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Electron-hole pairing of Fermi-arc surface states in a Weyl semimetal bilayer
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The topological nature of Weyl semimetals (WSMs) is corroborated by the presence of chiral surface states,
which connect the projections of the bulk Weyl points by Fermi arcs (FAs). We study a bilayer structure realized
by introducing a thin insulating spacer into a bulk WSM. Employing a self-consistent mean-field description
of the interlayer Coulomb interaction, we propose that this system can develop an interlayer electron-hole pair
condensate. The formation of this excitonic condensate leads to partial gapping of the FA dispersion. We obtain
the dependence of the energy gap and the critical temperature on the model parameters, finding, in particular, a
linear scaling of these quantities with the separation between the Weyl points in momentum space. A detrimental
role is played by the curvature of the FAs, although the pairing persists for moderately small curvature. A
signature of the condensate is the modification of the quantum oscillations involving the surface FAs.
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I. INTRODUCTION

By now, a good understanding of band-topological gapped
phases has been reached. These include the two-dimensional
(2D) integer quantum Hall state and the 2D and three-
dimensional (3D) topological insulating (TI) phases [1-3].
More recently, it has been realized that also metallic sys-
tems can have band-topological properties. Three-dimensional
Weyl semimetals (WSMs) represent an important example
[4-9]. They are characterized by nondegenerate, linearly
dispersing (Weyl) cones in their low-energy dispersion, where
the Weyl cones come in pairs of opposite chirality x = %1
separated in momentum space. It can easily be shown that the
Weyl nodes act as monopoles of Berry curvature, carrying a
Berry flux 27 «. The stability of the WSM phase is guaranteed
by the conservation of the total Berry flux. As a consequence,
a Weyl node can be gapped out only by merging it with a Weyl
node of opposite chirality.

Murakami [4] has shown that the WSM appears as an
intermediate phase between the normal insulating (NI) and the
TI phases in 3D materials with broken inversion symmetry,
while the topological transition is sharp in the presence of
inversion symmetry. More generally, a WSM can always
be realized starting from a 3D Dirac system [10,11] by
breaking either inversion or time-reversal symmetry. Possible
realizations have been proposed in a variety of systems
such as TI/NI heterostructures [6], pyrochlore iridates [5],
TIBiSe;[12], HgCr,Ses [13], TaAs [14,15], noncentrosym-
metric monophosphides [15], and Co-based Heusler com-
pounds [16]. Recently, WSM phases with broken inversion
symmetry have been identified in TaAs [17,18], NbP [19], and
MoTe; [20].

The bulk physics of WSMs reveals interesting transport
phenomena such as negative magnetoresistance, the chiral
magnetic effect, and the quantum anomalous Hall effect, which
are related to the chiral anomaly [21-23]. The surface of
a WSM also exhibits interesting physics in that it supports
surface states [5,14,18], which are closely related to the
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topological nature of this phase. When the chemical potential
is tuned to the Weyl nodes, the bulk Fermi surface is solely
given by pairs of Weyl points, which are connected by Fermi
arcs (FAs) of chiral surface states.

The study of interacting states with nontrivial topology [3]
is currently one of the most active research areas in condensed-
matter physics. One possibility in this context is that interac-
tions induce symmetry-breaking phase transitions. Symmetry
breaking can, in principle, either affect the bulk topological
material and, due to bulk-boundary correspondence, then also
its surface or happen only at the surface. In either case,
it may lead to gapping of symmetry-protected topological
surface states. For example, excitonic phases emerging in a
bulk WSM phase have been studied in Refs. [24,25]. More
complex situations such as interactions between two adjacent
surfaces are also of interest. A number of groups [26—30] have
considered the particle-hole pairing between surface states of
3D TIs, which realize an electron-hole bilayer.

