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Spin Josephson effect with a single superconductor
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A thin ferromagnetic layer on a bulk equal-spin-pairing triplet superconductor is shown to mediate a Josephson
coupling between the spin ↑ and ↓ condensates of the superconductor. By deriving analytic expressions for
the bound states at the triplet superconductor-ferromagnet interface, we show that this spin Josephson effect
establishes an effective anisotropy axis in the ferromagnetic layer. The associated Josephson spin current is
predicted to cause a measurable precession of the magnetization about the vector order parameter of the triplet
superconductor.
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Introduction. The complex relationship between supercon-
ductivity and magnetism has motivated an enormous effort
to understand the properties of heterostructure interfaces
between ferromagnets (FMs) and spin-singlet superconduc-
tors (SSCs).1 A remarkable feature of such devices is the
existence of proximity-induced spin-triplet superconducting
correlations due to the exchange splitting in the FM, which
is responsible for the anomalous dynamics of the barrier
magnetization in an SSC-FM-SSC Josephson junction.2 Due
to the intimate connection between ferromagnetism and triplet
superconductivity, it is natural to consider what results if
the SSC was replaced by a triplet superconductor (TSC).
This question is of fundamental interest, as the intrinsic spin
structure of the Cooper pairs in a TSC allows us to anticipate an
unconventional and unique interplay with magnetism, which
may be unambiguous signatures of the triplet pairing state
in proposed TSCs, such as LiFeAs.3 For example, bulk spin
supercurrents are known to be possible in TSCs,4–7 and some
proposals for their realization require FM elements. The
response of the FM component of the device to the spin
supercurrent, however, has yet to be investigated. The recent
fabrication of superconducting thin films of the suspected
TSC Sr2RuO4 is an important step toward the creation of
TSC-FM heterostructures,8,9 and so a deeper understanding
of the physics of TSC-FM interfaces is timely.

In this Rapid Communication, we show that a thin FM layer
on a bulk equal-spin-pairing TSC produces a spin Josephson
effect by coupling the spin ↑ and ↓ Cooper pair condensates.
The physical mechanism is the spin-dependent phase shift
acquired by a Cooper pair undergoing spin-flip reflection at the
FM interface, which acts analogously to the phase difference
in a Josephson junction. Making only the assumption of
spatially constant order parameters, we solve the Bogoliubov-
de Gennes (BdG) equations for the bound states at the TSC-FM
interface. Using this, we calculate the free energy of the
interface, revealing that the spin Josephson effect creates an
effective hard or soft axis within the FM layer, depending
upon the orbital structure of the TSC gap. Finally, we obtain a
general expression for the spin current, thereby showing that
it exerts a measurable torque on the FM moment. We propose
this effect as a test for triplet pairing.

Model system. We consider a FM layer of width L on a
bulk TSC, separated by an atomically thin insulating layer
(see Fig. 1). The BdG equation for the quasiparticle states

with energy E is(
Ĥ0(r) �̂(r)
�̂†(r) −Ĥ T

0 (r)

)
�(r) = E�(r), (1)

where the caret indicates a 2 × 2 matrix in spin space.
The wave function �(r) is only nonzero for z < L. The
noninteracting Hamiltonian Ĥ0(r) is

Ĥ0(r) =
[(

−h̄2∇2

2m
− μ

)
+ Uδ(z)

]
1̂ − μB σ̂ · Hex�(z).

(2)

Here, μB is the Bohr magneton, and we make the simplifying
but nonessential assumptions that the radius of the Fermi
surface kF and the effective mass m in the normal state of
the TSC and the FM are the same. The insulating layer is
modeled as a δ function of strength U . The last term in
Eq. (2) is the energy due to the exchange field Hex in the FM.
For an incompletely polarized FM, the magnetization m =
|m|[cos(α)ex + sin(α) cos(η)ey + sin(α) sin(η)ez] is related to
Hex by Luttinger’s theorem. We assume a two-dimensional
system, so that the majority-spin (parallel to Hex, s = +) and
minority-spin (antiparallel to Hex, s = −) Fermi surfaces have
radius kF,s = √

