglecting
the hydrodynamic interactions between the solute particles and between the solute and colloid
particles allows for an efficient coupling, in which only the time derivative in the PFC model
is replaced by the total (material) time derivative. The obtained equation thus provides an
advected PFC model, which is then solved in a domain excluding the spherical obstacles.

A quantitative comparison with the full aDDFT simulations in [213213, 195195] was not possible.
Qualitatively the aPFC simulations show wave structures similar to the results of the authors
above, but significantly more pronounced. The influence of both, the reference velocity of the
fluid, and the radius of the colloidal particle, was investigated, and comparisons were made be-
tween the Phase-Field Crystal and diffusion-advection model, for interacting and non-interacting
polymer coils in the solvent.

The aPFC model requires much less computational effort than full aDDFT simulations, due
to the locality of the approach. Furthermore, coupling to the Navier-Stokes equations could
be done easily. This is encouraging for an extension of the approach to include colloid-colloid
interactions in more complex configurations. The calculation of depletion forces between two
colloids that are close to each other, so that polymer particles do not fit between them, is
appealing and easily realizable with the aPFC approach. Hydrodynamic interactions between
the polymer particles is often neglected but could also be included in the model. In the next
section such a model is explained and validated.
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Figure 2.4 – Number of solver iteration when a preconditioner is applied. The setup is a flow of polymer
coils around a spherical obstacle with various reference flow velocities c∗. PFC parameters: r = −0.1,
ψ = −0.3, mobility M(ψ) ≡ 1, obstacle radius R∗ = 0.6, polynomial degree p = 2 in 2D, and boundary
potential with ω1 = 10, averaged over 20 timesteps with timestep width τ = 0.1. Various adaptive
refinements of the obstacle are compared. The minimal grid size for refinement REF = (10, 11, 12, 13, 14)
corresponds to h = (0.6413, 0.4535, 0.3206, 0.2267, 0.1603).

For the development of an efficient solver for the advected PFC equation, we have followed
the approach of [4949] and have used the originally proposed preconditioner (1.151.15), neglecting the
advection term. This approximation seems reasonable, since numerical experiments show only a
little influence on the number of solver iterations in a FGMRES method, for increasing velocity
term. Also an adaptive refinement of the grid around the spherical obstacle is investigated with
respect to the properties of the preconditioner. It is found that the grid refinement in this setup
does not increase the solver iterations a lot.

The good preconditioner properties for the advected PFC equations may also be explained
due to the PFC setup in the liquid phase. In Remark 3Remark 3 in Section 1.5.1Section 1.5.1 about the critical
timestep width in the preconditioner, we have seen that the preconditioner, for parameters in
the liquid phase, is very stable with respect to the influence of τ and thus is more stable than
the preconditioner in the crystalline parameter regime. In the next section we have analyzed a
setup of crystallization in a flowing environment and study the influence of the reference velocity
there.
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2.2 A Navier-Stokes Phase-Field Crystal model for colloidal
suspensions

Simple fluids can be coarse grained, considered as a continuum and very well described by the
Navier-Stokes equations. A quantitative description can be achieved down to the nanometer
scale. For colloidal suspensions, this simple treatment is not necessarily valid any more. Here,
colloidal particles, with a typical size range of nanometers to a few microns, move due to col-
lisions with the solvent molecules, interact with each other, and induce flow fields due to their
motion. It is shown that these hydrodynamic interactions are of relevance in various practical
applications, e.g., colloidal gelation [9696] or coagulation of colloidal dispersions [170170]. To calcu-
late non-equilibrium properties of such systems, it is required to resolve the different time and
length scales arising from thermal Brownian motion and hydrodynamic interactions. Various
approaches have been developed to consider these interactions in an effective way. An overview
about proposed coarse-graining descriptions can be found in [191191].

One of the most popular approaches is Stokesian dynamics (SD) within the low Reynolds
number limit [5050]. The hydrodynamic interaction is thereby incorporated in an approximate an-
alytical form, assuming to result as the sum of two-body interactions. The approach is difficult to
implement for complex boundary conditions and is relatively expensive. As an alternative, direct
numerical simulations are proposed, which involve determining fluid motion simultaneously with
particle motion. In these methods, the colloidal particles are fully resolved and coupled with the
Navier-Stokes equations, leading to coupled discrete-continuous descriptions. Other discrete and
hybrid models are, e.g., the (smoothed) dissipative particle dynamics model [116116, 8888, 152152], the
fictitious domain/immersed boundary method [198198, 9999], and the Lattice Boltzmann-Molecular
Dynamics method [187187, 132132, 186186]. A short review and comparison of such models is given in
[9595].

Our aim is to derive a fully continuous system of equations from such hybrid models. This
has the advantage of an efficient numerical treatment, the possibility of a detailed numerical
analysis, and it offers a straightforward coupling with other fields. Moreover, continuous models
often allow to formulate analytical predictions for the behavior of some reference systems and
provide mathematical tools to derive coarse grained descriptions. The model will serve as a
general continuum model for colloidal suspensions, providing a quantitative approach down
to the length scale set by the colloidal particles and it is operating on diffusive time scales.
The approach will be derived by combining ideas from: (a) dynamic density functional theory
(DDFT), and (b) hybrid discrete-continuous particulate flow models. We will test the derived
system for colloidal crystallization in flowing environments and for colloidal sedimentation.

2.2.1 Overview about existing approaches

Dynamic density functional theory approach

The aim of the dynamic density functional theory (DDFT) approach is to provide a reduced
model that describes the local state of a colloidal fluid by the time averaged one-particle density.
The evolution of this density is driven by a gradient-flow of the equilibrium Helmholtz free-
energy functional. A first realization of a DDFT for colloidal fluids was presented in the work
of Marconi and Tarazona [165165] with colloids modeled as Brownian particles. Later, this theory
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was extended by Archer [2020] and has been connected to the equations of motion from continuum
fluid mechanics. Rauscher [213213] has described an advected DDFT, to model colloids in a flowing
environment that do not interact via hydrodynamic interactions. The work of Goddard et al.
[101101] has incorporated the effect of inertia and hydrodynamic interactions between the colloidal
particles and recently Gránásy et al. [258258] have explored a coarse-grained density coupling of
DDFT and the Navier-Stokes equations.

We start the derivation of our model with the dynamical equations derived by Archer [2020].
Therefore, we introduce the one-particle (number) density %(x, t) and the average local velocity
v(x, t) of the colloidal particles. The density is driven by a continuity equation

∂t%+∇ · (%v) = 0 (2.14)

with the current %v evolving via the dynamical equation

m% (∂tv + (v · ∇)v + γv) = −%∇δFH[%]

δ%
+ η∆v, (2.15)

where m represents the mass of the particles, γ a dumping coefficient, FH[%] the equilibrium
Helmholtz free-energy functional and η a viscosity coefficient.

We use a minimal expression for the free-energy, the Swift-Hohenberg (SH) energy [247247, 7878],
in a dimensionless form

FH[%(ψ)] ' Fsh[ψ] =

∫
1

4
ψ4 +

1

2
ψ(r + (q2

0 + ∆)2)ψ dx̂, (2.16)

with % = %̄(1+(ψ+0.5)) a parametrization of the one-particle density with respect to a reference
density %̄. The phenomenological parameter r is related to the undercooling of the system and
the constant q0 is related to the lattice spacing. This functional arises by splitting the energy in
an ideal gas contribution and an excess free energy FH = Fid +Fexc, rescaling and shifting of the
order-parameter %, expanding ideal gas contributions in real-space, and the excess free-energy
in Fourier space and simplification, by removing constant and linear terms that would vanish
in the dynamical equations. A detailed derivation of the energy can be found in [268268, 124124, 200200]
and in Section 2.1.1Section 2.1.1.

Inserting the density expansion and the free-energy (2.162.16) into (2.152.15), we get a system of
dynamic equations for the density deviation ψ and the related non-dimensionalized averaged
velocity v̂:

∂tψ +∇ ·
(
(1.5 + ψ)v̂

)
= 0, (2.17)

(1.5 + ψ) (∂tv̂ + (v̂ · ∇)v̂ + Γv̂) =
1

Re
∆v̂ − 1

Pe
(1.5 + ψ)∇δFsh[ψ]

δψ
. (2.18)

With respect to a length scale L and time scale L/V0 we have the dimensionless variable v̂ = v/V0

and Peclet number Pe, Reynolds number Re and friction coefficient Γ given by

Pe =
3mV 2

0

kBT
, Re =

m%̄LV0

η
, Γ =

γL

V0

with Boltzmann’s constant kB and temperature T . In Section 2.2.5Section 2.2.5, a detailed derivation of this
dimensionless form of the dynamical equations can be found.
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In the overdamped limit, Γ� 1, the velocity equation reduces to an explicit expression that
relates the velocity to the chemical potential by

(1.5 + ψ)v̂ = − 1

ΓPe
(1.5 + ψ)∇δFsh[ψ]

δψ
. (2.19)

Inserting (2.192.19) into (2.172.17) results in the PFC equation [7878]

∂tψ =
1

ΓPe
∇ ·
(

(1.5 + ψ)∇δFsh[ψ]

δψ

)
, (2.20)

referred to as PFC1 model in [268268].

Particulate flows

Typical approaches to simulate particulate flows on larger length scales consider a Newton-
Euler equation for each particle. This system of equations describes the motion as a rigid body
and it can be combine with the Navier-Stokes equations for the flow around these particles.
Various numerical approaches have been proposed to model this flow, including fictitious domain
approach and the immersed boundary method, which incorporate a no-slip boundary condition
on the particles surface (see, e.g., [100100, 264264, 1919, 134134]). All these approaches use the general
idea to consider the particles as a highly viscous fluid, which allows the flow computation to be
done on a fixed space region. The no-slip boundary condition on the particle surface is thereby
enforced directly or implicitly, depending on the numerical approach. All these methods combine
a continuous description of the flow field with a discrete off-lattice simulation for the particles.

Considering an incompressible fluid with viscosity ηf and constant fluid density ρf , we can
write the Navier-Stokes equations for velocity u and pressure p of a pure fluid in a dimensionless
form,

∂tû + (û · ∇)û = −∇p̂+
1

Ref
∇ ·
(
2(1 + η̃)D(û)

)
+ F, (2.21)

∇ · û = 0 (2.22)

with length and time scale as above and the dimensionless velocity field û = u/V0, the viscosity
perturbation η̃ from the expansion ηf = η̄f (1 + η̃), the fluid Reynolds number Ref , and the
dimensionless pressure p̂ given by

Ref =
ρfLV0

η̄f
, p̂ =

p

ρfV
2

0

,

respectively. The expression D(û) gives the symmetric part of the velocity gradient, i.e.,

D(û) =
1

2
(∇û +∇û>)

and F defines a volume force.
As a reference model for colloidal suspensions, we consider the fluid particle dynamics model

(FPD) by [248248]. Here, the particles are considered as a highly viscous fluid and the velocities of
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the particles are extracted from the fluid velocity u. The shape of the particles is constructed
using a tanh-profile with a specified radius and interface thickness and their centers of mass
interacting via an interparticle potential. The approach can also be seen as a modification of
a classical “Model H” [235235, 114114] with a fluid and a particle phase and the driving force in the
Navier-Stokes equations governed by the interatomic potential. The approach again combines
continuous and discrete descriptions.

The motion of colloidal particles with positions xi(t) are governed by the velocities vi(t) and
the evolution of a flow field u, where the colloidal particles are suspended in. The basic idea is to
introduce concentration fields φi(x, t) ∈ [0, 1] for each particle and to average the fluid velocity
over regions with high concentration, i.e.,

vi(t) =

∫
φi(x, t)u(x, t) dx∫

φi(x, t) dx
.

Thus, the motion of the particles can be described by xi(t + ∆t) := xi(t) + ∆t · vi(t), with ∆t
the simulation time step.

A space-dependent fluid viscosity ηf , as a function of φi, is introduced to describe the rigidity
of the particles and a force term F := F[ta], to account for the particle interactions in the flow
equation (2.212.21). This force is chosen as the negative gradient of an interaction potential V2

multiplied with the particle-concentration fields φi,

F[ta](x)
def
= −

∑
i

∇xi

(∑
j 6=i

V2(‖xi − xj‖)
)
φi(x). (2.23)

The fluid viscosity ηf = η̄f (1 + η̃) is modeled, by describing the viscosity perturbation η̃, as

η̃(x) =
∑
i

( η̄p
η̄f
− 1
)
φi(x) (2.24)

with η̄f < η̄p the liquid and particle viscosity respectively. In [180180] it is argued that the artificial
diffusivity η̄p/η̄f must go to ∞ for the particles to become rigid. In their method, they have
introduced a different body force to guarantee this rigidity without taking large values of the
viscosity ratio. However, we will here only consider the original FPD approach.

Towards a fully continuous description

Our aim is to derive a fully continuous model by combining the FPD model with the PFC
approach. A first step in this direction has already been done in [176176], where the interaction
potential has already been replaced by the PFC approach. The discrete off-lattice simulation
for the particles is no longer needed, the particle positions and velocities result from the ad-
vected PFC model. However, the forcing term in the Navier-Stokes equations still requires the
identification of the position and velocity of each particle and thus, the approach still has a
discrete component. To derive a fully continuous model we will first clarify the relation of the
different approaches in [200200, 248248, 176176] and will show that all the discrete coupling terms can be
approximated with a simple continuous expression.

To allow for a description of the flow of individual particles, we consider a variant of the
PFC model, the vacancy PFC model, introduced in [5555, 4040]. Instead of minimizing the Swift-
Hohenberg functional directly, we consider a density field with positive density deviation ψ only,
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which leads to a modification of the particle-interaction and allows to handle single particles as
well as many individual particles embedded in the fluid.

2.2.2 Derivation of a fully continuous model

In [176176] the PFC model and the FPD model are combined, by letting the density field influence
the flow field. The interatomic potential is encoded in the Swift-Hohenberg energy (2.162.16) and
the particle positions evolve according to the advective PFC equation (see below). The forcing
term F := F[ml] in the Navier-Stokes equations now ensures the fluid velocity u to be equal to
the particle velocity vi at the particle position xi, i.e.,

F[ml](x)
def
= ω

∑
i

(v̂i − û(x))δ(x− xi) (2.25)

with ω � 1 a penalty parameter and δ(·) the pointwise delta-function. Thereby, position and
velocity of each individual particle must be extracted from the density field ψ by tracking the
maxima of the density, which are interpreted as average particle positions. These quantities
are then explicitly inserted into the expression of the forcing term. The fluid viscosity ηf can
be modeled as before in (2.242.24), but now ψ can directly be used to distinguish between the
background fluid and the particles.

The force term (2.252.25) constrains the fluid velocity to be equal to the particle velocity at the
center-of-mass position of the particle. In order to implement a no-slip boundary condition at
the particle surfaces, the delta function needs to be replaced by the concentration fields φi(x):

F[dd](x)
def
= ω

∑
i

(v̂i − û(x))φi(x). (2.26)

This ansatz is highly related to the diffuse domain approach [145145], where this force is shown to
converge to the no-slip boundary condition u = vi at the ith particle surface, if the interface
width goes to zero. Thereby ω has to be related to the interface thickness, see [9393] for a detailed
convergence study.

In the following, we give a new formulation of a continuous force term that can be evaluated
without extracting individual particle positions and velocities. At first, we relate the density field
ψ, described in (2.202.20), to a delta function δ(x) and to a concentration field φ(x) =

∑
i φi(x).

In a second step, the particle velocities are shown to arise directly from the evolution equations
(2.202.20) and (2.192.19).

Approximation of a delta-function

For the classical PFC equation in 1D, a one-mode approximation of the density ψ is given by
[7979]

ψom(x) = A cos(q0x) + ψ̄, (2.27)

where A, q0, and ψ̄ are constants that define the amplitude, lattice constant, and mean density
of the field, respectively. We introduce

ψ(0) =
1

2

(
1 +

ψom − ψ̄
A

)
, ψ(k) = (ψ(k−1))

2, (2.28)
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for k > 0, or in explicit form ψ(k) = [ψ(0)]
2k for k ∈ N. After appropriate normalization, we

obtain
δ(k)(x) := Nkψ(k)(x) (2.29)

with Nk normalization constants, which ensure the property
∫
δ(k)(x) dx = 1. Values for various

indices k can be found in Table 2.1Table 2.1. In Section 2.2.7Section 2.2.7 we show that δ(k) forms a sequence of
nascent delta functions. Figure 2.5Figure 2.5 shows the first three elements of this sequence in comparison
with the classical Gaussians δexp

ε (x) ∼= e[(q0‖x‖)2/(−4ε)], visualizing the convergence qualitatively.
As a consequence of this property, the shifted and scaled density field ψ(0) can be seen as a
first-order approximation of a delta function. The approach can be generalized to 2D and 3D
and will be used for ψ instead of ψom.

k 0 1 2 3

Nk ·
π

q0
1

4

3

64

35

16384

6435

Table 2.1 – The first four elements of the sequence Nk, the normalization constants for the nascent delta
function δ(k).
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Figure 2.5 – Left: The first three elements of the sequences δexpεk
(normalized), with εk = 2−k, in blue

(upper curves) and δ(k) in red (lower curves). The lattice constant is q0 = 1. Right: Transformation of the
density field ψ into a tanh-concentration field, for different particle radii. The lattice constant is q0 = 1
and interface width ε = 0.1.

Approximation of concentration fields

The concentration field φi in [248248], used for the phase-field description of particles, is defined by

φi(x) =
1

2

(
1− tanh

(
3(‖x− xi‖ − a)/ε

))
(2.30)

with xi the center-of-mass position of the ith particle, a the particle radius, and ε a small
parameter, which defines the width of the smoothing region. We now interpret ψ(0) in (2.282.28) as
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a concentration field. It has the value one at the maxima of the cosine profile and zero in between.
The transition is very coarse, but gives an approximation of the tanh-profile of φ(x) =

∑
i φi(x),

which can be refined with

φ(ψ) =
1

2

(
1 + tanh

(
3(ψ(0) − σ)/ε

))
, (2.31)

where σ = 1
2

(
1 + cos(q0 · a)

)
is a shifting parameter, see Figure 2.5Figure 2.5 for an example of such an

implementation.
In order to define the viscosity field, we adopt the expression (2.242.24) and insert for φ(x) the

field φ(ψ). Thus, we introduce a viscosity field depending directly on the PFC density field ψ,
using the transformation (2.312.31) as

η̃(x) = η̃(ψ(x)) =
( η̄p
η̄f
− 1
)
φ(ψ). (2.32)

Peak velocities

To approximate the particle velocities vi we follow the approach of Rauscher [212212] and consider
a curl-free velocity field for the derivation. Let u be given with the property ∇ × u = 0 and
∇ · u = 0. Then, there exists a potential field Ψ such that

u = − 1

γm
∇Ψ, ∆Ψ = 0. (2.33)

Following the argumentation of [212212], the flow potential Ψ acts as an external potential that
drives the particle density. In DDFT models, this external potential enters the free-energy by
F ∗[%] := FH[%] + Fext[%], with

Fext[%] =

∫
Ψ(x)% dx.

Inserting F ∗ into (2.152.15) instead of FH leads to

m% (∂tv + (v · ∇)v + γv) = −%∇δF
∗[%]

δ%
+ η∆v

= −%∇δFH[%]

δ%
− %∇Ψ + η∆v

= −%∇δFH[%]

δ%
+ γm%u + η∆v

and finally we arrive at

m% (∂tv + (v · ∇)v + γ(v − u)) = −%∇δFH[%]

δ%
+ η∆v.

Going to the dimensionless form, by introducing length and time scales and inserting Fsh for
FH, gives

∂tψ +∇ ·
(
(1.5 + ψ)v̂

)
= 0, (2.34)

(1.5 + ψ) (∂tv̂ + (v̂ · ∇)v̂ + Γ(v̂ − û)) =
1

Re
∆v̂ − 1

Pe
(1.5 + ψ)∇δFsh[ψ]

δψ
. (2.35)
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In the overdamped limit, Γ� 1, the velocity equation (2.352.35) reduces to a simple expression for
the velocity v̂:

Γ(v̂ − û) ' − 1

Pe
∇δFsh[ψ]

δψ
. (2.36)

Inserting this into (2.342.34) results in the advected PFC equation introduced in Section 2.1Section 2.1 and
[200200] and considered in the context of DDFT in [213213],

∂tψ + û · ∇ψ =
1

ΓPe
∇ ·
(

(1.5 + ψ)∇δFsh[ψ]

δψ

)
= ∇ ·

(
M(ψ)∇δFsh[ψ]

δψ

)
(2.37)

with a mobility function M(ψ) = 1
ΓPe(1.5 + ψ).

Although this equation can only be derived for potential flows, we will use it as an approx-
imate model for non-potential flows as well. With (2.362.36) we have found an explicit expression
for the mean velocity of the particles, that can be used to formulate the forcing term (2.252.25) in
the continuous form

F[ml](x) = ω
∑
i

(v̂i − û(x))δ(x− xi)

≈ − ω

ΓPe
∇δFsh[ψ]

δψ

∑
i

δ(x− xi)

≈ − ω

ΓPe
∇δFsh[ψ]

δψ
δ(k), (2.38)

with δ(k) the nascent delta function (2.292.29) approximating δΩ =
∑

i δ(x − xi). The first-order
approximation of this force with

δ(0) ≈ N0ψ(0) =
q0

π
ψ(0) =

q0

2π

(
1 +

1

A
(ψ − ψ̄)

)
,

thus reads
F

[ml]
(0) (x) = −(M0 +M1ψ)∇ψ\(x). (2.39)

The mobility factors are given by M0 = (1 − ψ̄/A) ω
ΓPe

q0
2π , M1 = ω

ΓPe
q0

2πA and the chemical

potential reads ψ\ := δFsh[ψ]
δψ , which results in the considered fully continuous description. For

ω ∼ Γ we have M1 = O( 1
Pe).

Individual particles and number of particles

In order to allow for particles to move freely, we add a modification introduced by [5555]. The
authors have argued that by limiting the field ψ from below, the particle interaction can be
modified. Therefore, they have introduced the constraint ψ ≥ 0, which allows to control the
volume fraction of particles in the domain by changing the mean density of the system.

To implement the constraint, the free-energy is modified by including a penalty term, i.e.,
Fvpfc := Fsh + Fpenalty, with

Fpenalty[ψ] =

∫
ω2(|ψ|n − ψn) dx̂
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with ω2 � 1 and n an odd integer exponent.

The variational derivative of Fpenalty can be found to be

b(ψ) :=
δFpenalty[ψ]

δψ
= nω2ψ

n−1(sign(ψ)− 1) (2.40)

with sign(ψ) =


1 for ψ > 0
0 for ψ = 0
−1 for ψ < 0.

While localized states are also observed in the original PFC model for a small range of
parameters in the coexistence regime [254254], we consider the approach in [5555, 4040, 218218] using
the penalty term (2.402.40). Here, the number of particles can be controlled by choosing the mean
density and the area the particles occupy. The initial density field for a collection of N particles
located at the positions xi, i = 1, . . . , N , is a composition of local density peaks

ψ
(i)
0 (x)=

{
A ·
(

cos(
√

3q0
2 ‖x− xi‖) + 1

)
for ‖x− xi‖ < d

2
0 otherwise,

(2.41)

summed up to ψ(x, t = 0) =
∑N

i=1 ψ
(i)
0 (x).

Thus, each particle occupies an area of approximately Bp := π(d/2)2 in 2D. Based on the
ideas in [5555] we set the mean density in the particle domain to ψ1 =

√
(−48− 56r)/133, as well

as r = −0.9 and q0 = 1. The last two parameters define the mean density of the system as

ψ̄ =
N ·Bp
B0

ψ1

with B0 = |Ω| the area of the computational domain Ω, and with A = ψ1 the parameter for the
density scaling.

Navier-Stokes PFC model

Combining all the components, i.e., the Navier-Stokes equation for the solvent (2.212.21) with vis-
cosity η given by η(ψ) in (2.322.32), and volume force F by expression (2.392.39), combined with the
density evolution (2.372.37) with Fsh or Fvpfc, results in the fully continuous Navier-Stokes PFC
(NS-PFC) model

∂tû + (û · ∇)û = ∇ · σ̃ −M1ψ∇ψ\ ,
∇ · û = 0 ,

∂tψ + û · ∇ψ = ∇ ·
(
M(ψ)∇ψ\

)
, (2.42)

ψ\ =
δFsh/vpfc[ψ]

δψ
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with

σ̃ = −p̃I +
1

Ref

(
1 + η̃(ψ)

)(
∇û +∇û>

)
,

δFsh[ψ]

δψ
= ψ3 + (r + (1 + ∆)2)ψ ,

δFvpfc[ψ]

δψ
= ψ3 + (r + (1 + ∆)2)ψ + b(ψ) ,

and p̃ = p̂+M0ψ
\ a rescaled pressure. Besides the definition of ψ\, these equations have exactly

the form of “Model H” as considered in [125125]. In Section 2.2.6Section 2.2.6, we demonstrate thermodynamic
consistency of the derived model.

2.2.3 Numerical studies

We now turn to quantitative properties of the model and compare it with the original PFC
model and the FPD approach of [248248] for various situations. We rewrite the NS-PFC system as
a system of second order equations. Therefore, the variational derivatives are implemented as

δFsh[ψ]

δψ
= ψ3 + (r + 1)ψ + 2∆ψ + ∆ψ[,

δFvpfc[ψ]

δψ
= ψ3 + (r + 1)ψ + 2∆ψ + ∆ψ[ + b(ψ),

ψ[ = ∆ψ.

