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In this supplemental material, we explain why topological phase transitions (TPTs) at finite
energies (FEs) only occur in odd-parity pairing channels. In Sec. II, we show the constraints imposed
by rotational symmetry in pseudospin space on the FE pairing potential. We present the j = 3/2
matrix formalism of global symmetry operators in the BdG formalism given in Sec. III. Due to
the inversion symmetry, we propose an alternative method to capture the topological index of the
system in terms of negative parity of the eigenstates away from the Fermi energy. In Sec. IV, we
explore the constraints imposed on both the normal state and pairing channels through the interplay
of crystalline symmetry and time-reversal symmetry. Such analysis reveals the connection between
rotational operations in pseudospin space and the combined influence of crystalline symmetry and
time-reversal symmetry. Next, we discuss the stability of helical topological surface states at finite
excitation energies under randomness of chemical potential and magnetization given in Sec. V.
Additionally, the analytical approach for the derivation of the helical Dirac points at the surface
and the effective 2D helical surface Hamiltonian away from the Fermi energy are described in detail
in Sec. VI and Sec. VII, respectively. Moreover, we analyze the value for the interband pairing in
weakly hole-doped YPdBi using a combination of k · p and density functional theory calculations,
see Sec. VIII. In the last section, we obtain the explicit form of cubic pairing matrices.
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I. TOPOLOGICAL PHASE TRANSITIONS AT
FINITE ENERGIES

In this section, we address why TPTs at FEs occur
only in odd-parity multiband superconductors with time-
reversal symmetry. We show that the FE pairing poten-
tial is odd under the parity operation. To this end, we
start by examining the parity and time-reversal symme-
try properties of the normal state and the pairing po-
tential. A fermionic state |k,mj〉, with k as the 3D mo-
mentum, and mj being the magnetic quantum number of
total angular momentum j, transforms under inversion P
and time-reversal T operations, respectively, as

P |k,mj〉 = | − k,mj〉, (1)
T |k,mj〉 = (−1)j+mj | − k,−mj〉. (2)

Inversion symmetry acts only on the momenta and the
magnetic quantum number remains intact. In this case,
the matrix form of the inversion operator is a 4 × 4
identity matrix. The matrix representation of the anti-
unitary time-reversal operator takes the form T̂ = R̂K
with K being the complex conjugation and the unitary
part R̂ = eiπĴy = iσ̂x ⊗ σ̂y.

The normal state preserves inversion and time-reversal



2

symmetries described by

P̂ ĤkP̂
−1 = Ĥ−k, R̂Ĥ∗kR̂−1 = Ĥ−k. (3)

Moreover, the normal state preserves the combination of
these symmetries given by (P̂ T̂ )Ĥk(P̂ T̂ )−1 = Ĥk leading
to doubly degenerate eigenstates.

The parity of a pairing potential is distinguished by
the orbital angular momentum of Cooper pairing, i.e.,
L = 2n+ 1 (L = 2n) denotes odd- (even-) parity angular
momenta with n being non-negative integers. In this
case, the pairing potential is odd u (even g) under the
parity operation given by

P̂ ∆̂kP̂
−1 = −(+)∆̂−k. (4)

We can show that the BdG Hamiltonian, given in Eq. (1)
of the main paper, satisfies inversion symmetry for odd-
(even-) parity pairing potential given by

P̂u,gĤ(k)P̂−1
u,g = Ĥ(−k), (5)

where P̂u = σ̂z ⊗ P̂ and P̂g = σ̂0 ⊗ P̂ . Furthermore, a
pairing potential is time-reversal symmetric described by

R̂∆̂∗kR̂−1 = ∆̂−k = ±∆̂k, (6)

where −(+) corresponds to odd- (even-) parity pairing
potentials. In our investigations, we focus on odd-parity
pairing potentials which preserve time-reversal symme-
try.

Due to inversion symmetry in the normal state, the
pseudospin operator V̂k = {V̂ +

k , V̂
−
k } is an even-parity

matrix function, i.e., V̂ ±k = V̂ ±−k. It is given explicitly by

V̂ +
k =

1

2

|k|||
|k|


2kzk−/k

2
+ k−/k+√

3k−/k+ 0

0
√

3
1 −2kz/k−

 , (7)

and

V̂ −k =
1

Γ−k


2
√

3kzk−k2
||/k

2
+ −

√
3k2
−

−(|k|2 + 3k2
z)k2
||/k

2
+ 0

0 |k|2 + 3k2
z√

3k2
|| 2

√
3kzk+
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where k2
|| = k2

x + k2
y, Γ−k = 2|k|

√
|k|2 + 3k2

z , |k| =√
k2
|| + k2

z , and k± = kx ± iky.
The parity of the pairing potential projected onto the

pseudospin basis, i.e., ∆̂νν′

k with νν′ ∈ {+,−}, is the
same as the parity of the unprojected pairing potential.

We prove this by the symmetry relation

P̂∆̂νν′

k P̂−1 = P̂V̂ ν†k ∆̂k(V̂ ν
′†
−k )T P̂−1

= P̂V̂ ν†k (±P̂−1∆̂−kP̂ )(V̂ ν
′†
−k )T P̂−1

= ±V̂ ν†−k∆̂−k(V̂ ν
′†

+k )T

= ±V̂ ν†k ∆̂−k(V̂ ν
′†
−k )T

= ±∆̂νν′

−k , (9)

where P̂ is the inversion operator defined by a 2×2 iden-
tity matrix in pseudospin basis. Note that to derive Eq.
(9), we consider the even-parity property of the eigen-
spinors. This shows that the inversion symmetry of the
normal state is crucial to the determine the parity of the
projected pairing. Therefore, the FE pairing potential,
which is responsible for TPTs at FEs, has odd- (even-)
parity if the orbital angular momentum of Cooper pairing
is odd (even), i.e.,

P̂∆̂+−
k P̂−1 = −(+)∆̂+−

−k . (10)

In the lattice representation, we replace even (odd) mo-
menta in the finite energy pairing potential ∆̂+−

kν
by

k2n+1
ν → [2(1− cos(kν))]nsin(kν), for L = odd, (11)

k2n
ν → [2(1− cos(kν))]n, for L = even, (12)

where ν ∈ {x, y, z} and we assume the lattice constant to
be unity. The odd-parity pairing channels contain odd
powers of momenta in ∆̂+−

k along the TPTs direction.
Thus, the sin(kν) term in Eq. (11) forces ∆̂+−

kν=±π = 0 at
the parity-time-reversal-invariant momenta (PTRIM), i.
e., kν = ±π. This allows to close and reopen the gap,
through the manipulation of the normal state parameters
at FEs. Therefore, helical Dirac surface states emerge
only for the odd-parity pairing channels.

In contrast, bulk bands for even-parity pairing chan-
nels at FEs never close at kν = ±π , i.e., ∆̂+−

kν=±π = 4n 6=
0. This prohibits the quantization of the topological in-
dex. Therefore, the system remains in the topologically
trivial phase.

We illustrate the aforementioned general argument by
two examples. Since we focus on the p-wave pairing chan-
nel, the momenta appear in linear order, i.e., L = 1
(n = 0). Consider the A2u pairing along the direc-
tion k = (0, 0, kz). The BdG Hamiltonian is block di-
agonal through the unitary transformation constructed
from D̂n(π, ε) symmetry in the interband basis, i.e.,
Ĥ ′′(0, 0, kz) = diag(ĥ−+

kz,+
, ĥ+−
kz,+

, ĥ+−
kz,−, ĥ

−+
kz,−). The ex-

plicit matrix form of ĥ+−
kz,± in the lattice representation

is

ĥ+−
kz,± =

(
−E−kz ∆sin(kz)

∆sin(kz) E+
kz

)
, (13)
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where the off-diagonal terms correspond to the FE pair-
ing. In Eq. (13), −E−kz (E+

kz
) is the hole (electron) band

given by

E−kz = 2(α+ β/4)(1− cos(kz))− µ, (14)

E+
kz

= 2(α+ 9β/4)(1− cos(kz))− µ. (15)

The TPT occurs at the PTRIM k = (0, 0,±π) where the
spectrum of Eq. (13) becomes

ε1 = µ− (4α+ β), ε2 = 4α+ 9β − µ. (16)

We assume the normal state energy bands to have iden-
tical sign of curvature, i.e., sgn(α) = sgn(β) = ±1. In
this case, the system exhibits a gap at k = (0, 0,±π),
i.e., |ε1 − ε2| = 2|4a + 5b − µ| > 0. The TPT occurs
when |ε1 − ε2| = 0. This results in the phase transition
relation µ = 4α + 5β. Hence, the TPT at nonzero exci-
tation energies can occur through the interplay between
odd-parity superconductivity and normal state crossings
at finite excitation energies.

In realistic materials, α and β are fixed and the system
can exhibit a topological phase for a certain range of
chemical potentials. This is illustrated by the topological
phase diagram in Fig. 1(c) in the main text.