In fact, the possibility of a macroscopically coherent
electron-hole state, i.e., an exciton condensate [31-33], due
to the interaction between electrons and holes was studied
much earlier in bilayer semiconductors structures. The original
idea [34] was to employ such structures to overcome detri-
mental interband processes [35] and radiative recombination,
which affect the stability of an exciton condensate in bulk
crystals. In the last 20 years, exciton condensation has been
studied in bilayer quantum-well structures, particularly in the
quantum Hall regime [36-39]. Recent research on exciton
condensates addresses bilayer Dirac systems such as two-layer
graphene [40-43] and double quantum wells embedded in
semiconductor heterostructures with strong spin-orbit interac-
tion [44-46].

It is then interesting to see whether exciton condensation is
possible for the chiral FA states at the surface of a WSM. In
this work, we answer this question in the affirmative. We study
the instability towards electron-hole pairing of FA states for
the case where two parallel surfaces are formed by inserting
an insulating spacer of thickness ¢ into a WSM crystal. In
Sec. IT A, we present a minimal WSM model with straight
FAs and solve it for a slab geometry, obtaining the energy-
dispersion curves and the wave functions of its FA states. In
Sec. II B, a mean-field (MF) treatment of the electron-hole
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pairing in bilayer systems is introduced, which we apply to
the case of a WSM bilayer in Sec. II C. In Sec. III, we present
the numerical solutions of the gap equation derived in the MF
approximation and analyze the dependence of the excitonic
gap and the critical temperature on the model parameters. We
then discuss the role of chemical doping and an interlayer
potential bias. As a step beyond the minimal WSM model
of Sec. IT A, we also address curved FAs. We show that the
phenomenon persists for moderate curvature of the FAs.

II. MODEL AND THEORY

A. Minimal model for Weyl semimetals and Fermi arcs

We construct aminimal WSM model starting from the Dirac
equation for a free particle in the Weyl representation [47],
which can be written as

Hoy = Ev, (D
where
Hy=—-vik- 0 ®1,+ Moy ® 1. )

Here, o; (t;) are the Pauli matrices and oy (7o) is the
unit matrix referring to the Weyl cone (particle-hole sector).
We set i = 1. Additionally, we introduce the time-reversal
symmetry-breaking term H' = vy Ky 0, ® 10, corresponding
to the coupling with a Zeeman field along X, which lifts the
degeneracy between right-handed (R) and left-handed (L)
states. For M = 0, the Zeeman term splits the Dirac node,
which is originally located at k = 0, into two Weyl nodes at
ky = £K for L and R states, respectively, leading to a WSM
phase. The WSM phase persists for finite values of M due to
the topological protection of Weyl nodes as long as the Zeeman
term is dominant [4].

Now, we solve the eigenvalue problem of H = Hy + H’
for a planar interface at z = 0, separating a vacuum region
with Kg = 0 and M — oo from a WSM domain with Ky # 0
and, for the sake of simplicity, M = 0. In the WSM phase, H
decouples into two Weyl equations for L and R fermions,

Hp p = —vr [(kx F Ko)o, + kyo, + k. 0.], 3)

where the minus sign (plus sign) stands for the L (R) sector.
Here, k, and k, are still good quantum numbers, while values
of k, compatible with a fixed energy E are obtained by the
dispersion relation (secular equation) of Eq. (3). We search for
the FA states in the energy range E? < v [(k, + Ko)* + ki],
where k., assumes imaginary values. Matching the evanescent
modes compatible with the energy E at the interface between
the WSM and the vacuum, we obtain, in the wave-vector range
k. € (—Ky,Kyp), FA state solutions with the unidirectional
dispersion relation

e = dvpky, (4)
where =+ identifies the possible surface normal +2 of the WSM

domain and k = (k,,k,) is the wave vector parallel to the
surface. The corresponding FA state wave functions are given
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B. Mean-field treatment of bilayer electron-hole pairing

In this section, we briefly summarize the MF theory of
electron-hole pairing in a bilayer structure [34,48] with layers
A and B and one energy band per layer. Recall that the bands of
the WSM are nondegenerate with spin locked to momentum.
We express the interlayer Coulomb interaction as

