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Abstract

Systems with more than two degrees of freedom are of fundamental importance for the under-

standing of problems ranging from celestial mechanics to molecules. Due to the dimensionality the

classical phase-space structure of such systems is more difficult to understand than for systems with

two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as

the quantum mechanics of 4d mappings representing driven systems with two degrees of freedom. In

order to analyze such systems, we introduce 3d sections through the 4d phase space which reveal the

regular and chaotic structures. We introduce these concepts by means of three example mappings of

increasing complexity. After a classical analysis the systems are investigated quantum mechanically.

We focus especially on two important aspects: First, we address quantum mechanical consequences of

the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semi-

classical limit. Second, we investigate the quantum mechanical tunneling couplings between regular

and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and

extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we

study resonance-assisted tunneling in 4d maps.

Kurzfassung

Für das Verständnis einer Vielzahl von Problemen von der Himmelsmechanik bis hin zur Beschrei-

bung von Molekülen spielen Systeme mit mehr als zwei Freiheitsgraden eine entscheidende Rolle. Auf-

grund der Dimensionalität gestaltet sich ein Verständnis dieser Systeme jedoch deutlich schwieriger

als bei Systemen mit zwei oder weniger Freiheitsgraden. Die vorliegende Arbeit soll zum besseren

Verständnis der klassischen und quantenmechanischen Eigenschaften getriebener Systeme mit zwei

Freiheitsgraden beitragen. Hierzu werden dreidimensionale Schnitte durch den Phasenraum von 4d

Abbildungen betrachtet. Anhand dreier Beispiele, deren Phasenräume zunehmend kompliziert sind,

werden diese 3d Schnitte vorgestellt und untersucht. In einer sich anschließenden quantenmechanis-

chen Untersuchung gehen wir auf zwei wichtige Aspekte ein. Zum einen untersuchen wir die quan-

tenmechanischen Signaturen des klassischen „Arnold Webs“. Es wird darauf eingegangen, wie die

Quantenmechanik dieses Netz im semiklassischen Limes auflösen kann. Darüberhinaus widmen wir

uns dem wichtigen Aspekt quantenmechanischer Kopplungen klassisch getrennter Phasenraumgebiete

anhand der Untersuchung dynamischer Tunnelraten. Für diese wenden wir sowohl den in der Liter-

atur bekannten „fictitious integrable system approach“ als auch die Theorie des resonanz-unterstützen

Tunnelns auf 4d Abbildungen an.
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1. Introduction

Probably one of the most beautiful physical findings concerning dynamical systems is the statement

of the kam theorem by Kolmogorov [1], Arnold [2], and Moser [3]. It is the answer to the long

standing question of classical mechanics about the fate of integrable Hamiltonian systems under a

weak perturbation. The kam theorem’s beauty stems from the fundamental insight that initial

conditions in phase space are not the relevant quantities to decide about the behavior under the

perturbation. Far more important are the frequencies of the bounded regular motion. Whenever

these frequencies are not sufficiently irrational, the motion will fundamentally change and take place

on completely different topological objects compared to the unperturbed case. A further part of the

beauty of the theorem is given by its tremendous generality. The answer to the question, whether

under perturbation a domain in phase space will undergo a drastic change, only assumes very weak

and general prerequisites.

Especially the number of degrees of freedom 𝑓 of a given Hamiltonian system does not play any

role for the kam theorem [4]. Therefore, it is indispensable when investigating systems with two

or fewer degrees of freedom as well as systems with many degrees of freedom. But why should one

distinguish between systems with 𝑓 ≤ 2 and 𝑓 > 2 in the first place? The first answer might be a

very practical one: In systems with 𝑓 ≤ 2 it is possible to reduce the dynamics to a 2d phase space

by using Poincaré surfaces of section. Hence, it is possible to look at the phase space in total. This

is an aspect which may sound obvious but it is of vital importance when analyzing the dynamics of

generic systems revealing regular motion, nonlinear resonances, and chaotic dynamics [5]. Especially

the consequences arising from the coexistence of the different types of motion are very interesting,

such as the overlap of resonances and the onset of global chaotic motion in 2d systems [6, 7].

The possibility of visualizing the phase space is quite fundamental to understand the physical

concepts behind Hamiltonian systems, such as atom-optics billiards [8, 9] or mesoscopic transport

in 2d electron gases [10, 11]. However, one can only rarely reduce physical questions to a 2d phase

space. The vast majority of problems ranging from investigations of the solar system [12–16] over

solid state physics and ballistic transport [17, 18] to the understanding of molecules [19–21] has a

higher dimensional phase space.