The system (2.422.42) has to be solved for u, p̃, ψ, ψ\, and ψ[ in a domain Ω with boundary condi-
tions depending on the specific example. To numerically solve this system of partial differential
equations, we apply here an operator splitting approach [2525] with a sequential splitting, where
we solve the PFC equations first, using the scheme developed in Section 2.1.2Section 2.1.2, followed by the
Navier-Stokes equations. In time, we use a semi-implicit backward Euler discretization with a
linearization of all nonlinear terms, i.e., a one-step Newton iteration. In space, we discretize
using a finite-element method, with Lagrange elements, e.g., a P 2/P 1 Taylor-Hood element for
the Navier-Stokes equation and a P 2 element for ψ, ψ\, and ψ[ in the PFC equation. We further
use adaptive mesh refinement, leading to an enhanced resolution along the particles. The system
is solved using the parallel adaptive finite-element framework AMDiS [273273, 216216, 280280].

The discretization of the Navier-Stokes equations follows standard approaches (see, e. g.,
[128128, 295295, 208208]). Let u0 ∈

[
L2(Ω)

]m
be given and the time-interval [0, T ] be discretized using N

timesteps tk with timestep width τk as before. The timestep solutions are named uk ≡ u(x, tk).
Let the finite-element space V be given as a tensor product of P 2 spaces and the space Q as the
space P 1 equipped with boundary conditions, i.e.,

Vg := {v ∈
[
P 2
]m

: v
∣∣
∂Ω

= g} ,
Q := {q ∈ P 1 : q(x0) = 0} , for x0 ∈ Ω.
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For k = 0, 1, . . . , N − 1, find uk+1 ∈ Vg and ph ∈ Q, s.t.

( 1

τk
uk+1 + (uk · ∇)uk+1,υ

)
+
(
R̂e
−1

f (ψh)(∇uk+1 +∇u>k+1),∇υ
)
−
(
ph,∇ · υ

)
=
( 1

τk
uk,υ

)
−
(
M1ψh∇ψ\h,υ

)
, ∀υ ∈ V0, q ∈ Q

(∇ · uk+1, q) = 0 (2.43)

with R̂e
−1

f (ψh) := Re−1
f

(
1 + η̃(ψh)

)
.

The linear systems in the following small examples are solved using a direct solver UMFPACK
[6565]. For more complex and involved simulations a more efficient solver, that also scales in parallel
calculations, must be applied. In Section 2.2.4Section 2.2.4 we analyze the preconditioner developed in the
previous chapter to solve the advected PFC equation in the crystalline phase and the vacancy
PFC equation. Therefore, numerical studies are shown, regarding the influence of the velocity û
and the mobility M0.

Crystallization

The first numerical examples use Fsh and consider crystallization processes in flowing envi-
ronments. Crystallization kinetics during nucleation and growth and crystal orientation during
external flow is a problem of wide interest, cf. [241241, 240240, 115115, 271271, 192192]. Here we study the case
of an influence of flow to the crystallization process in an undercooled environment. The fluid is
thereby driven by boundary conditions away from the crystal grain. In the first case, we consider
a rotating fluid, i.e., a gyre flow, and in the second case, a Poiseuille flow with a parabolic inflow
velocity profile.

Rotating crystals A crystal grain is placed in a rotating fluid initially given by

∂tx = u0(x, y) =

(
c∞ sin(π x

dimx
) cos(π y

dimy
)

−c∞ cos(π x
dimx

) sin(π y
dimy

)

)
(2.44)

in a domain (x, y) ∈ Ω = [0, dimx] × [0,dimy]. For the numerical experiment we have chosen
dimx = dimy = 42d. The boundary conditions for the Navier-Stokes equations are set by u0.

We start the growth process with an initial grain of radius 2d in an undercooled environment
with parameters r = −0.3 and mean density ψ̄ = −0.35. The mobility function is set to M(ψ) =
ψ + 1.5 and the force scaling to M1 = 1. The fluid Reynolds number is set to Ref = 1 and the
viscosity ratio to η̄p/η̄f = 100. For the concentration field that defines the profile of the viscosity,
we have used an approximation of ψ(0),

φ := ψ(0) ≈
ψ −minΩ(ψ)

maxΩ(ψ)−minΩ(ψ)
.

Thus, the fluid viscosity is high in particles, low in between particles and takes an intermediate
value in the isotropic phase away from the crystal. However, other definitions of the viscosity
parameter are possible as well.
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(a) (b) (c)

Figure 2.6 – Final growth-shapes of the crystal in a flowing environment at time t = 3000. Shown is the
particle density ψ with color red corresponds to high density and blue to low density. The fluid velocity
denoted by c∞: (a) c∞ = 0, (b) c∞ = 0.5, (c) c∞ = 1. The white angles show the crystal orientation and
thus, give an indication for crystal rotation.

In Figure 2.6Figure 2.6 the growth shapes for different velocities c∞ are shown at the same simulation
time. For a still fluid (c∞ = 0), i.e., no advection, the final shape is the largest and the size
of the crystal decreases for increasing velocity. For the largest considered velocity, c∞ = 1, the
faceting of the crystal is also more pronounced than for the case of no induced fluid flow. The
stationary images also show that the crystal rotates during the growth process. This can be seen
at the varying crystal orientations in (a), (b) and (c) indicated by the white angle.

The growth process is analyzed in Figure 2.7Figure 2.7 (left), showing the radius of the growing crystal
over simulation time. The growth velocity strongly depends on the induced fluid velocity, as
shown in the right plot of Figure 2.7Figure 2.7. The crystal grows slower for a larger induced fluid velocity.
This clearly shows one direction of the coupling, i.e., the fluid influences the crystallization.

The opposite can be found as well. The crystal also changes the velocity profile of the fluid. At
the right side of Figure 2.8Figure 2.8, the velocity profiles of two fluids are compared. The left image shows
the profile of a fluid with no back-coupling of the density field to the Navier-Stokes equations.
This essentially shows the initial profile u0. The right image shows the velocity profile for the
full NS-PFC model with c∞ = 1. We observe different magnitudes of the velocity, whereas the
streamlines do not change qualitatively. A more detailed analysis of the velocity profile along
the x-axis from the center to the boundary of the domain can be found in Figure 2.8Figure 2.8. With fluid
coupling, a linear increase of the magnitude in the domain of the crystal is observed, indicated
by the black dashed line, which is lower than the prescribed initial profile. The crystal acts as
a rotating solid in the fluid, with normalized angular velocity uω = ‖u‖/(‖x‖/d) = 0.04. Away
from the crystal, the velocity increases up to the prescribed boundary velocity c∞.

Translating crystals In the second case, the crystal grows in a Poiseuille flow. In a narrow
channel, we enforce a parabolic velocity at the inflow boundary, i.e.,

u0(x, y) = (4c∞ȳ(1− ȳ), 0)> , ȳ :=
y

dimy
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Figure 2.7 – Left: Radius of the crystal divided by lattice constant over dimensionless time, for various
fluid velocities c∞. Right: The growth velocity of the crystal Vg normalized by the lattice constant is
shown for the final time t = 3000.

with a maximal inflow velocity c∞ and a top/bottom boundary velocity set to zero 11. Again, we
start with an initial grain of radius 2d in the center of a box Ω with dimensions dimx = 168d
and dimy = 42d. The simulation parameters are the same as above in the case of a rotating
fluid.

The shape of the growing crystal is influenced by the fluid, which induces an anisotropy.
This can be seen in Figure 2.9Figure 2.9, where the shape corresponding to a fluid velocity c∞ = 0.15 is
shown in a clipping of the whole domain Ω. The flow direction is from left to right. The particle
density ψ is shown in the left image together with the velocity relative to the velocity of the
translating crystal, i.e., vcrystal = (vcrystal, 0)> with vcrystal ≈ 0.124. The right image shows in
the upper half the absolute value of the velocity, with a constant value within the crystal, and
in the lower half, the flow velocity relative to the initial velocity u0. This shows an elongated
vortex. In the case of no fluid coupling, the crystal grows isotropically to a circular shape, as in
the example above.

Thus, also for Poiseuille flow we see a coupling in both directions: the shape of the crystal is
influenced by the flowing environment and the fluid velocity is influenced by the crystal.

Sedimentation

In the following, we apply the NS-PFC model to a collection of individual particles to show
the applicability as a model for particle dynamics. We therefore consider Fvpfc. For the penalty
term (2.402.40) we use the parameters (n, ω2) = (3, 2000) in all of the following simulations. The
Reynolds number and viscosity ratio are chosen as before, but the viscosity profile is now given

1Compared to the rotating crystal example, not on all boundaries a velocity profile is prescribed. Thus, the
discretization (2.432.43) must be modified slightly to incorporate the outflow boundary condition. We set σ̃·ν

∣∣
∂Ωout

= 0
at the outflow boundary with ν the outer normal.
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Figure 2.8 – Fluid velocity at time t = 3000 extracted from positive x-axis, as indicated by the lines
in the side pictures. The slope 0.04 corresponds to the angular velocity of the fluid in the region with a
radius less than the crystal radius. Beside the plot, the magnitude of fluid velocity in the domain Ω for
c∞ = 1 is shown. Bottom: Fluid flow not influenced by the crystal. Top: Crystal slows down the fluid due
to higher viscosity in the region of particles.

by φ := ψ(0) ≈ ψ/maxΩ(ψ). Thus, we have the lower fluid viscosity away from the particles and
a high viscosity on the particles. In order to stabilize the shape of the particles, we increase the
diffusional part, i.e. the mobility function M(ψ). We have chosen M(ψ) ≡ 16 in the following
examples.

One spherical particle in a confinement The objective of this study is to calculate the
position and velocity of one spherical particle (circular disk) settling down in an enclosure due
to a gravitational force g. In order to include this force, we use a Boussinesq approximation and
add the forcing term Fg := φ(ψ)g to the Navier-Stokes equations in (2.422.42).

The box dimensions are chosen to be multiples of the particle size. All lengths are again
normalized by the particle interaction distance d = 4π/

√
3, i.e., the lattice constant. We consider

the following boundary conditions:

ψ = 0 at ∂Ωl ∪ ∂Ωr ∪ ∂Ωb,

∂nψ = 0 at ∂Ωt,

u = 0 at ∂Ωl ∪ ∂Ωr ∪ ∂Ωb,

σ̃ · nΣ = 0 at ∂Ωt
∂Ωl ∂Ωr

∂Ωb

∂Ωt

∼ d

12d

2d

4d

8d

g

with nΣ the outer normal to Σ := ∂Ω.
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Figure 2.9 – Crystal shape and corresponding velocity profile at time t=3800 in a narrow channel. Left:
Density field ψ, with arrows in the lower half corresponding to u− vcrystal, i.e., fluid velocity relative to
the translation velocity of the crystal. Right: Fluid velocity u with contour line that indicates the shape
of the crystal. In the lower half, the velocity relative to the channel flow velocity, i.e., u − u0, is shown.
Color red corresponds to high values and blue to low values.

Due to the symmetry of the system, we expect a symmetric trajectory, a straight line in
the center of the box with the particle slowing down at the bottom. Figure 2.10Figure 2.10 shows the y(t)
component of the evolution curve

(
x(t), y(t)

)
compared with FPD simulations. We further show

the comparison of the velocity profiles. For both criteria we obtain an excellent agreement.

In the FPD setup, we have used the normalized density field ψ(0)(x) as a concentration field
instead of a tanh-profile (2.302.30) and for treatment of the wall-boundary we have introduced a
repulsive potential

VB(k, p)(x) := k
(
d−1 distΣ(x)

)p
with k = 1, p = 20 and distΣ(x) the distance of x to the boundary Σ of the domain Ω.

Further care is needed in order to guarantee a symmetric solution. Within both approaches
we use a symmetric triangulation of the domain and symmetric quadrature rules. Otherwise we
get symmetry breaking in the trajectories, since the motion on a straight line is unstable with
respect to small perturbations, as it is also pointed out in the work of [100100].

Two interacting particles For two particles sedimenting in a box, additional hydrodynamic
interactions are expected to influence the motion of the particles. We expect to see the phenom-
ena of trailing, drafting, kissing and tumbling of the particles, as found in experimental studies
[9292] and as also observed in several numerical studies with various methods, cf. [118118, 217217, 100100].
Again, we compare it with FPD simulations, where we have to apply direct particle-particle
interaction potentials, defined as V2(x) := k

((
x
d

)p1 − 2
(
x
d

)p2
)

with (k, p1, p2) = (1, 12, 6) and a
boundary interaction potential VB as above. Since we do not have a one-to-one mapping between
these potentials and their representation in Fvpfc, and since the PFC-model introduces additional
diffusion due to a non-vanishing mobility function M(ψ), equality of particle trajectories and
particle velocities cannot be expected. However, the results qualitatively agree for different fluid
viscosities, as can be seen in Figure 2.11Figure 2.11. To analyze the dependency of the trajectories on the
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Figure 2.10 – Trajectory and velocity of one particle settling down in a box filled with a liquid with
fluid viscosity η̄f = 0.1, particle viscosity η̄p = 10 and gravitational force g = (0,−1). (green and blue)
vertical position of the particle, starting from an initial height of 10d. (red and magenta) effective velocity

of the particle, i.e., v1(t)2 = (ẋ(t)
2

+ ẏ(t)
2
)/d2.

considered interaction potential V2, FPD simulations with different potentials, i.e., different pa-
rameters in the Lennard-Jones type interaction, and purely repulsive interactions are performed
and compared with each other. The obtained differences in the trajectories and the particle
velocities are of the same order as the differences if compared with the NS-PFC simulations
(results not shown).

The system considered here consists of two particles placed below each other with a small
(symmetric) displacement relative to the middle vertical axis. The initial configuration is chosen
as x1 = (−0.1d, 9d) and x2 = (0.1d, 10d) with boundary conditions as for the case of one particle.
Compared to the one-particle case, the box size is chosen wider, i.e., a width of 18d instead of
8d, to further reduce boundary effects.

The solution can also be compared qualitatively to the results in [100100, 150150], where the authors
have studied the sedimentation of two hard sphere particles in a narrow enclosure in a similar
setup and they have found similar trailing and drafting phenomena. However, they are not as
strong as in the FPD or in our simulations. The particles start in close contact and accelerate up
to a critical time, when they start moving apart from each other. In the visualized scenarios in
Figure 2.11Figure 2.11, the particle behind overtakes the other one and reaches the bottom first. Compared
with FPD in our simulations, the particles move further away from each other and the velocity
decreases in a similar way up to the contact with the lower boundary.

Many particles in an enclosure With three particles already, the interaction and motion of
the particles becomes chaotic, as pointed out in [126126] and discussed in detail in the review [205205].
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Figure 2.11 – Two particles settling down in an enclosure. Fluid viscosity is set to η̄f = 1 (a,b) and
η̄f = 0.1 (c,d), particle viscosity to η̄p = 100 (a,b) and η̄p = 10 (c,d) and mobility of the NS-PFC-model
to M(ψ) ≡ 2. Left: Trajectories of the particles with coordinates xi(t) =

(
xi(t), yi(t)

)
, i = 1, 2. Right:

Absolute velocities: vi(t)
2 = (ẋi(t)

2
+ ẏi(t)

2
)/d2, i = 1, 2.

Therefore, a direct comparison of trajectories is no longer meaningful. However, considering not
only a few, but a larger number of particles in a bounded box under gravity, cause new effects.
Particles do not settle down homogeneously, their dynamics strongly depend on the distance
to the walls. During the sedimentation process, Rayleigh-Taylor-like instabilities and fingering
occur and a compression of the particle lattice at the bottom of the box is seen. To demonstrate
the possibility of our approach, to deal with moderate numbers of particles, we aim to observe
these phenomena. We have studied a situation of 120 particles arranged in a square lattice in the
upper part of a square domain. The initial distance of neighboring particles is set to the lattice
constant d. The width of the box is chosen so that 20 particles fit perfectly in one horizontal line,
i.e., we have dimx = dimy = 20d. Boundary conditions are similar to the case of one and two
particles. For a gravitational force g = (0,−2)> we have simulated the sedimentation process in
a fluid with a viscosity ratio η̄p/η̄f = 100, as above. The particles close to the side walls start
settling down first and due to their motion, an upwards fluid flow in the center of the domain is
induced. A visualization of the sedimentation process is shown in Figure 2.12Figure 2.12. We have drawn
black circular disks to indicate the particle positions. Four snapshots are shown, the initial and
final configuration and two intermediate states, i.e., the beginning of the development of the
instability and a snapshot with partially sedimented particles.
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In Figure 2.13Figure 2.13 the mean particle concentration 〈ψ〉(y) is shown, which is obtained by aver-
aging over stripes of width d along the particle layers,

〈ψ〉(y) :=
1

(xmax − xmin) · d

∫ xmax

x=xmin

∫ y+0.5d

y′=y−0.5d
ψ(x, y′) dy′ dx.

The high-concentration region moves from top to bottom over time and the mean particle density
is higher at the bottom of the box than for the initial configuration.

Figure 2.12 – Four snapshots of the sedimentation simulation for 120 particles in a square box. Color
red corresponds to high absolute velocity and blue to low velocity. Left: Initial configuration of particles.
Second image: An instability of the particle front, starting from the boundaries. Third image: Particles
start to sediment at the bottom. Right: Final compressed sediment of particles.

2.2.4 Preconditioner for the NS-PFC model

The sedimentation of 120 particles in Section 2.2.3Section 2.2.3 requires the mesh to be resolved fine near the
particles and moderately in the fluid region. This leads to large linear systems with about 60,000
DOFs per component. For a direct solver this system size exceed the size to be efficient in terms
of memory requirements and solution time, as it is shown in Section 1.6Section 1.6 and Table 1.3Table 1.3. A setup
with about 3,000 particles sedimenting in an enclosure requires approximately 500,000 DOFs
per component and is thus out of computational range. More advanced solvers are necessary
to handle more particles and finer flow resolution. The developed preconditioner may be a
resource to increase the system size of the PFC part. Various preconditioners for the Navier-
Stokes equations are developed in literature, based on Schur complement approaches, block
factorization, SIMPLE projection schemes and others, cf. [231231, 266266, 166166].

A preconditioner for the advected PFC equation based on the functional Fsh[ψ] is similar to
the approach in Section 2.1.2Section 2.1.2, i.e., the preconditioner matrix P is the same as in Section 1.3Section 1.3.
When including a non-vanishing mobility parameter M(ψ) into the PFC equation a modification
of the introduced approach must be formulated. Neglecting the nonlinearity matrix N and
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Figure 2.13 – Evolution of the mean density of particles for four different time steps corresponding
to the snapshots in Figure 2.12Figure 2.12. The final configuration of particles in a hexagonal lattice has a higher
density than the initial configuration in a square lattice.

perturbing the diagonal entry of Apfc in equation (2.122.12) leads to

P :=

 M 2K−KM−1K 0
τkKM (ψk) M +

√
τk
(
KM (ψk)− 2K + KM−1K

)
0

0 K M

 (2.45)

=

 M 0 0
τkKM (ψk) M +

√
τkKM (ψk) 0

0 0 I

I M−1
(
2K−KM−1K

)
0

0 M−1
(
M− 2

√
τkK +

√
τkKM−1K

)
0

0 K M

 .
Rewriting the Schur complement form P(S) of the preconditioner (1.201.20) in terms of the mobility
matrix KM (ψk), we can construct the expression

P(S) =

 M δ−1(M− S) 0
τkKM (ψk) δKM (ψk) + S 0

0 K M


with δ =

√
τk. Inserting S = M− 2δK + δKM−1K from (1.161.16) into P(S) leads to (2.452.45). When

using a Cahn-Hilliard inner-preconditioner SCH = M + 2
√
δK + δKM−1K from (1.191.19) instead,

the preconditioner matrix is given by

PCH :=

 M −2δ−1/2K−KM−1K 0

τkKM (ψk) M + δ
(
KM (ψk) + 2δ−1/2K + KM−1K

)
0

0 K M

 . (2.46)

In the left plot of Figure 2.14Figure 2.14 the setup of the growing rotating crystal (see Section 2.2.3Section 2.2.3) is
analyzed with respect to the influence of the reference velocity c∞ to the number of FGMRES
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Figure 2.14 – Number of solver iterations averaged over 20 timesteps, depending on the flow velocity
(left) and on the mobility M0 of the PFC equation (right).

solver iterations, when the preconditioner (2.462.46) is applied. Increasing the velocity also increases
the number of solver iterations for all mobility parameters M0. In the right plot of Figure 2.14Figure 2.14
the dependence on the mobility is shown. We have set M(ψ) ≡M0, i.e., a constant mobility for
this test. Very small and very large mobility factors lead to an increase in the solver iterations.

A setup that involves the vacancy term, i.e., the PFC equations is based on Fvpfc[ψ], is
analyzed in Section 4.2.4Section 4.2.4 in the context of a diffuse-domain modeling. The boundary of the
domain Ω is thereby described implicitly by a phase-field variable, similar to a wall potential as
in Section 2.1.2Section 2.1.2.

2.2.5 Dimensionless form

To get an insight into the derivation of the dimensionless parameters of the model and how they
emerge from physical quantities, a dimensionless form of the model is constructed. Therefore,
we start with a short sketch of the derivation of the PFC model and finally introduce a scaling
of space and time scales.

The one-particle number density % is driven by the variational derivative of the Helmholtz
free energy FH. This functional can be decomposed into two contributions FH = Fid + Fexc

22,
where the ideal gas part Fid is known and the excess free part is unknown for general systems,

FH[%] = kBT

∫
%[ln(Λm%)− 1] dx + Fexc[%]

with kB Bolzmann’s constant, T the temperature, Λ the thermal de-Broglie wave-length and m
the space dimension.

Inserting a parametrization % = %(ϕ) = %̄(1 + ϕ) with the density deviation ϕ and reference
density %̄, into the energy and expanding the ideal gas part of the energy around %̄ leads to a
polynomial form of Fid. Using a Ramakrishnan-Yussouff approximation [204204] of the excess free

2The external part of the energy Fext is neglected in this derivation of a dimensionless form, but it can easily
be included in a similar fashion as the other terms.
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part results in an expression of the two-point correlation function c(2)(x,x′, %),

Fexc = C +

∫∫
(%(x)− %L)c(2)(x,x′, %L)(%(x′)− %L) dx dx′

with %L a reference liquid density. This corresponds to a convolution of (%−%L) with c(2) and can
thus be transformed into a product in Fourier space. Expanding c(2) around the wave-number
zero and transforming back leads to a gradient expansion of Fexc, that can be written in the
variable ϕ (see Section 2.1.1Section 2.1.1):

1

kBT %̄
(FH[%(ϕ)]− F̄H) ≈

∫
1

2
ϕ2 − 1

6
ϕ3 +

1

12
ϕ4 dx

−
∫

1

2
ϕ(C0 − C2∆ + C4∆2)ϕdx

+

∫
D0 +D1ϕdx,

with C0, C2, C4, D0, D1 expansion coefficients. For a detailed derivation, see e.g. [268268, 124124, 200200].
Since we take the gradient of the variational derivative in the dynamical equations, all constant
and linear terms can be neglected in the energy without changing the dynamics.

Fixing the lattice spacing L, the dimensionless bulk modulus of the crystal B, and introducing
parameters r and ψ0, with

sign(C4) = −1, L2 :=
2|C4|
C2

, B :=
C2

2

4|C4|
=
ψ2

0

3
, r := ψ−2

0

(
9

4
− 3C0

)
− 1 ,

scaling the length by L, i.e., x̂ = x̂(x) := x
L , introducing the derivatives ∇̂ := ∂x̂, ∆̂ = ∇̂ · ∇̂

and a new variable ψ = ψ(x̂) as

%(x) = %̄(ψ0 · (ψ ◦ x̂)(x) + 1.5)

with (ψ ◦ x̂)(x) = ψ(x̂(x)), where ◦ acts as a function composition operator, results in the
classical PFC energy

3

kBT %̄ψ4
0

(FH[%(ψ)]− F̄H) ≈ Ln
∫

1

2
(1 + r)ψ2 +

1

4
ψ4 + ψ∆̂ψ +

1

2
ψ∆̂2ψ dx̂

=: LnFsh[ψ].

We consider the variational derivative of FH and relate it to the variational derivative of Fsh:

δFH[%]

δ%
=

1

Ln

(
δFH[% ◦ x]

δ(% ◦ x)
◦ x̂

)
≈ 1

Ln

(
δ
(

1
3kBT %̄ψ

4
0L

nFsh[ψ] + F̄H

)
δ(% ◦ x)

◦ x̂

)

=
1

3
kBT %̄ψ

4
0

(
δFsh[ψ]

δψ

δψ

δ(% ◦ x)
◦ x̂

)
=

1

3
kBTψ

3
0

(
δFsh[ψ]

δψ
◦ x̂

)
.
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Inserting the parametrization of % into the dynamical equations (2.142.14) and (2.152.15), fixing ψ0 = 1
for simplicity and using the length scaling x̂, gives

(1.5 + ψ)
(
∂tv +

1

L
(v · ∇̂)v + γv

)
=
kBT

3mL
∇̂δFsh[ψ]

δψ
+

η

m%̄L2
∆̂v,

∂tψ +
1

L
∇̂ ·
(
(1.5 + ψ)v

)
= 0.

Introducing the dimensionless variables t̂ := tV0/L and v̂ := v/V0 finally gives the dimensionless
dynamical equations

(1.5 + ψ)
(
∂t̂v̂ + (v̂ · ∇̂)v̂ +

γL

V0
v̂
)

=
kBT

3mV 2
0

∇̂δFsh

δψ
+

η

m%̄LV0
∆̂v̂,

∂t̂ψ + ∇̂ ·
(
(1.5 + ψ)v̂

)
= 0.

By defining the dimensionless numbers

Pe =
3mV 2

0

kBT
, Re =

m%̄LV0

η
and Γ =

γL

V0

as above, we find equations (2.172.17)–(2.182.18), where we have neglected the hat symbol on the
derivatives for readability.