- Q 5t 5
He=-) Y V&PloPo (6)
Q Kk

where we have introduced the pair operator [A’k,Q = l;]t +QlK

with @ and b being electron annihilation operators for the A
and B layers, respectively. Within a pairing approximation,
we only keep track of the interaction terms containing pair
operators with a specific modulation vector Q, most likely
to realize a finite anomalous average or electron-hole pair
amplitude (ﬁk’Q). A possible alternative decoupling involves
averages of the form (&l&HQ) and (Eltl;le)- Perfect nesting
is obviously found for Q = 0. The resulting bilinear terms
do not open gaps but simply shift the surface bands in
energy. This is the interlayer contribution to the Hartree shift,
which we may assume to be included in the bare dispersion.
Our approximation yields a BCS-type two-band model for
the interlayer particle-hole condensation described by the
Hamiltonian

A5 =" (Ef afa + EE blb) = > VfﬁﬁngﬁkQ,
k k.k

(N

where Ef and E? are the single-particle energies for the two
layers, measured with respect to the chemical potential .
The intralayer electron-electron interaction is neglected; we
effectively assume that is does not lead to exciton formation
and that the corresponding Hartree energy is already included
in E{ and E}.

The MF treatment consists of writing Py o = Fi.q +
(f’k,Q — Fx,@) in Eq. (7) in terms of the pair amplitude Fy o =
(ﬁk,Q) and of keeping only the first-order terms in the
fluctuations. Apart from a constant-energy term, the MF
Hamiltonian becomes

/yMF A afa Bt p
HY" =D (B &yl + E g by gbria)
k

+ D (BioPua + AkoPlo) ®)
k

where the gap parameter must be self-consistently determined
through the gap equation

Avg=-) VSRFRQ. ©)
k
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Note that this corresponds to the condensation of excitons of
finite momentum Q. Due to the presence of the condensate,
the momentum of the single-particle states is conserved only
up to integer multiples of Q. This situation is analogous to
the spontaneous breaking of translational invariance with the
emergence of a density wave and leads to the folding of single-
particle energy dispersion into bands. For sufficiently large
Q, the mixing with higher energy bands can be neglected
when addressing low-energy properties. On the other hand, for
Q = 0, there is no folding. We will therefore restrict ourselves
to a two-band model.

Equation (8) shows that the system develops an effective
interlaye.r .hopping term proportional to ﬁk,Q = El +Qdk (and
its Hermitian conjugate). At the MF level, the electron number
is thus not conserved in each layer separately. This is possible
since the exciton condensate acts as a charge reservoir in
analogy to the Cooper-pair condensate in a superconductor.
We will return to this point in Sec. III. The effective hopping
couples the FA states at the two surfaces and can gap them out.

The MF theory is equivalent to BCS theory for spinful
electrons in a magnetic field, as can be seen by performing the
mapping x4 = dak, Ck, = bi +q- The single-particle eigenen-
ergies of HY' are

EA+EB EA_EB 2 1/2
= BB [ Ehe) 1, ",

2 2
(10)
and the gap equation becomes
Ax ES) — f(Eg
Ak,QZ—ZVQ k,Q[f( k f( k)] (11)

kK A B\ '
K \/(Ek - Ek’+Q) +41Ak o

where f(FE) is the Fermi distribution function. We note that
the order parameter of the bilayer system can be described in
terms of the layer pseudospin

M(r) = Y o4p (PiWp(r)), (12)
a.p

where o is the vector of Pauli matrices associated with the
layer (A, B) degree of freedom and W, and W, are the
field operators in the A and B layers, respectively. For the
pair amplitude Fy g # 0, the pseudospin M lies in the xy
plane and the phase of Fy ¢ # 0 denotes the orientation of M
within this plane, as found for quantum Hall bilayers [36,49].
The particular case of a pair amplitude with finite Q # 0
corresponds to the formation of electron-hole pairs having
finite total momentum. Similar scenarios have been predicted
to occur in electron-hole bilayers which, unlike our case, have
alarge density imbalance between electrons and holes [50,51].
Excitonic states with finite momentum have been invoked
to explain the bulk magnetic state of chromium [52] and,
more recently, iron pnictides [53-56]. This scenario is also
reminiscent of the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
superconducting phase [57,58], where translational invariance
is broken by the spatial modulation of the order parameter.
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FIG. 1. Illustration of a WSM bilayer, where two macroscopic
slabs featuring an identical WSM phase are stacked in the z direction,
separated by an insulating spacer of thickness 7.