The possibility of reducing a system with 𝑓 ≤ 2 to a 2d phase space is a very practical difference

in comparison to systems with 𝑓 > 2. There is a much more fundamental difference given by the fact

that for 𝑓 ≤ 2 regular motion creates an impenetrable barrier for chaotic motion. This is due to the

fact that regular motion takes place on 1d lines inside the 2d phase space. Hence, these lines separate

their inside from their outside and no trajectories are allowed to cross them.

In 1964 Arnold was the first to proof that a specific system with 𝑓 = 2.5, i. e. a system with two
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degrees of freedom and an additional time-periodic external driving, exhibits a global instability [22].

He proved that orbits starting in the vicinity of an arbitrary torus are able to get arbitrarily close to

any other torus in phase space [23] not matter how small the perturbation of the integrable system

is. Later this web of pathways connecting the vicinities of all regular tori was called Arnold web and

drew attention to it ever since [6, 16, 24–46].

In the first part of this thesis we introduce and discuss how the phase space can be visualized for

higher dimensional systems. In order to set notations and introduce the reader to the concepts of a

mixed phase space we give a brief introduction on 2d mappings in chapter 2 where the importance

of the visualization of the whole phase space is obvious. Afterwards we introduce systems with more

than two degrees of freedom and their classical description in chapter 3. This introduction will be

accompanied by the theoretical basics necessary for the understanding of higher dimensional systems

as well as by numerical methods, including the determination of the frequencies of the regular motion

which are fundamentally important to the above kam theorem. After introducing the basics we

furthermore present three example systems which are chosen such that their classical phase space

ranges from clean and simple to generic. These example systems are analyzed and we present several

possibilities of their visualization trying to follow the case of 2d maps as closely as possible.

Quantum mechanically a first and very important observation is that the different types of classical

dynamics entail different types of eigenstates, namely regular and chaotic states. This was found by

Percival in 1973 when he was investigating quantum mechanical energy levels of mixed systems [47].

However, the real picture is more complicated than the classification of eigenstates into regular and

chaotic states. The full picture depends on the properties of the system and on the scale up to which

quantum mechanics can resolve classical phase space structures. In chapter 4 we therefore study the

eigenstates of the example systems introduced in chapter 3 in order to see if and how they obey the

classification into regular and chaotic eigenstates.

Apart from this classification of eigenstates the crucial difference between systems with 𝑓 ≤ 2 and

𝑓 > 2, the existence of the Arnold web, raises the urgent question whether this difference is also visible

in quantum mechanics. The Arnold web and its influence on quantum mechanics has already been the

subject of several investigations [48–53], including works on nonlinear Schrödinger equations [54, 55].

In this thesis we want to approach this fundamental question from two different starting points. First

we search for eigenstates which are supported on the main chaotic sea and on the tiny stochastic

layers at the same time. Then we consider the time evolution of quantum mechanical wave packets

started in the chaotic domain. We demonstrate how the wave packets enter into the Arnold web and

look at the scaling of the penetration in the semiclassical limit.

While the slow Arnold diffusion is a classical phenomenon with consequences on quantum mechanics,

there are other classically forbidden transport processes which only occur quantum mechanically. The

commonly known example is the tunneling process in systems with one degree of freedom, where two

regions in position space are divided by a potential barrier. This barrier creates two classically

independent regions in phase space which are quantum mechanically connected by tunneling. A

more general class of tunneling phenomena called dynamical tunneling was introduced by Davis and
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Heller [56] in 1981. They study couplings between different regions in the phase space for molecules

where there are no simple potential barriers, yet different disconnected regions in phase space exist.

Quantum mechanically these regions are coupled by tunneling processes, for example between different

regular domains or between regular and chaotic regions.

The fact that the majority of physical systems has a mixed phase space makes dynamical tunneling

of particular importance. Prominent examples cover classically forbidden processes in atoms and

molecules [56–64], optical or microwave resonators [65–69], and mesoscopic systems [11, 70]. A key

property to the understanding of the coupling between different phase-space regions are the dynamical

tunneling rates 𝛾. They describe the quantum decay of an initial state placed in one particular phase-

space region into another classically disconnected domain. These rates have been the subject of various

investigations for systems with 𝑓 ≤ 2, e. g. 2d maps [71–79], billiards systems [68, 76], measurements

on optical or microwave cavities [67, 80–82], or transport processes in 2d electron systems [11, 70].