2.2.6 Energy dissipation

To demonstrate thermodynamic consistency of the model, we assume that the total energy of
the system is composed of the Helmholtz free-energy FH, or an appropriate approximation of
this functional, and the kinetic energy

Fkin =
ρf
2

∫
‖u‖2 dx

of the surrounding fluid. To be consistent with the dynamical equations (2.422.42) we focus on the
dimensionless energies by introducing length and time scales as above and by defining dimen-
sionless variables denoted by a hat symbol. Additionally, we normalize the energies:

x̂ = x/L, t̂ = tV0/L, û = u/V0, F̂∗ = F∗/(V0L
2η̄f ).

This gives us the dimensionless kinetic energy

F̂kin =
Ref

2

∫
‖û‖2 dx̂

and by considering the correct scaling of the Swift-Hohenberg energy FH ≈ kBT %̄
L3

3 Fsh (see
Section 2.2.5Section 2.2.5) we find

F̂H =
1

Sc

∫
1

4
ψ4 +

1

2
ψ
(
r + (q2

0 + ∆)2
)
ψ dx̂

with the Schmidt number Sc given by

Sc =
Pe

Ref
¯̄% with ¯̄% :=

ρf
m%̄

.
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The total dimensionless energy, to be considered, now reads

F̂tot = F̂kin + F̂H.

In the following, we consider only non-dimensional variables and for readability drop the hat
symbols.

We assume that the evolution equations for momentum and mass conservation read

∂tu + (u · ∇)u = ∇ · σ̃ + F ,

∇ · u = 0 ,

∂tψ + u · ∇ψ = −∇ · j ,
(2.47)

where the volume force F and the flux j need to be determined to justify thermodynamic
consistency. Let Ω be a fixed domain with Lipschitz-boundary Σ. The time-evolution of the
energy ∂tFtot can be split into

∂tFkin = Ref

∫
Ω

u · ∂tu dx

= Ref

∫
Ω

u · (−(u · ∇)u +∇ · σ̃ + F) dx,

∂tFH =
1

Sc

∫
Ω

δFsh[ψ]

δψ
∂tψ dx. (2.48)

Using incompressibility, integration by parts, and the relations

1

2
∇
(
‖u‖2

)
= (u · ∇)u− (∇× u)× u ,(

f ∇u, D(u)
)

Ω
=
(
f D(u), D(u)

)
Ω
,

for a scalar field f = f(x) and inner product (A,B)Ω =
∫

Ω A : B dx =
∫

ΩAij(x)Bij(x) dx,33 we
get ∫

Ω
u · (u · ∇)u =

∫
Ω

1

2
u · ∇

(
‖u‖2

)
+ u ·

[
(∇× u)× u

]
dx

=
1

2

∫
Σ

(u · nΣ)‖u‖2 dΣ

= 0 for

{
u · nΣ = 0 (no-penetration)

u = 0 (no-slip),

∫
Ω

u · ∇ · σ̃ dx =

∫
Ω
−∇u : σ̃ dx︸ ︷︷ ︸
≤0

+

∫
Σ

u · σ̃ · nΣ dΣ︸ ︷︷ ︸
(∗)

(∗) = 0 for

{
σ̃ · nΣ = 0 (no-flux)

u = 0 (no-slip).

3Here we use the Einstein summation convention.
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Thus, we get for the kinetic part of the energy, in the case of no-slip boundary conditions, the
estimate

∂tFkin ≤ Ref

∫
Ω

u · F dx.

The derivative of the PFC-part of the energy evolution reads

∂tFH =
1

Sc

∫
Ω

j∇δFsh[ψ]

δψ
− u · δFsh[ψ]

δψ
∇ψ dx.

By choosing the flux j proportional to −∇δFsh[ψ]/δψ, e.g.,

j = −M(ψ)∇δFsh[ψ]

δψ

with M(ψ) any positive definite function, we find for the total energy evolution

∂tFtot ≤
∫

Ω
u ·
[
RefF−

1

Sc

δFsh[ψ]

δψ
∇ψ
]

dx

and can choose F so that this integral vanishes, i.e.,

F =
1

RefSc

δFsh[ψ]

δψ
∇ψ =

¯̄%

Pe

δFsh[ψ]

δψ
∇ψ.

Using incompressibility again, we get the relation to the force and flux terms derived before.
For no-slip boundary conditions, we have∫

Ω
− 1

Sc
u · δFsh[ψ]

δψ
∇ψ dx =

∫
Ω

1

Sc
u · ψ∇δFsh[ψ]

δψ
dx

and thus, the force

F = −
¯̄%

Pe
ψ∇δFsh[ψ]

δψ
(2.49)

and with M1 = ¯̄%/Pe the above set of equations (2.422.42). Our derived continuum model thus fulfills
thermodynamic consistency.

2.2.7 Nascent delta functions

To show, that the approximation of a delta-function by powers of a rescaled one-mode density
approximation (see equation (2.292.29)) is reasonable, we show that properties of a nascent delta
function hold true.

Let dist(x) be a distance function that gives the distance of x to the center-of-mass coordinate
of a particle fixed at the coordinate-center. Then, a smeared out delta-function δε(x) ≈ δ(x) can
be expressed as

δε(x) :=

{
1
2ε

(
1 + cos(π dist(x)/ε)

)
for |dist(x)| ≤ ε

0 otherwise,
(2.50)

where ε > 0 is a small parameter that defines the width of the smeared out region of the
delta-function (see, e.g., [246246, 259259, 8686]). It can be shown that δε converges weakly to δ, i.e.,

δε(x)
ε→0−−⇀ δ(x) :⇔ (δε, ξ)Rm

ε→0−−→ (δ, ξ)Rm , ∀ξC∞c .

Particularly for the function δε one can prove that it is a nascent delta function.
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Definition 1. (Similar to Definition 10.9 in [133133]) An integrable function δε ∈ L1(Rm) is called
nascent delta functions if it fulfills the following conditions:

(i) For all x ∈ Rm it is positive: δε(x) ≥ 0.

(ii) The integral is normalized:
∫
Rm δε(x) dx = 1.

(iii) The functions δε have small support, in the sense that for all ρ > 0:

lim
ε→0

∫
Rm\Bρ(0)

δε(x) dx = 0

with Bρ(0) a ball around the origin with radius ρ.

Theorem 4. (Following Theorem 10.11 and Remark 39.6 (b) in [133133]) A nascent delta function
δε(x) converges weakly to a delta-function δ(x) as ε goes to zero, in the sense of distributions,
i.e., ∫

Rm
δε(x)ξ(x) dx

ε→0−−→ ξ(0), ∀ξ ∈ C∞c .

Proof. Since δε ∈ L1(Rm) is integrable with compact support, there exists 0 < µ < ∞ with
‖δε‖L1 ≤ µ. Let τ > 0. There exists d > 0, such that

‖x‖ ≤ d ⇒ |ξ(0)− ξ(x)| < τ

µ
.

For ε < d we can write down an estimate of the difference of the integral to ξ(0), that is∣∣∣∣ξ(0)−
∫
Rm

δε(x)ξ(x) dx

∣∣∣∣ (ii)
=

∣∣∣∣∫
Rm

δε(x)
(
ξ(0)− ξ(x)

)
dx

∣∣∣∣
(iii)
=

∣∣∣∣∫
Bε

δε(x)
(
ξ(0)− ξ(x)

)
dx

∣∣∣∣ ≤ ‖δε‖L1

τ

µ
≤ τ.

Theorem 5. Let k ∈ N and ψ(k) be given by (2.282.28). Then the function

δ(k)(x) := Nkψ(k)(x) (2.51)

with Nk a normalization factor, is the sum of nascent delta functions and δ(k) converges weakly
to

δΩ(x) :=
∑
i

δ(x− xi) , (2.52)

as k →∞, where xi = 2πi
q , for i ∈ Z.

Proof. a) Consider ψ(0) and let ε := π
q and dist(x) = x then it follows:

δ(0)(x) =
N0

2

(
1 + cos(qx)

)
= N0

π

q
δε(x), for ‖x‖ ≤ π

q
.

Setting N0 := q
π we recover the proposed delta function approximation (2.502.50).
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b) Since δ(0) ≥ 0 the positivity property (i) of Definition 1Definition 1 is fulfilled for all δ(k), k ≥ 0.

c) For the integral of ψ(k) we find

√
π√
2k

2

q

∫ π/q

−π/q
ψ(k)(x) dx =

Γ(1
2 + 2k)

Γ(1 + 2k)
√

2−k
k→∞−−−→ 1.

We set Mk =
√

2k√
π
q
2 and Nk = Mk

Γ(1+2k)

Γ( 1
2

+2k)
√

2k
to provide the normalization condition (ii) of

Definition 1Definition 1 for all k ≥ 0.

The first values of Mk and Nk are given in table (2.532.53).

k 0 1 2 3

Mk
q

2
√
π

q√
2π

q√
π

q
√

2√
π

Nk · πq 1 4
3

64
35

16384
6435

(2.53)

d) Consider now a normalized Gaussian with εk := 2−k:

δexp
εk

(x) := Mkψ
exp
εk

= Mke
− (qx)2

4εk (2.54)

as a known nascent delta function with weak convergence δexp
ε

ε→0−−⇀ δ [133133], so particularly
the property (iii) of Definition 1Definition 1 is fulfilled for δexp

εk . Since we have

0 ≤ ψ(0)(x) ≤ ψexp
ε0 (x) ≤ 1 for ‖x‖ ≤ π

q

and ψ(k) =
[
ψ(0)

]2k
, it follows

∀k ≥ 0 : ψ(k)(x) ≤ ψexp
εk

(x) for ‖x‖ ≤ π

q
,

and ∀ρ > 0 with ρ < π
q it holds

Mk

∫ π/q

ρ
ψ(k)(x) dx ≤Mk

∫ π/q

ρ
δexp
εk

(x) dx, ∀k.

With limk→∞
∫ π/q
ρ δexp

εk (x) dx = 0 it follows

lim
k→∞

∫ π/q

ρ
δ(k)(x) dx = lim

k→∞
Nk

∫ π/q

ρ
ψ(k)(x) dx = 0.

This shows property (iii) of Definition 1Definition 1 for the sequence δ(k).

All in all we conclude, that δ(k), restricted to the interval [−π/q, π/q], is a nascent delta-
function and thus converges weakly to δ(x).
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e) We restrict the calculation to single waves of δ(k), by definition of

δi(k)(x) :=

{
δ(k)(x− xi), for ‖x− xi‖ ≤ π

q

0, otherwise

and can thus provide a partition in the form∑
i

δi(k) = δ(k).

Since each δi(k) converge weakly to a delta function we have found the property

δ(k)(x) =
∑
i

δi(k)(x)
k→∞−−−⇀

∑
i

δ(x− xi) = δΩ(x).

2.2.8 Conclusion

A fully continuous model is developed to simulate colloidal particles in a fluid, interacting via
direct particle-particle interaction and via the induced flow fields. The method is based on ideas
of dynamic density functional theory and fully resolved direct numerical simulations. The derived
NS-PFC system operates on diffusive time scales and provides a qualitative approach down to
the particle size.

We have demonstrated the quality of the method in various examples, first in crystallization
processes analyzing the influence of a macroscopic flow field and second for three common test
cases, namely the sedimentation of one, two, and many particles. For one and two particles,
we have quantitatively compared the trajectories and velocities obtained by our simulation
to simulations with the FPD method and have found good agreement. For the case of many
particles we see the expected instabilities and compression at the bottom. For more quantitative
comparisons, the calculation of a hydrodynamic radius would be desirable, as it is done by
[191191, 186186]. However, this requires computations in 3D for the comparison with Stokes drag
and drag torque and has thus to be considered in future work. As a preliminary step, we have
computed the effective radius of the vacancy NS-PFC model by comparison with the FPD
method, using the concentration profile (2.302.30), for which a radius is given. We have computed
the particle velocities obtained by both methods for one particle dragged through a periodic
channel. Comparing the result for various radii for the FPD method, we find an effective radius
for the NS-PFC model of approximately 0.35d.

However, in comparison with the other methods mentioned in the introduction, we do not
see the advantages of our approach in a more detailed description of the underlying physics on
a single particle scale, but in the emergent phenomena on larger scales. Here the formulation as
a fully continuous model has several numerical advantages. For the classical PFC equation time
step independent stability can be proven for the discrete scheme [2929, 279279, 202202]. Coupling this
to the Navier-Stokes equations, as considered e.g. in [77], allows for larger time steps as in the
explicit coupling schemes of hybrid methods. As the NS-PFC model only contains local terms,
the algorithms are expected to scale independently of the number of particles.
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The numerical details of an efficient preconditioner to solve the arising linear systems is
described for the advected PFC equation and for the Vacancy PFC model. Larger flow velocities
decrease the efficiency of the solver slightly and also large mobility coefficients M0 lead to
slower convergence of the iterative schemes. This must be taken into account when large scale
simulations are performed. Nevertheless, in combination with domain-decomposition techniques,
as already described in Section 1.6.3Section 1.6.3, the system size can be increased a lot with an acceptable
parallel efficiency.



CHAPTER 3

Liquid crystalline phases within the PFC model

E xtending the classical Phase-Field Crystal model by an additional orientational order-para-
meter allows to study various liquid-crystalline phases. The corresponding Liquid Crystal

PFC (LC-PFC) model was derived and formulated in [154154, 282282, 284284, 283283] and later first simu-
lations were performed in [33].

We use this model to access the structure and thermodynamics of interfaces between two co-
existing liquid-crystalline phases in two spatial dimensions. Some results were already published
in [203203]. Depending on the model parameters, there is a variety of possible coexistences between
two liquid-crystalline phases, where one phase is a plastic triangular crystal (PTC). Here, we
calculate numerically the profiles for the mean density and the nematic order tensor across the
interface for isotropic-PTC and columnar-PTC or smectic A-PTC coexistence. As a general
finding, the width of the interface with respect to the nematic order parameter characterizing
the orientational order is larger than the width of the mean density interface. In approaching
the interface from the PTC side, at first the mean density goes down and then the nematic order
parameter follows. The relative shift of the two profiles can be larger than a full lattice constant
of the plastic crystal. Finally, we also present numerical results for the dynamic relaxation of
an initial order-parameter profile towards its equilibrium interfacial profile. In [250250] we have
furthermore analyzed the dynamics of topological defects in the orientational director field in
the phase transition smectic A-PTC.

Polar order can be incorporated into the Phase-Field Crystal model by introducing further-
more a parameter that describes the colloidal polarization, a vector order-parameter coupled to
both fields, the translational and orientational order-parameter. Thermodynamic consistency of
the model is shown. A plastic triangular and square phase as well as stripe phases are observed
and the structural symmetries are visualized.
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3.1 Interfaces between two coexisting liquid-crystalline phases

Liquid crystals build a mesophase with properties of both, a liquid and a crystalline phase [6666].
Composed of unsymmetrical molecules or colloidal particles that can be ordered in position and
orientation [9494, 276276], a rich variety of possible arrangements can be observed. In two spatial
dimensions we find plastic triangular phases, liquid phases and stripe patterns, i.e., a smectic-A
and columnar phase, and orientationally ordered phases, like the nematic phase. An overview
about some patterns can be found in Figure 3.1Figure 3.1 and Figure 3.2Figure 3.2.

Varying the temperature and mean density of a system, not only pure phases can be observed,
but also the coexistence of two phases of different ordering. We analyze the structure of the
interfaces between those coexisting phases in this chapter, when a plastic triangular phase is
involved. Therefore, the transition from liquid to crystalline and from columnar to crystalline
is examined. Other phase pairs were already considered in literature, e.g., gas-liquid [8989] and
solid-liquid [286286] interfaces of spherical particles (see also [4444, 117117, 6464, 297297, 296296, 222222, 110110]), the
isotropic-nematic interface (see, e.g., [172172, 269269, 4343, 274274, 267267, 285285, 214214, 265265, 270270]), the isotropic-
smectic (see [173173, 239239, 4545, 7070]), and the nematic-smectic interface [188188]. However, to the best
of our knowledge there is no investigation of an interface, where one of the coexisting phases is
plastic or fully crystalline.

We use a variant of the Phase-Field Crystal model that was formulated for anisotropic par-
ticles in two [154154] and three [282282] spatial dimensions allowing for liquid-crystalline phases. It is
formulated in terms of three order-parameter fields, namely the (translational) density modu-
lation ϕ(x), the local nematic order parameter S(x), and the nematic director n̂(x). Numerical
studies [33] of the LC-PFC model in two spatial dimensions have shown that a variety of phase
coexistences occur as a function of the model parameters. We follow this route and analyze the
details about the interfaces between coexisting liquid crystalline phases using the PFC model.
Additionally we show the dynamic process of the formation of these interfaces.

The chapter is organized as follows: after the presentation of a suitable PFC model for liquid
crystals in Section 3.1.1Section 3.1.1, we show a numerical discretization in Section 3.1.2Section 3.1.2 and discuss results
obtained by numerical calculations in Section 3.1.4Section 3.1.4.

3.1.1 PFC model for liquid crystals in two spatial dimensions

A PFC model for apolar11 liquid crystals in two spatial dimensions22 was given in [154154, 33, 284284, 283283,
8585]. It describes the static properties and dynamical behavior of a liquid-crystalline system in
terms of two dimensionless order-parameter fields: the reduced translational density ϕ(x, t) and
the symmetric and traceless nematic tensor Q(x, t), with components Qij , position x = (x, y)
and time t. For liquid-crystalline particles with a symmetry axis, the nematic tensor can be
parametrized as

Qij(x, t) = S(x, t)
(
ni(x, t)nj(x, t)−

1

2
δij

)
(3.1)

with the nematic order parameter S(x, t) and the nematic director n̂(x, t) = (n1, n2) that cor-
responds to the eigenvector of Q with respect to the dominant eigenvalue (see [154154, 33, 284284]).

1We neglect a possible macroscopic polarization. A generalization toward polar liquid crystals is formulated in
Section 3.2Section 3.2.

2An extension toward a 3D model was formulated in [282282, 8585].
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S, n̂ ϕ S, n̂ ϕ
Isotropic Nematic

S, n̂ ϕ S, n̂ ϕ
Stripes CSA

Figure 3.1 – A collection of some liquid crystalline phases obtained with the Liquid-Crystal PFC
(LC-PFC) model. Parameters (A1, A2, B3, D1, D2) are given from top-left to bottom-right: isotropic
(4.2, 14,−4, 2, 0.8), nematic (3, 14,−4,−2, 0.8), stripes (1.5, 14, 0, 1, 8) and columnar/smectic A (CSA)
(1.5, 14,−4, 2, 0.8). All phases with mean density ϕ̄ = 0.

S, n̂ ϕ S, n̂ ϕ
PTC1 PTC2

S, n̂ ϕ S, n̂ ϕ
PSC PHC

Figure 3.2 – A collection of some liquid crystalline phases obtained with the Liquid-Crystal PFC (LC-
PFC) model. Parameters (A1, A2, B3, D1, D2) are given from top-left to bottom-right: plastic triangular
crystal 1 (PTC1) (3, 14, 0, 1, 8), plastic triangular crystal 2 (PTC2) (3, 14,−4, 1, 0.8), plastic square crystal
(PSC) (1.5, 14,−4,−0.2, 0.8) and plastic honeycomb crystal (PHC) (4.5, 14,−4,−0.4, 0.8). All phases with
mean density ϕ̄ = 0.
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Static free-energy functional

The static properties of a liquid-crystalline system are described by a free-energy functional
F [ϕ,Q], which is minimized with respect to ϕ(x) and Qij(x) in thermodynamic equilibrium.
After an appropriate rescaling of the length and energy scales, this free-energy functional obtains
the dimensionless form33 [283283]

F [ϕ,Q] =

∫ {
−ϕ

3

3
+
ϕ4

6
+A1ϕ

2 +A2ϕ(∆ + ∆2)ϕ+ (ϕ− 1)
ϕQ2

kl

4

+B3(∂kϕ)(∂lQkl) +
Q2
klQ

2
mn

64
+D1Q

2
kl +D2(∂lQkl)

2

}
dx (3.2)

with the five dimensionless coupling parameters A1, A2, B3, D1, and D2.

Remark 5. The functional (3.23.2) can be split into a PFC part, an orientational part and a
coupling part, i.e.,

F [ϕ,Q] =

∫
fpfc(ϕ) + fcoupling(ϕ,Q) + fQ(Q) dx

with

fpfc(ϕ) = −ϕ
3

3
+
ϕ4

6
+A1ϕ

2 +A2ϕ(∆ + ∆2)ϕ ,

fcoupling(ϕ,Q) = ϕ(ϕ− 1)
Q2
kl

4
+B3(∂kϕ)(∂lQkl) ,

fQ(Q) =
Q2
klQ

2
mn

64
+D1Q

2
kl +D2(∂lQkl)

2,

where fpfc(ϕ) is similar to the classical PFC energy density (1.11.1) and fQ(Q) corresponds to the
Landau deGennes distorsion and bulk free energy density [6666] with fixed quartic term that allows
for a stable nematic ordering for D1 > 0. C

Remark 6. If we relate this free-energy F [ϕ,Q] to the energy given in Section 2.2.6Section 2.2.6, we find
that the length scale L is fixed to L =

√
2 and the parameters A1 = −C0 and A2 = C2 = −C4. In

[283283] a slightly different parametrization is used with a parameter A3 in front of the ∆2ϕ term
in the energy. C

Dynamical equations

The corresponding dynamical equations for ϕ(x, t) and Qij(x, t) can be derived from classical
dynamical density functional theory [281281] and are given in [283283], by

∂tϕ = −∇ · Jϕ , (3.3)

∂tQ = −ΦQ (3.4)

3Einstein’s sum convention is used throughout this chapter. Notice that powers of indexed quantities involve
repeated indices and thus summation, i. e., for example, Q2

ij ≡ QijQij ≡
∑
i,j QijQij .
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with the dimensionless current Jϕ(x, t) and the dimensionless quasi-current ΦQ(x, t). In constant-
mobility approximation, this current and quasi-current are given by [283283, 8585]

Jϕ = −2α1(∇ϕ\)− 2α3(∇ ·Q\) , (3.5)

ΦQ
ij = −4α1(∆Q\ij)− 2α3

(
2(∂i∂jϕ

\)− δij(∆ϕ\)
)

+ 8α4Q
\
ij , (3.6)

with the three dimensionless mobility parameters α1, α3, and α4
44 and the thermodynamic

conjugates

ϕ\ =
δF
δϕ

, Q\ =
δF
δQ

(3.7)

of ϕ(x, t) and Q(x, t) respectively. The thermodynamic conjugates follow directly from the free-
energy functional (3.23.2) by functional differentiation:

ϕ\ =− ϕ2 +
2

3
ϕ3 + 2A1ϕ+ 2A2(∆ + ∆2)ϕ+ (2ϕ− 1)

Q2
ij

4
−B3(∂i∂jQij) , (3.8)

Q\ij =ϕ(ϕ− 1)Qij −B3

(
2(∂i∂jϕ)− δij∆ϕ

)
+
QijQ

2
kl

8
+ 4D1Qij

− 2D2∂k
(
∂iQkj + ∂jQki − δij(∂lQkl)

)
.

(3.9)

For a comparison of the dimensionless rescaled parameters in equations (3.23.2), (3.53.5), and (3.63.6)
with the corresponding parameters in the notation of [33, 283283, 8585], see [203203].

The numerical procedure to solve the system of equations is briefly described in the next
section.

3.1.2 Numerical solution of the PFC model

By inserting equations (3.83.8) and (3.93.9) into equations (3.53.5) and (3.63.6), we obtain a system of six
coupled nonlinear partial differential equations for the dynamical equations (3.33.3) and (3.43.4). In
order to solve this system numerically, we decoupled and linearized it. A simplification is possible
due to the symmetry and tracelessness of the nematic tensor. Defining the variables qi ≡ Qi,1
and q\i ≡ Q

\
i,1 allows to write the system of dynamical equations in the compact form

∂tϕ = 2α1∆ϕ\ + 2α3Niq
\
i ,

∂tqi = 4α1∆q\i + 2α3Niϕ\ − 8α4q
\
i

(3.10)

with the operator N ≡ (∂1∂1 − ∂2∂2, 2∂1∂2) that is related to the Cauchy-Riemann operator.
The thermodynamic conjugates reformulated in the new variables read

ϕ\ = fϕ(ϕ,q) + 2A1ϕ+ 2A2(∆ + ∆2)ϕ−B3Niqi ,

q\i = fq(ϕ,q)i + 4D1qi − 2D2∆qi −B3Niϕ
(3.11)

with the polynomials

fϕ(ϕ,q) = −ϕ2 +
2

3
ϕ3 +

1

2
(2ϕ− 1)‖q‖2 ,

fq(ϕ,q)i = ϕ(ϕ− 1)qi +
1

4
qi‖q‖2.

(3.12)

4In Section 3.1.3Section 3.1.3 a relation of the three mobilities is given that leads to dissipative dynamics.
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To discretize the dynamical equations (3.103.10) in time, let 0 = t0 < t1 < t2 < . . . < tN = T be
a sequence of time steps. Defining ϕk ≡ ϕ(tk), qi,k ≡ qi(tk), and τk = tk+1 − tk , we obtain the
time-discrete systems

ϕk+1

τk
− 2α1∆ϕ\ =

ϕk
τk

+ 2α3N · q\ ,

ϕ\ − 2
(
A1 −A2∆

)
ϕk+1 +A2∆ϕ[ = fϕ(ϕk+1,qk)−B3N · qk , (3.13)

ϕ[ −∆ϕk+1 = 0

and

1

τk
qk+1 − 4(α1

~∆− 2α4)q\ =
1

τk
qk + 2α3Nϕ\ , (3.14)

q\ − 2(2D1 −D2
~∆)qk+1 = fq(ϕk+1,qk+1)−B3Nϕk+1 ,

by replacing the time-derivative by a backward Euler discretization. We have used a sequential
operator splitting approach to separate the dynamical system for ϕ and q.