C. Electron-hole pairing in Fermi-arc surface states

We now apply the MF treatment to the WSM bilayer
sketched in Fig. 1, where the WSM phases are identical and
described by the minimal model in Sec. I A. Opposite surfaces
of the two WSM slabs with normal directions i = £2 are
facing each other at a distance ¢, separated by an insulating
spacer. We take into account only surface states belonging
to the FAs of the material, neglecting the bulk bands, which
have a vanishing density of states at charge neutrality, where
the Fermi surface corresponds to two isolated Weyl points.
The FAs terminate in the projections of the Weyl points
into the 2D Brillouin zone of the system. The summations
over the wave vector appearing in Eqgs. (6) and (7) and
in all other equations describing this system are therefore
limited to states with ky,ky.ky + O,k + O, € (—Ky,Ko).
Here, we consider the case that there is no electrostatic
potential difference and no difference in chemical potential
between the two interfaces. The effects of deviating from
these assumptions will be discussed below. Hence, we have
Ef = el(:r) —wand EE = 51(:) — p. The surface states have
the combined symmetry of electron-hole inversion (charge
conjugation) times mirror reflection at the center plan of
the insulating spacer. In addition, the system has mirror
symmetries in the xz and yz planes. The FAs of the
WSM layers A and B are perfectly nested with the nesting
vector Q = 0. We therefore expect a uniform pairing state
with Q = 0.

The FA states are not perfectly localized at the surface
but rather decay exponentially into the bulk, as described by
Eq. (5). Therefore, matrix elements of the Coulomb potential
between FA states should take into account their actual shape.
We neglect screening by free carriers for simplicity. Screening
in the undoped WSM leads to a logarithmic correction to the di-
electric function at small momenta [59,60]. Since the FA states
do not penetrate into the spacer and decay exponentially in the
WSM, the Coulomb matrix elements sample only a limited
range of distances. Replacing the logarithmic correction by
an enhanced dielectric constant should then give qualitatively
correct results. Details of the calculation are relegated to
Appendix A, where we derive the analytical form of the
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FIG. 2. Coulomb matrix element V&:,O for k and K’ on the x
axis, keeping k. fixed and varying k, € (—Kj, Ky). The interaction
becomes asymmetric and decays faster as a function of |k, — k.| for
k. approaching K, due to the increasing spatial extent of the FA
states, which merge with the bulk states at +K,.

Coulomb matrix element

T eer K —K| Kg

k' — K| + 2K,
X
(k" — k| 4+ 2K0)? — (ky + k}.)?

2
] N )

which turns out to be independent of Q as long as O, = 0. In
Fig. 2, we show cuts of the matrix element of the interlayer
Coulomb interaction Vka:,O for fixed k. The matrix element
depends strongly on the x components of the momenta
and approaches zero for k.,k, — +Kj, where the surface
states become extended and merge with the bulk states. As
a consequence, the interlayer interaction is most effective
between states in the central part of the FA.

Before discussing the numerical solution of the gap equa-
tion (11), we analyze its structure assuming a momentum-
independent gap A in order to get insight into its dependence
on the model parameters. We can then divide the equation
by A. The gap equation can be cast in the scaling form (see
Appendix B for details)

2€0€, vF _ A ’kBT ;@’L ’ (14)
e? vrKog vrKog Ko Kot

where [ is a scaling function, €, is the effective dielectric
constant, and k¢ is an ultraviolet cutoff for the k, integration,
which can be thought to physically account for a band edge
or for the breakdown of the linear dispersion in Eq. (4). Note
that for the present model this cutoff is not required to cure
any divergence, unlike for the case of a 2D isotropic linear
dispersion such as in graphene. In the limit of short FAs,

KO < kcu[v K()t < 1» (15)

the integral / depends only on its first two arguments, and
we deduce that the solution A(T') of the gap equation is then
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FIG. 3. Gap parameter (a) Ax—,x and (b) Agt, g calculated for
various values of Ky and 7 = 0. Ag_ « scales roughly linearly with
Ko. A=,y features a peak at k, = 0 with a width on the order of K
and apprdaches zero for lky| > K.

given by

kT

A(T) = UFK()D s (16)
vrKo

with a Ky-independent function D. This condition implies that

both the zero-temperature gap A, and the critical temperature

T, are proportional to K.