In chapter 4 we present numerically determined tunneling rates for the model systems introduced

in chapter 3. Furthermore, we extend the fictitious-integrable-system approach [78], which was intro-

duced for systems with 𝑓 ≤ 2 [81, 82], to higher dimensional systems. This approach allows to predict

tunneling rates which are caused by direct couplings between the regular and chaotic regions. The

resulting prediction of the numerical rates are in very good agreement.

However, the direct coupling described by the fictitious integrable system approach is not the only

important coupling mechanism between different regions in phase space. The coupling might be

significantly enhanced by very effective transitions via intermediate states. A very important non-

direct coupling mechanism relevant for regular-to-regular and regular-to-chaotic tunneling processes

is linked to classical nonlinear resonances in phase space. These resonances induce very effective

couplings between certain regular states and the corresponding effects are called resonance-assisted

tunneling (rat) by Brodier, Schlagheck, and Ullmo [83, 84]. Due to the ubiquity of nonlinear res-

onances in generic systems this type of tunneling coupling is very important. Also for our model

systems resonance-assisted tunneling is relevant. In chapter 4 we numerically determine tunneling

rates, present a first application of the theory of resonance assisted tunneling to higher dimensions

and thereby obtain a qualitative understanding of the tunneling rates.





2. 2D mappings

Understanding the interplay between regular and chaotic dynamics in classical systems is a very chal-

lenging and interesting subject. This subject is most naturally accompanied by the likewise challenging

and interesting question of how quantum mechanical systems are effected by this classical interplay.

All this is addressed in this thesis for systems with more than two degrees of freedom. However, some

of the properties are present in lower dimensional systems. In order to give an introduction into the

necessary fundamentals we would like to start with a discussion based on systems with one and a half

degrees of freedom – a notation which will be explained also on the following pages.

2.1. Hamiltonian systems with 1.5 degrees of freedom

The simplest class of dynamical systems in classical mechanics is given by systems with one degree of

freedom. This means that the phase space of the system is spanned by just one position 𝑞 and one

momentum 𝑝. The corresponding Hamiltonian function 𝐻(𝑝, 𝑞) governs the dynamics according to

Hamilton’s equation of motion

𝑝̇(𝑡) = −𝜕𝐻
𝜕𝑞

(𝑝(𝑡), 𝑞(𝑡))

𝑞(𝑡) =
𝜕𝐻

𝜕𝑝
(𝑝(𝑡), 𝑞(𝑡))

(2.1)

and does not explicitly depend on time. For such systems the value of the Hamiltonian is always

a conserved quantity for every solution of equation (2.1). This implies that such systems exhibit

integrable motion, i.e. there are as many conserved quantities as degrees of freedom [85].

In order to introduce the possibility of chaotic dynamics it is necessary to destroy the conserved

quantity given by the Hamiltonian. This is achieved by adding an explicit time dependence to 𝐻

which is often called an external driving of the system. It is now necessary to describe the system in

an extended phase space spanned by 𝑞, 𝑝, and the time 𝑡. While strictly speaking the system still has

one degree of freedom this setup is said to have one and a half degrees of freedom (𝑓 = 1.5) as the

relevant phase space has three dimensions.

Among all possible time dependencies one of the most important ones is the periodic driving [6, page

275]. This form of the driving has the advantage that the solution of equation (2.1) can be reduced

to integer multiples of the external driving period which we set to unity in this thesis. This choice

𝑡𝑛 = 𝑡0 + 𝑛 reduces the continuous solution of the equations of motion to a mapping 𝒫 connecting
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the values of position and momentum at time 𝑡𝑛 to their values at time 𝑡𝑛+1 according to

(︃
𝑝𝑛

𝑞𝑛

)︃
↦→ 𝒫

(︃
𝑝𝑛

𝑞𝑛

)︃
=

(︃
𝑝𝑛+1

𝑞𝑛+1

)︃
(2.2)

where 𝒫 is given by the solution of equation (2.1) over one period of the driving.

In order to ease the calculation of such a mapping, a common choice for the time dependence is

given by so-called kicked systems exhibiting most of the generic features of Hamiltonian systems.