In contrast, the FE pairing never vanishes at PTRIM
for even-parity pairing channels. To illustrate this, con-
sider the even-parity s-wave Eg pairing given by the pair-
ing matrix ∆̂k = (∆/3)(2Ĵ2

z−Ĵ2
x−Ĵ2

y )R̂ [1]. This pairing
matrix exhibits vanishing (nonvanishing) intra- (inter-)
band pairing at momenta 2k2

z = k2
x + k2

y, i.e., ∆̂intra
k = 0

and ∆̂+−
k 6= 0. Therefore, this instability channel is a

candidate for the TPTs at FEs. The FE pairing is even
under the parity exchange, i.e., P̂∆̂+−

k P̂−1 = ∆̂+−
−k with

∆̂+−
k = ∆(k+/k−)τ̂x where k± = kx ± iky. In this case,

the interband superconducting Hamiltonian becomes

Ĥ+−
k =

(
E+

k τ̂0 ∆(k+/k−)τ̂x
∆(k−/k+)τ̂x −E−k τ̂0

)
, (17)

where

E+
k = (3/8)(4α+ 9β)(k2

x + k2
y)− µ, (18)

E−k = (3/8)(4α+ β)(k2
x + k2

y)− µ. (19)

Equation (17) preserves a rotational symmetry along the
z-axis in pseudospin basis with rotation angle θ = π given
by D̂nz (π, 1) = diag(iτ̂z,−iτ̂z). Therefore, Ĥ+−

k becomes
diagonal in the eigenbasis of D̂nz (π, 1) labeled by eigen-
values λ = ±i obtained by Û†Ĥ+−

k Û = diag(ĥ+−
k,+i, ĥ

+−
k,−i)

with

ĥ+−
k,±i =

(
−E−k ∆(k−/k+)

∆(k+/k−) E+
k

)
, (20)

where the matrix of eigenvectors for D̂nz (π, 1) is given by

Û =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 . (21)

Figure 1. Helical topological Dirac cones at finite excitation
energies induced by FE Cooper pairing. A pair of helical
Dirac cones (pink) emerge on a surface and the degenerate
partner appears on the other surface (green). Black arrows
illustrate the spin texture of the surface states exhibiting spin-
momentum locking due to the helical property. EDP denotes
energy of the Dirac points and µ is the Fermi energy of the
normal state.

The spectrum of Eq. (20) is always gapped at FEs.
Hence, TPTs at FEs are not possible.

II. PSEUDOSPIN ROTATION SYMMETRY
PROPERTIES

In this section, we explain the constraint imposed by
pseudospin rotation symmetry on the FE pairing poten-
tial. The motivation behind such analysis is to show the
explicit form of a general FE pairing matrix fulfilling the
pseudospin rotation symmetry. To this end, we present
the FE pairing matrix in a general form

∆̂+−
k ≡ gk · τ̂ , (22)

where the four-component gk vector is given by gk =
(g0, gx, gy, gz) with the components being momentum de-
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pendent functions (this dependency is dropped). The
four-component vector of Pauli matrices is defined in the
interband basis by τ̂ = (τ̂0, τ̂x, τ̂y, τ̂z) with τ̂0 being a 2×2
identity matrix.

The matrix representation of FE pairing potential con-
verts to a pairing function δ+−

k,λ (see Eq. (5) in the
main text) in the presence of D̂n(π, ε) symmetry where
the rotation angle is about the arbitrary unit vector
n = (nx, ny, nz). In this case, the relation between
∆̂+−

k and δ+−
k,λ can be distinguished by the components

of the vector gk. Interestingly, the pseudospin rotation
symmetry about the x(y)[z] axis, defined by

nx ≡ (1, 0, 0), ny ≡ (0, 1, 0), nz ≡ (0, 0, 1), (23)

enforces δ+−
k,λ to select up to two components of the vector

gk. After some algebra, such constraints for the ε = −1
representation can be obtained by

[D̂nz (π,−1), Ĥ+−
k ]=0→ δ+−

k,λ = g0 + λgz, (24)

[D̂ny (π,−1), Ĥ+−
k ]=0→ δ+−

k,λ = λigx − gz, (25)

[D̂nx(π,−1), Ĥ+−
k ]=0→ δ+−

k,λ = g0 + λgx. (26)

To interpret the above relations, we consider Eq. (24) as
an example. In this case, δ+−

k,λ preserves the pseudospin
rotation symmetry under the rotation angle θ = π about
the z-axis if either g0 or gz, or both of them are finite,
and the other components vanish, i.e., gk = (g0, 0, 0, gz).
This is a useful result since we can directly ascertain the
pseudospin rotation symmetry of a FE pairing potential
in multiband superconductors by checking only the com-
ponents of the vector gk .

The dot product of the vector gk and the Pauli ma-
trices in Eq. (22) allows us to find the relation between
∆̂+−

k and a proper D̂n(π, ε) symmetry given by

D̂nz (π,−1) : ∆̂+−
k = g0τ̂0 + gz τ̂z, (27)

D̂ny (π,−1) : ∆̂+−
k = gxτ̂x + gz τ̂z, (28)

D̂nx(π,−1) : ∆̂+−
k = g0τ̂0 + gxτ̂x. (29)

Importantly, we observe that the component gy in Eqs.
(24-29) is absent. However, the pseudospin rotation sym-
metry with ε = +1 representation reveals the allowed
symmetry form of δ+−

k,λ including the y-component of gk,

[D̂nz (π, 1), Ĥ+−
k ]=0→ δ+−

k,λ = gx − iλgy, (30)

[D̂ny (π, 1), Ĥ+−
k ]=0→ δ+−

k,λ = g0 + λgy, (31)

[D̂nx(π, 1), Ĥ+−
k ]=0→ δ+−

k,λ = −iλgy − gz. (32)

In this case, the D̂n(π, ε) symmetry forces the FE pairing
matrix to have the explicit form

D̂nz (π, 1) : ∆̂+−
k = gxτ̂x + gy τ̂y, (33)

D̂ny (π, 1) : ∆̂+−
k = g0τ̂0 + gy τ̂y, (34)

D̂nx(π, 1) : ∆̂+−
k = gy τ̂y + gz τ̂z. (35)

Taking into account Eqs. (27-29) and (33-35), we can
understand the explicit form of the D̂n(π, ε) symmetry
along the TPT direction by looking at the components
of ∆̂+−

k , e.g., the last column of Table. I in the main text.
For instance, one of the TPT directions for the T2u irrep
is k ∈ (±k, 0,±k) and the FE pairing potential is given
by ∆̂+−

k = ∆k(±τ̂0/3 − iτ̂y). According to Eq. (34),
∆̂+−
k preserves D̂ny (π, 1) symmetry with g0 = ±∆k/3

and gy = ±i∆k.
Note that when ∆̂+−

k contains only one component
of gk along the TPT direction, the rotation axis of the
D̂n(π, ε) is not unique. Importantly, the momentum de-
pendency of components of the gk along the TPT direc-
tion is proportional to the orbital angular momentum of
Cooper pairing. For instance, gk is proportional to linear
order of momenta at TPT directions since we focus on
p-wave pairing, i, e., L = 1.

The reason for having two representations for the
D̂n(π, ε) symmetry can be seen by the unitary transfor-
mation V̂ between the eigenbases for ε = +1 and ε = −1,

φ̂+1 = V̂φ̂−1, V̂ = V̂−1 = V̂† =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , (36)

where φ̂ε=±1 = Û−1ϕ̂+−
k with ϕ̂+−

k being the 4×1 column
as the basis of FE superconducting Hamiltonian Ĥ+−

k ,
and Û is the eigenvector matrix for D̂n(π, ε) operator.

III. GLOBAL SYMMETRIES

The explicit matrix representations for time-reversal
and particle-hole symmetry operators in BdG formalism
are given by T̂ = iς̂0⊗ σ̂x⊗ σ̂yK and P̂ = ς̂x⊗ σ̂0⊗ σ̂0K,
respectively. Here, K is the complex-conjugate opera-
tor, ς̂i and σ̂i with i ∈ {0, x, y, z} are Pauli matrices
acting on particle-hole and spin subspaces, respectively.
The symmetry relation reads ÔĤ∗(k)Ô−1 = εĤ(−k)

with ε = +1(−1) for Ô = T̂ (P̂). Additionally, we can
construct a chiral symmetry operator Ĉ = T̂ P̂ fulfill-
ing ĈĤ(k)Ĉ−1 = −Ĥ(k) [2–4]. The symmetry oper-
ators have the properties T̂ 2 = −1 and P̂2 = 1. In
addition, the inversion symmetry operator is defined by
P̂u = σ̂z ⊗ P̂ fulfilling P̂2

u = 1 .
We complete our discussion on topological phase tran-

sitions induced by FE pairing by proposing an alternative
approach to calculate the topological index due to the
presence of inversion symmetry [5, 6]. The BdG Hamilto-
nian commutes with P̂u and T̂ operators at eight PTRIM
given by

kp=(0,0,0),kp=(0,0,π),kp=(0,π,0),kp=(π,0,0),

kp=(0,π,π),kp=(π,π,0),kp=(π,0,π),kp=(π,π,π). (37)



5

Figure 2. Enlarged view of the spectra given in Fig. 2(c) of
the main text. The thickness is 180 layers and E0 = ∆/2. The
high-symmetry points are X = (0, π/a, 0) and Γ = (0, 0, 0)
where a is the lattice constant in tight binding calculations.
The surface (bulk) states are colorful (dark). Blue arrows
indicate the helical Dirac points induced by topological FE
pairing. The gray dashed line indicates the Fermi energy.
(a) [(b)] Surface states inside (outside) of the bulk states be-
fore (after) a Lifshitz transition for µ = −5.2E0 (µ = −E0).
(b) The helical surface states resemble a butterfly shape, and
establish dispersive Majorana modes away from the high sym-
metry points at the Fermi energy. The other parameters are
α = −∆/2 and β = 0.3α.