III. RESULTS AND DISCUSSION

In this section, the gap equation (11) is solved numerically,
with its full momentum dependence, by self-consistent itera-
tion of the MF parameters Ay, which are calculated on a grid
of N, x N, points in the reciprocal space k, € (—Ko,Kjp),
ky € [—kcu,kcut] and are linearly interpolated in between. We
set =10 nm and ko = 0.5 nm~!' while keeping Ky <
0.05 nm~! so that the conditions Ky < key and Kof < 1
are met. The typical dependence of the gap parameter on the
wave vector is shown in Fig. 3. Consistent with the form of
the Coulomb matrix element, the gap parameter Ag— z as a
function of k, [Fig. 3(a)] is characterized by a maximum for
k, = 0, monotonously decreases with |k,|, and vanishes for
ky — £Ky. As a function of k,, the gap parameter shows a
peak with a width on the order of K¢ around k, = 0 and decays
to zero for larger |ky|, i.e., where the surface-state energy is
large compared to vy Ky [Fig. 3(b)]. As shown in Fig. 4, the
finite value of the gap parameter renormalizes the dispersion
of the surface states with the opening of an excitonic energy
gap for |k,| < K.

Due to the simple structure of Ak evidenced in Fig. 3, it is
sufficient to analyze the dependence on system parameters
of its maximum value at k = 0, which we denote by A.
If the conditions (15) hold and we take into account the
approximately linear scaling of A with K, we are left with
only the temperature 7' and the effective dielectric constant
€, as model parameters. In Fig. 5, we study the dependence
on ¢, for Ky = 0.001, 0.005, and 0.0lnm~! at 7 = 0. As
expected, the pairing is favored by small values of the dielectric
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FIG. 4. Energy dispersion of surface states of a WSM bilayer
in the regime of nonzero particle-hole coherence. Results have been
obtained for 7 = O in the limit Ky < k. and Kot < 1, withe, = 10,
Ko =0.01nm™!, and vy = 100 meV nm.

constant. The proportionality A o« K| is demonstrated by the
collapse of curves calculated for different values of K, over
the whole range €, € [1,20] and is further analyzed in the
inset, where A is directly plotted as a function of K at fixed
€, vr = 1000 meV nm.

In Fig. 6, we analyze the temperature dependence of the
gap parameter A. Curves corresponding to €, = 5, 10, and
15 are characterized by a qualitatively similar dependence
on T. However, they shrink towards zero for increasing e, .
This is indeed compatible with Eq. (16), which imposes the
proportionality Ay o< T, « Ky. The scaling relation in Eq. (16)
is further proved by the collapse of three curves corresponding
to different values of K at fixed €, = 10.

In Fig. 7, we exhibit the effect of nonzero t Ky and K¢/ ket
values, which in different ways cause a reduction of the
effective Coulomb interaction between the layers. The first
parameter leads to an exponential decay of the interaction on
wave-vector scales of 1/¢. Typical interlayer distances could
be of the order of 10-100nm, so that this parameter could
come to play a significant role for WSMs with large enough
K, values. The second parameter, K¢/ kcy, depends on key,
which represents the limit of the allowed values of |k, | and |k/y |
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FIG. 5. Maximum gap parameter A at 7 = 0 as a function of
€,Vr, calculated for various values of K. In the inset, A is plotted as
a function of K for fixed €,v; = 1000 meV nm.
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FIG. 6. Maximum gap parameter A as a function of temperature,
calculated for various values of K, and ¢,.

in the gap equation (11). Figure 7 shows that this parameter is
less effective in reducing the interaction.