(1 + sλ)kF , where λ = μB |Hex|/μ < 1. This
gives |m| = μ2

Bm|Hex|/πh̄2. For a half-metallic FM, there
is a single Fermi surface of radius

√
2kF , and the exchange

splitting is fixed by the details of the system.
The gap matrix is �̂(r) = �(−z)i[σ̂ · d]σ̂ y , where d = �̃d̂

is the vector order parameter, assumed constant throughout
the TSC. �̃ is an operator, which for Cooper pairs in a
relative p-wave orbital state has the real space form �̃ =
−i�(T )n · ∇/kF . The gap magnitude �(T ) is assumed to
have weak-coupling temperature dependence. The unit vector
n defines the orbital state: n = ez for pz wave; n = ey for py

wave; and n = ez + iey for (pz + ipy) wave. The last choice
is of greatest relevance to Sr2RuO4 and LiFeAs,3,8 while the
others have been proposed for (TMTSF)2X (TMTSF stands
for tetramethyltetraselenafulvalene, X = PF6, ClO4).10 In
the following, it is convenient to express the gap in terms of the
Fourier transform of �̃, which is written �k = �(T )n · k/kF .
We fix d̂ = ex which defines a TSC where the Cooper pairs
have z component of spin Sz = ±h̄, but the condensed part of
the system is unpolarized. Below we show that only the angle
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FIG. 1. (Color online) Schematic diagram of the device studied
here. The three different choices for the TSC orbital are shown: for
the pz and py cases, the white and black lobes indicate opposite signs;
the arrow in the pz + ipy shows the direction of increasing phase.

between d̂ and m is relevant for the spin Josephson effect, and
so other orientations of d̂ do not result in new physics.

Bound states. We seek solutions of Eq. (1) for states
bound to the FM layer. The wave function of such a
state has the general form �(k‖; r) = �TSC(k‖; r)�(−z) +
�FM(k‖; r)�(z) and satisfies limz→−∞ �(k‖; r) = 0 and
�(k‖; r)|z=L = 0. The momentum component parallel to the
interface, k‖, is a good quantum number due to translational
invariance. Solving the Andreev equations in the TSC,11,12 we
make the ansatz

�TSC(k‖; r) =
∑

σ=↑,↓
[a1,σ �σ (k1; r) + a2,σ �σ (k2; r)], (3)

where the spinors are given by

�↑(k; r) = (1, 0, γ (k), 0)T eik·reκkz, (4)

�↓(k; r) = (0, 1, 0, − γ (k))T eik·reκkz, (5)

with γ (k) = −[E + isgn(kz)
√

|�k|2 − E2]/�k and κk =
(m/h̄2|kz|)

√
|�k|2 − E2. The wave vectors appearing in

Eq. (3) are defined by k1 = (k‖,kz), k2 = (k‖, − kz). Note that
|�k1 | = |�k2 | ≡ |�k‖ | for the orbital symmetries considered
here.

Depending upon the value of k‖, we have either propagating
or evanescent solutions in the FM layer. In the case when there
are propagating solutions in both spin channels, we have

�FM(k‖; r) =
∑
s=±

{be,s sin(ke,s[L − z])eik‖·r
e,s

+bh,s sin(kh,s[L − z])eik‖·r
h,s}, (6)

where the electron and hole spinors are defined by


e,s = (ws, xs, 0, 0)T , 
h,s = (0, 0, w∗
s , xs)

T , (7)

with ws = s(cos α − i sin α cos η)/
√

1 − s sin α sin η, xs =√
1 − s sin α sin η, and the wave vector ke(h),s for electrons

(holes) is ke(h),s = [k2
F (1 + sλ) − |k‖|2 + (−)2mE/h̄2]1/2. If

the radicand is negative, only evanescent solutions are possi-

ble; in this case, we replace ke(h),s with κe(h),s , where κe(h),s is
the inverse decay length.

The coefficients in Eqs. (3) and (6) are chosen so that
at the TSC-FM interface, the wave function is continuous,
i.e, �(k‖; r)|z=0− = �(k‖; r)|z=0+ , and its derivative obeys
∂z�(k‖; r)|z=0+ − ∂z�(k‖; r)|z=0− = 2Z�(k‖; r)|z=0+ , where
Z = mU/h̄2. The values of E for which the determinant of the
resulting system of equations vanishes define the bound-state
energies. Explicit expressions for the bound-state energies can
be found when the E dependence of the wave vectors is
neglected, i.e., ke,s ≈ kh,s ≈ ks . This approximation is valid
for a thin FM layer, such that (ke,s − kh,s)L ≈ 2EL/h̄vF,s �
1.12,13 For a weakly to moderately polarized FM layer, we
have Fermi velocities vF,+ ≈ vF,− ∼ 106 ms−1, and so for
E � max{|�k|} ∼ 0.1 meV (Tc ∼ 1 K), we require thin layers
less than about 100 unit cells thick. In this limit, we obtain the
nondegenerate bound states:

E±,k‖ = ±|�k‖ |
√

Dk‖ | cos α|, pz wave (8a)

E±,k‖ = ±|�k‖ |
√

1 − Dk‖ cos2 α, py wave (8b)

E±,k‖ = −|�k‖ |
[√

1 − Dk‖ cos2 α
ky

kF

±
√

Dk‖ cos α
kz

kF

]
.