Generally, the FE pairing arising form odd-parity pairing
channels can induce topological phase transition along
the directions K connecting the PTRIM. The criteria
rely on the presence and absence of finite and low energy
pairings along such directions, respectively. In this case,
the BdG Hamiltonian becomes block diagonal

Ĥ ′(K) = diag
(
ĥ+−
K,+, ĥ

+−
K,+, ĥ

−+
K,−, ĥ

−+
K,−

)
, (38)

T̂ P̂ Ĉ P̂u
T̂ Commute Commute Commute Commute
P̂ Commute Commute Anticommute
Ĉ Commute Anticommute
P̂u Commute

Table I. Commutation/anticommutation relations between
the discrete symmetries.

where

ĥ+−
K,λ =

(
−E−K

(
δ+−
K,λ

)∗
δ+−
K,λ E+

K

)
. (39)

In Eq. (38), ĥ−+
K,λ is the particle-hole partner of ĥ+−

K,λ

implied by τ̂y(ĥ+−
K,λ)∗τ̂−1

y = ĥ−+
K,λ. Note that each block

ĥ±∓k,λ preserves an effective time-reversal symmetry T̂ = K
with T̂ 2 = +1. Particle-hole symmetry and the conven-
tional time-reversal symmetry with T̂ 2 = −1 are bro-
ken due to the different diagonal entries in the symme-
try blocks. Also, each block in Eq. (38) satisfies in-
version symmetry implied by τ̂zĥ

νν′

K,λτ̂
−1
z = ĥνν

′

−K,λ with
ν, ν′ ∈ {+,−}. In this case, ĥνν

′

K,λ commutes with τ̂z, and
the negative parity of the eigenstates associated to the
lower energy band in sector ĥνν

′

K,λ determines the topo-
logical nature of the phase transition. Note that only
one of the directions connecting the PTRIM is sufficient
to capture the nontrivial topological phase induced by
FE Cooper pairing. Therefore, to characterize the topo-
logical phases, we define a topological index

N = |nΓ − np|, (40)

where nΓ and np are the number of negative eigenvalues
of the parity operator at the Γ point kp = (0,0,0), and
other PTRIM. Note that N is a Z2 topological index
taking two values, i.e., N = 1(0) in the topologically
nontrivial (trivial) phase. The full topological index can
be derived by the summation of the topological indices
associated to the decoupled blocks in Eq. (38) as

Z =
∑
λ=±

(N+−
λ +N−+

λ ), (41)

where N νν′

λ corresponds to the block ĥνν
′

K,λ. In the topo-
logically nontrivial phase, conservation of parity leads
to the quantization of the topological index and the
emergence of surface states. Pseudospin rotation sym-
metry ensures that the surface states come in pairs es-
tablishing FE helical Dirac points. Hence, the appear-
ance of a pair of helical surface states at positive (nega-
tive) excitation energies is signaled by

∑
λ=±N

+−
λ = 2

(
∑
λ=±N

−+
λ = 2). Considering two surfaces, we observe

four Dirac surface states on each surface (two for positive
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excitation energies and two for negative energies) due to
parity-time-reversal symmetry, cf. Fig. 1.

A Lifshitz transition can move the FE helical Dirac
surface states, shown in Fig. 2(a), to the low energies.
In this case, the surface states establish Majorana modes
at the Fermi energy, see Fig. 2(b).

Note that the point group symmetry of the normal-
state Hamiltonian for any real system is lower than the
O(3) symmetry of the Luttinger-Kohn Hamiltonian dis-
cussed in the main text. The Luttinger-Kohn Hamilto-
nian serves as a valuable approximation for energy bands
close to high-symmetry points. However, the symmetry
of the superconducting (BdG) Hamiltonian is relevant for
our analysis. It belongs to the Oh symmetry group, as
the O(3) symmetry of the normal state transforms into
cubic point group symmetry due to the pairing matrices
derived through irreducible representations of the cubic
point group symmetry. Importantly, the pseudospin ro-
tation symmetry mentioned above is present for multi-
band system with parity-time-reversal symmetry. Its
presence is independent of the O(3) symmetry of the
normal state Hamiltonian. Nonetheless, we examine our
predictions when the normal state is influenced by O(3)
symmetry-breaking terms. To this end, we incorporate
the cubic spin-orbit coupling term to the normal state
Hamiltonian as

Ĥ(k)= α|k|2Î4+β
∑
i

k2
i Ĵ

2
i +γ

∑
i 6=j

kikj ĴiĴj − µ, (42)

where γ parametrizes the strength of the cubic spin-
orbit coupling term. This Hamiltonian refers to the O(3)
symmetry-broken case in the normal state if γ 6= β. We
adopt the tight-binding regularization of Eq. (42) in the
BdG form. The spectral result within the topologically
non-trivial phase is illustrated in Fig. 3. Evidently, we
can also observe the emergence of helical Dirac surface
states with particle-hole character away form the Fermi
energy due to the unconventional finite energy Cooper
pairing in the case with broken O(3) symmetry, see Fig.
3(a,b). In addition, we investigate a Lifshitz transition
around the Γ point by a variation of the chemical po-
tential as illustrated in Fig. 3(c,d). In this case, the
surface states are shifted towards low energies. If the
superconducting gap possesses nodes at zero excitation
energy, these surface states connect the nodal points, see
Fig. 3(c). If the superconducting gap is fully developed
at zero excitation energy, these surface states connect to
the bulk states at finite excitation energy, see Fig. 3(d).

IV. POINT GROUP SYMMETRY ANALYSIS

The block diagonalization of the BdG Hamiltonian is
possible in directions where the pairing potential satisfies
two conditions:

Figure 3. Spectra of a slab with (001) surfaces in the topo-
logically nontrivial regime. The thickness is 100 layers. The
cubic spin-orbit coupling term is chosen as γ = α. Hence,
O(3) symmetry is broken in the normal state. In panels (a)
and (c), k′ defines the direction in momentum space with
kx = ky. The chemical potential is chosen as (a) µ = −5.2E0,
(b) µ = −5.1E0, and (c,d) µ = −E0. The other parameters
are β = 0.3α, α = −(2/3)∆, and E0 = (2/3)∆. The high-
symmetry points are X = (0, π/a, 0) and M = (π/a, π/a, 0).

1. vanishing intraband pairing,

2. nonvanishing interband pairing at finite energies.

These two conditions can be fulfilled when time-reversal
T symmetry combines with twofold rotation about the
〈110〉 axis. This symmetry operator is defined by ĈT ≡
T̂ Ĉ2,x+y having the property Ĉ2

T = 1. We then use the
Ĉ2,x+y operator combined with inversion P̂ symmetry
(mirror reflection), denoted as ĈP ≡ P̂ Ĉ2,x+y, for block
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diagonalization. In addition, the double degeneracy of
states at each momenta is ensured by P̂ T̂ = e−iπĈT ĈP .
Note that T̂ , Ĉ2,x+y, and P̂ commute with each other,
and Ĉ2

P = −1.
In the following, we illustrate these points by group

theoretical analysis. We begin by analyzing the point
group symmetry of the given BdG Hamiltonian

ĤBdG(k)=

(
Ĥ(k) ∆̂(k)

∆̂†(k) −ĤT (−k)

)
(43)

where Ĥ(k) and ∆̂(k) = D̂(k)eiπĴy denote normal state
and pairing matrix, respectively. ĤBdG(k) preserves the
symmetry group G if its symmetry elements, denoted as
ĝ, satisfy the following condition

Ĥ(k) 7−→ ĝĤ(R−1k)ĝ†, D̂(k) 7−→ ĝD̂(R−1k)ĝ†, (44)

where ĝ can for instance be a q-fold rotation and R is a
3 × 3 orthogonal matrix implementing rotation on mo-
mentum space. Then, the point group symmetry opera-
tion for Eq. (43) takes the form

ĜĤBdG(R−1k)Ĝ−1 = ĤBdG (k) , (45)

where Ĝ = diag(ĝ,±ĝ∗). In our system, G for the super-
conducting Hamiltonian is given by

G = U(1)⊗P ⊗ T ⊗Oh, (46)

where U(1) is a global phase-rotation symmetry, P (T )
denotes anti-unitary particle-hole (time-reversal) symme-
try, and Oh is a cubic point group symmetry. Oh de-
scribes the combination of inversion symmetry P and
octahedral O point group symmetry. The O group con-
sists of q−fold rotations about the n axis labeled by Cq,n.
Combining P with O, this results in q−fold improper ro-
tations denoted by PCq,n.