Above, we have presented the results obtained at chemical
potential © = 0. Now, we consider the case of u # 0, where
the WSM contains small Fermi pockets in the bulk. We
assume that |u| is sufficiently small to justify neglecting the
finite density of states of bulk states in the description of
electron-hole pairing. As shown in Fig. 8(a), a finite u leads
to the introduction of a nesting vector Q = u/vgy. Since the
Coulomb matrix element in Eq. (13) is independent of Q,, the
analysis remains essentially unchanged. [Minor changes are
due to the modified integration domain in the gap equation (11)
and do not play any role as long as |u|/vF < Ko,key.] The
result is a gap parameter Ay g and thus a pair amplitude
Fx,@ with a nonzero wave vector Q = u/vry, while the gap
amplitude A has the same dependence on parameters as for
n=0.

The effect of an applied potential energy bias V between
the two WSM layers (at n = 0) is described in Fig. 8(b)

L vF=100meVnm
T 1
L kcut:0.5nm
ol e e
& Fl o+ K,=00lmm" &
S L
27 [ My oog 2T
< H <
+ | ;
I — K,=00lnm” T
Pl vt 0014027 0 x K =0.005 nm
0.01 0.1 1 0 .1
K0 /kCut + Ko =0.001 nm
0.01 Ll Ll ‘ L
0.01 0.1 1 10
K t

0

FIG. 7. Maximum gap parameter A calculated at 7 =0 as a
function of Kt for three values of K. Inset: A at T = 0 as a function
of KO/kcut~
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FIG. 8. Dispersion curves of the FA states for (a) nonzero
chemical potential © and (b) nonzero interlayer potential bias V.
(c) Model of curved FAs. In all panels, dashed and solid lines refer to
surface states belonging to opposite surfaces.

and consists of a vertical displacement between the energy
dispersions of the surface states in the A and B layers. Due to
the linearity of the dispersion, this is equivalent to a shift
of the FAs in the same direction by the wave vector u,y
with u, = V/2vp. The nesting vector is thus Q = 0. As long
as |uy| < keu, the MF solution of the electron-hole pairing
problem leads to the previously discussed results for Ag g=o
with the caveat that k, has to be replaced by ky, — u,.

The WSM model introduced in Sec. II A possesses particle-
hole symmetry. Such a symmetry would be accidental in
real WSMs. For example, the allowed additional terms
H" = Bk*0y ® 1, — Doy ® 19, with |D| < |B|, introduce
quadratic corrections to the model, bending the bands at high
energies and breaking particle-hole symmetry for D # 0. The
numerical solution for the surface states in a slab geometry
shows that the FA is curved for D # 0, while the dispersion
curve in the direction perpendicular to the FA remains
approximately linear. In order to quantify the effect of the
FA curvature in a transparent and tractable case, we consider a
FA with constant curvature, i.e., a circular arc with dispersion

e = vr [k F (R — yKo)j| — R] an

fork, € (—Ko,Ky), where R = (y? + 1)Ky /(2y) is the radius
of curvature in terms of the curvature parameter y > 0 and the
FAs on opposite surfaces are distinguished by the £ symbol.
The curved FA is shown in Fig. 8(c). Clearly, for y =0
this dispersion relation reproduces the straight FA of our
original model in Eq. (4). The curvature evidently reduces the
nesting. The optimal nesting vector is given by Q = 2y K¥,
and it is natural to consider a pair amplitude Fy g with this
modulation vector. The results obtained by solving the gap
corresponding equation are summarized in Fig. 9. We find
that electron-hole pairing suddenly disappears for a curvature
parameter exceeding a maximal value ymax on the order of 1.4
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FIG. 9. Maximum gap parameter A at 7 = 0 for a model with
curved FAs as a function of the curvature parameter y for various
values of K, tuning Q to the optimal nesting conditions. Inset:
maximal value of the curvature parameter compatible with electron-
hole coherence as a function of the Fermi velocity vp.

for vy = 100 meV nm~!, weakly increasing for decreasing K
in the range K, € [0.005 nm~',0.02nm™']. In the inset, we
show the dependence of yy,.x on the Fermi velocity vg. Lower
vr alleviate the effect of the FA curvature, increasing the
maximum value of the curvature compatible with electron-hole
coherence. The sudden transition as a function of the curvature
parameter y suggests that it is of first order. We have checked
that at the transition point, both the condensate phase and
the A = 0 free phase are stable MF solutions with the same
free energy, which shows that the transition is indeed of first
order.