There the Hamiltonian function has the special form

𝐻(𝑝, 𝑞, 𝑡) = 𝑇 (𝑝) + 𝑉 (𝑞)
∑︁

𝑛∈Z
𝛿(𝑡− 𝑛). (2.3)

In other words 𝐻 is separated in a kinetic energy 𝑇 depending on the momentum and a potential

energy 𝑉 depending on the position only. Furthermore, the latter potential is switched on periodi-

cally by a Dirac-comb given by an infinite sum of 𝛿 functions. For such systems the mapping from

equation (2.2) can be given explicitly. If the phase space variables are considered at times after the

kicks 𝑡𝑛 = 𝑡0 + 𝑛 in the limit 𝑡0 → 0, then the mapping reads

(︃
𝑝𝑛+1

𝑞𝑛+1

)︃
= 𝒫

(︃
𝑝𝑛

𝑞𝑛

)︃
=

(︃
𝑝𝑛 − d𝑉

d𝑞 (𝑞𝑛+1)

𝑞𝑛 +
d𝑇
d𝑝 (𝑝𝑛)

)︃
. (2.4)

This reduction is called a stroboscopic Poincaré section. The choice of 𝑇 and 𝑉 now determine the

mapping completely. In order to introduce various definitions and concepts needed in the description

of Hamiltonian systems, we use a concrete model in the next section.

2.2. The 2D standard map

One of the most prominent choices for the potential and kinetic energy in the kicked Hamiltonian

from equation (2.3) is the standard map. It is given by

𝐻(𝑝, 𝑞, 𝑡) =
𝑝2

2
+

𝐾

4𝜋2
cos(2𝜋𝑞)

∑︁

𝑛∈Z
𝛿(𝑡− 𝑛), (2.5)

such that the resulting mapping according to equation (2.4) reads

𝑝𝑛+1 = 𝑝𝑛 +
𝐾

2𝜋
sin(2𝜋(𝑞𝑛 + 𝑝𝑛))

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛,

(2.6)
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see references [86, page 122f.] and [6, page 310]. The form of the functional dependence on the phase

space variables 𝑝 and 𝑞 allows us to introduce periodic boundary conditions such that we arrive at

𝑝𝑛+1 = 𝑝𝑛 +
𝐾

2𝜋
sin(2𝜋(𝑞𝑛 + 𝑝𝑛)) + 1/2 mod1− 1/2

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛 mod1.

(2.7)

The modulo on the momentum is chosen such that 𝑝 ∈ [−1/2, 1/2). The position covers the range

𝑞 ∈ [0, 1).

Depending on the parameter 𝐾 the standard map yields different phase-space portraits. They can

be visualized by plotting the iterates of the mapping in a (𝑝, 𝑞) coordinate system. This is done

in figure 2.1. Starting with 𝐾 = 0 in figure 2.1(a) the Hamiltonian is independent of 𝑞 and hence the

momentum is a conserved quantity for all initial conditions. We find integrable motion and (𝑞, 𝑝) are

a)
K = 0.0

b)
K = 0.6

c)
K = 2.0

d)
K = 2.0

−0.50

−0.25

0.00

0.25

0.50

p

0.0 0.5 1.0

q

e)
K = 2.27

f)
K = 10.0

Figure 2.1.: Phase-space portraits of the 2d standard map for several values of the parameter 𝐾.
In the upper panel regular tori of the standard map are shown in red and resonantly broken tori
are shown in orange. In the lower panel regular orbits of the main island are shown in red and
resonantly broken tori therein are shown in orange. Chaotic orbits are shown in blue. In figure (a)
the integrable case 𝐾 = 0 is depicted. Figure (b) corresponds to 𝐾 = 0.6. Some tori are broken
up. Further increasing the parameter to 𝐾 = 2 leads to the resonance being surrounded by a large
chaotic sea in figure (c). In the lower panel this island can be seen as a near-integrable system on its
own, see figure (d). Increasing 𝐾 further introduces resonantly broken tori into it, as can be seen
in figure (e). Further increasing 𝐾 leaves no visible islands anymore, figure (f).
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action–angle variables. This is also reflected in the mapping where 𝑝𝑛+1 = 𝑝𝑛. Hence, for every initial

condition the motion takes place on a 1d curve given by a straight line at constant 𝑝. The position

𝑞 changes with frequency 𝜔 = 𝜕𝐻
𝜕𝑝 = 𝑝 independently of q. As the positional parameter on this 1d

curve is periodic, the parameter is called an angle and the 1d curve is referred to as a 1d torus. Note

that the frequency is chosen such that it covers the range 𝜔 ∈ [0, 1) rather than [0, 2𝜋).