Linearizing fϕ(ϕ,q) and fq(ϕ,q)i around the old time step tk, two linear systems can be
solved one after the other for all k. The linearizations of the polynomials (3.123.12) read

fϕ(ϕk+1,q) ≈ ϕk+1

(
− 2ϕk + 2ϕ2

k + ‖q‖2
)

+ ϕ2
k −

4

3
ϕ3
k −
‖q‖2

2
,

fq(ϕ,qk+1)i ≈
1

4
qi,k+1

(
4ϕ(ϕ− 1) + ‖qk‖2

)
+

1

2
qi,kqj,kqj,k+1 −

1

2
qi,k‖qk‖2.

(3.15)

Instead of such a simple time-stepping scheme, a higher-order embedded Rosenbrock scheme
with an adequate step-size control for the time discretization can be used. Such a scheme is
described in more detail in the next section.

Rosenbrock Discretization for the LC-PFC system

We follow the notation M∂tx = F[x] of Section 1.2.1Section 1.2.1 and introduce the (non-)linear operator
F and Jacobian JF of the right-hand side of system (3.103.10). We have x = (ϕ,ϕ\, ϕ[,q,q\)> and
M = diag(0, 1, 0,0,1) with the functional F applied to x given by

F[x] =


−ϕ\ + 2A1ϕ+ 2A2∆ϕ+ 2A2∆ϕ[ −B3N · q

2α1∆ϕ\ + 2α3N · q\
−ϕ[ + ∆ϕ

−q\ + 4D1q− 2D2
~∆q−B3Nϕ

4α1
~∆q\ + 2α3Nϕ\ − 8α4q

\


︸ ︷︷ ︸

FLin[x]

+


fϕ(ϕ,q)

0
0

fq(ϕ,q)
0

 .

The corresponding Jacobian J of F in direction y = (dϕ, dϕ\, dϕ[, dq, dq\)> reads

JF(x)[y] = FLin[y] +


Jfϕ(ϕ,q)[dϕ, dq]

0
0

Jfq(ϕ,q)[dϕ, dq]
0


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with

Jfϕ(ϕ,q)[dϕ, dq] = −2ϕdϕ+ (2ϕ2 + ‖q‖2)dϕ+ (2ϕ− 1)〈q, dq〉2,

Jfq(ϕ,q)[dϕ, dq]i =
(
(2ϕ− 1)qidϕ+ ϕ(ϕ− 1)dqi +

1

4
(2q2

i + ‖q‖2)dqi,
1

2
q1q2dqj(i)

)
,

where j(i) = 3− i the opposite component of q.
Let {θi} be a basis of the finite-element space Vh (see Section 1.2Section 1.2), M and K the shortcuts

for the assembled mass and stiffness matrices, and the discretized operator matrices defined by

M :=
(
(θj , θi)Ω

)
ij
, K :=

(
(∇θj ,∇θi)Ω

)
ij
, Kkl :=

(
(∂lθj , ∂kθi)Ω

)
ij
.

Using K = K11 + K22 and K∗ := K11 −K22, we get a structural symmetric representation of
the coupled linear system for the ith stage iteration yk+1

i of the Rosenbrock scheme:[
A B
B> C

]
yk+1
i =

(
b0

b1

)
, (3.16)

where A corresponds to the PFC part of the equations, C to the liquid-crystal part of the
equations, and B to a coupling operator. Thereby, the block-diagonal parts of the linear system
are given by

A =

H(−2A1,2A2) − Fϕ M 2A2K

(cτk)
−1M 2α1K 0

K 0 M



C =


H(−4D1,−2D2) −Gq1

1 −Gq2
1 M 0

−Gq1
2 H(−4D1,−2D2) −Gq2

2 0 M

(cτk)
−1M 0 H(8α4,4α1) 0

0 (cτk)
−1M 0 H(8α4,4α1)

 ,
with the parametrized matrix H(a,b) := aM + bK and c the timestep scaling of the Rosenbrock
scheme (see Section 1.2.1Section 1.2.1). The coupling (off-diagonal) blocks of the system matrix read

B =

−B3K
∗ − Fq1 −2B3K12 − Fq2 0 0
0 0 2α3K

∗ 4α3K12

0 0 0 0

 ,

B> =


−B3K

∗ −Gϕ
1 0 0

−2B3K12 −Gϕ
2 0 0

0 2α3K
∗ 0

0 4α3K12 0

 .
The matrices corresponding to the non-linear terms are given by

Fϕ =
((

[−2ϕk + 2(ϕk)
2 + ‖qk‖2 ]θj , θi

)
Ω

)
ij
, Fql =

((
[2ϕk − 1]ql,kθj , θi

)
Ω

)
ij
,

and

Gϕ
l =

((
[2ϕk − 1]ql,kθj , θi

)
Ω

)
ij
, Gqm

l =
(([

δlm[(ϕk)
2 − ϕk +

1

4
‖qk‖2] +

1

2
ql,kqm,k

]
θj , θi

)
Ω

)
ij
.

Especially, one can find Fql = Gϕ
l and Gqm

l = Gql
m and thus the symmetry of the system.
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Solving the LC-PFC system

When using the operator splitting approach (3.133.13)–(3.143.14) we have to solve the PFC part and the
liquid-crystal part in rotation, where the PFC part (3.133.13) can be solved using the preconditioner
developed in Chapter 1Chapter 1.

In the Rosenbrock scheme (3.163.16) the Jacobi-matrix can be approximated, by neglecting one
or both of the off-diagonal blocks, i.e. by solving the block triangular or block diagonal system[

A 0
B> C

]
yk+1
i =

(
b0

b1

)
, or

[
A 0
0 C

]
yk+1
i =

(
b0

b1

)
,

respectively. This leads to a valid and efficient time-discretization scheme, when using a Rosen-
brock W-method (see, e.g., [242242, 207207]). In the block-diagonal approximation the two systems
can be solved in parallel, since the matrices depend on the old timestep solutions only. Also in
the operator-splitting approach a parallel splitting could be implemented with the same order of
convergence 1, with respect to the timestep width, as a sequential splitting. Both schemes show
similar stability in the case of coupling the PFC equation to the Q-tensor equation.

The matrix A in the Rosenbrock scheme corresponds to the PFC part and can thus be solved
using a preconditioned Krylov-subspace method FGMRES with the preconditioner matrix P of
Section 1.3Section 1.3 or the corresponding variant, involving the Cahn-Hilliard subpreconditioner, PCH.

3.1.3 Thermodynamic consistency

In order to find appropriate parameter regimes for the mobility parameters α1, α3, and α4 we
consider the variation of the energy with respect to variations in the order-parameters in time.
For dissipative dynamics we have to find mobilities the lead to the relation ∂tF [ϕ,Q] ≤ 0.

The static free-energy functional (3.23.2) can be reformulated in terms of the variable ϕ and
the two components of the Q-tensor, namely q,

F [ϕ,Q] = F [ϕ,q] =

∫
A2|∆ϕ|2 −A2‖∇ϕ‖2 +D2‖∇q‖2F +B3〈∇ϕ, ~Hq〉2 + f(ϕ,q) dx,

=
1

2

∫
ϕϕ\ + 〈q,q\〉2 + f̃(ϕ,q) dx,

(3.17)

using the Euclidean norm ‖a‖2 = 〈a, a〉2, the Frobenius norm ‖A‖2F = trace(A>A), and the

differential operator ~H, given by ~Hq =
(
∂1q1 + ∂2q2, ∂1q2− ∂2q1

)>
. The polynomial parts of the

energy are given by

f(ϕ,q) = A1ϕ
2 − 1

3
ϕ3 +

1

6
ϕ4 +

(
2D1 +

1

2
ϕ(ϕ− 1)

)
‖q‖2 +

1

16
‖q‖4

f̃(ϕ,q) =
1

3
(ϕ3 − ϕ4)− ϕ(ϕ− 2)‖q‖2.

Dissipative dynamics can be obtained by choosing the dynamical equations (3.103.10) and the
mobility parameters α1, α3, and α4, s.t. ∂tF [ϕ,q] ≤ 0, with

∂tF [ϕ,q] =

∫
∂tϕϕ

\ + 〈∂tq,q\〉2 dx

= −
∫

2α1‖∇ϕ\‖2 + 4α3〈∇ϕ\, ~Hq\〉2 + 4α1‖~Hq\‖2 + 8α4‖q\‖2 dx,
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Figure 3.3 – Phase diagram with coexistence regions for the mean density ϕ̄ ∈ [−1.6, 0.4] and the
parameters A1 ∈ [1.3, 3.5], A2 = 14, B3 = −0.4, D1 = 1, and D2 = 0.8. Three different liquid-crystalline
phases are realized: isotropic, columnar/smectic A (CSA), and plastic triangular crystalline (PTC). The
coexistence regions (shaded areas) are calculated using Maxwell’s double tangent construction. The black
dashed lines in the coexistence regions indicate the intersection lines of the energy curves of the two
adjacent phases. Six black circles indicate certain parameter combinations for which detailed calculations
were performed (see Figure 3.5Figure 3.5–Figure 3.10Figure 3.10). The colored crosses correspond to the simulated data to
create the diagram.

where we have used the identity
∫
−〈~Hq\, ~Hq\〉2 dx =

∫
〈~∆q\,q\〉2 dx.

By requiring the Onsager matrix of phenomenological mobility coefficients2α1 2α3 0
2α3 4α1 0
0 0 8α4


to be positive semidefinite, i.e., α1, α4 ≥ 0, and |α3| ≤

√
2α1, we get the energy decreasing

property.

3.1.4 Results

We first restrict ourselves to certain parameter combinations, which allow for several liquid-
crystalline coexistences. In detail, we fix the parameters A2 = 14, B3 = −0.4, D1 = 1, and
D2 = 0.8, but vary the parameter A1 (which corresponds to some formal temperature in the
context of mean-field theories) and the reduced mean density ϕ̄.55 The resulting equilibrium bulk
phase diagram is shown in Figure 3.3Figure 3.366 in consistency with earlier data [33]. In the parameter
range of A1 and ϕ̄ shown, the phase diagram exhibits three stable liquid-crystalline phases,
namely, the isotropic phase, a plastic triangular crystal (PTC)77, and a columnar phase. As we

5The parameters in the dynamical equations (3.33.3)–(3.63.6) are always chosen to be α1 = α3 = α4 = 1. Clearly,
the stationary results do not depend on their particular values.

6A phase diagram that varies also the parameter B3 was calculated in [250250].
7The plastic triangular crystal in the phase diagram 3.33.3 is called “plastic triangular crystal 2” (PTC2) in [33].
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3)

and k = 1/
√

2.

consider two spatial dimensions here, a columnar phase is indistinguishable from a smectic A
phase, therefore we call the latter columnar/smectic A (CSA)88 phase. The coexistence regions,
as obtained by a Maxwell double tangent construction, are depicted by the shaded area in
Figure 3.3Figure 3.3. We selected in total six different coexistence conditions as labeled by black circles in
Figure 3.3Figure 3.3, which correspond to three isotropic-PTC and three CSA-PTC coexistence situations
serving as basic reference situations for our subsequent investigations.

A typical example for an isotropic-PTC interfacial profile is presented in Figure 3.4Figure 3.4 for the
(10)-orientation of the hexagonal crystal99. In the bulk PTC phase, there are periodic peaks
in the full density profile ϕ(x, y) at the crystal lattice positions, shown as a contour plot in
Figure 3.4Figure 3.4. The typical standard deviation of these peaks (the so-called Lindemann parameter)
is pretty large with about 27% of the lattice constant. The corresponding orientational ordering
as embodied in the nematic tensor is complicated and exhibits topological defects in the Wigner-
Seitz cell of the lattice (see [33, 6363] for a more detailed discussion). The mean orientational
unit vector field n̂(x, y) as obtained by the direction of the eigenvector of the nematic tensor
corresponding to the highest eigenvalue, is sketched by short black lines in Figure 3.4Figure 3.4. The
largest eigenvalue itself multiplied by 2 – the scalar nematic order-parameter field S(x, y) –
is also presented as a contour plot in Figure 3.4Figure 3.4. In the isotropic phase, on the other hand,
the density field is constant and the nematic order parameter vanishes. In between there is an
interfacial region with laterally averaged profiles 〈ϕ〉(x) and 〈S〉(x) with x denoting the direction
perpendicular to the interface (see caption of Figure 3.4Figure 3.4).

8This columnar/smectic A (CSA) phase is called “C/SA phase” in [33].
9In our calculations, the one-mode approximation was used to determine the lattice spacing in y-direction. In

fact, we found for varied periodicity in y-direction that the free-energy density is minimal for a lattice spacing
very close to the one-mode approximation such that the system is practically not strained in y-direction.
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Figure 3.5 – Left and center: Widths of the isotropic-PTC interfaces of ϕ(x) and S(x) in de-
pendence of A1 and B3, respectively. Right: Width of the CSA-PTC interfaces in dependence
of A1. The parameters are (left) (ϕ̄, A1) ∈ {(−1.2, 1.3), (−0.85, 2.2), (−0.3, 3.21)}, (center) B3 ∈
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that the presented data in (left) and (right) correspond to the six points highlighted by black circles in
Figure 3.3Figure 3.3 and that they are connected by polynomial fitting curves. The stripes of the CSA phase in
(right) are oriented perpendicular to the interface (see Figure 3.7Figure 3.7).

We define a typical interface width of an order parameter profile f(x, y) ∈ {ϕ(x, y), S(x, y)}
as the distance of the positions, where a tanh-approximation of 〈f〉(x) attains the values
0.95〈f〉(−∞)+0.05〈f〉(∞) and 0.05〈f〉(−∞)+0.95〈f〉(∞), respectively. These widths for ϕ(x, y)
and S(x, y) are indicated in Figure 3.4Figure 3.4. Remarkably, the width of the density profile is sig-
nificantly smaller than the width of the orientational profile. The position, where the tanh-
approximation of an averaged field 〈f〉(x) with f ∈ {ϕ, S} attains the value (〈f〉(−∞) +
〈f〉(∞))/2 can be taken as a natural location ξ(f) of the interface with respect to this field.
Interestingly, as revealed in Figure 3.4Figure 3.4, the location of the averaged density profile 〈ϕ〉(x) and
the averaged orientational profile 〈S〉(x) do not coincide. The location of the orientational profile
is more shifted towards the isotropic phase than the location of the density profile. This means
that coming from the isotropic side, at first the nematic order builds up and then the density
follows. This finding is reminiscent to the fluid-crystal interface of systems of spherical particles
[162162, 110110], which can be described by a two-order-parameter description involving the conserved
mean density and a non-conserved crystallinity [156156, 157157]. Coming from the fluid side, also in
this case, the non-conserved crystallinity starts to grow first and the density follows.

We have further studied the dependence of the interface widths on the parameters A1 and
B3. As A1 is increased, the coexistence comes closer to a critical point where the interfacial
widths diverge. This trend is documented in Figure 3.5Figure 3.5(left).

Figure 3.5Figure 3.5(left) also shows that the width of the orientational order-parameter profile is
larger than that of the density interface over the full range of A1. All trends are the same for
different parameter combinations for the isotropic-PTC interface, as documented by Figure 3.6Figure 3.6.
The dependence of the interface width on the parameter B3 as shown in Figure 3.5Figure 3.5(center) is
much less pronounced than the dependence on the parameter A1. Interestingly, the interface
width of the orientational order-parameter profile is again larger than the width of the density
interface. The trend of the curves indicates that this behavior holds also for a larger parameter
interval of B3 than plotted in Figure 3.5Figure 3.5(center). However, due to the huge parameter space and
high computational complexity of the calculations we cannot rule out the possibility that there
is a certain combination of the five parameters of the PFC model, where the interface width for
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plots.

the orientational order-parameter profile is not larger than for the density profile.

Next, we consider the coexistence between the PTC and the CSA phase. In this case, the
interface structure depends on the relative orientations of the two phases. While we fix the
orientation of the PTC phase in the (10)-direction, we consider here two different possibilities
of the column direction relative to the interface, namely perpendicular and parallel. For these
two relative orientations, the order-parameter fields are given in Figure 3.7Figure 3.7 and Figure 3.8Figure 3.8 for
two different parameter combinations of coexistence1010. For perpendicular column direction
(see Figure 3.7Figure 3.7), the density field reveals that the columns end at a lattice density peak. This
implies that the degeneracy of the column positions is broken by the presence of the crystal,
which pins the transversal columnar order by the interface. Along the columns away from the
interface, there are still some density undulations in x-direction. For parallel column direction
(see Figure 3.8Figure 3.8), on the other hand, there is a nontrivial density field across the interface insofar
as the columns are significantly bent in the presence of the crystalline peaks, i. e., the crystal
induces a systematic undulation of the neighboring columns. The amplitude of this undulation
decreases farer away from the interface position. Likewise, along the columns there is a periodic
density modulation in y-direction induced by the crystalline peaks nearby.

Results for the interfacial widths, similarly defined as in the previous case, are shown in
Figure 3.5Figure 3.5(right), where the same trends are observed as for the isotropic-PTC interface (see

10It is important to note that in Figure 3.7Figure 3.7 the interface connects two phases which have in principle different
periodicities in y-direction. Therefore, care has to be taken in determining the box size in y-direction, in particular
if these two periodicities are incommensurate. We have checked that a doubled system size in y-direction does not
affect the results. Nevertheless, a much larger system size could possibly lead to superstructures which are not
explored here.
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Figure 3.5Figure 3.5(left)). The width of the orientational interface is considerably larger than that for
the density profile and there is a strong dependence on the parameter A1 with huge interfacial
widths, where the parameter is close to criticality. Both for the isotropic-PTC coexistence and for
the CSA-PTC coexistence, the interface position of the density profile is more shifted towards
the PTC phase than the interface position of the orientational profile, which is more in the
coexisting CSA phase (see Figure 3.9Figure 3.9). As shown in Figure 3.9Figure 3.9, the distance of the two interface
positions depends on the parameters A1 and B3.

Finally, we show some results on the dynamical evolution of the interfacial profiles based on
the physical dynamics described by equations (3.33.3) and (3.43.4). It is important to note that the
density is a conserved order parameter, while the nematic ordering is non-conserved. We plotted
an example of the interface relaxation towards equilibrium for a prescribed starting profile
in Figure 3.10Figure 3.10. The orientational order-parameter field is a smeared Heaviside step function,
while the density is constant. Similar setups for interfacial kinetics have been studied earlier
[158158]. The density field subsequently takes up the orientational inhomogeneity and both order
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parameters relax to their equilibrium profiles. The density develops a marked transient non-
monotonic profile and relaxes much slower than the orientational order. It takes quite a long
time in units of the basic time scale of the dimensionless dynamical equations (3.33.3)–(3.63.6) to end
up in the final equilibrium state. These findings show that our dynamical equations (3.33.3) and
(3.43.4), which reflect the diffusive dynamics of colloidal systems, can in principle be applied to
plenty of further growth phenomena in the future.

3.1.5 Conclusions

In conclusion, we have explored the equilibrium structure of interfaces between various coexist-
ing liquid-crystalline phases using a PFC model for liquid crystals. In two spatial dimensions, we
have considered explicitly the isotropic-plastic crystalline and the smectic A-plastic crystalline
interface, which are both anisotropic, i. e., they depend on the relative orientation of the two
coexisting phases. To determine the equilibrium structures numerically, we calculated the relax-
ation of the dissipative PFC dynamics towards equilibrium (i. e., the minimization of the PFC
functional) under the constant-mobility approximation using the finite-element method.

Basically, we have considered a two-order-parameter description of the interfaces containing
the conserved (translational) density field and the non-conserved (orientational) nematic ten-
sor. The phase diagram, the typical widths of the interfaces, the order-parameter profiles, and
their dynamics were computed. For the isotropic-plastic crystalline interface we found that in
approaching the interface from the isotropic side, at first the nematic order builds up and then
the density follows. The relative shift of the two profiles is about half the lattice constant of
the plastic crystal. This finding is reminiscent to the fluid-crystal interface of systems of spher-
ical particles [162162, 110110], which can be described by a two-order-parameter description involving
the conserved mean density and a non-conserved crystallinity [156156, 157157]. For the fluid-crystal
interface, a similar shift has been found: if the interface is approached from the fluid side,
first the (non-conserved) crystallinity increases and then the (conserved) mean density follows
[156156, 155155, 184184, 183183]. This has to do with the fact that a fluid is more responsive to an oscillatory
density wave than to a global density change [155155]. For the smectic A-plastic crystalline interface
we found a similar behavior as for the isotropic-plastic crystalline interface with a shift of the
density interface towards the plastic crystalline phase. Furthermore, our results show that in the
whole parameter range we explored the width of the interface with respect to the nematic order
parameter is larger than the width of the mean density interface.

Our results can be verified either in particle-resolved computer simulations [121121] or in exper-
iments. Particle-resolved computer simulations for rod-like systems have been performed both
for structure [6161, 4646, 66, 167167] and dynamics [153153, 135135] in various situations. So far experiments are
concerned, most notably colloidal liquid crystals [276276, 6969, 143143] that are confined to two spatial
dimensions are ideal realizations of our model. One important example is a suspension of the
tobacco mosaic virus, which can be confined to monolayers [277277] and which shows a variety of
liquid-crystalline phases [106106], but there are more other examples of liquid-crystalline rod-like
particle suspensions, which have been prepared in a controlled way (see, e. g., [220220, 263263, 6262]).

Future work should extend the present study to three spatial dimensions [282282, 8585], which
would require more numerical work but promises a richer equilibrium bulk phase diagram.
Also the dynamics of a growing crystalline front, which has been studied for spherical particles
already in detail [227227, 252252, 218218], should be addressed for liquid crystals as well. If a plastic
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crystalline phase grows into an isotropic phase, it would be interesting to follow the origin of
topological defects in the director field, which have to grow out of nothing 1111. Moreover, crystal-
fluid interfaces in external fields like gravity exhibit unusual effects already for isotropic particles
[4242, 1313] and it would be challenging to explore this for liquid-crystalline interfaces [168168]. Finally,
our model should be generalized towards liquid crystals on manifolds [181181] to describe nematic
[7777] or smectic bubbles [171171].

3.2 The Polar Liquid-Crystal PFC model

In [284284, 283283] a Phase-Field Crystal model for polar liquid crystals was proposed. In contrast to
the apolar liquid crystals considered so far, these systems are described by an additional field
variable p, namely the polar order. This is an oriented vector field driven by rotational and
translational diffusion of its thermodynamic conjugate p\, given by the functional derivative of
a corresponding free-energy functional.

This static free-energy is formulated in dimensionless form [283283] following the notation of
equation (3.173.17):

F [ϕ,p,q] =

∫
A2|∆ϕ|2 −A2‖∇ϕ‖2 + C2‖∇p‖2F − C2(∇ · p)2 +D2‖∇q‖2F

+B1〈∇ϕ,p〉2 +B2〈p, ~Hq〉2 +B3〈∇ϕ, ~Hq〉2 + f(ϕ,p,q) dx

=
1

2

∫
ϕϕ\ + 〈p,p\〉2 + 〈q,q\〉2 + f̃(ϕ,p,q) dx

(3.18)

with

f(ϕ,p,q) = A1ϕ
2 − 1

3
ϕ3 +

1

6
ϕ6 + C1‖p‖2 + 2D1‖q‖2 +

1

16
(‖p‖4 + ‖q‖4)

+
1

2
(‖p‖2 + ‖q‖2)(ϕ2 − ϕ) +

1

4
p>Qp(2ϕ− 1) +

1

4
‖p‖2‖q‖2 ,

f̃(ϕ,p,q) =
1

3
(ϕ3 − ϕ4)− 1

8
(‖p‖4 + 4‖p‖2‖q‖2 + ‖q‖4)

− 1

2
(‖p‖2 + ‖q‖2)(2ϕ2 − ϕ) +

1

4
p>Qp(ϕ− 1).

(3.19)

In [283283] the dynamical equations for ϕ,p, and q were formulated to fulfill the Onsager
reciprocal relations. In the constant mobility approximation the equations read

∂tϕ = 2α1∆ϕ\ + 2α3Niq
\
i

∂tp = 2α2
~∆p\ + 4α3∇(∇ · p\)− 2α4p

\

∂tq = 4α1
~∆q\ + 2α3Nϕ− 8α4q

\

(3.20)

with the thermodynamic conjugates following from functional differentiation of F ,

ϕ\ = fϕ(ϕ,p,q) + 2A1ϕ+ 2A2(∆ + ∆2)ϕ−B1(∇ · p)−B3Niqi ,

p\ = fp(ϕ,p,q) + 2C1p + 2C2
~∆p− 2C2∇(∇ · p) +B1∇ϕ+B2~Hq ,

q\ = fq(ϕ,p,q)i+ 4D1q− 2D2
~∆q−B2∇ ∗ p−B3Nϕ.

(3.21)

11In [250250] some of these questions were answered.
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The derivative ∇∗ denotes the adjoint operator to ~H, i.e., ∇∗p :=
(
∂1p1− ∂2p2, ∂1p2 + ∂2p1

)>
.

Nonlinear terms arising from differentiation of the polynomial f and f̃ can be found,

∂ϕf =: fϕ(ϕ,p,q) = −ϕ2 +
2

3
ϕ3 +

1

2
p>Qp +

1

2
(2ϕ− 1)(‖q‖2 + ‖p‖2) ,

∂pf =: fp(ϕ,p,q) = ϕ(ϕ− 1)p +
1

4
(‖p‖2 + 2‖q‖2)p +

1

2
(2ϕ− 1)Qp ,

∂qf =: fq(ϕ,p,q) = ϕ(ϕ− 1)q +
1

4
(‖q‖2 + 2‖p‖2)q +

1

4
(2ϕ− 1)p ∗ p,

(3.22)

using the product ∗ defined as p ∗p := (p2
1− p2

2, 2p1p2)>. The ∗ operator relates the differential
operator N to the gradient, via N = ∇ ∗ ∇ and the vector Laplacian ~∆ to the vector gradient
~H, via ~∆ = ∇ ∗ ~H.