An intuitive explanation for the sudden drop of the
coherence above yax can be based on the curved FAs not being
perfectly nested for k, # 0: the energy displacement of surface
states separated by Q is proportional to yvgk,, which is an
energy scale competing with A in the gap equation (11). On the
other hand, our previous analysis suggests that A oc K, where
Ko < K, describes the effective extent of the coherence on the
FA. If the energy displacement prevails at large k,, the region
with sizable gap A on the FA shrinks (smaller Ky), which
leads to a decrease of the self-consistent value of A itself.
Hence, the energy displacement will also prevail at smaller
ky, leading to a decrease of Ko and further reduction of A.
This causes a positive feedback, which wipes out coherence
on the whole FA. From this analysis for a simplified model for
curved FAs with constant curvature, we infer that particle-hole
pairing is favored in WSM bilayers between relatively straight
(¥ < ¥Ymax) portions of FAs, which are well nested with an
arbitrary nesting vector Q.

Finally, it is, of course, important to identify experimental
signatures of electron-hole pairing in FAs of a WSM bilayer
structure. Potter et al. [61] have proposed that the FAs in
WSM realize an anomalous closed magnetic orbit, where the
opposite surfaces are connected through the bulk of the WSM.
These orbits can lead to observable quantum oscillations as a
function of the inverse magnetic induction 1/B of frequency
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FIG. 10. Sketch of a magnetic orbit extending over the two WSM
layers connected by the electron-hole condensate. The orbit includes
FAs at the outermost surfaces and vertical bulk portions; see the text
and Ref. [61].

Qp-1 &~ emvp /Ky in several physical quantities, such as the
conductivity and the magnetization. These oscillations are
expected to persist down to 1/Bg,, where By &~ Ko/L and
L is the thickness of the sample [61].

How does this picture change for our bilayer system
with electron-hole condensation at the interface? In Fig. 10,
we sketch the modified orbits in the WSM bilayer. The
electron-hole condensate gaps out the FAs at the facing WSM
surfaces so that the electrons cannot complete their orbits
along these arcs. On the other hand, the condensate can absorb
an electron in layer A and emit an electron in layer B (or
vice versa). At the MF level, this process is described by the
effective interlayer hopping term in Eq. (8), as noted above.
This is the excitonic analog of crossed Andreev reflection,
where an electron in the opposite layer takes the place of a
hole with opposite spin. Hence, the condensate connects the
bulk portions of the anomalous magnetic orbits, leading to
closed orbits extending over the whole bilayer structure. As a
consequence, the effective thickness of the sample is 2L. In
the absence of the condensate, the anomalous orbits are closed
in each layer separately, and the thickness is L. Hence, By
is halved when the condensate is present. The disappearance
of quantum oscillations in the field range between Ky/2L
and Ky /L can therefore serve as a signature of the coherence
between the two surface FAs.

PHYSICAL REVIEW B 95, 125435 (2017)