In our study, the pairing channels are odd (even) under
P̂ (T̂ ) symmetries such that M̂D̂(−k)M̂† = −(+)D̂(k)
with M̂ = P̂ (T̂ ). Moreover, D̂(k) anti-commute with P̂ T̂
symmetry, i.e., {D̂(k), P̂ T̂} = 0 with T̂ = exp(iπĴy)K
and P̂ = Î4, where K is complex conjugation. Impor-
tantly, the generators of D̂(k) in combination with T̂
symmetry, this can impose constraints on the pairing po-
tential. In the main text, we focus on the A2u pair-
ing channel (spin-septet). The matrix representation of
D̂(k) is D̂(k) = k · T̂ where T̂i = {Ĵi, Ĵ2

i+1 − Ĵ2
i+2} with

i+ 1 = y if i = x, etc., cyclically. The generators for the
A2u channel are {eiπĈ4z, e

iπĈ2,z+x}, where Ĉ2,z+x (Ĉ4z)
denotes two(four)fold rotation about the [1,0,1] ([0,0,1])
axis [7]. Note that Ĉ4z does not constrain the pairing
channel while the rotation about C ′2 axis does. In this
case, normal state and pairing channel transform under
twofold rotation about the C ′2 axis, e.g., [1,1,0] axis, such
that

Ĉ2,x+yD̂(ky, kx,−kz)Ĉ†2,x+y = −D̂(k), (47)

Ĉ2,x+yÊ(ky, kx,−kz)Ĉ†2,x+y = Ê(k). (48)

Combining T̂ with twofold rotation symmetry denoted
by ĈT = T̂ Ĉ2,x+y, yielding the relation

ĈT D̂(−ky,−kx, kz)Ĉ†T = −D̂(k), (49)

ĈT Ê(−ky,−kx, kz)Ĉ†T = Ê(k). (50)

In this case, ĈT results in vanishing (nonvanishing) intra-
band (interband) pairing potentials.

We prove this at two Fermi momenta k1 and k2 (due to
having two energy bands), and the crossing momenta k3

at finite energies. Note that k1 (k2) is associated to the
Fermi momentum for the |mj | = 3/2 (|mj | = 1/2) Fermi
surface. The |mj | = 1/2 Fermi surface is constrained in a
similar way by ĈT as the |mj | = 3/2 Fermi surface. This
results in point nodes in both double-degenerate Fermi
surfaces along the 〈001〉 direction. We prove this through
symmetry analysis in pseudospin (Kramer’s partner) rep-
resentation. The double-degeneracy is guaranteed by PT
symmetry. In this case, the effective pairing projected
onto the intraband basis at k1 can be represented in the
pseudospin basis as

∆̂νν
eff(k1) ≡ (d(k1) · σ̂)(iσ̂y), (51)

where d(k1) = (dx(k1), dy(k1), dz(k1)), σ̂ = (σ̂x, σ̂y, σ̂z)
is the vector of Pauli matrices in intraband pseudospin
basis. Note that ∆̂νν

eff(k1) is represented in pseudospin
triplet state due to the odd parity of D̂(k). For ν =
+, ∆̂νν

eff(k1) describes pairing of |mj | = 3/2 states at
the Fermi energy. At k1, spin and momentum transform
under ĈT as

ĈT σ̂Ĉ†T = (−σ̂y,−σ̂x, σ̂z), R−1k1 = (−ky,−kx, kz).
(52)

Consequently, along the 〈001〉 direction, the effective
pairing potential becomes ∆̂++

eff (k1) = dz(kz)σ̂z(iσ̂x)
which violates the Fermi statistics unless dz(kz) =
0. Consequently, this results in point nodes along z-
direction (and all equivalent directions). Moreover, the
same holds true for ∆̂−−eff (k2). Therefore, point 1., stated
at the beginning of this section, is fulfilled leading to

∆̂++
eff (k1) = ∆̂−−eff (k2) = 0. (53)

To realize point 2., stated at the beginning of this sec-
tion, we analyze how interband pairing is affected by ĈT
symmetry. Finite energy pairing happens at interband
momenta k3 where double-degenerate |mj | = 3/2 elec-
tron states cross with |mj | = 1/2 hole bands away from
the Fermi energy. We can expand the interband pairing
matrix ∆̂+−

eff (k3) as

∆̂+−
eff (k3) = g+−

k3
· τ̂ , (54)

where g+−
k3

is a four component vector given by

g+−
k3

= (g+−
0,k3

, g+−
x,k3

, g+−
y,k3

, g+−
z,k3

), (55)
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and τ̂ = (τ̂0, τ̂x, τ̂y, τ̂z) being the four component vector of
Pauli matrices represented in interband pseudospin basis.
Applying ĈT symmetry on τ̂ produce the same results
as mentioned in Eq. (52) for σ̂. In this case, τ̂0 and τ̂z
remain invariant along the 〈001〉 direction. Consequently,
the interband pairing matrix becomes

∆̂+−
eff (kz) = g+−

0,kz
τ̂0 + g+−

z,kz
τ̂z. (56)

It is worth mentioning that τ̂0 is allowed by the Pauli ex-
clusion principle if we exchange band indices in addition
to spin indices. Importantly, ∆̂+−

eff (kz) is constrained by
ĈT such that only up to two components of the g+−

k2
vec-

tor are finite. This is identical with our analysis based
on rotational symmetry in pseudospin basis described in
Sec. II. The τ̂z remains invariant under two-fold rotation
in pseudospin space combined with time-reversal symme-
try.

Despite our pairing model is odd in parity, we can de-
fine an inversion operator in BdG form as

Ĝ = diag(Î4,−Î4) = σ̂z ⊗ Î4 (57)

where

ĜĤBdG(−k)Ĝ−1 = ĤBdG(k). (58)

In this case, the results given in Eqs. (53) and (56) hold
true for ĈP .

Importantly, such symmetries enforce the BdG Hamil-
tonian to become block diagonal along the topological
phase transition directions and at finite excitation ener-
gies. This is a direct consequence of Eqs. (53) and (56).
Although ĈT is anti-unitary, the twofold degeneracy can
be lifted in the eigenspace of mirror reflection symmetry
as

Ŷ −1ĤBdG(kz)Ŷ = diag
(
Ĥ+i(kz), Ĥ−i(kz)

)
, (59)

where Ŷ is the matrix of eigenvectors for ĈP operator,
and Ĥλ(k) is a 4 × 4 block labeled with eigenvalues of
P̂ Ĉ2,x+y as λ = ±i. Note that Ĥ+i(kz) = Ĥ−i(kz) with

Ĥ+i(kz) =


−E+

kz
0 0 ∆kz

0 −E−kz ∆kz 0

0 ∆kz E+
kz

0

∆kz 0 0 E−kz

 , (60)

where ∆ = (
√

3/2)∆. The pairing sector is situated on
the off-diagonal block of Ĥ±i(k) with vanishing intra-
band pairing. Ĥ±i(k) can be further brought into block
diagonal form through the transformation Ŵ onto the
interband basis. Such a transformation is given by

Ĥ ′(kz) = Ŵ−1
(
Ŷ −1ĤBdG(kz)Ŷ

)
Ŵ

= diag
(
ĥ−+
kz,+i

, ĥ+−
kz,+i

, ĥ−+
kz,−i, ĥ

+−
kz,−i

)
, (61)

where

ĥνν
′

kz,λ =

(
−Eν′kz ∆kz
∆kz Eνkz

)
, (62)

and

Ŵ =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0


. (63)

Notably, Eq. (61) is identical to Eq. (6) of the main
text. The effective Hamiltonian Ĥ(kx, ky) for the helical
surface states at finite excitation energies (see Eq. (8) of
the main text) fulfills the symmetry relation

ĈT Ĥ(kx, ky)Ĉ−1
T = ĈP Ĥ(kx, ky)Ĉ−1

P = Ĥ(−ky,−kx). (64)

V. STABILITY OF HELICAL DIRAC SURFACE
STATES AT FINITE ENERGIES

To investigate the stability of helical topological sur-
face states at finite excitation energies, we add random-
ness to chemical potential and magnetization of each
layer in z-direction by

HR(kq, z)=
∑
nz

∑
kq

ψ̂†kq,z

(
µnz + Mnz · Ĵ

)
ψ̂kq,z, (65)

where the basis in j = 3/2 representation is

ψ̂†kq,z
= (c†3

2 ,kq,z
, c†1

2 ,kq,z
, c†− 1

2 ,kq,z
, c†− 3

2 ,kq,z
). (66)

In Eq. (65), we consider kz to be no longer conserved.
Instead, nz = 0, ..., Nz is the layer index with Nz the to-
tal number of layers along the z-axis;

∑
kq

=
∑
kx

∑
ky
,

kq = (kx, ky) represents the conserved momenta; Ĵ =

(Ĵx, Ĵy, Ĵz) is the vector of angular momenta; µni de-
notes the nonmagnetic onsite potential at layer ni where
the strength is a uniformly distributed random number
within the interval µni ∈ [0,∆]; the Zeeman field vector
is Mni = (Mx,ni ,My,ni , 0), with the strength Mx(y),ni ,
taken as uniformly distributed random number in the in-
terval Mx(y),ni ∈ [0, 0.06∆]. The numerical results are
shown in Fig. 4(a1-a3) and 4(b1-b3). We can observe in
Fig. 4(a1) and (a2) that bulk and surface states become
broadened while the topological surface states remain in-
tact in the presence of nonmagnetic randomness at fi-
nite excitation energies since ĈT symmetry is preserved.
When the system is subjected to magnetic randomness,
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the degeneracy of surface states are lifted due to bro-
ken time-reversal symmetry. In this case, ĈT is broken.
Along ky direction (see Fig. 4(b2) and 4(b3)), the Dirac
cone is gapped.