In order to guaranty dissipative dynamics, the parameters α1, α2, α3, and α4 must be chosen
to form a positive (semi-) definite Onsager matrix, as in Section 3.1.3Section 3.1.3. The time-derivative of
the energy reads

∂tF [ϕ,p,q] =

∫
∂tϕϕ

\ + 〈∂tp,p\〉2 + 〈∂tq,q\〉2 dx

= −
∫

2α1‖∇ϕ\‖2 + 4α3〈∇ϕ\, ~Hq\〉2 + 4α1‖~Hq\‖2 + 8α4‖q\‖2

+ 2α2‖~Hp‖2 + 4α3(∇ · p\)2 + 4α4‖p\‖2 dx.

Thus, we now require α1, α2, α3, α4 ≥ 0, and α3 ≤
√

2α1, to ensure ∂tF ≤ 0.

3.2.1 Numerical discretization

The evolution equations (3.203.20) for the three fields ϕ,p, and q can discretized in time using an
operator-splitting approach and a semi-implicit backward Euler discretization. This leads to a
three step procedure:

Step 1:

1

τk
ϕk+1 =

1

τk
ϕk + 2α1∆ϕ\k+1 + 2α3N · q\k

ϕ\k+1 = fϕ(ϕk+1,pk,qk) + 2A1ϕk+1 + 2A2(∆ + ∆2)ϕk+1 −B1(∇ · pk)−B3N · qk ,

Step 2:

1

τk
pk+1 =

1

τk
pk + 2α2

~∆p\k+1 + 4α3∇(∇ · p\k+1)− 2α4p
\
k+1

p\k+1 = fp(ϕk+1,pk+1,qk) + 2C1pk+1 + 2C2
~∆pk+1 − 2C2∇(∇ · pk+1) +B1∇ϕk+1 +B2~Hqk ,

Step 3:

1

τk
qk+1 =

1

τk
qk + 4α1

~∆q\k+1 + 2α3Nϕk+1 − 8α4q
\
k+1

q\k+1 = fq(ϕk+1,pk+1,qk+1) + 4D1qk+1 − 2D2
~∆qk+1 −B2∇ ∗ pk+1 −B3Nϕk+1 ,
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ϕ ‖p‖, p S, n̂

Figure 3.11 – Order-parameter fields of a plastic triangular phase PTC3. Left: Translational density
ϕ, Center: Norm and direction of the polarization field p. Right: Orientational order-parameter S and
director n̂. The polarization points toward the maxima in the density field and is orthogonal to the director
field. Parameters used in the simulation: ϕ̄ = 0, A1 = 3, A2 = 14, B1 = −1, B2 = −1, B3 = −0.4, C1 = 0,
C2 = −1, D1 = 1, D2 = 0.8. The inlet in the left image shows the polarization vector (black) and nemati
director (white) in detail.

where the non-linear terms fϕ, fp and fq can be approximated by a first order Taylor-expansion.

This procedure allows to implement a PFC preconditioner for the solution of the first step,
neglecting all coupling terms and the non-linear term. The equations in step 2 and 3 behave
better in numerical tests, when a BiCGStab(`) [237237] is applied, than the PFC equation in step
1. Thus, we can apply this iterative method directly or use standard precondition-techniques.

3.2.2 Computational results

In order to test the polar liquid crystal PFC model, we have set up a parameter study to find
classical phases. Presented in the following are 4 two-dimensional reference phases that involve
non-trivial order in all the order-parameters. We have found a plastic triangular phase (PTC3)1212,
a plastic square crystal phase (PSC3) and two columnar phases (CSA3 and CSA3a). The phases
of the apolar liquid crystal PFC model can be reproduced as well, since by setting the coupling
parameters B1 and B2 to zero, we obtain basically the apolar model.

In Figure 3.11Figure 3.11 the PTC3 configuration is shown. The density builds a stable hexagonal
pattern that is also highlighted by the norm of the polarization field in the center image. The
polarization vector field is oriented along the gradients of the density field and thus points toward
the maxima. There, the vector field forms an aster defect. This gives, in equilibrium, a vanishing
effective net polarization. The orientational order-parameter S has the form similar to the PTC2
phase with minima on the density maxima. The director n̂ forms a vortex defect on the density
maxima, surrounded by six disclination defects.

Figure 3.12Figure 3.12 shows a square crystal phase PSC3. The polarization vector in the center image
points to the center of the maxima and forms a sink defect, surrounded by four source defects

12In Ref. [33] two plastic triangular phases are shown, the PTC1, that involves only translational order, and the
PTC2 phase, that has translational and orientational order. The naming PTC3 comes from the fact that we have
three involved fields.



Liquid crystalline phases within the PFC model 91

ϕ ‖p‖, p S, n̂

Figure 3.12 – Order-parameter fields of a plastic square crystal phase PSC3. Left: Translational density
ϕ, Center: Norm and direction of the polarization field p. Right: Orientational order-parameter S and
director n̂. The polarization points toward the maxima in the density field. Parameters used in the
simulation: ϕ̄ = 0.1, A1 = 1.5, A2 = 14, B1 = −1, B2 = −1, B3 = −4, C1 = 0, C2 = −1, D1 = −0.2,
D2 = 8. The inlet in the left image shows the polarization vector (black) and nemati director (white) in
detail.

and four hedgehog defects. The topological defects of the director n̂ are shown in the right image
of Figure 3.12Figure 3.12, i.e., a vortex defect on the density maxima, surrounded by four hedgehog defects.
The structure of the orientational order-parameter forms a square pattern, but rotated by π/2
compared to the translational density pattern.

The structure of the polarization field in Figure 3.13Figure 3.13 is qualitatively similar to both, the
PTC3 and the PSC3 phase, i.e., the polarization vectors point to the maxima in the density
field, that is, to the maxima of the density stripes. On the stripes and between stripes the vector
field has a line-defect to allow for a flip of the direction. On the stripes the polarization thus
forms a sink line-defect and between the stripes a source line-defect. On the stripes the director
n̂ is ordered and oriented perpendicular to the stripes direction.

In constrast to the former phases another stripe phase, here called CSA3a, has a different
structure in the director and polarization (see Figure 3.14Figure 3.14). The vector p points along the stripes
direction, on high density values ϕ the direction p points to the left and for low density values
p points to the right. In between, p switches its direction smoothly. Also the director n̂ changes
schmoothly from perpendicular to the stripes direction on high density values to parallel to
the stripes direction on low density values. Thus, there is no line defect in the director and
the polarization, respectively. The colors in the right image of Figure 3.14Figure 3.14 show misleadingly
regions with high and low order-parameter S. The scaling of these values shows, that S is nearly
constant in the domain.

3.2.3 Conclusion

The polar liquid crystal PFC model was formulated, discretized and solved using finite-elements
in space and a time discretization similar to the scheme introduced in Section 3.1.2Section 3.1.2 for the
apolar liquid crystal model. Evolution equations for the polarization as third order-parameter
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ϕ ‖p‖, p S, n̂

Figure 3.13 – Order-parameter fields of a columnar and smectic A phase CSA3. Left: Translational
density ϕ, Center: Norm and direction of the polarization field p. Right: Oientational order-parameter S
and director n̂. The polarization points toward the maxima-line in the density field. Parameters used in
the simulation: ϕ̄ = 0.1, A1 = 1.5, A2 = 14, B1 = −1, B2 = −1, B3 = −0.4, C1 = 0, C2 = −1, D1 = 1,
D2 = 0.8. The inlet in the left image shows the polarization vector (black) and nemati director (white)
in detail.

ϕ ‖p‖, p S ≈ const, n̂

Figure 3.14 – Order-parameter fields of second columnar phase: CSA3a. Left: Translational density
ϕ, Center: Norm and direction of the polarization field p. Right: Orientational order-parameter S and
director n̂. The polarization points in the direction of the stripes in the density field. Thus, on the
stripes the polarization is orthogonal to the director and within the stripes its parallel to the director n̂.
Parameters used in the simulation: ϕ̄ = 0.1, A1 = 1.5, A2 = 14, B1 = −1, B2 = −1, B3 = −0.4, C1 = 0,
C2 = −1, D1 = −2, D2 = 0.8. The inlet in the left image shows the polarization vector (black) and
nemati director (white) in detail.
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field extend the coupled system (3.163.16) by an additional block for the terms related to p and p\.
Similar to the apolar case, the systems were either solved using an operator splitting approach
by solving the PFC part, Q-tensor part, and polarization part, in rotation or by assembling
a full system that involves all couplings introduced by the polynomials fϕ, fp, and fq, by the
terms with prefactor B1,2,3 in the free-energy and by the dynamical equations in the terms with
prefactor α3.

A preconditioner for the PFC part of the linear system can be formulated in a similar fashion
as before, by neglecting the coupling terms. This leads to the preconditioner matrix P in (1.151.15)
or the matrix that involves a mobility parameter M0 ≡ 2α1 in (2.452.45) or (2.462.46) respectively.

We have shown that this solution strategy leads to meaningful solutions of the polar liquid
crystal system, by examining three phases, the PTC3 phase, the PSC3 phase, and a CSA3 stripe
phase. All these phases have in common, that the polarization vector points toward the density
maxima and is often parallel, or perpenticular to the nematic director n̂ on high density values.
A fourth phase, here called CSA3a, shows another stripe solution with different orientational
and polar order-parameter, i.e., without line-defects as in the CSA phase.

In [176176, 177177] a simplified polar PFC model was extended by an activity parameter that
drives the system out of equilibrium and was shown to act as a minimal model to describe
traveling crystals and traveling lamella. More advanced polarization models combined with a
density diffusion or a phase-field evolution, cf. [11, 169169], have shown to be attractive descriptions
for some active systems. A combination of polar order and nematic order for active systems (see
e.g. [164164, 3737]) may be simulated using the polar liquid crystal PFC model combined with an
appropriate descriptions of an active source term. Density variations combined with orientational
order is also an active field of research, e.g., in the context of active smectics [55, 5757]. This may
be considered in future work.





CHAPTER 4

Phase-Field Crystal model in non-regular domains

I n the previous chapters we have solved the Phase-Field Crystal equation and its variants in a
rectangular domain. The strength of the finite-element method comes into effect when con-

sidering adaptive or non-rectangular domains and for surface triangulations. Thus, we consider
these cases and study the impact on the preconditioner. Therefore, two reference problems are
solved, a surface PFC problem and the PFC equation in an evolving domain.

The first example in Section 4.1Section 4.1 considers the Phase-Field Crystal equation solved on a
spherical surface that acts as a model system to find the optimal distribution of isotropic particles
on the sphere. Various discretization methods exist to solve differential equations on manifolds,
e.g., surface finite-differences, discrete exterior calculus, surface finite-elements and spherical
spectral methods based on spherical harmonics. All these methods use an explicit description
of the surface. We focus on the surface finite-element approach. Another ansatz, considered
in Section 4.2Section 4.2 is based on an implicit description of the surface, using a phase-field variable.
This method was compared to a surface finite-element and a spectral method in the published
paper [2828]. To numerically solve the arising linear systems in the implicit method, we apply the
preconditioner developed in Chapter 1Chapter 1 and analyze the properties depending on some model
parameters.

In Section 4.3Section 4.3 we develop a model to describe interacting particles in an evolving confinement.
The moving domain is described implicitly by a phase-field variable and the interacting particles
by a Navier-Stokes PFC model, as introduced in Section 2.2Section 2.2. A cluster of soft colloidal particles,
restricted to a deformable droplet that applies a force on the crystal, shows slip of particle
layers along each other. On the other hand, the arranging crystal applies a force to the droplet
interface. The coupled system of equations is discretized using finite-elements and solved block-
wise, involving the developed PFC preconditioner.
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4.1 Discrete Ordering on the sphere

The centennial of Hilbert’s announcement of his mathematical problems for the 20th century
was the natural occasion to propose a “new set of Hilbert problems”. One of these problems
proposed by Smale [238238] asks about the distribution of N points on a sphere. Let

VN (~x) =
∑

1≤i<j≤N
1/‖xi − xj‖q, and VN = min

~x
VN (~x) (4.1)

with ~x = (x1, . . . ,xN ), xi distinct points on the 2-sphere S2, ‖xi − xj‖ the distance in R3, and
q ∈ N+. The problem is to find

~x, s.t. VN (~x)− VN ≤ C logN (4.2)

with C an universal constant. The corresponding problem related to the case q = 0 with
VN (~x) = −

∑
1≤i<j≤N log ‖xi − xj‖ is related to finding a good starting polynomial for a homo-

topy algorithm for realizing the fundamental theorem of algebra [234234]. For q = 1, VN (~x) is the
Coulomb potential and finding the minimal energy configuration for N electrons on S2 is known
as the Thomson problem [255255]. But also other values of q are possible, q = 3 would model dipole
interactions and q = 12 could be used to model the repulsive part of a Leonard-Jones potential.

The criteria to be included in the “new set of Hilbert problems” are fulfilled: The problem
is easy to formulate but not easy to solve and it is likely that its solution will have a large
impact. Various numerical approaches have been applied to find an optimal distribution of N
points on a sphere. However, the optimization problem becomes extremely difficult to solve for
large N , as the number of local minima growth exponentially in N (see [8787] for the Thomson
problem). It remains to discuss the potential impact. Besides its importance in mathematics,
i.e., for the mentioned application in algebra, ordering of interacting point on a sphere or more
generally on curved surfaces, has also applications in different fields, e.g., water droplets in oil,
which are coated with colloidal particles [3838, 1010, 228228]. Such coated droplets are potential drug
delivery vehicles [206206, 6868]. Similar configurations occur if a jammed layer of colloidal particles
separates two immiscible fluids forming a so-called bijel [243243, 1111], which has potential applications
as an efficient micro-reacting media. A large number of ordered particles on curved surfaces
is also required for fabrication of nanostructures on pliable substrates, e.g., to make foldable
electronic devices [245245]. Also viral capsides, where protein subunits play the role of the particles
[151151, 293293, 292292, 1212] are possible applications. The same is true for the head groups of lipid bilayers
in biological membranes or self-assembled peptide nanostructures (see [4747]).

We will introduce a surface Phase-Field Crystal model as continuum description to study
the ordering of interacting particles on a sphere and other geometries. Only recently various
numerical methods have been proposed to solve a general class of partial differential equations
on surfaces. They can be distinguished into direct methods, which require a surface mesh or
points on a surface and indirect methods in which the surface is only implicitly described.
Within the first approach parametric finite-elements can be used to solve the surface partial
differential equation (see, e.g., [7575, 8181, 7676, 273273]). Other direct approaches consider finite volume
discretizations (see, e.g., [5353]), and finite-difference discretization (see, e.g., [223223, 261261]). Level set
methods have been used within the second approach (see, e.g., [4141]). Furthermore, also phase-
field models can be used to implicitly describe the surface, as used in [210210, 211211, 159159, 253253]. In order
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for the implicit approach to be efficient, adaptively refined meshes or narrow band approaches
are required. For recent approaches in this direction see [230230, 223223, 8282]. 11

We will here concentrate on the parametric finite-element approach. A discussion of a spectral
method based on non-equispaced Fourier transforms on the sphere to solve equations (4.44.4)–(4.64.6)
is included in the published paper [2828]. In Section 4.2Section 4.2 a diffuse-interface approach is introduced
and discussed.

4.1.1 A surface PFC model

As introduced in [3131, 2828] we formulate a free-energy for the one-particle density ψ : Γ → R on
the (smooth and closed) surface Γ ⊂ R3. Therefore, let ∆Γ denote the Laplace Beltrami operator
on Γ. The free-energy Fsh[ψ] as introduced in (1.11.1) is transformed into FΓ

sh[ψ], by replacing the
standard Laplacian in flat-space by ∆Γ:

FΓ
sh[ψ] :=

∫
Γ
−‖∇Γψ‖2Γ +

1

2
|∆Γψ|2 + f(ψ) ds (4.3)

with ‖a‖2Γ := g(a, a), g a corresponding Riemannian metric on Γ, and f(ψ) := 1
2(1 + r)ψ2 + 1

4ψ
4

the free-energy density.
A surface H−1-gradient flow of FΓ

sh[ψ], i.e.,

∂tψ = ∆Γ
δFΓ

sh[ψ]

δψ
,

leads to a system of three second order equations to be solved on the surface Γ:

∂tψ = ∆Γψ
\ , (4.4)

ψ\ = 2ψ[ + ∆Γψ
[ + f(ψ) , in Γ× [0, T ] (4.5)

ψ[ = ∆Γψ (4.6)

with f(ψ) = f′(ψ).

4.1.2 Parametric finite-elements

A direct approach to solve equations (4.44.4)–(4.64.6) introduces a triangulation of the surface Γ
by flat triangular elements. In a parametric finite-element approach instead of performing the
integration on the surface elements S of a surface triangulation Sh of S2 directly, a mapping
FS : Ŝ → S is used with Ŝ = conv hull {0, e1, e2} the standard element in R2. Furthermore, we
can define the basis functions on a reference element S = {(λ1, λ2, λ3) ∈ R3

+ :
∑

k λk = 1} using
barycentric coordinates. These allow to transform all integrations onto the standard element
and have the definition of basis functions on the reference element at hand. Both are defined in
R2 and R3. The parameterization FS is given by the coordinates of the surface mesh elements
and provides the only difference between solving equations on surfaces and on planar domains.
For a surface we have to allow FS : R2 → R3, whereas for a planar domain FS : R2 → R2.
With this tiny modification any code to solve partial differential equations on Cartesian grids

1This introductory section is taken from our published paper [2828], up to minor notational adaptions.
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Figure 4.1 – Sequence of surface meshes approximating S2.

can be used to solve the same problem on a surface, providing a surface triangulation is given.
Again the approach is therefore not restricted to S2 but works for any triangulated surface. With
this approach all available tools to solve partial differential equations on planar domains, such
as adaptive refinement, multigrid algorithms or parallelization approaches, can be used also to
solve partial differential equations on surfaces (see, e.g., [273273, 140140, 275275]).

Similar to the the discretization scheme in Section 1.2Section 1.2 used for the flat case, we use a semi-
implicit time-discretization and Lagrange finite-elements in space. The time interval [0, T ] is
split into N + 1 timesteps 0 = t0 < t1 < . . . < tN = T with timestep width τk = tk+1 − tk. We
linearize f(ψk+1) ≈ f(ψk) + f ′(ψk)(ψk+1−ψk) and treat all other terms implicitly. To discretize
in space, let Γh be a conforming triangulation of Γ. We use the finite-element space of globally
continuous, piecewise linear elements Vh := P 1(Γh). We thus obtain: For k = 0, 1, . . . , N −1 find

ψk+1, ψ
\
k+1, ψ

[
k+1 ∈ Vh, such that(

ψ\k+1 − f
′(ψk)ψk+1, ϑh

)
Γh

+
(
2∇ψk+1 +∇ψ[k+1,∇ϑh

)
Γh

=
(
f(ψk)− f ′(ψk)ψk, ϑh

)
Γh
,(

ψk+1, ϑ
′
h

)
Γh

+ τk
(
∇ψ\k+1,∇ϑ

′
h

)
Γh

=
(
ψk, ϑ

′
h

)
Γh
, (4.7)(

ψ[k+1, ϑ
′′
h

)
Γh

+
(
∇ψk+1,∇ϑ′′h

)
Γh

= 0 , ∀ϑh, ϑ′h, ϑ′′h ∈ Vh.

This leads to a linear system of equations for ψk+1, ψ\k+1 and ψ[k+1

MΓψ\k+1 + 2KΓψk+1 + KΓψ[k+1 − FΓψk+1 = fΓ ,

MΓψk+1 + τkK
Γψ\k+1 = MΓψk , (4.8)

MΓψ[k+1 + KΓψk+1 = 0

with

MΓ =
(
(θj , θi)Γh

)
ij
, KΓ =

(
(∇θj ,∇θi)Γh

)
ij
,

FΓ =
(
(f ′(ψk)θj , θi)Γh

)
ij
, fΓ =

(
((f(ψk)− f ′(ψk))ψk, θi)Γh

)
i
,

where (·, ·)Γh denotes the L2-scalar product on Γh. We use a surface mesh, which results from
adaptive refinement by bisection and projection of the inserted nodes on S2, starting from a
cube with 12 triangular elements, see Figure 4.1Figure 4.1 for a sequence of refined meshes.
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Figure 4.2 – Number of solver iterations, depending of various system parameters. Left: Depending on
grid size h for fixed radius r = 20. Center: Depending on the radius of the sphere, for fixed grid width
h = 0.7 and timestep width τ = 10−3. Right: Depending on the timestep width τ , for fixed radius r = 20
and grid size h = 0.7.

Preconditioner for the linear system

In order to solve the linear system of equations (4.84.8) we apply a preconditioned FGMRES solver
to the system. Thereby, the preconditioner matrix P of Section 1.3Section 1.3 is used with M replaced by
MΓ and K replaced by KΓ:

PΓ :=

 MΓ 2KΓ −KΓ(MΓ)−1KΓ 0
τkK

Γ MΓ +
√
τk
(
−KΓ + KΓ(MΓ)−1KΓ

)
0

0 KΓ MΓ

 .
In Figure 4.2Figure 4.2 the influence of some system parameters to the number of FGMRES iterations

is studied, namely the size of the surface triangles h, the overall size of a spherical surface, i.e.,
the radius of the sphere and the timestep width τ that is chosen constant over all timesteps in
this study. It is found that a change in the grid size h and in the radius of the sphere has only
a little influence on the solver iterations. On the other hand we have a big change in the solver
iterations, when increasing the timestep width. This is found also in the flat case in Chapter 1Chapter 1.

Numerical examples

In [2828] we have studied the arrangement of N particles on the sphere. For N < 100 the results
are in perfect agreement with other numerical and theoretical results published in literature.
Additionally the occurrence of grain boundary scars, as expected for larger particle numbers, i.e.,
N > 360, is analyzed and a comparison of parametric finite-elements with a spectral approach
based on spherical harmonics is done. Both methods show similar configurations and energy
decreasing properties, whereas the final configuration has only a slightly larger value than the
global minimum. Thus, the surface PFC model is a reliable tool to calculate these optimal point
configurations.

The second example considers an elastic instability of a growing crystal on a sphere, similar
to the experimental results for colloidal crystals in [175175]. The observed branching of the crystal
minimizes the curvature induced elastic energy, see Figure 4.3Figure 4.3. A crystalline layer on a minimal
surface, the ‘Schwarz P surface’, is shown in Figure 4.4Figure 4.4, which might be an approach to stabilize
such surfaces by colloidal particles, see [120120]. Both examples can be solved efficiently up to
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a large number of unknowns using the developed preconditioner and can be combined with
domain-decomposition techniques for parallel calculations.

Figure 4.3 – Crystallization on a sphere S120(0). Left: Visualization using OVITO [244244], indicating each
wave as a colloidal particle. Right: Order parameter field ψ. Number of DOFs: 397,584, calculated on 8
processors.

Figure 4.4 – Crystal structure on a ‘Schwarz P surface’. Left and Center: Visualization using OVITO
[244244] in two different perspectives, indicating each wave as a colloidal particle. Right: Order parameter
field ψ. Number of DOFs: 250,000, calculated on one processor.
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4.2 Phase-Field Crystal model in implicitly described geometries

Complex geometries can easily be handled in finite-element discretizations, if a suitable trian-
gulation of the complicated domain is available. This is not always easily achievable, when an
bounded aspect ratio of the element, i.e., angle between two adjacent pairs of edges in a tetra-
hedron, is required for stability reasons. In case of adaptive refinement of the mesh, based on
error estimators or information about the structure of the solution, the quality of an initially
generated optimal mesh (with respect to some optimality criterion for the chosen discretiza-
tion) may be violated when a bisection or red-green refinement procedure is applied. Thus an
expensive remeshing may be necessary that drops the performance of the finite-element method
drastically.

In the context of moving and deforming meshes the task of an adaptive optimal triangulation
of the domain gets even more complicated and expensive. Therefore, alternative descriptions of
the complex geometries are developed. One such description is based on an implicit representa-
tion of the domain by levelsets of a higher-dimensional function.

4.2.1 Phase-Field methods

Let Ω be embedded in a bigger and simpler domain Ω ⊂ Ω̂, with ∂Ω ∩ ∂Ω̂ = ∅.

Definition 2. A mapping d : Ω̂→ R, defined by

d(x) := ±dist(x, ∂Ω)

with sign negative in Ω and positive in Ω̂ \ Ω, is called signed distance function.

The domain Ω may now be represented by the negative levelsets of d, i.e.,

Ω = {x ∈ Ω̂ : d(x) ≤ 0}.

For a smooth representation of the characteristic function χΩ that takes the value 1 inside of Ω
and 0 outside, the signed distance function can be transformed into a phase-field function:

Definition 3. A mapping φ : Ω̂→ [0, 1], defined by

φ(x) :=
1

2

(
1− tanh(3d(x)/ε)

)
with ε� 1 a parameter that defines the width of the interface between 0 and 1, is called phase-
phield function.

Diffuse-domain approach

In [145145] the transformation of differential equations from a domain Ω to the bigger domain Ω̂ is
explained and is basically based on the idea to replace the integrals in the weak formulation of the
PDEs by integrals over the bigger domain, restricted to Ω by multiplication with the smeared out
characteristic function φ. Various different boundary conditions on ∂Ω are implemented using
a weak representation in terms of the phase-field variable φ. This approach is called diffuse-
domain formulation. An analysis of convergence of the implicit equations to the equations in
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explicit domain in the sense of matched asymptotic analysis is given in [145145] and a more rigorous
justification of the approach is given in [9393]. Various applications are based on this approach,
cf. [99, 9191, 232232, 139139]

Taking Ω̂ to be a rectangular domain, a simple triangulation based on right triangles/ tetra-
hedra can be constructed that conserves the initial aspect ratio of the elements during local
refinement of the mesh [229229, 273273, 272272].