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have studied electron-hole pairing be-
tween facing FA states of a WSM bilayer. We propose that
a coherent electron-hole condensate can be realized between
relatively straight portions of the FAs. The condensate shows
a modulation in space, with the modulation vector given by
the optimal nesting vector Q between the FAs. While WSMs
with a single FA have recently been predicted [16], most
systems feature multiple pairs of Weyl nodes. The scenario
then becomes more complex with the possible pairing of
relatively straight portions of the FAs belonging to all different
pairs of Weyl points nested by different wave vectors Qy,
Q», etc., leading to the coexistence of several nonzero pair
amplitudes Fy q,, Fkq,, etc. The condensation leads to the
gapping of the surface states. We find that the gap and the
critical temperature are proportional to the effective extension
of the straight FA intervals. The presence of the condensate
could be detected from its effect on the anomalous quantum
oscillations peculiar to Weyl semimetals [61]. Essentially, it
causes the full bilayer to behave like a single WSM layer, and
this effect could be switched on and off by tuning through the
condensation transition. In addition, the condensation could, in
principle, lead to superfluid behavior of the electron-hole pairs
(dipolar superfluid), where counterpropagating electron and
hole supercurrents could be generated by suitable electric [62]
or magnetic [63] fields.
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APPENDIX A: QUASI-2D COULOMB INTERACTION
BETWEEN FA STATES

In this appendix, we derive the Coulomb-interaction matrix
elements between FA states. For our layered model, it is useful
to Fourier transform the Coulomb potential in the directions
parallel to the interfaces but leave it in real space for the
perpendicular z direction [64],

2
< Lo (A1)

Vo) = ——
4@ 2¢0e, L% g

where q is the in-plane wave vector. The partially Fourier
transformed charge density can be obtained from the FA state
wave functions of Eq. (5),

iq- * Kz_(kx+ x)2 Kz_k,% 1z z
k(@ = f dx f dy €' W () WP (r) = [ 0 7 20 } K0 cosh [(2k,+q.)2] O(F2),  (A2)

Ko Ko

where =+ refers to the surface with normal direction £%, i.e., to the surface A and B, respectively, and © is the Heaviside step
function. Using Egs. (A1) and (A2), we can now compute the Coulomb matrix element between FA states on opposite surfaces
A and B separated by a spacer of thickness z. Due to the presence of the spacer, the charge density for surface B (—) is shifted
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by ¢ in the z direction. The matrix element reads

Vakw = / dz / dz' Vo(z — 2) piey k(2) i

PHYSICAL REVIEW B 95, 125435 (2017)

qkf(Z —1)

2 et [

K5 — (ke —a:)°](

K§ — (b + 4] (KG — )]

K2 —k?) 2g +4Ky)(2g + 4K
2 —k2) (2q +4Ko)(2q + ) (a3

2606, ¢ [(g +2Ko)* —

The matrix element appearing in Eq. (6) is now
VS ik = Ya=k—kkk=k+Q> (A4)

which for the special case O, = 0 simplifies to Eq. (13).

APPENDIX B: SCALING FORM OF THE GAP EQUATION

We assume here that the gap function A is constant along
the FA for the case of straight FAs displaced with respect
to each other by Q = /vr§. The quasiparticle energies in

Eq. (10) are given by
= +,/vpk2 + A, (BD)

We calculate A atk = 0 using the gap equation (11), where we
pass from a sum over kK’ to an integral over reciprocal space,

A /ka2+A2

1 / / cut T
=— | dk, dk, VO — 2L (B2)
2 - cul / ‘U k2 + AZ

2k, + q.)*1*[(q + 2K0)* — (2K, — q.)*] K3

(

where k¢, parametrizes the extension of the uniaxial linear
dispersion along k, of the FA states and we have taken advan-
tage of the identity f(z) — f(—z) = — tanh (z/2) for the Fermi
function. Because of symmetry, we can restrict the integration
in the region k, € [0,Ky] and k, € [0,k¢y] and multiply the
result by 4. We now change the integration variables to the
dimensionless x = k. /Ky and y = k,/kcy, introducing also

r = 4/x2 + y2, and arrive at the final expression for Eq. (11),

m2e0e,vp b pRedBo e Kol (r 4 2)2(1 — x?)
il dy
e? r[r+2)2 —x22

ta h A/ Y (A /vr Ko)® y2+(A Jvp Ko)?

" 2(ksT/vrKo)
vy + (A /vrKo)?
A kT key 1
= ( = ;C—‘,—>. (B3)
vpKo vprKy Ko Kot

Note that the integral is well defined also in the limit k¢, — 0.
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