(pz + ipy) wave (8c)

Here, we have

Dk‖ = 4

[∑
s=±

sk̃s cos(ksL) sin(k−sL)

]2

×
∏
s=±

[
1 + 4Z̃2 + k̃2

s + 4̃ksZ̃ sin(2ksL)

+ (̃
k2
s − 4Z̃2 − 1

)
cos(2ksL)

]−1
, (9)

where Ã = A/
√

k2
F − |k‖|2 (A = ks,Z).

The bound-state energies [Eq. (8)] are a central result of
our Rapid Communication. They originate due to multiple
Andreev reflections within the thin FM layer, which Josephson
couple the Sz = ±h̄ condensates in the TSC. The same
physical mechanism is responsible for the formation of
Andreev bound states (ABSs) at the tunneling barrier in a
Josephson junction.12,14,15 Remarkably, the states [Eq. (8)] are
identical to the (spin degenerate) ABSs in a short Josephson
junction of transparency Dk‖ between pz-wave TSCs with
phase difference �φ = 2α [Eq. (8a)], between py-wave TSCs
with �φ = π + 2α [Eq. (8b)], and between a (pz + ipy)-wave
and (pz − ipy)-wave TSC with �φ = 2α [Eq. (8c)]. Since the
form of the bound-state energies is fixed by the bulk pairing
symmetry, our results should be robust to a self-consistent
calculation of the gap.12

The spin Josephson coupling can also be understood at a
more fundamental level: in the BdG Hamiltonian, the Sz =
±h̄ condensates in the TSC are independent of one another.
Tunneling of a Cooper pair between the two condensates is
made possible by the FM layer, where the coupling to the
FM moment allows an incident Cooper pair with spin σh̄

to be reflected with spin −σh̄. As a result of this process,
the Cooper pair acquires a phase shift �θk‖ + π − 2σα. The
last terms are due to the spin flip itself and are primarily
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FIG. 2. (Color online) (a) Free energy difference �F (α) and
(b) the z component of the spin current jS,z per interface-unit-cell
area as a function of α for the three choices of orbital wave function.
We take λ = 0.05, T = 0.4Tc, η = 0, L = 10az, and Z = 1. �0 is
the T = 0 gap magnitude.

responsible for driving the spin current. �θk‖ = arg{�k2} −
arg{�k1} is the phase shift due to the orbital structure of the
TSC: for pz-wave orbitals, we have �θk‖ = π for all k‖; in
the py-wave case, we have �θk‖ = 0; and the superposition of
these two orbitals in the (pz + ipy)-wave TSC gives �θk‖ =
π − 2 arccos(

√
1 − |k‖|2/k2

F ). �θk‖ accounts for the π phase
difference between the bound states in the pz and py cases, and
the apparent sign reversal of the py component in the pz + ipy

bound states.
We note that unlike the standard Josephson effect, where

the phase difference between the two superconductors drives
the supercurrent, the spin Josephson effect is due to phase
shifts picked up during the tunneling process itself. The phase
difference between the spin-up and spin-down condensates is
fixed by the orientation of d̂, which is unaffected by the FM
layer.

Free energy. The assumption of spatially constant order
parameters allows us to write the free energy due to the spin
Josephson coupling in the TSC-FM device in terms of the
bound states:15

F = −1

2
kBT

∑
n=±

∑
k‖

ln[2 cosh(βEn,k‖/2)] + F0, (10)

where F0 is independent of α and includes the interaction
energy in both the TSC and the FM, as well as the con-
tribution from continuum states. We plot the free energy
difference �F (α) = F (α) − F (α = 0) per interface-unit-cell
area axay as a function of α in Fig. 2(a). As can be seen, F

takes a minimum as a function of the angle α: regarding
d̂ as a fixed property of the bulk TSC, the spin Josephson
coupling, therefore, establishes a preferred orientation for the
magnetization of the FM layer. There is a direct analogy to
a short Josephson junction, where the free energy due to
the Josephson coupling takes a minimum as a function of
�φ.15

In the pz-wave (py-wave) case, the formally equivalent
Josephson junction with �φ = 2α (�φ = π − 2α) has time-
reversal symmetry, and so the Josephson free energy is
minimized at �φ = 0. This implies that in the TSC-FM device,
the free energy always has a minimum at α = 0 (α = π/2).
The broken time-reversal symmetry in the (pz + ipy)-wave
case, however, means that the stable value of α is determined
by the details of Dk‖ . Specifically, the pz and py components
of the gap favor minima at different values of α: if Dk‖ is
peaked near |k‖| = kF (0), the py component (pz component)

dominates and the configuration with α = π/2 (0) is stable;
for more complicated Dk‖ , the competition between the gap
components may stabilize the system at α 
= 0, π/2. For weak
magnetization strengths, the free energy minimum is usually
located at α = 0.