Diffuse-interface approach

In [210210] an approach was proposed how to solve partial differential equations on implicitly defined
surfaces. Thereby, the surface is represented by the 1/2-level set of a phase-field variable φ, which
is defined in a domain Ω̂ ⊂ R3 containing the surface S2. However, the approach is not restricted
to approximate partial differential equations on a sphere, but works for any surface Γ, which
can be represented implicitly. Formally, the approach results from an extension of the partial
differential equation to Ω̂ and multiplication of all terms in their weak formulation by a surface
delta function δΓ, that can be approximated by

δΓ ≈ δε(φ) :=
3
√

2

ε
B(φ)

with B(φ) = 36φ2(1− φ)2 and φ as above.

It can easily be shown, that δε is a nascent delta function with respect to Definition 1Definition 1. Since
all terms in a PDE-system are multiplied with δε, the prefactor can be neglected.

4.2.2 Phase-Field Crystal equation in diffuse-interface formulation

The PFC equations (1.41.4) restricted to a surface Γ ⊂ Ω, can formally be written as

δΓ∂tψ = ∇ · (δΓ∇ψ\) ,

δΓψ
\ = 2∇ · (δΓ∇ψ) +∇ · (δΓ∇ψ[) + δΓf(ψ) , in Ω̂× [0, T ]

δΓψ
[ = ∇ · (δΓ∇ψ)

(4.9)

with zero-flux boundary conditions on ∂Ω̂ for ψ, ψ\, and ψ[, and appropriate initial conditions
for ψ. Within a next step we approximate δΓ by δε. The system to solve now reads

B(φ)∂tψ = ∇ · (B(φ)∇ψ\) ,

B(φ)ψ\ = 2∇ · (B(φ)∇ψ) +∇ · (B(φ)∇ψ[) +B(φ)f(ψ) , in Ω̂× [0, T ]

B(φ)ψ[ = ∇ · (B(φ)∇ψ).

(4.10)

Matched asymptotic analysis can be performed along the same lines as discussed in [210210] for
general parabolic systems of second order equations, to show the convergence to the original
problem as ε→ 0, cf. [2828].

In order to solve equations (4.104.10) we use a semi-implicit backward Euler time-discretization
and Lagrange finite-elements in space. We linearize f(ψk+1) ≈ f(ψk) + f ′(ψk)(ψk+1 − ψk) and
treat all other terms implicit. To discretize in space, let Th be a conforming triangulation of Ω̂. We
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use the finite-element space of globally continuous, piecewise linear elements Vh as introduced in
Section 1.2Section 1.2. We thus obtain a sequence of problem: For k = 0, 1, . . . , N−1 find ψk+1, ψ

\
k+1, ψ

[
k+1 ∈

Vh(Ω̂), such that(
B(φ)[ψ\k+1 − f

′(ψk)ψk+1], ϑh
)

Ω̂
+
(
B(φ)[2∇ψk+1 +∇ψ[k+1],∇ϑh

)
Ω̂

=
(
B(φ)[f(ψk)− f ′(ψk)ψk], ϑh

)
Ω̂
,(

B(φ)ψk+1, ϑ
′
h

)
Ω̂

+ τk
(
B(φ)∇ψ\k+1,∇ϑ

′
h

)
Ω̂

=
(
B(φ)ψk, ϑ

′
h

)
Ω̂
, (4.11)(

B(φ)ψ[k+1, ϑ
′′
h

)
Ω̂

+
(
B(φ)∇ψk+1,∇ϑ′′h

)
Ω̂

= 0 , ∀ϑh, ϑ′h, ϑ′′h ∈ Vh.

This leads to a linear system of equations for ψk+1, ψ\k+1 and ψ[k+1 with ψk+1 =
∑

iψi,k+1θi,

ψ\k+1 =
∑

iψ
\
i,k+1θi and ψ[k+1 =

∑
iψ

[
i,k+1θi, with {θi} a basis of Vh:

M̂ψ\k+1 + 2K̂ψk+1 + K̂ψ[k+1 − F̂(ψk)ψk+1 = f̂(ψk) ,

M̂ψk+1 + τkK̂ψ
\
k+1 = M̂ψk ,

M̂ψ[k+1 + K̂ψk+1 = 0

with

M̂ =
(
(B(φ)θj , θi)Ω̂

)
ij
, K̂ =

(
(B(φ)∇θj ,∇θi)Ω̂

)
ij
,

F̂(ψ) =
(
(B(φ)f ′(ψ)θj , θi)Ω̂

)
ij
, f̂(ψ) =

(
(B(φ)(f(ψ)− f ′(ψ))ψ, θi)Ω̂

)
i
,

where (·, ·)
Ω̂

denotes the L2-scalar product in Ω̂. The resulting linear system needs to be solved.
Small and coarse discretized systems may be solver iteratively using a BiCGStab(`) Krylov-
subspace method [237237] or using a direct solver, as before for the flat case. In order for the
approach to be efficient we use an adaptively refined mesh along the 1/2-level set of the phase-
field function φ. Within the diffuse interface we require h < ε with approximately 10 grid
points across the interface. We further require ε < d with d the equilibrium lattice constant in
the Phase-Field Crystal model. Figure 4.5Figure 4.5 shows a typical mesh together with the phase-field
variable φ describing the surface and the solution for ψ on the 1/2-level set of ψ in Ω̂.

Small values of ε require small values of h and thus a find grid and large linear systems.
More advances solvers are needed to solve the arising linear systems. We apply the precondi-
tioner developed in Section 1.3Section 1.3 to the system, where M is replaced by M̂ and K by K̂. The
preconditioner matrix P then leads to the diffuse-interface preconditioner matrix

P̂ :=

 M̂ 2K̂− K̂M̂−1K̂ 0

τkK̂ M̂ +
√
τk
(
− K̂ + K̂M̂−1K̂

)
0

0 K̂ M̂

 , (4.12)

or as in equation (1.201.20)

P̂CH :=

 M̂ −2τ
1/4
k K̂− K̂M̂−1K̂ 0

τkK̂ M̂ + (τ
1/2
k + 2τ

1/4
k )K̂ + τ

1/2
k K̂M̂−1K̂ 0

0 K̂ M̂

 , (4.13)
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Figure 4.5 – Adaptively refined mesh along the 1/2-level set of φ representing S2, solution for ψ in on
1/2-level set and phase-field variable.

respectively.
In Figure 4.6Figure 4.6 the influence of ε and grid refinement to the number of solver iterations of a

FGMRES Krylov-subspace solver is shown. All four plots in Figure 4.6Figure 4.6 (a), (b), (c), and (d)
show decreasing number of solver iterations for increasing interface width ε. Except for the plot
(d), a higher refinement level needs larger number of solver iterations. For small ε an interplay
between interface width and grid size shows small fluctuations in the number of solver iterations.
The minimal iteration count is achieved for τk = 0.01.

4.2.3 The Vacancy PFC model in diffuse-domain formulation

The classical PFC model introduced in Section 1.1Section 1.1 combined with the penalty term given in
Section 2.2.2Section 2.2.2 leads to the Vacancy PFC (VPFC) equations

∂tψ = ∇ ·
(
M(ψ)∇ψ\

)
,

ψ\ = ψ3 + (r + (1 + ∆)2)ψ + b(ψ) , in Ω× [0, T ]
(4.14)

with b(ψ) = 3ω2ψ
2(sign(ψ)− 1) and ω2 � 1. Combined with the Navier-Stokes equations, this

model is used in Chapter 2Chapter 2 to describe individual particles in a flowing environment.
Representing this environment/domain implicitly by a phase-field variable leads to the

diffuse-domain VPFC model that can formally be written as

φ∂tψ = ∇ ·
(
φM(ψ)∇ψ\

)
,

φψ\ = φψ3 + φ(r + 1)ψ + 2∇ · φ∇ψ +∇ · φ∇ψ[ + φb(ψ) +BC(φ) , in Ω̂× [0, T ]

φψ[ = ∇ · φ∇ψ ,

(4.15)

where BC is a boundary condition term that needs to be specified. Restricting the particles to
the domain Ω corresponds to the condition that the particle density ψ vanishes outside of Ω, i.e.,
a homogeneous Dirichlet boundary condition on ∂Ω. The corresponding diffuse representation of
this boundary condition, as formulated in [145145] and widely used in the context of other implicit
methods, can be written as

BC(φ) =
1

ε3
(1− φ)ψ ,



Phase-Field Crystal model in non-regular domains 105

0 0.5 1 1.5 2 2.5 3 3.5 4
27

28

29

30

31

32

33

ǫ

n
r
.
o
f
s
o
lv
e
r
it
e
r
a
t
io
n
s

*

*

*
*

*

bC

bC
bC

bC
bC

REF = 15

REF = 18
*bC

0 0.5 1 1.5 2 2.5 3 3.5 4
16

16.5

17

17.5

18

18.5

19

19.5

ǫ

n
r
.
o
f
s
o
lv
e
r
it
e
r
a
t
io
n
s

* *
*

*
*

bC
bC

bC

bC
bC

REF = 15

REF = 18
*bC

0 0.5 1 1.5 2 2.5 3 3.5 4
15

15.5

16

16.5

17

17.5

ǫ

n
r
.
o
f
s
o
lv
e
r
it
e
r
a
t
io
n
s

* *

*

*
*

bC bC

bC

bC

bC

bC

REF = 15

REF = 18
*bC

0 0.5 1 1.5 2 2.5 3 3.5 4

16.2

16.6

17

17.4

17.8

ǫ

n
r
.
o
f
s
o
lv
e
r
it
e
r
a
t
io
n
s

**
*

*

*
*

bC
bC bC

bC

bC

bC

REF = 15

REF = 18
*bC

(a) τ = 1 (b) τ = 0.1

(c) τ = 0.01 (d) τ = 0.001

Figure 4.6 – Dependence of the number of solver iterations on the interface width ε, the refinement level
REF of the interface, and on the timestep width τ . Refinement level REF = 15 corresponds to grid-
size h ∈ [1.5708, 20.5208] and REF = 18 to grid-size h ∈ [0.7854, 20.5208]. For ε = 0.5 these refinements
correspond to a system size of 17,365 DOFs per component and 97,113 DOFs per component, respectively.

where the exponent ε3 can be justified by asymptotic analysis. An exponent > 2 was considered
in [9393] and convergence of the boundary value was analyzed.

Since ψ ≡ 0 in Ω̂ \ Ω, also the Laplacian ∆ψ vanishes outside of Ω. Thus, the equations
(4.154.15) can be simplified to the original equations (4.144.14), solved in the extended domain Ω̂, and
equipped with the boundary term BC,

∂tψ = ∇ ·
(
M(ψ)∇ψ\

)
,

ψ\ = ψ3 + (r + (1 + ∆)2)ψ + b(ψ) +BC(φ) , in Ω̂× [0, T ].
(4.16)

4.2.4 Numerical experiments

We consider a configuration of initial density peaks ψ
(i)
0 , as introduced in equation (2.412.41) in form

of a hexagonal lattice, restricted to the domain Ω, by using the phase-field function φ:

ψ0(x) := φ(x)

Np∑
i=1

ψ
(i)
0 (x).

As test domains we have chosen two circular shapes, that is, a regular circular disc and a
perturbed disc by a cosine variation of the radius, see Figure 4.7Figure 4.7.
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In equation (4.164.16) the mobility function is restricted to the particles, by defining M(ψ) as

M(ψ) := M0 max
(
ψ/max

x∈Ω
(ψ(x)), δ

)
with δ,M0 > 0. In the following we have set δ := 10−2.

A linearization of the nonlinear terms, that is, b(ψ), M(ψ), and ψ3, combined with a simple
backward Euler time-discretization, leads to the variational form: For k = 0, 1, . . . , N − 1 find
ψk+1, ψ

\
k+1, ψ

[
k+1 ∈ Vh(Ω̂), s.t.

(ψ\k+1 − (1 + r + 3ψ2
k + b′(ψk) + ε−3(1− φ))ψk+1, ϑh)

Ω̂
+ (2∇ψk+1 +∇ψ[k+1,∇ϑh)

Ω̂

= (−2ψ3
k + b(ψk)− b(ψk)′ψk, ϑh)

Ω̂
,(

ψk+1, ϑ
′
h

)
Ω̂

+ (τkM(ψk)∇ψ\k+1,∇ϑ
′
h)

Ω̂
=
(
ψk, ϑ

′
h

)
Ω̂
,

(ψ[k+1, ϑ
′′
h)

Ω̂
+ (∇ψk+1,∇ϑ′′h)

Ω̂
= 0 , ∀ϑh, ϑ′h, ϑ′′h ∈ Vh(Ω̂).

This leads to a linear system M −F(ψk) + 2K K
τkKM (ψk) M 0

0 K M

ψ\k+1

ψk+1

ψ[k+1

 =

f(ψk)
Mψk

0

 (4.17)

with M and K as in Section 1.2Section 1.2 and

F(ψ) :=
(
(1 + r + 3ψ2 + b′(ψ) + ε−3(1− φ))θj , θi)Ω̂

)
ij
,

f(ψ) :=
(
(−2ψ3 + b(ψ)− b(ψ)′ψ, θi)Ω̂

)
i
,

and KM (ψ) :=
(
(M(ψ)∇θj ,∇θi)Ω̂

)
ij

.

A preconditioner that incorporates the mobility function M(ψ) can be constructed by ne-
glecting the nonlinearity matrix F and perturbing the diagonal entry,

P :=

 M 2K−KM−1K 0
τkKM (ψk) M +

√
τk
(
KM (ψk)− 2K + KM−1K

)
0

0 K M

 ,
as in (2.452.45). Analogously, a preconditioner involving the Cahn-Hilliard subpreconditioner, as in
(2.462.46), can be constructed and is used throughout the numerical studies.

The preconditioner is combined with a Krylov-subspace solver FGMRES to solve the linear
system (4.174.17) for both geometries visualized in Figure 4.7Figure 4.7, for various mobility factors M0 and
interface widths ε. The results of such a benchmark calculation can be found in Figure 4.8Figure 4.8.
Initially, the particles overlap the diffuse interface, but due to the diffuse Dirichlet boundary
condition the particles are pushed towards the inside of Ω, where they remain fixed.

The preconditioner study in Figure 4.9Figure 4.9 shows that the number of solver iterations is not
much larger than that for exactly the same system without an implicit boundary. This is vi-
sualized in the left plot of Figure 4.9Figure 4.9 by red cross curve. The mobility on the other hand, has
a big influence on the solver iterations. Increasing M0 increases the number of iterations a lot.
Mobilities with M0 � 100 lead to a non-converging method. For both geometries the slightly
more complicated geometric shape leads to slightly more iterations. Increasing the interface
width ε mainly increases the band width of fine grid size. This may lead to the increase in solver
iterations, as visualized in the right plot of Figure 4.9Figure 4.9.
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Figure 4.7 – Phase-field representations of a circular (left) and perturbed circular (right) domain Ω.
The color blue (outside of the domain) corresponds to the value 0 and red (inside the domain) to the
value 1. Grid lines are shown that are coarse outside of Ω, fine on the interface, and with an intermediate
refinement level inside the domain, so that the individual particles can be resolved accordingly.

Figure 4.8 – Left: Initial solution ψ0(x) with 1/2-levelset of phase-field function φ. Right: Stationary
solution with particles shifted symmetrically inside the domain Ω.
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Figure 4.9 – Number of solver iterations depending on the mobility parameter M0 (left) and on the
interface width ε (right). Two geometries (see Figure 4.7Figure 4.7) are compared and show just a little difference
in the number of iterations. Left: Parameter ε := 0.5 for circle and pert. circle, compared to a non-diffuse-
domain calculation. Right: Parameter M0 := 20.

4.3 Navier-Stokes Cahn-Hilliard (Vacancy) Phase-Field Crystal
model

Colloidal particles suspended in a two-phase fluid, e.g., a mixture of oil and water, may arrange
at the interface between the fluid-phases, when partially coated with a hydrophilic and a hy-
drophobic layer. Depending on the contact angles between the three phase, the water and oil
phase and the solid phase – the colloidal particle – it may happen that the particles concentrate
completely in one of the fluid phases [163163].

An evolution of the particle phase pushes the individual colloids out of their position, i.e.,
the arrangement is disturbed. If the droplet with the particles shrinks, e.g., due to evaporation
of the fluid, a highly compressed supraparticle can be formed [163163, 6060, 287287], which may be used
as building blocks for new materials.

Particles moving in an evolving domain and interacting with the domain boundaries are
modeled by a vacancy PFC model. An evolving domain is described by a Navier-Stokes Cahn-
Hilliard/Allen-Cahn model. Coupling both approaches results in a continuous model introduced
in this chapter.

We follow here the approach of [1010, 1111], extended by a contribution to freely moving particles,
i.e., the Vacancy PFC model. The authors proposed a diffuse-interface model for the Phase-Field
Crystal equation, where the phase-field, describing the diffuse interface, is given by the solution
of a Cahn-Hilliard equation. Instead of restricting the particles to the interface, we propose a
model to restrict the particles to one of the phases given by the Cahn-Hilliard solution. The
interaction of the particles with the phase-interface is given by a wall potential depending on
the phase-field.

Thus, we combine the ideas of particles in a flowing solvent (see Section 2.1Section 2.1) for the colloid-
wall interaction, the Navier-Stokes PFC model (see Section 2.2Section 2.2) to have interacting freely moving
particles, and the diffuse-domain description (see Section 4.2Section 4.2) for complex domains. The evolu-
tion of the domain is driven by a Cahn-Hilliard equation, cf. [5252, 99, 4949, 2424, 77].
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4.3.1 Energy of the system and the balance equations

In order to derive constitutive equations for the velocity u, the PFC density modulation ψ and
the phase-field φ, we start with the energy contributions and formulate an energy dissipative
dynamical equation for all the parameters.

Consider the sum of three energies, kinetic energy Fkin, surface energy Fch and a contribution
to the interaction of (colloidal) particles Fsh, i.e., the elastic part of the energy:

F [u, ψ, φ] = Fkin[u] + Fch[φ] + Fsh[ψ, φ] , (4.18)

Fkin[u] =

∫
1

2
‖u‖2 dx , (4.19)

Fch[φ] =

∫
ε2

2
‖∇φ‖2 + fch(φ) dx , (4.20)

Fsh[ψ, φ] =
1

El

∫
1

4
ψ4 +

1

2
ψ
(
r + U(φ) + (1 + ∆)2

)
ψ + b(ψ) dx , (4.21)

where ε, r are system parameters, and El an elasticity number to weight the elastic energy related
to the surface energy. The function U acts as a wall potential that restricts the particles to the
domain described by the 1-phase of φ, and is defined by

U(φ) = ω1(1− φ) ,

where ω1 � 1 is a scaling factor. The double-well function fch is simply given by

fch(φ) =
1

4
φ2(1− φ)2

and enforces the values of the concentration φ to the range [0, 1].
To have particles restricted to a subdomain of the domain and to conserve the particle

number rather than the particle density, the Vacancy-PFC model enforces the density to have
positive value, i.e. we add the constraint ψ ≥ 0. In Refs. [5555, 4040], Section 2.2.2Section 2.2.2, and Section 4.2.3Section 4.2.3,
this es achieved by adding a penalty term b(ψ) to the energy, given by

b(ψ) = ω2(|ψ|n − ψn)

with ω2 � 1 and n = 3. This modification allows for the occurrence of stable vacancies or the
treatment of individual particles.

4.3.2 Thermodynamically consistent dynamic equations

We consider a system where the particles live in a heat bath, i.e. an incompressible fluid with
constant density. To model the dynamics of the particles and the domain surface, including
hydrodynamic interactions between particles and surface, we assume the evolution/ balance
equations

∇ · u = 0 ,

∂tu + u · ∇u = ∇ ·T ,

∂tψ + u · ∇ψ = −∇ · Jsh ,

∂tφ+ u · ∇φ = −∇ · Jch ,

(4.22)
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where T = −pI + η
(
∇u + ∇u>

)
+ T0 describes the stress tensor with determinable force

F := ∇ ·T0. The PFC and Cahn-Hiliard fluxes Jsh and Jch also need to be determined. These
dynamic equations correspond to the Navier-Stokes equations for the velocity u and generalized
diffusion equations for the concentration field φ and particle density ψ. To get expressions for the
force and fluxes we consider the time-evolution of the energy and expect the energy to decrease
over time, i.e., ∂tF ≤ 0.

Let Ω̂ be a fixed domain with Lipschitz-boundary. The time-evolution of the energy ∂tF =
∂tFkin + ∂tFch + ∂tFsh can be split into

∂tFkin =

∫
Ω̂

u · ∂tu dx =

∫
Ω̂

u · (−u · ∇u +∇ ·T) dx ,

∂tFch =

∫
Ω̂

δF [u, ψ, φ]

δφ
· ∂tφ dx , (4.23)

∂tFsh =

∫
Ω̂

δF [u, ψ, φ]

δψ
· ∂tψ dx

with

δF [u, ψ, φ]

δφ
=: φ\ = −ε2∆φ+ f(φ)− ω1

2
ψ2 , (4.24)

El
δF [u, ψ, φ]

δψ
=: ψ\ = ψ3 + (r + (1 + ∆)2)ψ + ψ U(φ) + b(ψ) ,

with the penalty term

b(ψ) := b′(ψ) = nω2ψ
n−1(sign(ψ)− 1) ,

f(φ) := f′ch(φ) =
1

2
φ ·
(
1− 3φ+ 2φ2

)
,

where the signum function sign(ψ) gives 1 for positive densities and −1 for negative ones.
To obtain energy dissipative dynamics, the condition ∂tF ≤ 0 can be fulfilled by inserting

the time derivatives with respect to the balance equations (4.224.22) into (4.234.23) and defining Jch,
Jsh, and F accordingly.

Using incompressibility of the fluid and integration by parts, where we assume that the
boundary integrals vanish by introducing appropriate boundary conditions, we get for the kinetic
part of the energy

∂tFkin =

∫
Ω̂
−η∇u : (∇u +∇u>) + u · F dx.

The derivation of the Cahn-Hilliard and Phase-Field Crystal part of the energy read

∂tFch =

∫
Ω̂

Jch · ∇φ\ − u · φ\∇φ dx,

∂tFsh =
1

El

∫
Ω̂

Jsh · ∇ψ\ − u · ψ\∇ψ dx.

Putting all together yields an expression, where we can derive fluxes and a force, which define
a thermodynamical consistent system. We use the notation D(u) := 1

2(∇u + ∇u>) and the
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relation

(D(u),∇u)
Ω̂

= (D(u),
∇u

2
)
Ω̂

+ (D(u)>,
∇u>

2
)
Ω̂

= (D(u),
∇u

2
)
Ω̂

+ (D(u),
∇u>

2
)
Ω̂

= (D(u),D(u))
Ω̂

(4.25)

with (A,B)
Ω̂

:=
∫

Ω̂
A(x) : B(x) dx, to obtain

∂tF =

∫
Ω̂

u · (F− φ\∇φ− El−1ψ\∇ψ) + Jch∇φ\ + El−1Jsh∇ψ\ − 2η(x)D(u) : D(u) dx.

For the unknowns we choose

F = φ\∇φ+ El−1ψ\∇ψ, Jch = −Mch∇φ\, Jsh = −Msh∇ψ\ ,

with the mobilities Mch,Msh > 0. Finally, the energy dissipation holds, since

∂tF = −Mch‖∇φ\‖2Ω̂ −Msh‖∇ψ\‖2Ω̂ − (2ηD(u),D(u))
Ω̂
≤ 0 ,

using η(x) > 0.

Friction

In [176176] a simple form of a friction term is added. Defining

F := F− αu, or F := F− Au,

with positive friction coefficient α > 0, and positive definite friction tensor A � 0, respectively,
we still have a thermodynamic consistent system, since

∂tF = −α‖u‖2
Ω̂
−Mch‖∇φ\‖2Ω̂ −Msh‖∇ψ\‖2Ω̂ − (2ηD(u),D(u))

Ω̂
≤ 0 ,

and
∂tF = −‖u‖2A,Ω̂ −Mch‖∇φ\‖2Ω̂ −Msh‖∇ψ\‖2Ω̂ − (2ηD(u),D(u))

Ω̂
≤ 0 ,

respectively, with ‖u‖2
A,Ω̂

:=
∫

Ω̂
u>Au dx.

4.3.3 System of equations

The derived system of evolution equations for the Navier-Stokes Cahn-Hilliard Vacancy-PFC
system, inserting all the functions, fluxes, and forces, reads

∇ · u = 0 ,

∂tu + u · ∇u = −∇p+∇ ·
[
η(ψ)(∇u +∇u>)

]
+ φ\∇φ+ El−1ψ\∇ψ − αu ,

∂tψ + u · ∇ψ = ∇ · (Mpfc∇ψ\) ,
ψ\ = ψ3 + (1 + r)ψ + 2∆ψ + ∆2ψ + ω1ψ (1− φ) + 3ω2ψ

2(sign(ψ)− 1) ,

∂tφ+ u · ∇φ = ∇ · (Mch∇φ\) ,

φ\ = −ε2∆φ+
1

2
φ ·
(
1− 3φ+ 2φ2

)
− ω1

2
ψ2 , in Ω̂× [0, T ].

(4.26)
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It can be solved using a sequential operator splitting approach [2525] and linearization of all
nonlinear terms [2929, 77]. The viscosity η is non-constant in our simulations, to control the rigidity
of the particles, i.e., we have implemented the expression

η(ψ) = η̄f + (η̄p − η̄f )
ψ

maxΩ(ψ)
,

similar to the approach (2.322.32).