Furthermore, the symmetry P̂ can be broken by intro-
ducing Ĥδ(k) to Eq. (42), where Hδ(k) is defined as

Ĥδ(k) = δ
∑
i

ki

(
Ĵi+1ĴiĴi+1 − Ĵi+2ĴiĴi+2

)
, (67)

with δ denoting the strength of anti-symmetric spin-orbit
coupling (ASOC). This term originates from Td point
group symmetry. Note that both Ĉ2,x+y and P̂ symme-
tries are absent in Ĥδ(k) since

Ĉ2,x+yĤδ(k)Ĉ†2,x+y 6= Ĥδ(ky, kx,−kz), (68)

P̂ Ĥδ(k)P̂ † 6= Ĥδ(k). (69)

Consequently, ĈT is broken due to absence of Ĉ2,x+y

symmetry. In this case, the low-energy superconducting
nodes are lifted along the TPT directions for a sufficiently
large δ (of the same order of symmetric spin-orbit cou-
pling), and the topological surface states become unsta-
ble. To illustrate this, the excitation spectra are plotted
in Figs. 4 (c1-c3) in the presence of Hδ(k). Clearly, the
surface states emerging from the finite energy gap closing
point hybridize with the bulk states at large momentum.
This can be understood from Eq. (6) since then the block
digonalization is no applicable.

This analysis identifies ĈT symmetry is required for
the stability of the surface states.

VI. HELICAL DIRAC SURFACE STATES AT
FINITE ENERGIES

In this section, we provide details for the derivation
of the helical Dirac surface states described in the main
text. The BdG Hamiltonian along the [001] direction
becomes

Ĥ(kz) =


Ĥ1 0 Ĥ3 0

0 Ĥ2 0 Ĥ3

Ĥ3 0 −Ĥ1 0

0 Ĥ3 0 −Ĥ2

 , (70)

with

Ĥ1 = diag(E+
kz
, E−kz ), Ĥ2 = diag(E−kz , E

+
kz

), (71)

where E+
kz

= (α + 9β/4)k2
z − µ, E−kz = (α + β/4)k2

z − µ,
Ĥ3 =∆kzσ̂x , and ∆ =

√
3∆/2. To be able to apply

our theory, presented in Eqs. (2-6) of the main text,
we should represent Ĥ(kz) in the pseudospin basis where
each diagonal block contains a pair of doubly degenerate

Figure 4. Excitation spectrum for (001) slab in the presence
of nonmagnetic randomness with strength (a1) vi ∈ {0,∆}
for 120 layers, (a2,a3) vi ∈ {0, 0.6∆} for 80 layers, (b2-b3)
magnetic randomness with the form Mx,ni Ĵx +My,ni Ĵy with
Mx(y),ni ∈ {0, 0.2∆} for 80 layers (c1-c3) inversion symmetry
breaking spin-orbit coupling δ = 0.3∆ for 120 layers. Panels
(a3), (b3) and (c3) are the enlarged view of the top panels.
Other parameters are (α, β, γ, µ) = −(1, 0.3, 1, 5.2)∆. Note
that γ 6= β indicates broken O(3) symmetry in the normal
state. The extended bulk (surface) states are illustrated by
gray (red) color according to inverse participation ratio.
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bands. This can be done through the unitary transfor-
mation Û1

Ĥ1(kz)=Û †1 H(kz)Û1 (72)

=


E+
kz

0 0 ∆kz

0 E−kz ∆kz 0

0 ∆kz −E+
kz

0

∆kz 0 0 −E−kz

⊗σ̂0, (73)

where the unitary matrix Û †1 = Û −1
1 is given by

Û1 =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0


. (74)

In the next step, Eq. (73) should be represented in the
interband basis. This can be done through another uni-
tary transformation Û2 as

Ĥ (kz) = Û †2 Ĥ1(kz)Û2 = (Û1Û2)†H(kz)Û1Û2 (75)

=

(
Ĥ+−
kz

0

0 Ĥ−+
kz

)
, (76)

where

Ĥ+−
kz

=

(
E+
kz

∆kz

∆kz −E−kz

)
⊗σ̂0, (77)

Ĥ−+
kz

=

(
E−kz ∆kz

∆kz −E+
kz

)
⊗σ̂0. (78)

The transformation Û2 fulfills the unitary property Û †2 =

Û −1
2 . Its explicit matrix form is given by

Û2 =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0


. (79)

Note that Ĥ (kz), given in Eq. (76), is identical to Eq.
(2) of the main text. In this case, ∆kzσ̂0 is the FE
pairing potential in Eqs. (77) and Eqs. (78). The zeros
on the off-diagonal blocks of Eq. (76) indicate vanishing
intraband pairing giving rise to the presence of nodes at

the Fermi energy. The diagonal blocks in Ĥ (kz) exhibit
pseudospin-π rotation symmetry along the z(x)-axis, i.e.,
the symmetry relations given in Eqs. (27) and (29). The
explicit matrix form for such an operator can be obtained
as

D̂nz (π,−1) =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

 .

Thus, Eq. (76) is further reducible in the eigenspace of
D̂nz (π,−1). This can be done through the unitary matrix
Û3

Ĥ ′(kz) = Û †3 Ĥ (kz)Û3 (80)

= (Û1Û2Û3)†H(kz)Û1Û2Û3 (81)

= diag(ĥ+−
kz,+

, ĥ+−
kz,+

, ĥ−+
kz,+

, ĥ−+
kz,−), (82)

with

ĥ+−
kz,±=

(
−E−kz ∆kz

∆kz E+
kz

)
, ĥ−+

kz,±=

(
−E+

kz
∆kz

∆kz E−kz

)
, (83)

and Û3 = diag(V̂ , V̂ ) where V̂ is the matrix of eigenvec-
tors of D̂nz (π,−1) given by

V̂ =
1√
2


0 1 0 −1

0 1 0 1

1 0 −1 0

1 0 1 0

 .

We solve the eigenvalue problem for one of the de-
coupled subblocks in Eq. (82). This problem is
given by ĥ−+

kz,±Φ̂(ξ, z) = EDPΦ̂(ξ, z) where Φ̂(ξ, z) =

(u, v)T exp(ξz) is the ansatz for the decaying eigenspinor.
ξ denotes the localization factor, |u|2 (|v|2) is the proba-
bility weight for electron (hole) states with different mag-
netic quantum number mj = ±3/2 (mj = ±1/2). We
consider a semi-infinite system in z ≥ 0 space. There-
fore, kz is no longer conserved and we use its real space
representation kz = k†z = −i∂z. In this case, the secular
equation (ĥ−+

−i∂z,±−EDP)Φ̂(ξ, z) = 0 can be evaluated by
setting its determinant to zero,∣∣∣∣∣ m′ξ2 + µ− EDP −i∆ξ

−i∆ξ −(mξ2 + µ)− EDP

∣∣∣∣∣ = 0, (84)

where m = α+ β/4 and m′ = α+ 9β/4. The solution of
the secular equation yields

ξ± =

√
1

2mm′

(
Λ±

√
Λ2 + 4mm′(E 2

DP − µ2)
)
, (85)

where Λ = ∆2 − EDPϑ
− − µϑ+ and ϑ± = (m′ ±m)/2.

In the absence of pairing, i.e., for ∆ = 0, the local-
ization length becomes purely imaginary leading to ex-
tended states. However, ξ± obtains a real component in
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the topological phase induced by FE pairing. This leads
to proper surface state solutions.

To specify the components of Φ̂(ξ, z), we use the secu-
lar equation, and obtain

u ≡ uι = −i∆ξι → v ≡ vι = m′ξ2
ι + µ− EDP, (86)

v ≡ Vι = −i∆ξι → u ≡ Uι = mξ2
ι + µ+ EDP. (87)

Consequently, we have a pair of eigenspinors given by

Φ̂(ξι, z) =

(
uι
vι

)
eξιz, Φ̂′(ξι, z) =

(
Uι
Vι

)
eξιz. (88)

We can construct two sets of wave functions by the su-
perposition of eigenspinors Φ̂(ξι, z) (Φ̂′(ξ, z)),

Ψ̂1(z)=
∑
ι=±

CιΦ̂(ξι, z), Ψ̂2(z)=
∑
ι=±

QιΦ̂
′(ξι, z), (89)

where the summations run over the decay factors and the
coefficients of the expansion are denoted by Cι and Qι.
To have surface state solutions, the wave functions and
their first derivatives must vanish at the interface of the
system and far away from the interface, i.e.,

Ψ̂(∞) = Ψ̂′(∞) = 0, Ψ̂(0) = Ψ̂′(0) = 0. (90)

Note that we assume just one interface in our analytical
calculations. The boundary conditions at z = 0 give rise
to two pairs of equations

C−

(
u−
v−

)
+ C+

(
u+

v+

)
= 0, (91)

Q−

(
U−
V−

)
+Q+

(
U+

V+

)
= 0. (92)

Re-arranging Eqs. (91) and (92), we arrive at

C−
C+

= −ξ+
ξ−

= −
m′ξ2

++µ− EDP

m′ξ2
−+µ− EDP

, (93)

Q−
Q+

= −ξ+
ξ−

= −
mξ2

++µ+ EDP

mξ2
−+µ+ EDP

. (94)

Combining Eqs. (93) and (94) results in the explicit for-
mula for the energy of the helical Dirac surface points
EDP given in Eq. (7) of the main text.