Until the middle of the 20th century it was an open question what would happen to these tori if

the system undergoes a small perturbation. The Kolmogorov–Arnold–Moser theorem [1–3], or kam

theorem for short, first formulated in 1954, addresses exactly this question. If 𝐾 is increased slightly

from zero, the kam theorem guarantees that the majority of the tori survive the perturbation. The

criterion whether a torus survives is based on the frequency 𝜔 with which the angle proceeds along

the torus. If it is sufficiently far away from any rational number, then the torus will stay topologically

the same but only get slightly deformed by a small perturbation. This can be seen in figure 2.1(b)

where the red lines are still 1d curves spanning the whole 𝑞 range of the phase space from the left to

the right.

The tori which break up change their topology. They no longer traverse the whole 𝑞 range but break

up into chains of elliptical resonance zones. This is guaranteed by the Poincaré–Birkhoff theorem [87].

These zones are shown in orange in figure 2.1(b). Within them reside periodic orbits of period 𝑟 which

originate from a torus with a rational frequency 𝜔 = 𝑠/𝑟. Such rational frequencies are said to fulfill

a resonance condition of the form

𝑟 ·𝜔 = 𝑠, (2.8)

where the choice of 𝜔 ∈ [0, 1) and the period of the driving being unity has been used. The corre-

sponding regions in phase space shown in orange are called nonlinear resonances.

The central periodic orbit is called elliptic, because orbits in its neighborhood are confined to

ellipses [88]. In between these nonlinear resonances we find hyperbolic fixed points [88], e.g. (𝑞, 𝑝) =

(0, 0) in figure 2.1(b), where nearby orbits separate exponentially fast in time. Their dynamics are

called chaotic.

Further increasing 𝐾 leads to the resonance being surrounded by a large chaotic sea in figure 2.1(c).

Beyond a critical value of 𝐾 ≈ 0.97 no tori of the original system are left [7]. Hence, no red orbits are

shown in figure 2.1(c). However, the central island can be seen as a near-integrable system on its own.

Therefore the regular orbits in figure 2.1(d) are shown in red to readopt the color code for regular

motion of figure 2.1(a). Increasing 𝐾 further introduces resonantly broken tori into it, as can be seen

in figure 2.1(e). It is important to note that outside of the four orange islands there is again a regular

torus marked in red. As a consequence the chaotic motion confined in the thin layer in between the

nonlinear resonance is not connected to the outside chaotic sea. The red torus between the thin layer

and the sea acts as a barrier for the dynamics. Further increasing 𝐾 destroys also the main island in

the center and leaves no visible regular regions.

Figure 2.1 shows a scenario of increasing chaoticity and self-similarity in phase space. This is

not only visible in 2d maps of periodically driven systems with one and a half degree of freedom.
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Also autonomous systems with two degrees of freedom can be reduced to 2d maps employing the

conservation of energy, see appendix G for an example. Furthermore, the cascade of tori breaking

up into stable and unstable periodic orbits is also observed for higher dimensional systems. There a

greater variety of effects is possible due to the increased number of degrees of freedom. This will be

covered in the next chapter accompanied by necessary definitions and examples.





3. Classical dynamics of higher dimensional

systems

The introduction presenting the 2d standard map in section 2.2 emphasized clearly that a visualization

of a system’s phase space is a great help in understanding it. This is feasible and very common for

systems with up to two degrees of freedom [6, 7, 10, 82]. However, this complete visualization is

only possible for 2d mappings and systems which can be reduced to such mappings. As already

mentioned these systems are special in the sense that regular tori divide the classical phase space as

absolute barriers. This is fundamentally different in higher dimensional systems with more than two

degrees of freedom. The smallest number of dimensions necessary to see this, is given by 4d mappings.

Systems with two and a half as well as systems with three degrees of freedom can be reduced to such

mappings. In these systems the motion takes place inside a 4d phase space or on a 5d energy shell.

The dimensionality of the tori of regular motion is given by the number of degrees of freedom, two

or three, respectively. In both cases the regular tori are of codimension two and hence are missing

two directions compared to the full phase space. Therefore they are no longer barriers to chaotic

motion [6, 89].