4.3.4 Numerical discretization

The evolution equations (4.264.26) are discretized using continuous finite-elements in space and a
semi-implicit backward Euler discretization in time. Therefore, we choose Taylor-Hood elements
P 2/P 1 for the Navier-Stokes equations and P 2 element for the Phase-Field Crystal and Cahn-
Hilliard part. A splitting of the time-interval [0, T ] into timesteps 0 = t0 < t1 < . . . < tN = T
with the timestep width τk = tk+1 − tk leads to a three step procedure.

Let φ0, ψ0 ∈ L2(Ω) and u0 ∈
[
L2(Ω)

]m
be given. For k = 0, 1, . . . , N − 1 solve

Step 1:

∇ · uk+1 = 0 ,

1

τk
uk+1 + uk · ∇uk+1 =

1

τk
uk −∇p+∇ ·

[
η(ψk)(∇uk+1 +∇u>k+1)

]
+ φ\k∇φk + El−1ψ\k∇ψk − αuk+1 ,

Step 2:

ψ\k+1 − (1 + r)ψk+1 − 2∆ψk+1 −∆ψ[k+1 = 3ψ2
kψk+1 − 2ψ3

k + ω1ψk+1 (1− φk)
+ b(ψk) + b′(ψk)(ψk+1 − ψk) ,

ψk+1 + τkuk+1 · ∇ψk+1 = ψk + τk∇ · (Mpfc∇ψ\k+1) ,

ψ[k+1 −∆ψk+1 = 0

Step 3:

φ\k+1 + ε2∆φk+1 = f(φk) + f ′(φk)(φk+1 − φk)−
ω1

2
ψ2
k+1 ,

φk+1 + τkuk+1 · ∇φk+1 = φk + τk∇ · (Mch∇φ\k+1).

Each system can be solved separately using an individual solver. We use a preconditioned
MINRES Krylov-subspace method for the Navier-Stokes equations, a FGMRES solver with
the PFC preconditioner, as developed in Section 4.2.4Section 4.2.4, for the Vacancy PFC equation, and
a FGMRES solver with the Cahn-Hilliard preconditioner, as introduced in [4949] and used as
subpreconditioner through this work, for the solution of step 3.

This leads to an overall efficient solution procedure that can be implemented in a highly
parallel environment.
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Figure 4.10 – Particles in an ellipsoidal domain. Top-Left: Initial configuration, particles no not fit in the
ellipse. Left: Phase-field is adapted to particle-distribution. Center: Surface-tension drives the interface to
relax. Optimal form of the interface would be a circle. Due to the interaction with the particles a faceted
interface is build up. Right: Particle-layers slide over each other to fit better into the deformed ellipse.

4.3.5 First results

In Figure 4.10Figure 4.10 the evolution of an ellipsoidal fluid interface, indicated by a white line, is shown
with particles confined in the inner phase. An ellipse would relax to a circular shape if no
external force inhibits this evolution. The particles, on the other hand, may be compressed to
hexagonal shape and are slightly deformable, depending on the mobility parameter Mpfc, i.e.,
a small mobility allows larger deformations than larger mobilities. Thus, we see a stretching of
the initial crystal configuration that breaks up for large enough forces from the interface. In the
right image of Figure 4.10Figure 4.10 a triangular domain within the crystal is moved out to the left and
right. Particle layers are slid over each other in order to allow the motion of a sub-crystal. This
gives a shape that is more circular than before with less stretched particle shapes.

Replacing the Cahn-Hilliard equation by a simpler Allen-Cahn equation would allow for the
study of a shrinking phase instead of having volume conservation as in the Cahn-Hilliard model.
This may be a tool to study the development of supraparticles using the Navier-Stokes PFC
model.

4.3.6 Conclusion and outlook

The Vacancy PFC model combined with a description of an evolving domain by a Cahn-Hilliard-
Navier-Stokes model is analyzed and a simple model system is simulated to study the interplay
between these three equations. It shows that the model may be a reasonable way to describe
evolving (and also shrinking) droplets filled with confined colloidal particles and may be used
to simulate supramolecules.

In [161161, 262262] spherical and ellipsoidal particles are confined in a spherical disc in order to
study the formation of patterns in the domain. Therefore, the authors have considered active
particles instead of passive ones, as in this chapter. The activity allows to form particle vortices
and shows circular collective motion. A modification of the disc towards ellipsoidal shape shows
a change in the motion patterns. It would be interesting to study the interplay between the
emergence of collective motion and the evolution of the domain, interacting with the moving
particles. This can be modeled by extending the Navier-Stokes Vacancy PFC model by a particle
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polarization, as it is done in [176176] and Section 3.2Section 3.2 for the classical PFC model and an activity
similar to [256256, 257257].



CHAPTER 5

Block-Preconditioner for conserved gradient-flow approaches

I n the previous sections a preconditioner for the Phase-Field Crystal equation was developed,
analyzed and applied to various model systems, which incorporate small modifications to

the classical PFC model. Part of the PFC preconditioner is a preconditioner for the Cahn-
Hilliard equation. Both equations are H−1-gradient flows of a Ginzburg-Landau type energy,
i.e., a gradient-expansions plus a polynomial part. In order to develop preconditioners for higher
order expansions a generalization of the PFC/CH preconditioner approach is proposed in this
chapter that allows to formulate preconditioners for various H−1-gradient flow models.

We propose and analyze a discretization of a conserved Lifshitz-Petrich model in Section 5.2Section 5.2,
which describes the crystallization of quasicrystals and acts as a model system for a higher order
gradient-flow model. Results are shown for quasicrystals with 5-fold and 12-fold symmetry in
domains that exploit the symmetry of the structure. Additionally, the crystallization of a 12-fold
symmetric quasicrystal in the flat two-dimensional space, as well as on the surface of a sphere,
is investigated.

5.1 Preconditioner for gradient-flow approaches

All the analyzed models in this thesis have in common, that they are based on a dynamic
density functional theory that minimizes an approximation of a Helmholtz free-energy FH. This
functional arises from a functional Taylor expansion of an excess-free part the energy, Fexc, and a
Fourier-expansion, i.e., a gradient-expansion, of the second variational derivative of the energy,
that is, the two-point direct correlation function (for details see Section 2.1.1Section 2.1.1). Thereby, the
Cahn-Hilliard energy can be seen as a first-order expansion, whereas the Phase-Field Crystal and
Swift-Hohenberg energy as a second-order expansion. Higher-order expansions were explained
in [123123, 123123, 122122], i.e., an eighth-order PFC model. A second-mode (multi-mode) PFC model
was introduced in [22, 178178, 2121, 2222] and is analyzed in Section 5.2Section 5.2.

For the development of a preconditioner for all of those models a more general approach
than the preconditioner of Section 1.3Section 1.3 needs to be formulated. This generalization includes the
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PFC and Cahn-Hilliard preconditioner as special cases.
We start with a free-energy that all introduced models are based on, in an abstract form

F [ψ] =

∫
Ω

1

2
ψp(∆)ψ + f(ψ) dx ,

where p is a polynomial of the differential operator ∆. Examples that fit into this form of the
energy include the Cahn-Hilliard energy [5252, 4949]

Fch[ψ] =

∫
Ω
−1

2
ε2ψ∆ψ + fch(ψ) dx with fch(ψ) =

1

4
ψ2(1− ψ)2

⇒ p(∆) = −ε2∆ ,

the Swift-Hohenberg energy [247247, 7878]

Fsh[ψ] =

∫
Ω

1

2
ψ(1 + ∆)2ψ + fsh(ψ) dx with fsh(ψ) = rψ2 +

1

4
ψ4

⇒ p(∆) = (1 + ∆)2 ,

the eighth-order PFC energy [123123]

Feof[ψ] =

∫
Ω

1

2
ψ
(
A0(1 + ∆)2 +A1(1 + ∆)4

)
ψ + feof(ψ) dx with feof(ψ) = a2ψ

2 + a3ψ
3 + a4ψ

4

⇒ p(∆) = A0(1 + ∆)2 +A1(1 + ∆)4 ,

and the Lifshitz-Petrich energy [149149, 3434, 22]

Flp[ψ] =

∫
Ω

1

2
cψ(1 + ∆)2(q2

0 + ∆)2ψ + flp(ψ) dx with flp(ψ) = rψ2 − 1

3
ψ3 +

1

4
ψ4

⇒ p(∆) = c(1 + ∆)2(q2
0 + ∆)2.

All those energies are based on a gradient expansion of the unknown excess free-energy Fexc.
The corresponding H−1-gradient-flow of the energies can be formulated as

∂tψ −∆
(
p(∆)ψ + f(ψ)

)
= 0

with f = f′. A simple backward Euler discretization, using a linearization of f around the old
timestep, leads to the time-discrete system with timestep width τ

ψk+1 − τ∆
(
p(∆)ψk+1 + f ′(ψk)ψk+1

)
= ψk − τ∆

(
f ′(ψk)ψk − f(ψk)

)
that can be formulated as 2x2 block system[

1 −p2(∆)
τp1(∆) 1− τ∆f ′

]
︸ ︷︷ ︸

A

(
µ

ψk+1

)
=

(
0

ψk − τ∆
(
f ′(ψk)ψk − f(ψk)

))

with p1(∆)p2(∆) = −∆p(∆) a regular splitting of the polynomial p.
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Following the ideas of [2525, 4949], an approximation of A can be formulated that has a simple
triangular factorization, by adding a perturbation to the diagonal element,

A ≈ P :=

[
1 −p2(∆)

τp1(∆) 1 + δ(αp1(∆) + 1
αp2(∆))

]
=

[
1 0

τp1(∆) 1 + δαp1(∆)

] [
1 −p2(∆)

0 1 + δ
αp2(∆)

]
(5.1)

with δ =
√
τ , α > 0, where we require that 1 + δαp1(∆) and 1 + δ

αp2(∆) are invertible. In terms
of a finite-element discretization, using the shortcuts M and K, introduced in Section 1.2Section 1.2, the
block systems read

A =

[
M −P2

τP1 M + τKM−1N

]
, P =

[
M −P2

τP1 M + δ(αP1 + 1
αP2)

]
,

where N corresponds to a discretization and assembling of the linearized polynomial term and
P1, P2 to a discretization of the differential operators p1 and p2 respectively, with

−∆ K, ∆2  KM−1K.

Example 5.1. The Cahn-Hilliard preconditioner of [4949] implements the polynomial factorization
p1(∆) = −∆ and p2(∆) = −ε2∆. Using the factor α := ε, we obtain the proposed preconditioner

Pch =

[
M −ε2K
τK M + 2εδK

]
.

C

Example 5.2. In the Phase-Field Crystal preconditioner of Section 1.3Section 1.3 we have used the fac-
torization p1(∆) = −∆ and p2(∆) = 2∆ + ∆2, where we have put the lowest order (constant)
term of p(∆) into the function f . This leads to P1 = K and P2 = −2K + KM−1K. Using the
factor α := 1, we obtain the preconditioner-matrix

Ppfc =

[
M 2K−KM−1K
τK M− δK + δKM−1K

]
.

C

Applying the precondition operator P to a vector (b0,b1)>, i.e., solving Px = b, can be
carried out in a sequence of simple to perform steps,

(1) My0 = b0 , (2) (M + δαP1)y1 = b1 − τP1y0 ,

(3) (M +
δ

α
P2)x1 = My1 , (4) x0 = y0 +

α

δ
(y1 − x1) , (5.2)

where we can simplify step (2) to

(2a) (M + δαP1)z = b1 +
τ

δα
b0 , (2b) y1 = z− τ

δα
y0.

Nevertheless, in step (2) and (3) a nontrivial linear system must be solved. In the case of the
PFC equation a ∆2 term is involved in 1 + δ

αp2(∆). By applying the approximation idea (5.15.1)
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recursively, i.e., factorizing the polynomials, until a simple to solve system is reached, an overall
preconditioner can be formulated. Therefore, we have to write 1 + δαp1(∆) and 1 + δ

αp2(∆) as
H−1-gradient flow systems, i.e.,

1 + δαp1(∆) = 1− τ1∆
(
C1 + p′1(∆)

)
and

1 +
δ

α
p2(∆) = 1− τ2∆

(
C2 + p′2(∆)

)
,

(5.3)

respectively, with C1, C2 some constante, τ1 = δα, p′1 ∈ P0, and τ2 = δ
α , p′2 ∈ P0. The polynomial

space P0 denotes the set of polynomials that vanishes at the origin, i.e.,

P0 := {p ∈ P | p(0) = 0}.

This can be achieved, if we have p1, p2 ∈ P0. The constants Ci are neglected in the precondi-
tioners, as it is done for the f ′ term in (5.15.1).

Example 5.3. In the case of the PFC preconditioner, we have p2 = 2∆ + ∆2 and thus p′2(∆) =
−∆ ⇒ C2 = −2. A factorization similar to (5.15.1) leads to

P′ =
[

M −K
τ2K M + 2

√
τ2K,

]
with τ2 = δ

α =
√
τ and thus the Cahn-Hilliard preconditioner. C

Spectral analysis of the preconditioner

For estimating the properties of the preconditioner we follow the approach of Section 1.5Section 1.5 and
analyze the symbols of the operators A and P . Let k = (k1, k2, k3) be the wave vector and
denote A the symbol of A and P the symbol of P with

A =

[
1 −p2(−k2)

τp1(−k2) 1

]
, P =

[
1 −p2(−k2)

τp1(−k2) 1 +
√
τ
(
αp1(−k2) + 1

αp2(−k2)
)] ,

respectively. Calculating the eigenvalues of the preconditioned symbol Q := AP−1 gives the set

σ(Q) =

{
1,

1 + τp1(−k2)p2(−k2)

1 + τp1(−k2)p2(−k2) +
√
τ(αp1(−k2) + 1

αp2(−k2))

∣∣∣ k ∈ Rm
}
. (5.4)

The following theorem shows, that for an appropriate splittings of the polynomial p an overall
good preconditioner P, in the sense of spectral similarity to the operator A, is constructed.

Theorem 6. For the eigenvalues λ of the preconditioned operator Q the following statements
hold true:

1. If p1(−k2), p2(−k2) ≥ 0 ∀k ∈ Rm, then 0 < λ ≤ 1.

2. If p1, p2 ∈ P0 ⇒ λ
|k|→0−−−−→ 1.
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3. Let the requirements of Statement 1. be fulfilled and let C1, C2 > 0 with p1 = C1 + p̃1, p̃1 ∈
P0 and p2 = C2 + p̃2, p̃2 ∈ P0. Then Statement 2. can be generalized to

λ
|k|→0−−−−→ 1 + τC1C2

(1 +
√
ταC1)(1 +

√
τ 1
αC2)

≤ 1.

4. λ
τ→0−−−→ 1.

5. If p1 = p2, with
[
αp1(−k2)+ 1

αp2(−k2)
]
≥ 0, then the eigenvalues are bounded from below,

i.e., λ ∈ [ 2α
(1+α)2 , 1] with optimal α = 1.

Proof. Statements 1, 2, 3, and 4 follow directly from the structure of the rational function

λ =
1 + τp1p2

1 + τp1p2 +
√
τ(αp1 + 1

αp2)

when ignoring the argument −k2. Statement 5. can easily be verified, by setting p := p1 = p2

and analyzing the critical points with ∂pλ = 0:

∂pλ =
α(1 + α2)

√
τ(τp2 − 1)(

α(1 + τp2) + (1 + α2)
√
τp
)2 .

It follows ∂pλ = 0 ⇔ p = p∗ := ±1/
√
τ and ∂2

pλ(p∗) = ±2τα(1 + α2)/(1 ± α)4. Thus, the
minimal eigenvalue is achieved at p∗+, that is λmin = λ(p∗+) = 2α/(1 + α)2.

The critical point with respect to α can be calculated, by

∂αλ(p∗) =
2(1− α)

(1 + α)3
= 0 ⇔ α = α∗ := 1

with ∂2
αλ(p∗, α∗) = −1

4 .

Remark 7. A simple modification of Statement 5. of Theorem 6Theorem 6 recapitulates Proposition 2 in
[4949] and Proposition 4.1. in [2525], for the special case, that ε2p1 = p2 = −ε2∆. We obtain the
eigenvalue bounds λ ∈ [1

2 , 1]. C

5.2 A Quasi-Crystal Phase-Field Crystal model

Historically, crystals were seen as structures with a periodic order. The macroscopic shape is
thereby determined by its internal periodic microstructure. Periodicity implies a limited choice
of allowed rotational symmetries in the crystalline patterns, i.e., 2-, 3-, 4-, and 6-fold symmetry.
A long period of time it was assumed, that there exist no other crystallographic structures in
nature, especially no aperiodic tilings in the crystalline patterns.

In the middle of the 20th century this historic assumption broke down. Shechtman and
coworkers [233233] observed in electron diffraction patterns of a rapidly cooled alloy of Al-Mn a
five-fold symmetry. Later Levine and Steinhardt [144144] named these crystalline structures with
those aperiodic patterns Quasi-Crystals. Mathematically, these structures were analyzed and
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published by Penrose [196196, 197197]. These pioneering works have lead to many experimentally
observed and reported Quasi-Crystals.

Starting from the research of Lifshitz and Petrich [149149, 148148, 147147] a free-energy for systems
with higher order symmetry was formulated. This free-energy is similar to the Swift-Hohenberg
functional introduced in equation (1.11.1) and named later Liftshitz-Petrich energy. Minimizing
the free-energy, using an L2-gradient flow, Zhang [127127] and others have shown patterns with the
proposed symmetries. Here we analyze an extension to conserved evolutions, applying the H−1-
gradient flow to the free-energy minimization. This was investigated recently in [22] to analyze
the growth of a quasicrystalline patterns in two spatial dimensions. A discretization with finite-
elements has been applied to the resulting dynamical equations. We analyze stability and the
properties of a preconditioner for the linear system arising from the FEM-discretization of the
system and show simulations that exploit the symmetry already in the discretization of the grid.

5.2.1 Modelling

We consider the Liftshitz-Petrich (LP) energy [149149, 3333, 3434]

Flp[ψ] =

∫
Ω

1

4
ψ4 − 1

3
ψ3 +

1

2
ψ
(
r + c(1 + ∆)2(q2

0 + ∆)2
)
ψ dx (5.5)

with phenomenological parameters r, q0, and c. In contrast to the Swift-Hohenberg energy (1.11.1)
a cubic term is included in the original LP-energy. In [22] and others this term is neglected, as
it can be eliminated by rescaling and shifting of the order-parameter field ψ. This is shown in
Section 2.2.5Section 2.2.5 for the non-dimensionalization of the PFC model.

Achim et al. [22] have introduced a H−1-gradient flow of the LP-energy,

∂tψ = M0∆
δFlp[ψ]

δψ

= M0∆
{
c(1 + ∆)2(q2

0 + ∆)2ψ + rψ − ψ2 + ψ3
} (5.6)

with a constant mobility M0. This may be extended towards non-constant mobilities, but this
is not subject of this chapter.

Linear stability analysis of the equations shows parameter regimes, where (quasi-)crystalline
structure can be expected.

Theorem 7. The H−1-Quasi-Crystals (QPFC) equation (5.65.6) is unstable with respect to small
perturbations of a constant phase ψ̄, if

3ψ̄ − 2ψ̄ + r < 0 ,

for the system parameters r, ψ̄, and M0 > 0.

Proof. Let ψ = ψ̄+ η be the density expansion around ψ̄ for perturbations η � 1. Inserting this
into the QPFC-equation (5.65.6) and neglecting higher order powers of η, we obtain an evolution
equation for the perturbation,

∂tη = ∇ ·M0∇
{
c(1 + ∆)2(q2

0 + ∆)2η + rη + (3ψ̄2 − 2ψ̄)η
}
. (5.7)
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The Fourier transform of equation (5.75.7) with η̂ := F(η)(k, t), leads to

∂tη̂ = −M0k
2
{
c(1− k2)2(q2

0 − k2)2 + r + 3ψ̄2 − 2ψ̄
}
η̂ =: −Aη̂.

Stability can be achieved for

A = M0k
2
{
c(1− k2)2(q2

0 − k2)2 + r + 3ψ̄2 − 2ψ̄
}
> 0.

A necessary condition for stability is r + 3ψ̄2 − 2ψ̄ > 0 (i.e., for the limiting cases k→ {1, q0})
and thus instability can be found for r and ψ̄ that fulfill the relation

r + 3ψ̄2 − 2ψ̄ < 0.
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Figure 5.1 – Linear stability diagram for the QPFC equation. The blue dot corresponds to the simulation
parameter for the preconditioner studies (ψ̄ = −0.4, r = −1.5). In [22] a more detailed phase-diagram was
published. There, a separation of phases and coexistence regions were shown.

The parameter r in the energy can be interpreted as distance to a critical temperature of the
system and the parameter c is a simple scaling parameter that can be eliminated by rescaling
of the energy. The third parameter q0 controls the symmetry of the system, as it is explained in
[3333, 127127], among others. Therefore, we choose q0 of the form

q0 = 2 cos
( π

SYM

)
,

where SYM names the integral symmetry number, i.e., 12-fold symmetry is achieved by q0 =

2 cos(π/12) =
√

2 +
√

3 and 4-fold symmetry by q0 =
√

2.
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5.2.2 Solving the QPFC-equation

In order to solve the partial differential equation (5.65.6) we show a variational formulation dis-
cretized using finite-elements. Therefore, the higher-order derivatives are split into a sequence
of second-order derivatives:

ψ\ = (1 + 2∆)µ+ ∆µ[ + rψ − ψ2 + ψ3 ,

∂tψ = M0∆ψ\ ,

µ = cq2
0(q2

0 + 2∆)ψ + c∆ψ[ ,

µ[ = ∆µ ,

ψ[ = ∆ψ .

(5.8)

A backward Euler discretization in time, a linearization of the nonlinear term ψ3−ψ2 around the
old timestep and a finite-element discretization in space lead to a sequence of linear problems
that need to be solved in rotation: Let ψ0 ∈ L2(Ω) be given. For k = 0, 1, . . . , N − 1 find

ψk+1, ψ
\
k+1, ψ

[
k+1, µk+1, µ

[
k+1 ∈ Vh, s.t.

(ψ\k+1 − µk+1 −
(
r + 3ψ2

k − 2ψk
)
ψk+1, ϑh)Ω + (2∇µh +∇µ[k+1,∇ϑh)Ω = (−2ψ3

k + ψ2
k, ϑh)Ω ,(

ψk+1, ϑ
′
h

)
Ω

+ τk(M0∇ψ\k+1,∇ϑ
′
h)Ω =

(
ψk, ϑ

′
h

)
Ω
,

(µk+1 − cq4
0ψk+1, ϑ

′′
h)Ω + c(2q2

0∇ψk+1 +∇ψ[k+1,∇ϑ′′h)Ω = 0 , (5.9)

(µ[k+1, ϑ
′′′
h )Ω + (∇µh,∇ϑ′′′h )Ω = 0 ,

(ψ[k+1, ϑ
(iv)
h )Ω + (∇ψk+1,∇ϑ

(iv)
h )Ω = 0 ,

for all ϑh, ϑ
′
h, ϑ
′′
h, ϑ
′′′
h , ϑ

(iv)
h ∈ Vh. Using the shortcuts M and K for mass-matrix and stiffness-

matrix, F(ψ) :=
(
(−3ψ2θj + 2ψθj , θi)Ω

)
ij

and f(ψ) :=
(
(−2ψ3 + ψ2, θi)Ω

)
i

for the nonlinear
terms, we can write the system matrix A and right-hand-side vector b as

A =


M F(ψk)− rM −M + 2K K 0

τM0K M 0 0 0
0 −cq4

0M + 2cq2
0K M 0 cK

0 0 K M 0
0 K 0 0 M

 , b =


f(ψk)
Mψk

0
0
0

 (5.10)

with x = (ψ\k+1,ψk+1,µk+1,µ
[
k+1,ψ

[
k+1)>.

Preconditioner for the QPFC-system

We follow the general approach developed in the last section and provide a splitting of the
polynomial −∆p(∆) = −c∆(1 + ∆)2(q2

0 + ∆)2, corresponding to the splitting in equations (5.85.8),
that is,

p1(∆) = −∆(1 + ∆)2, p2(∆) = c(q2
0 + ∆)2. (5.11)

Introducing the sub H−1-gradient flows, as in equation (5.35.3), we get the PFC equation and the
Cahn-Hilliard equation as part of the QPFC preconditioner, i.e.,

1 + τ1p1(∆) = 1− τ1∆
(
1 + 2∆ + ∆2

)
 1− τ1∆

(
2∆ + ∆2

)
,

1 + τ2p2(∆) = (1 + τ2cq
4
0)− τ2∆

(
− 2cq2

0 −∆
)
 1− τ2∆

(
− c∆

)
,

(5.12)
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where again we have negelected the lowest order terms. In order to precondition a QPFC equation
we have to apply the PFC preconditioner followed by a Cahn-Hilliard preconditioner. Writing
this as a sequence of solver steps, we obtain:

(1) My2 = b2 , (2.1) (M + τ
1/2
1 K)u0 = b1 −

τ

τ1
b2 ,

(2.2) (M + τ
1/4
1 K)u1 = Mu0 , (2.3) (M + τ

1/4
1 K)u2 = Mu1 , (5.13)

(3.1) (M + (cτ2)1/2K)u3 = Mu2 −
τ

τ1
b2 , (3.2) (M + (cτ2)1/2K)x1 = Mu3 ,

(4) x2 = y2 + τ−1
2 (u2 −

τ

τ1
y2 − x1)

with the solution components x = (ψ\,ψ,µ,µ[,ψ[). In order to precondition all block-vector
components we have to solve the additional steps

(5) Mx4 = b4 −Kx1 , (6) Mx3 = b3 −Kx2 ,

(7.1) My0 = b0 −Kx3 , (7.2) x0 = y0 + x2 + 2x3.
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Figure 5.2 – The condition number κ := λmax

λmin
of the preconditioner symbol Q for three different

symmetry numbers SYM , depending on the timestep width τ .