Choosing C− = Q− = ξ+ and C+ = Q+ = −ξ−, this
allows us to derive the general eigenfunction correspond-
ing to EDP,

Ψ̂(z) = Cξ+

(
i∆ξ−

m′ξ2
− + µ− EDP

)
(e−ξ−z − e−ξ+z), (95)

where C is the normalization factor

C =
1√

(|κ1|2 + |κ2|2)

1√∫∞
0
dz |f(z)|2

. (96)

VII. EFFECTIVE 2D HELICAL SURFACE
HAMILTONIAN

In this section, we derive the effective Hamiltonian
for the 2D helical surface states given in Eq. (8) of
the main text. To do so, we need to project the bare
BdG Hamiltonian onto the helical Dirac surface states
basis. Note that Ψ̂(z) in Eq. (95) is the eigenfunc-
tion corresponding to the subblock matrix ĥ−+

k,+, and we
have defined f(z) ≡ (e−ξ−z − e−ξ+z), κ1 ≡ i∆ξ+ξ−,
and κ2 ≡ ξ+(m′ξ2

− + µ − EDP). To have a proper
projection basis, we also need the eigenfunction for the
subblock ĥ+−

k,+. It is given by ϕ̂(z) = C(κ3, κ4)T γ(z)

where κ3 ≡ ξ+(mξ2
− + µ + EDP), κ4 ≡ −i∆ξ+ξ−, and

γ(z) = −f(z).
Ψ̂(z) and ϕ̂(z) are 2×1 column vectors. In order to use

them for the projection method, we convert them to 8×1
representation since the BdG Hamiltonian is a 8× 8 ma-
trix. This can be done through the transformation made
by the 8×2 columns of the matrix Û −1 = {γ̂1, γ̂2, γ̂3, γ̂4}.
The first and forth subblock matrices in Eq. (82) are
identical corresponding to ĥ−+

k,+ and ĥ−+
k,−, respectively.

Thus, they correspond to doubly degenerate helical sur-
face states with eigenvalue EDP. Therefore, their 8 × 1
representations take the form

Γ̂−1 ≡ γ̂1Ψ̂(z) = Cf(z)(0, κ2, 0, 0, κ1, 0, 0, 0)T , (97)

Γ̂−2 ≡ γ̂4Ψ̂(z) = Cf(z)(0, 0, κ2, 0, 0, 0, 0, κ1)T . (98)

We repeat the above steps for ϕ̂(z) to obtain the proper
basis for the sectors ĥ+−

k,+ and ĥ+−
k,−,

Γ̂+
1 ≡ γ̂2ϕ̂(z) = Cγ(z)(κ4, 0, 0, 0, 0, κ3, 0, 0)T , (99)

Γ̂+
2 ≡ γ̂3ϕ̂(z) = Cγ(z)(0, 0, 0, κ4, 0, 0, κ3, 0)T . (100)

We use Eqs. (97-100) as the proper orthonormal set
of eigenfunctions to project the bulk superconducting
Hamiltonian to the surface. Note that the orthonormal-
ity condition reads

∫∞
0
dz[Ŷ ν ]†Ŷ ν = σ̂0 where Ŷ ± =

{Γ̂±1 , Γ̂
±
2 }.

To derive the effective Hamiltonian for the 2D helical
surface states, we consider the conserved wave vectors kx
and ky in the BdG Hamiltonian to be small close to the
Γ point. Then, we project Ĥ(kx, ky,−i∂z) onto the basis
of the helical Dirac surface states. Thus, the effective
Hamiltonian at finite excitation energies becomes

Ĥ(kx, ky) =

∫ ∞
0

dzŶ ν†(z)Ĥ(kx, ky,−i∂z)Ŷ ν(z)

=

(
A1,1 A1,2

A2,1 A2,2

)
, (101)

where the matrix elements of Ĥ(kx, ky) are given by

Ai,j =

∫ ∞
0

dzΓ̂†i (z)Ĥ(kx, ky,−i∂z)Γ̂j(z), (102)
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J Oh η Ôη(Ĵ) η̂ (L, S) (L, S)

0 A1g,u A1g,u
1
2
Î4 Â1g,u=N̂0,0 (0, 0) (1, 1)

1 T1u T
(1)
1u

1√
5
Ĵz T̂

(1)
1u =N̂1,0 × (1, 1)

T
(2)
1u

1√
5
Ĵy T̂

(2)
1u = i√

2
(N̂1,−1 + N̂1,1) × (1, 1)

T
(3)
1u

1√
5
Ĵx T̂

(3)
1u = 1√

2
(N̂1,−1 − N̂1,1) × (1, 1)

2 Eg,u E
(1)
g,u

1
6
(3Ĵ2

z − Ĵ) Ê
(1)
g,u=N̂2,0 (0, 2) (1, 1), (1, 3)

E
(2)
g,u

1

2
√
3
(Ĵ2
x − Ĵ2

y ) Ê
(2)
g,u= 1√

2
(N̂2,−2 + N̂2,2) (0, 2) (1, 1), (1, 3)∗

T2g,u T
(1)
2g,u

1√
3
(ĴxĴy + ĴyĴx) T̂

(1)
2g,u= i√

2
(N̂2,−2 − N̂2,2) (0, 2) (1, 1), (1, 3)∗

T
(2)
2g,u

1√
3
(ĴzĴx + ĴxĴz) T̂

(2)
2g,u= i√

2
(N̂2,−1 − N̂2,1) (0, 2) (1, 1), (1, 3)∗

T
(3)
2g,u

1√
3
(ĴyĴz + ĴzĴy) T̂

(3)
2g,u= i√

2
(N̂2,−1 + N̂2,1) (0, 2) (1, 1), (1, 3)∗

3 A2u A2u
1√
3
(ĴxĴyĴz + ĴzĴyĴx) Â2u= i√

2
(N̂2,−2 − N̂2,2) × (1, 3)∗

T1u T
(1)
1u

4√
365

Ĵ3
z T̂

(1)
1u = 12

5
√
73
N̂3,0 × (1, 3)

T
(2)
1u

4√
365

Ĵ3
y T̂

(2)
1u = 3

5
√
73i

[
√

5(N̂3,−3 + N̂3,3) +
√

3(N̂3,1 + N̂3,−1)] × (1, 3)

T
(3)
1u

4√
365

Ĵ3
x T̂

(3)
1u = 3

5
√
73

[
√

5(N̂3,−3 − N̂3,3) +
√

3(N̂3,1 − N̂3,−1)] × (1, 3)

T2u T
(1)
2u

1√
3
dĴz(Ĵ2

x − Ĵ2
y )c T̂

(1)
2u = 1√

2
(N̂3,−2 + N̂3,2) × (1, 3)∗

T
(2)
2u

1√
3
dĴx(Ĵ2

y − Ĵ2
z )c T̂

(2)
2u = 1

4
[
√

3(N̂3,3 − N̂3,−3) +
√

5(N̂3,1 − N̂3,−1)] × (1, 3)∗

T
(3)
2u

1√
3
dĴy(Ĵ2

z − Ĵ2
x)c T̂

(3)
2u = 1

4i
[
√

3(N̂3,3 + N̂3,−3)−
√

5(N̂3,1 + N̂3,−1)] × (1, 3)∗

Table II. Decomposition of total angular momentum J (first column) in the irreducible representation (irrep) of Oh symmetry
(second column). The dimension of an irrep is distinguished by the number of components η given in the third column. The
fourth column denotes the normalized irreducible basis matrices for a component of Oh symmetry in j = 3/2 representation. The
fifth column demonstrates the correspondence between the matrix form for components of a cubic irrep η̂ and the components
of SO(3) symmetry, namely N̂J,mj being the total angular momentum tensor matrices. The last two columns indicate the spin
S and orbital L angular momenta of Cooper pairs associated to J and components of a given irrep. The Fermi statistics forces
both L and S to be even (g) or odd (u). The symmetrization of the basis matrices is denoted by dÂB̂Ĉc = (ÂB̂Ĉ + ÂĈB̂ +

B̂ĈÂ+ B̂ÂĈ + ĈÂB̂ + ĈB̂Â)/3!. The pairing channels satisfying TPT at FEs are marked by (∗).

with i, j ∈ {1, 2}. Ĥ(kx, ky) should be Hermitian, thus,
the matrix elements in Eq. (101) must fulfill the relations

A1,1 = A∗1,1 = A2,2 = A∗2,2, (103)

A1,2 = A∗2,1, A2,1 = A∗1,2. (104)

After straightforward algebra, we arrive at the 2D effec-
tive Hamiltonian for the helical surface states given in
Eq. (8) of the main text. Note that the group veloc-
ity of the helical topological Dirac surface states at finite
excitation energies takes the form

ς2 =

√
3

4

∆

(|κ1|2 + |κ2|2)
Im [(κ2κ

∗
1 − κ1κ

∗
2)] . (105)

It is clear that ς2 depends on the components of the
wave function with direct proportionality to the pairing
strength ∆.