From Fig. 2(a), we see that to excellent approximation F ∝
cos 2α. In writing an effective free energy for the FM layer,
we can, therefore, account for the spin Josephson effect by
including a term FJ = fs(d̂ · m)2, i.e., for fs < 0 (fs > 0), d̂
defines an effective easy (hard) axis in the FM layer. Since
the sign of fs is determined by the orbital state of the TSC,
this reveals an unconventional spin-orbit coupling between the
TSC and the FM.

Spin current and magnetization dynamics. The zero-bias
charge current IJ in a Josephson junction is given by IJ =
(2e/h̄)∂F/∂�φ. We now show that in our device, there is a
spontaneous spin current which can be similarly expressed as
a derivative of F with respect to α.

Our starting point is the continuity equation for the spin

Js = h̄

gμB

d

dt
M = M × ∂F

∂M
, (11)

where g is the gyromagnetic ratio, and M is the total moment
of the FM layer. The vector notation for the spin current Js

refers only to the polarization; the direction of the spin current
is normal to the interface. We omit gradient terms in Eq. (11)
as the FM layer is considered to be thin compared to the
coherence length of the Cooper pairs. The free energy in our
problem has the form F = F (|M|,d̂ · M̂), allowing us to write

Js = M ×
(

∂|M|
∂M

∂F

∂|M| + ∂d̂ · M̂
∂M

∂F

∂d̂ · M̂

)

= M ×
(

M̂
∂F

∂|M| + 1

|M| [d̂ − (d̂ · M̂)M̂]
∂F

∂ cos α

)
= p̂

∂F

∂α
, (12)

where p̂ = d̂ × M/|M| sin α is a unit vector which points in
the same direction for all M lying in a fixed plane containing
d̂. Inserting Eq. (10) into Eq. (12), we obtain

Js = −p̂
1

4

∑
n=±

∑
k‖

∂En,k‖

∂α
tanh(βEn,k‖/2). (13)

This closely resembles the Beenakker-van Houten formula
for the charge current in a short Josephson junction.15 It
reveals that the spin current in our device is due entirely to
resonant tunneling between the two spin condensates through
the bound states [Eq. (8)]. Equation (13) gives identical results
to the Furusaki-Tsukada technique,4,7,16 which expresses the
spin current in terms of the Andreev reflection coefficients. We
show the spin current as a function of α in Fig. 2(b).

If the magnetization is prepared with 0 < α < π/2, Eq. (11)
predicts that the spin current will exert a torque on M,
causing it to precess about d̂. Writing M = ALμBpnm̂ and
Js = Ajs , where A is the area of the TSC-FM interface, and
p = (n+ − n−)/n is the polarization of the FM, we find the
precession frequency to be �J = 2g cos(α)max{|js |}/h̄npL.
To estimate �J , we assume a weakly polarized FM, λ = 0.05,
with n = 1 electron per unit volume v = axayaz, max{|js |} =
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0.025�0/(axay) [see Fig. 2(b)], L = 10az, and Tc = 1 K.
We, hence, find �J = 15 cos(α) GHz, which is measurable
by ferromagnetic resonance (FMR) experiments. As the spin
Josephson effect cannot occur for a SSC, the observation of
this precession would be very strong evidence of a triplet
pairing state, although the precession effects due to multiple
FM domains would have to be ruled out.17 Similarly, it is
also necessary to examine the effect of chiral domains of the
gap in the candidate material Sr2RuO4.18 Gilbert damping and
anisotropy effects in the FM layer must also be included in a
complete description of the magnetization dynamics, but do
not change the derivation of Eq. (13).

Conclusions. In this Rapid Communication, we have
demonstrated that the spin structure of the Cooper pairs in
a TSC permits the occurrence of a spin Josephson effect

without the need for a second superconductor. We have
proposed that a thin FM layer on a bulk TSC can realize
this effect. In turn, the spin Josephson coupling establishes
an effective easy or hard axis in the FM layer, depending
upon the orbital symmetry of the TSC gap. Furthermore, the
Josephson spin current causes the magnetization to precess
about the d̂ vector with a frequency that is accessible to
FMR, realizing a possible experimental signature of the triplet
state.
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