In Figure 5.2Figure 5.2 the spectral representation of the QPFC preconditioner is analyzed. Therefore,
the eigenvalues of Q in (5.45.4) are examined and it is found, that λ ∈ σ(Q) is real and positive,
and since p1, p2 ≥ 0 we have by Theorem 6Theorem 6 that λ ∈ (0, 1]. Thus, a meaningful value that
describes the convergence of a Krylov subspace methods is the condition number κ := λmax

λmin
. In

Section 1.4.2Section 1.4.2 the asymptotic convergence factor ρ is given in terms of κ, see (1.291.29). For increasing
timestep width τ the condition number also increases and we have greater condition numbers
for greater symmetry numbers.
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Figure 5.3 – Left: Number of solver iterations versus symmetry number SYM , shown for various timestep
widths τ . We see an increase in the solver iterations for larger second mode q = 2 cos(π/SYM). Right:
Number of solver iterations versus timestep widths τ . For larger τ the solver iterations increases nearly
linearly.

Numerically, this behavior can be proven, by looking at a small setup with a symmetric
positioning of SYM initial particles around the domain center, as it can be seen in the crys-
tallization example in Figure 5.5Figure 5.5. Running a simulation for 20 timesteps with timestep width
τ and averaging the number of solver iterations over all these timesteps, shows an increase in
the iteration number for increasing timestep width and increasing symmetry number. This is
visualized in Figure 5.3Figure 5.3.

5.2.3 Conclusion

We have formulated a finite-element discretization for a higher-order PFC model, based on an
H−1-gradient flow of the Lifshitz-Petrich energy. The system can be solved in non-rectangular
domains, by exploiting the symmetric structure of the solution already in the setup of the
problem. This can be seen in Figure 5.4Figure 5.4, where the QPFC equation is solve on a triangular mesh
with inner angle that conforms with the symmetry number SYM . Thus, the cost for assembling
and inverting the linear system can be reduced a lot.

The numerical inversion of the arising linear system is performed using the gradient-flow
preconditioner developed in general in the last section. Applied to the QPFC system we have
analyzed a splitting of the polynomial derivative operator, with respect to a variation in timestep
width and symmetry number. The theoretical results are conform to the numerical results
and show reasonable performance, in terms of solver iterations, when using the preconditioned
Krylov-subspace method FGMRES.
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Figure 5.4 – Quasi-Crystal pattern in a domain that enforces symmetry. Left: Honeycomb phase in 5-fold
symmetry, Center: Honeycomb phase in 12-fold symmetry, Right: Plastic crystal in 12-fold symmetry. All
simulations are performed in a triangular domain with inner angle 2π/SYM for the SYM -fold symmetry.

Figure 5.5 – Crystallization of a quasicrystalline structure from a grain with 12-fold symmetry in the
center of a domain. Total number of DOFs per component: 2,144,191. The simulation is parallelized and
run using 96 cores.





CHAPTER 6

Alternative solution methods

T he problem dependent block-preconditioners as developed in Chapter 1Chapter 1 and generalized in
Chapter 5Chapter 5 are not the only way to solve the linear systems arising from a discretization of

the Phase-Field Crystal equation. We summarize some methods introduced in the literature and
tested in numerical experiments, which are alternative solution methods for the linear systems.

We start from optimized direct solvers and continue with domain decomposition methods.
Finally a combination of both approaches could be accomplished.

6.1 Accelerated multi-frontal solvers

Multi-frontal solvers like MUMPS [1616] or UMFPACK [6565] build a class of direct linear solvers,
which calculate an LU -factorization of a sparse matrix A. The algorithm was introduced in 1983
in the work of Duff and Reid [7474]. Despite the numerical robustness and reliability, direct solvers
are known to require a big amount of memory during their factorization procedure. This is due
to the fact that, although the matrix is sparse, the triangular factors L and U might not be
sparse, because of fill-in that is produced in the elimination process.

In order to reduce fill-in direct solvers perform a reordering of the unknowns. Let G be the
adjacency graph of A (we assume a symmetric sparsity pattern of A and thus an undirected
graph G) and S a connected subgraph that separates two parts of G, i.e., when S is removed
from G two disjoint graphs remain. We call S a separator of G. The three subsets of the vertices
on G, i.e., two unconnected subsets D1 and D2 and the separator S, are numbered one after the
other, starting with D1, then D2 and finally S (see Figure 6.1Figure 6.1 (left) for a sketch of the graph
structure).

This renumbering of the vertices and of the unknowns results, correspondingly, in a block
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Figure 6.1 – Left: First step of nested dissection procedure generates a separator S and two disjoint
subgraphs D1 and D2. Center: The left and right subgraph are separated again by the separators S1 and
S2, respectively. Right: The corresponding elimination tree.

structure of A with a bottom-right-arrow pattern, which is preferable for the elimination process:

A =

A11 A1,S

A22 A2,S

AS,1 AS,2 ASS

 .
Since the factorization of the diagonal blocks A11 and A22 may also produce a lot of fill-in,
the renumbering procedure is repeated recursively on these blocks. The recursive renumbering
algorithms is called nested dissection ordering [225225]. It is repeated until small enough blocks
remain. The order of the elimination is now represented by an elimination tree, whose nodes
correspond to the graph separators and the children of the nodes to the left and right subgraph
D1 and D2, sketched in Figure 6.1Figure 6.1 for a simple hexagonal grid arising from a finite-difference
discretization.

Multi-frontal solvers build dense matrices F (k) in each level k of the elimination tree, com-
posed of 2x2 blocks corresponding to the vertices of a separator Sk and some of its neighbor
vertices Nk, e.g.,

F (k=0) =

[
ASkSk ASk,Nk
ANk,Sk 0

]
for the leaf level and F (k) build in the same way, combined with the Schur complements of the
lower level frontal matrices, for k > 0 (see, e.g., [1717]).

In classical approaches these matrices F (k) are factorized, e. g., by using a Schur complement
approach and a factorization of the diagonal blocks. In the recent development of accelerated
multi-frontal algorithms, the off-diagonal blocks of F (k) are approximate by a low-rank approx-
imation, or the total matrix F (k) is approximated by an easier to factorize structure.

Various approaches were developed for matrices arising from different applications, e.g.,
approximating the frontal matrix by a hierarchically semiseparable (HSS) matrix [5656], by a
block low-rank (BLR) matrix [1515], or by a hierarchically off-diagonal low-rank (HODLR) matrix
[1717, 1818]. All those approaches lead to approximate solutions x̃ of the linear system Ax = b
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n ≈ 824, 000 factorization time [s] memory [GB] #iterations

Conventional 2, 259.23 34.04 —
HODLR1 1, 590.44 24.03 16
HODLR2 2, 506.32 17.55 17

Table 6.1 – Comparison of a conventional factorization procedure, i.e., without an approximation of the
frontal matrices, to the HODLR approximation with two different levels of approximation.

n ≈ 3, 417, 000 factorization time [s] memory [GB] #iterations

Conventional 42, 137.3 205 —
HODLR1 19, 368 60 21

Table 6.2 – Comparison of a conventional factorization procedure to the HODLR approximation for a
large benchmark matrix.

and are combined with an appropriate iterative solver for the residual equation Aδx̃ = b−Ax̃,
x = x̃ + δx̃.

We analyze the HODLR approach for the Phase-Field Crystal system (1.81.8), by factorizing
assembled matrices for a 3D test case as in Section 1.6Section 1.6 for the crystallization from an initial
seed in one corner of the domain. The direct solver is not sensitive to variations in timestep
width τ or grid resolution h, only the sparsity pattern and number of unknowns n are relevant.
Thus, we set up two systems with different refinement level, both with finite-element Lagrange
basis-function with polynomial degree p = 4, producing different matrix sizes. We compare an
accelerated multi-frontal solver to the classical multi-frontal approach, i.e., without approximat-
ing the frontal matrices F (k). The outer iterative method is a GMRES method, solved up to an
absolute tolerance of 10−7.

In Table 6.1Table 6.1 and Table 6.2Table 6.2 the results, obtained in corporation with AmirHossein Aminfar
from Stanford University cf. [1717, 1818], are summarized. It shows, that the factorization time can
be reduced a lot, up the half of the conventional method, especially for larger matrices. Also the
amount of memory, necessary to perform the factorization, drops down to the half or a third
of the conventional method. Thus, using the accelerated multi-front solver larger systems can
be solved. Combined with domain-decomposition methods, as also benchmarked in [1818], huge
setups can be handled.

The advantage of LU -factorization methods is clearly the ability of repeated solutions of the
linear system with different right-hand-side vectors, as it is the case when used as a preconditioner
in a Krylov-subspace iterations or in combination with a Rosenbrock time discretization, where
all stages are solved with the same Jacobi-matrix and thus the factorization can be reused in
the whole Rosenbrock procedure of one timestep.

Since the system matrix A (1.81.8) changes only in one block from timestep to timestep, namely
in the discretization of the nonlinear term, a Schur complement approach could be implemented
that holds the factorization of all time-constant matrices in memory and just updates the fac-
torization of the changing block. Thus, a reduction of the size of the matrix to factorize reduces
to one third of the full matrix size. Hence, the memory requirements and the factorization time
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might be reduced correspondingly.

6.2 Block-jacobi preconditioners

Classical preconditioners for symmetric positive systems are based on a splitting of the system
matrix A = D−L−U with D the diagonal of A, and L,U the lower and upper triangular part
of A, respectively. Reformulating the linear system Ax = b as fixed point problem,

Ax = b⇔Mx = Nx + b⇔ x = x + M−1(b−Ax)

with M an invertible matrix and A = M−N, leads to a simplified Newton method,

xk+1 = xk + M−1(b−Axk)

that can be solved for a few iterations to approximately solve the linear system. The Jacobi-
method chooses M to be the diagonal-matrix, i.e., M = D. This leads to a separate relaxation
of the individual components of the residual vector r = b−Ax.

A generalization of the point-relaxation toward a relaxation of multiple components at the
same time leads to a block-relaxation method [225225]. Therefore, let the set of all indices be denoted
by S = {1, 2, . . . , n} partitioned into subsets S1, S2, . . . , Sp, s.t.

Si ⊆ S,
⋃

i=1,...,p

Si = S.

If Si ∩ Sj = ∅ the splitting is called non-overlapping decomposition, otherwise overlapping de-
composition. In the following, let ni = |Si| be the size of the index-set Si, defined by

Si = {mi1,mi2, . . . ,mini}.

To restrict the rows and columns of the matrix A to a subset Si we introduce the projec-
tion matrices Vi, build from the columns of the unit-matrix I ∈ Rn×n, I =

[
e1, e2, . . . , en

]
,

corresponding to the indices in Si, i.e.

Vi = [emi1 , emi2 , . . . , emini ] ∈ Rn×ni .

Furthermore, the matrices Wi are introduced, s.t.
∑

i ViW
>
i = I, with

Wi = [ηmi1emi1 , ηmi2emi2 , . . . , ηminiemini ].

The factors ηmij are chosen appropriately. A natural choice for the scaling factors is ηi = 1/si,
with si := |{l | i ∈ Sl}|.

To introduce the sub-matrices of A corresponding to the index-sets Si, we define the ni×nj
block-matrices Aij and the corresponding sub-vectors ξi and βi of the solution and right-hand-
side vector, respectively, according to

Aij = W>
i AVj , ξi = W>

i x, βi = W>
i b.

With this definition we can represent the solution vector x as x =
∑p

i=1 Viξi.
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PCH bjacobi
#processors p time [sec] #iterations time [sec] #iterations

48 13.62 24 32.47 25
96 13.57 24 32.11 25
192 13.83 25 30.30 27
384 14.97 25 33.69 25

Table 6.3 – Average number of iterations and solution time in the first 20 timesteps for approximately
25,000 DOFs per partition.

In the context of projection methods we search for an xk+1 ∈ x̃+Ki, with the initial solution
x̃ and a subspace Ki spanned by the columns of Vi, such that the corresponding residual is
orthogonal to a subspace Li spanned by the columns of W>

i . Thus, for xk+1 := x̃ + Vδ and
r̃ = b−Ax̃, the residual vector can be written as

rk+1 = b−Axk+1 = b−A(x̃ + Viδ) = r̃−AViδ.

The orthogonality condition to he subspace Li translates into

W>
i rk+1 = W>

i (r̃−AViδ)
!

= 0

and thus, we obtain the representation xk+1 = x̃ + ViA
−1
ii W>

i r̃.
One step of the block-jacobi method applies this formula to the starting vector x̃ = xk for

all i. This leads to Algorithm 1Algorithm 1.

Algorithm 1 Block-jacobi method

1: Choose initial solution x0

2: for k = 0, 1, . . . do
3: for i = 1, 2, . . . , p do
4: Solve Aiiδ̂i = W>

i (b−Axk)

5: Update xk+1 = xk +
∑

i Viδ̂i

This algorithm can be applied to non-positive definite systems, if the diagonal blocks Aii

are invertible. The approach described here is similar to a multisplitting-block-jacobi method
[185185]. In the context of domain-decomposition approaches the index-sets Si correspond to the
unknowns in local partitions of the domain. For the Phase-Field Crystal model the equations
can easily be restricted to parts of the domain with homogeneous Neumann boundary conditions
on the inner domain boundaries. This allows to invert the local problems separately.

We have analyzed the block-jacobi preconditioner using a local direct solver, such as MUMPS
[1616] or UMFPACK [6565], to invert the matrices Aii. Therefore, the 3D setup of Section 1.6Section 1.6 is
investigated with a homogeneous partitioning of the computational domain Ω in p subdomains.

In Table 6.3Table 6.3 the block-jacobi approach (bjacobi) is compared to the preconditioner developed
in Chapter 1Chapter 1 (PCH). An equal setup with approximately 25,000 DOFs per subdomain and the
same number of used processors is considered. While the average number of solver iterations
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Figure 6.2 – Left: Speedup of weak scaling computations using the block-jacobi preconditioner in a 3D
PFC setup. Right: Corresponding efficiency curve. Reference calculations are performed with q = 24,
corresponding to one compute node with 24 cores.

is approximately equal, the solution time for one linear system, i.e., time for one timestep, is
about half the time for the PFC preconditioner as for the block-jacobi preconditioner. This
clearly shows an advantage of the problem dependent approach.

In Figure 6.2Figure 6.2 a large scale computation for up to 6,144 processors is visualized. The weak-
scaling speedup and efficiency curves show, that up to about 3,000 cores the computations scale
well with more than 85% efficiency and then drop down to less than 70%. A calculation with
more than 12,000 cores (not plotted) shows an even worse scaling that needs to be analyzed in
more detail.

In [291291] an additive Schwarz preconditioner was formulated. This is a generalization of the
non-overlapping block-jacobi approach that allows overlap of the subdomains. It was shown that
an approximate local solver, such as an incomplete LU factorization, leads to no convergence in
the outer GMRES iteration, while with a direct solver they have obtained convergence for large
overlap regions. In their benchmarks they have required more than 100–1,000 GMRES iterations
to converge to an acceptable tolerance. Finally, they have shown scaling results for up to 2,300
processors.

Compared to their results the block-jacobi preconditioner used in our studies seems to per-
form much better and more stable. This discrepancy needs to be analyzed in more detail.

A combination of the block-jacobi with the HODLR-direct solver could be an reasonable
improvement that may be comparable in speed and memory requirements to the PFC precon-
ditioner.



Conclusion and outlook

I n this thesis we have analyzed solution methods for the classical Phase-Field Crystal equation
arising as an approximated dynamic density functional theory. Discretizing the nonlinear

partial differential equation in space using a finite-element method and using various time-
discretizations, such as semi-implicit Euler or Rosenbrock discretization, has led to linear systems
that turned out to be hard to solve with classical method.

For small systems direct solvers, based on a sparse LU factorization, could be applied, but
numerical experiments have shown that these methods do not scale well with increasing system
size. Recently, the classical multi-frontal approach or super-nodal approach, which lead to an
exact factorization of the matrix up to rounding errors, were modified to allow some approx-
imations in the procedure. Basically, the dense frontal matrices, arising in these multi-frontal
approaches, were approximated with an off-diagonal low-rank matrix structure. Various different
approaches were developed in the recent years, cf. [1515, 1717, 1818, 290290], and were combined with
outer iterative solver to improve the approximate inverse solutions. One such approach [1818] was
successfully applied to the PFC equation as a preconditioner for an FGMRES method and has
relaxed the memory restrictions of classical direct solvers slightly.

Larger linear systems were handled using iterative Krylov-subspace solvers, like FGMRES.
We have shown by analytical and numerical arguments that the developed preconditioner can
be applied to the classical PFC equation successfully and reduces the estimated asymptotic
convergence factor a lot. A spectral analysis has shown possible timestep limitations for the
initial approach and the lack of these limitations for the inner Cahn-Hilliard preconditioner.
This has been numerically verified.

In the following chapters we have added various modifications to the classical PFC model,
like an advection term in Section 2.1Section 2.1 and a density penalization to allow vacancies in the density
field in Section 2.2Section 2.2. In Section 3.1Section 3.1 an additional order-parameter field was introduced and the
evolution was coupled to the PFC equation. In Chapter 4Chapter 4 the model was restricted to complex
geometries using a diffuse-interface model and a wall potential similar to a diffuse-domain ap-
proach. All those modifications had an influence on the preconditioner. Larger flow velocities
increased the number of solver iterations and also larger mobilities in the Vacancy PFC model
made the solver less efficient. The orientational order-parameter had only little influence on the
preconditioner, whereas the diffuse-interface approach has reduced its efficiency, depending on
the width of the interface and its resolution.

Finally, in Chapter 5Chapter 5 a generalization of the PFC preconditioner was postulated that might
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be applicable to a wider range of PFC-like models. As an example we have studied the two-mode
PFC model, i.e., Quasi-Crystal PFC model. Although the number of solver iterations were larger
than those of the classical PFC equation, a convergence of the iterative Krylov-subspace method
could be achieved.

In summary, we have developed the problem depended PFC preconditioner as efficient solu-
tion method for the PFC equation. Only for the Vacancy PFC and diffuse-domain PFC approach
the number of solver iterations were increased. The other analyzed modifications of the classical
equation seem to be less problematic. Although a block-jacobi preconditioner with direct local
solver is more stable with respect to problem variations, it is in total less efficient with respect
to memory requirement and solver time.

Efficiency of the solver is shown, i.e. it can easily be implemented with standard finite-element
techniques and reduces the overall solution time by orders of magnitude, in comparison with
direct solver approaches and non-preconditioned krylov-subspace methods. The solver is widely
applicable to setups of various geometries, in two-dimension, three-dimensions, and on surfaces.
Additionally, minor problem modifications can be handled with only little modification in the
preconditioner. The method scales well in highly parallel simulations.

Nevertheless, the developed preconditioner cannot compete in performance against finite-
difference methods combined with specialized nonlinear multigrid solvers, as described in [119119,
279279, 3636, 3535], and against spectral methods, especially in periodic rectangular domains. The
derivation of the PFC preconditoner, on the other hand, has given an insight into the structure
of this gradient flow problem and it is worth to apply the method in various situations, where
the other methods may fail or are too complicated to implement.

In all the chapters of this thesis we have given outlooks to future work, interesting questions
that need to be considered, and open problems. Some of the questions were already answered in
the subsequent sections or in publications listed at the beginning of this work. Basically, all the
numerical examples were performed in 2D, except the benchmark cases in the first chapter. As
already stated in the conclusion of Section 3.1Section 3.1, three dimensional setups are of practical interest
and are expected to show interesting phenomena. Also for the flowing particles, 3D simulations
would be challenging. There the preconditioner might be a valuable tool to solve the arising
linear systems.

It was shown in Section 4.1Section 4.1 that equations on manifolds can easily be solved using surface
finite-element methods combined with the developed preconditioner for the linear system. An
extension of the liquid-crystal PFC model (and the polar LC-PFC model) to surfaces is an
interesting problem and techniques, based on a tangentiality penalization for the director fields
and polarization fields, might lead to an efficient numerical tool for these equations.

The diffuse-domain approach is a widely used numerical technique to solve partial differential
equations in complex geometries, also in 3D domains. More physically relevant examples for the
particles restricted to an evolving domain, than set up in Section 4.3Section 4.3, should be implemented
to see the quantitative properties of the propesed approach. There, also the coupling of moving
particles to a polarization field, in the sense of a particle orientation extended by a particle
activity in this direction, could be an interesting example. The setups in [161161, 262262] are restricted
to stationary domains. An evolution of the geometry in combination with the motion of the
particles inside of the geometry give rise to interesting phenomena.

Finally, the generalied preconditioner in Section 5.1Section 5.1 could be applied to a wider range of
problems of the form of a H−1-gradient flow of a Helmholtz free-energy expansion and maybe
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also to problems not directly related to this gradient-flow approach. We have in mind equa-
tions coming from problems in image processing and biology, like a (conserved) Willmore flow
equation, which has similar difficulties with the linear equations, as the PFC equation.

We have just started to examine the accelerated multi-frontal approach in Section 6.1Section 6.1 and
also modified incomplete LU-factorizations that allow an amount of fill-in, as direct solver ap-
proaches. A combination with the preconditioner or as part of the block-jacobi preconditioner,
this could be an efficient solution method for the PFC equation.
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[215] M. Rex and H. Löwen, Dynamical density functional theory with hydrodynamic inter-
actions and colloids in unstable traps, Phys. Rev. Lett., 101 (2008), p. 148302.

[216] A. Ribalta, C. Stoecker, S. Vey, and A. Voigt, Amdis – adaptive multidimensional
simulations: Parallel concepts, in Domain Decomposition Methods in Science and Engi-
neering XVII, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner,
eds., vol. 60 of Lecture Notes in Computational Science and Engineering, Springer Berlin
Heidelberg, 2008, pp. 615–621.

[217] J. B. Ritz and J. P. Caltagirone, A numerical continuous model for the hydrodynamics
of fluid particle systems, Int. J. Numer. Meth. Fl., 30 (1999), pp. 1067–1090.

[218] M. J. Robbins, A. J. Archer, U. Thiele, and E. Knobloch, Modeling the structure
of liquids and crystals using one- and two-component modified phase-field crystal models,
Phys. Rev. E, 85 (2012), p. 061408.

[219] Michel Roche, Rosenbrock methods for differential algebraic equations, Numerische
Mathematik, 52 (1987), pp. 45–63.

[220] S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J.
Kooi, Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal par-
ticles, Adv. Mat., 16 (2004), pp. 235–237.

[221] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Fundamental-measure
free-energy density functional for hard spheres: Dimensional crossover and freezing, Phys.
Rev. E, 55 (1997), pp. 4245–4263.

[222] R. E. Rozas and J. Horbach, Capillary wave analysis of rough solid-liquid interfaces
in nickel, Eur. Phys. Lett., 93 (2011), p. 26006.

[223] S. J. Ruuth and B. Merriman, A simple embedding method for solving partial differ-
ential equations on surfaces, J. Comput. Phys., 227 (2008), pp. 2118–2129.

[224] Yousef Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM J. Sci. Comp.,
14 (1993), pp. 461–469.

[225] , Iterative Methods for Sparse Linear Systems: Second Edition, Society for Industrial
and Applied Mathematics, 2003.

[226] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.

[227] K. Sandomirski, E. Allahyarov, H. Löwen, and S. Egelhaaf, Heterogeneous crys-
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field-crystal model for colloidal solidification, Phys. Rev. E, 79 (2009), p. 051404.

[269] E. Velasco, L. Mederos, and D. E. Sullivan, Density-functional study of the
nematic-isotropic interface of hard spherocylinders, Phys. Rev. E, 66 (2002), p. 021708.

[270] A. A. Verhoeff, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerk-
erker, Magnetic field effects on tactoids of plate-like colloids, J. Chem. Phys., 134 (2011),
p. 044904.

[271] J. Vermant and M. J. Solomon, Flow-induced structure in colloidal suspensions, J.
Phys.-Condens. Mat., 17 (2005), p. R187.



Bibliography 155

[272] Simon Vey, Adaptive Finite Elements for Systems of PDEs: Software Concepts, Multi-
level Techniques and Parallelization, PhD thesis, Technische Universität Dresden, Novem-
ber 2007.

[273] S. Vey and A. Voigt, AMDiS: adaptive multidimensional simulations, Comput. Vis.
Sci., 10 (2007), pp. 57–67.

[274] R. L. C. Vink and T. Schilling, Interfacial tension of the isotropic-nematic interface
in suspensions of soft spherocylinders, Phys. Rev. E, 71 (2005), p. 051716.

[275] A. Voigt and T. Witkowski, Hybrid parallelization of an adaptive finite element code,
Kybernetika, 46 (2010), pp. 316–327.

[276] G. J. Vroege and H. N. W. Lekkerkerker, Phase transitions in lyotropic colloidal
and polymer liquid crystals, Rep. Prog. Phys., 55 (1992), pp. 1241–1309.

[277] S. P. Wargacki, B. Pate, and R. A. Vaia, Fabrication of 2D ordered films of tobacco
mosaic virus (tmv): processing morphology correlations for convective assembly, Langmuir,
24 (2008), pp. 5439–5444.

[278] Andrew J. Wathen, Realistic eigenvalue bounds for the galerkin mass matrix, IMA J.
Num. Ana., 7 (1987), pp. 449–457.

[279] S. M. Wise, C. Wang, and J. S. Lowengrub, An Energy-Stable and Convergent
Finite-Difference Scheme for the Phase Field Crystal Equation, SIAM J. Numer. Anal.,
47 (2009), pp. 2269–2288.

[280] T. Witkowski, S. Ling, S. Praetorius, and A. Voigt, Software concepts and nu-
merical algorithms for a scalable adaptive parallel finite element method, Adv. Comput.
Math., (2015), pp. 1–33.
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