VIII. ENERGY SCALE FOR FINITE-ENERGY
COOPER PAIRING IN WEAKLY HOLE-DOPED

YPdBi

In this section, we estimate the energy scale for finite-
energy Cooper pairing in weakly hole-doped YPdBi. We
obtain a range of ∆E ≈ 7.7− 46.2 µeV, which can be re-
solved in state-of-the-art scanning tunneling microscope

(STM) [8]. We first refer to the normal state band struc-
ture of YPdBi calculated by density functional theory
(DFT), see Fig. 5(a).

Close to the Γ point, the electronic structure hosts two
branches of the Γ8 bands curving downward in an energy
window around ≈ 0.7eV before other bands coexists with
the Γ8 bands. This material is a non-centrosymmetric
semimetal, which becomes superconductor at Tc = 1.6 K
[9]. The absence of inversion symmetry results in weak
ASOC, which leads to a mixed-parity superconducting
state. Specifically, when the chemical potential resides in
the j = 3/2 bands, the mixed-parity pairing state A1g +
A2u should be favorable in YPdBi due to Td symmetry
[10].

In the following, we estimate the value of finite-energy
pairing in YPdBi. To this end, we employ a combination
of DFT and analytical model analysis [11]. Our DFT cal-
culations rely on the Kohn-Sham-Bogoliubov-de-Gennes
(KS-BdG) method as implemented in the relativistic full-
potential JuKKR code [12, 13]. The crystal structure for
YPdBi is taken from the materials project [14, 15], where
we use a compressed lattice constant by 3% to clearly
isolate the Γ8 bands from the Γ6 and Γ7 bands [16]. We
employ the local density approximation for the normal-
state exchange-correlation functional [17] and include the
effects of spin-orbit coupling as well as an angular mo-
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Figure 5. (a) DFT normal state band structure for YPdBi.
(b) Density of states for the band structure shown in (a). (c)
DFT band structure in [001] direction (marked by blue filled
circles), fit to the DFT data (dashed lines) and k · p model
(solid lines). (d) BdG-DFT band structure in [001] direction
for ∆s 6= 0 and ∆p = 0. The blue (black) coloring of the
bands denote their particle (hole) character.

mentum cutoff of `max = 3 in the expansion of the ba-
sis into spherical harmonics. The Fermi level is shifted
down such that µ lies in the range where only the Γ8

bands persist, as indicated in Fig. 5(a). Note that the
low density of states in this energy range, see Fig. 5(b),
allows to tune the chemical potential easily, which could
be achievable experimentally via electron irradiation or
by suitable electrical gating [10].

To illustrate the need for an unconventional A2u pair-
ing channel for the existence of finite energy pairing, we
first consider only a constant s-wave pairing channel A1g

in our DFT-based KS-BdG simulations with a (for illus-
tration purposes) large magnitude of ∆s = 1 mRy within
the atoms of the YPdBi unit cell.

The normal state and superconducting band structure
along the [001] direction are depicted in Figs. 5(c) and
5(d), respectively. In both panels, the system is weakly
hole doped, such that the chemical potential lies in the
j = 3/2 bands, close to the Γ point. Clearly, the j = 3/2
bands have an identical sign of the curvature at the Fermi
energy, i.e., both curl downward. The energy bands
are doubly degenerate, protected by a combination of
time-reversal and mirror-reflection symmetry [18]. Using
Eqs. (42) and (67), we obtain the k · p spectrum given

by

E±k = (α+
5

4
β)k2

z ± β

√
k4
z +

3

4

δ2

β2
k2
z − µ. (106)

We fit the DFT data up to the second order polynomials.
Then, comparing these with Eq. (106), we extract the
model parameters for weakly hole-doped YPdBi close to
the Γ point as

α = −18.1 Å
2
eV, β = −17.5 Å

2
eV,

γ = 16.1 Å
2
eV δ = −0.1 ÅeV,

µ = −317meV. (107)

Note that the parameter describing ASOC δ is weak
compared to the symmetric spin-orbit coupling β, i.e.,
δ/β ≈ 0.00571 Å

−1
.

We further analyze the effects of interband pairing in a
(001) slab of YPdBi. The numerical calculations are done
by tight-binding regularization of the k ·p model given in
Eqs. (42) and (67). The results are illustrated in Fig. 6,
where we assume open (periodic) boundary conditions
along z-direction (x- and y-directions). In Figs. 6(a1-a3)
and 6(b1-b3), the spectra are shown for a pure odd-parity
septet channel ∆̂

(A2u)
k and mixed-parity ∆k = ∆̂

(A1g)
k +

∆̂
(A2u)
k channel, respectively. The matrix form for the

corresponding pairing state is explicitly given by

∆̂
(A1g)
k =∆s


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 , (108)

∆̂
(A2u)
k =∆p


3
4k−

√
3

2 kz
√

3
4 k+ 0√

3
2 kz

3
4k+ 0 −

√
3

4 k−√
3

4 k+ 0 − 3
4k−

√
3

2 kz

0 −
√

3
4 k−

√
3

2 kz − 3
4k+

, (109)

where ∆s(p) denotes the strength for the s(p)-wave A1g

(A2u) pairing channel. Both k · p and DFT calculations
imply that interband pairing is absent in the A1g pairing
channel, i.e., ∆̂+−

k = 0. This is because the s-wave pair-
ing is isotropic in momentum space. However, interband
pairing is present in the A2u channel. This is the reason
for the reduced density of bulk states at finite excitation
energies in the range |E/E0| ∈ [0.5, 1], marked by yellow
lines in Figs. 6(a2) and 6(b2). Using the k ·p theory, the
size of the interband pairing for the pure A2u channel (in
the limit δ/β → 0) becomes [19]

∆E=
√

2
√

Tr(∆̂+−
k̃z

[∆̂+−
k̃z

]†), (110)

where ∆̂+−
k̃z

denotes the interband pairing matrix. The
relevant electron-hole hybridization takes place at mo-
menta k̃z = ±2[µ/(4α + 5β)]1/2 and at finite excitation
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energies. Along the [001] direction (and equivalent di-
rections), we obtain Tr(∆̂+−

k̃z
[∆̂+−

k̃z
]†) = 3∆2

pk̃
2
z/2. In this

case, we analytically obtain the size for the gap-like struc-
ture close to the Γ point as

∆E=2∆p[3µ/(4α+ 5β)]1/2. (111)

Clearly, ∆E depends not only on the odd-parity pairing
strength ∆p but also on the material-dependent model
parameters µ,α and β.

Moreover, surface states emerge when the chemical po-
tential resides in the range µ/E0 ∈ [−53.46, 0] where
E0 = 3∆p, see Figs. 6(a1) and 6(b1). The surface states
are visible as long as the A2u channel dominates over the
A1g channel [20]. Note that we also observe the super-
conducting energy gap at the Fermi energy in Fig. 6(b1).
It originates from the isotropic intraband pairing in the
A1g channel.

The effects of interband pairing in other direc-
tions, where momentum is conserved, are depicted in
Figs. 6(a2) and 6(b2). For the pure A2u state (∆s = 0
and ∆p 6= 0), the size for the interband pairing be-
comes maximal at the Γ point and is analytically given
by Eq. (111). It decreases monotonically at larger mo-
menta. For the mixed-parity paring state A1g + A2u,
the surface states are slightly shifted upward due to in-
traband pairing in the A1g channel, compare Figs. 6(a3)
and 6(b3). They also exhibit a weak hybridization with
the bulk states at large momenta, depicted in Figs. 6(b2)
and 6(b3).

To estimate the magnitude of ∆p in weakly hole-doped
YPdBi, we assume that it is of similar magnitude as for
LuPdBi, where it is of the order ∆p = 50−300 ÅµeV
[10]. This is because of similarities in the normal-state
band structure, point group symmetries, and the type
of superconducting pairing. Under this assumption,
the energy gap size for the interband pairing becomes
∆E≈7.7−46.2 µeV. Notably, an energy resolution below
8 µeV at operating temperatures of 10 mK is achievable
in state-of-the-art STM and transport experiments in di-
lution refrigerators [8].

IX. PAIRING MATRICES

In this section, we demonstrate the method for obtain-
ing the pairing matrices in cubic symmetry, given in Ta-
ble I of the main paper. The cubic pairing matrices with
dependency of momenta up to the linear order can be
derived through the relation between SO(3) [21–23] and
cubic [7, 23–25] symmetries as we elaborate in the follow-
ing. In addition, in Ref. [26], a general group-theoretical
method to derive the symmetry-allowed pairing matrices
for any local degrees of freedom (spin, orbital, and basis
site) is introduced. The method relies on the reduction
of product representation of the crystallographic point
group.