The fact that chaotic motion is no longer bounded makes higher dimensional systems fundamentally

different from the example of chapter 2. In 1964 Arnold was the first to provide a proof for an example

system which shows this unboundedness of chaotic orbits [22]. The main difference to 2d maps is

that the perturbation strength does not need to be above a certain critical threshold in order to have

chaotic motion with arbitrarily large values of the position and momenta [6, 7]. Later the term Arnold

web was introduced in order to describe the very complicated structures in phase space along which

the chaotic motion takes place [89].

For systems with more than two degrees of freedom the very fertile approach of visualizing the

whole phase space is not possible. Therefore usually projections of orbits are used [12, 14, 90] in order

to obtain an impression of the phase space. Besides this also sections through the phase space of 4d

maps are possible [91, 92].

In this chapter we introduce 4d mappings and their classical phase space. Thereby our aim is to

provide insights which follow the enormously helpful pictures from the 2d mappings in figure 2.1 as

closely as possible. In order to do so we first present approaches and tools from the literature. As

this literature is mostly concerned with near-integrable systems we first concentrate on such systems

in section 3.1 and introduce the analytical insight known for them in section 3.2. In section 3.3

we present common tools to gain understanding of classical phase-space structures. Contrary to the

direct visualizations of orbits they are of more indirect nature. These methods can be divided into two



12 3.1 Coupled standard maps as paradigmatic example

classes. One is the usage of initially nearby orbits which leads to Lyapunov-exponent type quantities.

The other one regards classical orbits as time series and analyzes them by determining important

frequencies contained in the signal.

In section 3.4 we introduce 4d systems which are no longer near-integrable but yield mixed-type

dynamics. By this we mean systems with a regular island embedded in a large chaotic sea just like

the 2d standard map in figure 2.1(e). For these systems we introduce various phase-space sections

and projections in order to provide insight into their phase spaces on a level as close as possible to

the insight figure 2.1 provided for the 2d standard map.

3.1. Coupled standard maps as paradigmatic example

In order to introduce notations and algorithms in the following sections, we will use coupled standard

maps as our favorite example. This system is widely used for the analysis of higher dimensional

systems. It was introduced by Froeschlé and Scheidecker [93] who adjudge it to Arnold. The model

we use here is given by two standard maps coupled with a sine term according to

𝑝′1 = 𝑝1 +
𝐾1

2𝜋
sin
(︀
2𝜋𝑞′1

)︀
+
𝜉12
2𝜋

sin
(︀
2𝜋(𝑞′1 + 𝑞′2)

)︀
+ 1/2 mod1− 1/2

𝑝′2 = 𝑝2 +
𝐾2

2𝜋
sin
(︀
2𝜋𝑞′2

)︀
+
𝜉12
2𝜋

sin
(︀
2𝜋(𝑞′1 + 𝑞′2)

)︀
+ 1/2 mod1− 1/2

𝑞′1 = 𝑞1 + 𝑝1 mod1

𝑞′2 = 𝑞2 + 𝑝2 mod1.

(3.1)

The phase space is spanned by two momentum variables 𝑝1, 𝑝2 and two position variables 𝑞1, 𝑞2.

The positions 𝑞𝑗 are restricted to [0, 1) via the modulus operation. The momenta are restricted to

[−1/2, 1/2) such that the whole phase space has a volume of 𝑉phase space = 1. This choice also implies

that the used quantities are dimensionless. A real physical system governed by equation (3.1) would

yield a certain area in position and momentum space. The physical momenta and positions then must

be changed such that the rescaled phase-space volume equals one. In the above model the parameter

𝜉12 controls the coupling between the degrees of freedom. For 𝐾1 = 𝐾2 = 𝜉12 = 0 the coordinates

𝑝𝑗 , 𝑞𝑗 form action–angle variables for the integrable dynamics.

This system was already investigated by Froeschlé and Scheidecker [93, 94] with respect to the

eigenvalues of the tangent mapping and in reference [26] in order to determine the number of so-called

isolating integrals of motion. These are integrals of motion whose corresponding manifolds of constant

value do not lie pathologically dense [95, page 1298]. Reference [26] thereby confirms the so-called

Froeschlé conjecture [96] that in an 𝑓 -degrees-of-freedom system there are either zero or 𝑓 isolating

integrals of motion. This covers conserved quantities which are given by observables over the whole

phase space. It therefore does not contradict the existence of tori of dimension less then 𝑓 [97–100].