Figure 6. Excitation spectra for (001) slab of hole-doped
YPdBi with 160 (layers) obtained by tight-binding regular-
ization of the effective k ·p model. The superconducting state
is A1g +A2u where (a1-a3) ∆s = 0 and (b1-b3) ∆s = 0.3∆p.
The surface (bulk) states are marked by red (gray) colors. The
number of layers in panel (a2,b2) [(a3,b3)] is 200 [360]. The
model parameters are the same as those given in Eq. (107).
The chemical potential is set to µ = −5E0 (hole-doped) [20].
Panels (a3) and (b3) are the enlarged view of the regions
marked by yellow color in panels (a2) and (b2).
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The irreducible representations of SO(3) symmetry are
labeled by the total angular momentum J , which com-
bines orbital L and spin S angular momenta. The Cooper
pairs formed by two electrons with j = 3/2 total angular
momentum can have singlet (J = 0), triplet (J = 1),
quintet (J = 2), or septet (J = 3) angular momenta.
Considering orbital angular momentum up to the p-wave
channel, i.e., L ∈ {0, 1}, the intrinsic spin angular mo-
mentum can take values S ∈ {0, 1, 2, 3} according to rela-
tion |L−S| ≤ J ≤ |L+S|. The correspondence between
the components of a cubic irrep and the SO(3) symmetry
is given by the relation [27],

η̂ =
∑

mj1 ,mj2

∑
mJ

[(
Ôη(Ĵ)R̂

)
mj1 ,mj2

〈J,mJ |mj1 ,mj2〉
]
N̂J,mJ ,

(112)
where 〈J,mJ |mj1 ,mj2〉 are the Clebsch-Gordan coeffi-
cients, mj1 ,mj2 ∈ {±3/2,±1/2}, R̂ = eiπĴy , N̂J,mJ
denotes the multipole matrix for the total angular mo-
mentum labeled with magnetic quantum number mJ ∈
{−J, . . . , J}, and η̂ is the matrix representation for the
component of an irrep with the normalized basis matrix
Ôη(Ĵ) given in the third and fourth columns of Table II,
respectively. Note that the fifth column of Table II is ob-
tained according to Eq. (112). The explicit matrix form
of N̂J,m can be derived by the expansion

N̂J,m =
∑

mL,mS

〈mL,mS |J,mJ〉Y LmL(k)ŜSmS , (113)

where 〈mL,mS |J,mJ〉 denotes the Clebsch-Gordan co-
efficient, Y LmL(k) and ŜSmS are spherical harmonics and
irreducible spin tensor matrices labeled with mL ∈
[−L, . . . , L] and mS ∈ [−S, . . . , S] as the orbital axial
angular momentum and spin magnetic quantum num-
ber, respectively. Since we are interested in the odd-
parity pairings up to linear momenta, the orbital angular
momentum is L = 1 (p-wave) with the relative spheri-
cal harmonics Y1,±1(k) = ∓

√
3/8πk±/|k| and Y1,0(k) =√

3/4πkz/|k|. Moreover, the derivation method for ob-
taining ŜSmS follows Refs. [7, 19, 24]. Using the fifth
columns of Table II and Eq. (113), the cubic pairing
matrices can be derived straightforwardly, giving

∆̂k = |k| η̂ R̂. (114)

We start with the A2u irrep to find its pairing matrix.
A2u is a one-dimensional irrep appearing only for the
J = 3 irrep corresponding to L = 1 and S = 3. The
matrix representation for A2u is given by

Â2u=
i√
2

(N̂2,−2 − N̂2,2)=

√
2

12i
[Y 1

1 (3Ŝ3
−3 −

√
15Ŝ3

1 )

+
√

12Y 1
0 (Ŝ3

−2 + Ŝ3
2 )+Y 1

−1(3Ŝ3
3 −
√

15Ŝ3
−1)], (115)

where we dropped the momentum dependency of spheri-
cal harmonics. Spin multipole matrices, which fulfill the

relation ŜS−mS = (−1)mS (ŜSmS )T , are given by

Ŝ3
0 =

√
5

10


1 0 0 0

0 −3 0 0

0 0 3 0

0 0 0 −1

, Ŝ3
1 =

√
5

5


0 −1 0 0

0 0
√

3 0

0 0 0 −1

0 0 0 0

,
(116)

and

Ŝ3
2 =

√
2

2


0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

, Ŝ3
3 =


0 0 0 −1

0 0 0 0

0 0 0 0

0 0 0 0

 .

(117)
Eventually, the pairing matrix for the A2u irrep takes the
form [28]

∆̂k = |k| Â2u R̂

= ∆


3
4k−

√
3

2 kz
√

3
4 k+ 0√

3
2 kz

3
4k+ 0 −

√
3

4 k−√
3

4 k+ 0 − 3
4k−

√
3

2 kz

0 −
√

3
4 k−

√
3

2 kz − 3
4k+

 . (118)

In the next step, we consider the three-dimensional T2u

irrep. It appears for the J = 3 and J = 5 irreps. Due the
the nature of j = 3/2 electron, only the septet component
is allowed. In this case, the first component of the T2u

irrep up to linear order of momenta takes the form

T̂
(1)
2u =

1√
2

(N̂3,−2 + N̂3,2)=
1

6
√

2
[Y 1
−1(
√

15Ŝ3
−1 + 3Ŝ3

3 )

+
√

12Y 1
0 (Ŝ3

2 − Ŝ3
−2)− Y 1

1 (3Ŝ3
−3 +

√
15Ŝ3

1 )]. (119)

The second component is

T̂
(2)
2u =

1

4
[
√

3(N̂3,3 − N̂3,−3) +
√

5(N̂3,1 − N̂3,−1)]

=
1

24
[
√

3Y 1
−1((5Ŝ3

2 − 3Ŝ3
−2)−

√
30Ŝ3

0 )

+
√

3Y 1
1 ((5Ŝ3

−2 − 3Ŝ3
2 )−

√
30Ŝ3

0 )

+ Y 1
0 (9(Ŝ3

−3 + Ŝ3
3 ) +

√
15(Ŝ3

−1 + Ŝ3
1 ))], (120)

and the third component

T̂
(3)
2u =

1

4i
[
√

3(N̂3,3 + N̂3,−3)−
√

5(N̂3,1 + N̂3,−1)]

=
i

24
(
√

3Y 1
1 (3Ŝ3

2 − 5Ŝ3
−2 −

√
30Ŝ3

0 )

+
√

3Y 1
−1(5Ŝ3

2 − 3Ŝ3
−2 +

√
30Ŝ3

0 )

+ Y 1
0 (9(Ŝ3

−3 − Ŝ3
3 ) +

√
15(Ŝ3

1 − Ŝ3
−1))). (121)

Finally, the explicit pairing matrices for the T2u irrep
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become

∆̂k = |k| T̂ (1)
2u R̂

=∆


3
4k−

√
3

2 kz
√

3
4 k+ 0√

3
2 kz

3
4k+ 0 1

4

√
3k−√

3
4 k+ 0 3

4k− −
√

3
2 kz

0
√

3
4 k− −

√
3

2 kz
3
4k+

 , (122)

∆̂k = |k| T̂ (2)
2u R̂

= ∆


3kz

1√
3
k′−

1√
3
kz iky

1√
3
k′+ kz 3iky

1√
3
kz

1√
3
kz 3iky kz

−1√
3
k′+

iky
1√
3
kz

−1√
3
k′+ 3kz

 , (123)

∆̂k = |k| T̂ (3)
2u R̂

= ∆


3kz

−1√
3
k′′−

−1√
3
kz −kx

−1√
3
k′′− −kz −3kx

1√
3
kz

−1√
3
kz −3kx kz

−1√
3
k′′+

−kx 1√
3
kz

−1√
3
k′′+ −3kz

 , (124)

where k′± = 4kx ± iky and k′′± = kx ± 4iky.
Eu (T2u) is a two- (three-) dimensional irrep. It ap-

pears for the J = 2 and J = 4 irreps. In the j = 3/2
representation, only the J = 2 channel is allowed. Note
that the second component of Eu and all the components
of T2u can undergo TPTs at FEs. Thus, the expansion
for Ê(2)

u is

Ê(2)
u =

1√
2

(N̂2,−2 + N̂2,2)=

√
14

42
[
√

3Y 1
1 (
√

15Ŝ3
−3 + Ŝ3

1 )

+
√

3Y 1
−1(Ŝ3

−1 +
√

15Ŝ3
3 )−

√
15Y 1

0 (Ŝ3
−2 + Ŝ3

2 )]. (125)

The pairing matrix for E(2)
u becomes

∆̂k = |k| Ê(2)
u R̂

= ∆


5
√

3k− −5kz −k+ 0

−5kz −
√

3k+ 0 k−
−k+ 0

√
3k− −5kz

0 k− −5kz −5
√

3k+

 . (126)

Likewise, the pairing matrix for the first component of
the T2u irrep can be straightforwardly derived

∆̂k = |k| T̂ (1)
2u R̂

= ∆


−5
√

3k− 5kz k+ 0

5kz
√

3k+ 0 k−
k+ 0

√
3k− −5kz

0 k− −5kz −5
√

3k+

, (127)

and the second component takes the form

∆̂k = |k| T̂ (2)
2u R̂

= ∆


0 −5k− 4kz

√
3kx

−5k− 4
√

3kz 3
√

3kx −4kz
4kz 3

√
3kx −4

√
3kz −5k+√

3kx −4kz −5k+ 0

. (128)

Finally, the pairing potential for the third component of
T2u becomes

∆̂k = |k| T̂ (3)
2u R̂

= ∆


0 −5k− 4kz i

√
3ky

−5k− 4
√

3kz 3i
√

3ky 4kz
4kz 3i

√
3ky 4

√
3kz 5k+

i
√

3ky 4kz 5k+ 0

 . (129)

To sum up, the relation between cubic point group
symmetry and full SO(3) symmetry enabled us to explic-
itly obtain the cubic pairing matrices. This method can
also be applied to other point group symmetries.
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