Other investigations of equation (3.1) cover the sticking of chaotic orbits at resonantly broken tori

and the corresponding diffusion processes [35, 37, 101].
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Stability of fixed points in 4D maps Just like the 2d standard map the coupled standard maps

also yield fixed points and periodic orbits. A main part of understanding from classical phase-space

structures emerges from the analysis of these periodic points and their different behavior under pa-

rameter changes [87]. A characteristic feature of periodic orbits u𝑝 of period 𝑝 is their stability making

a statement about the behavior of orbits started in the vicinity of u𝑝. It is important to remark that

this Lyapunov-stability coincides with the so called spectral stability in almost every case [85, 102].

The latter is determined by the linearization D𝒫𝑝 of the 𝑝-fold map according to the position of the

eigenvalues in C2𝑓 . In 2d maps it is possible to reduce this information to one real quantity which

is given by the trace 𝑡 = tr{D𝒫𝑝}. It allows to determine which of the possible stabilities of elliptic,

parabolic, or hyperbolic behavior is present depending on the value the trace being |𝑡| < 2, 𝑡 = 2, or

|𝑡| > 2, respectively.

A similar criterion can be given for symplectic maps of arbitrary dimension 2𝑓 . The different

stability cases can be described by solving the reduced characteristic polynomial of the linearized

mapping [89]. This links the quantities tr{D𝒫𝑝}, tr{(D𝒫𝑝)2}, . . . , tr{(D𝒫𝑝)𝑓} to the eigenvalues . It

was done for continuous Hamiltonian systems [103] and for symplectic mappings [102]. Due to the

larger number of eigenvalues more different kinds of stability of periodic points are possible. For 4d

maps they are elliptic–elliptic (ee), elliptic–hyperbolic (eh), hyperbolic–hyperbolic(hh), and complex

unstable (cu). Furthermore, the hyperbolic cases can be divided into hyperbolic and inverse hyperbolic

like in 2d maps. At the edges of regions of different stability periodic orbits might bifurcate under

changes of the map parameters and change from one stability type to another one. The crossing

into the cu domain is called Krein collision, see [102]. Besides this, all bifurcations from 2d maps

like tangent bifurcations and period-doublings may also occur. The quantities used to discriminate

between the different kinds of stability are shown in figure 3.1.

One reason for the importance of periodic orbits is that their presence structures the classical phase

space. This is due to the fact that periodic orbits are equipped with invariant manifolds. These

manifolds are able to dominate the phase space for example by introducing barriers or partial barriers

to chaotic motion [21].

Center manifolds of elliptic degrees of freedom An important difference between 4d and 2d maps

is the presence of center manifolds. In general all eigenvectors of the linearized mapping D𝒫 can be

used to construct 1d lines or higher dimensional planes through the phase space which are invariant

under the linearized dynamics. In 2d maps this is used to construct the invariant stable and unstable

manifold of hyperbolic fixed points [85]. The two eigenvectors belonging to an elliptic fixed point are

complex conjugated to one another. If their real and the imaginary part is used, then they also span

a 2d plane which is invariant under the linearized dynamics. In 2d maps this plane is the phase space

itself and therefore not much information is contained in these eigenvectors.

In 4d maps the two complex conjugated eigenvectors of each degree of freedom can be used to

construct a 2d plane in phase space. This plane is tangential to an invariant manifold, called the center

manifold . While for purely hyperbolic fixed points the theorem of Hartman–Grobman assures that the
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Figure 3.1.: Stability ranges of fixed points expressed by the coefficients 𝐴 and 𝐵 of the character-
istic polynomial of D𝒫, namely 𝐴 = tr{D𝒫} and 2𝐵 = (tr{D𝒫})2− tr{(D𝒫)2}. Different stabilities
are reflected by different colors. This diagram is based on the work of Howard and MacKay [102].

linearized dynamics is topologically conjugated to the full system this is not true for elliptic degrees of

freedom. However, the motion belonging to the elliptic degrees of freedom can be separated from the

hyperbolic ones and reduces to a lower dimensional system [104, page 94]. This restriction to a lower

dimensional manifold which is invariant under the dynamics can be carried out numerically [105]. It is

done using a polynomial expansion of the invariant center manifold and yields a 2d mapping thereon.

For ee-type fixed points there are two 2d center manifolds intersecting each other at the fixed point.

For eh-type fixed points the stable and unstable manifolds of the hyperbolic degree of freedom attach

a stable and an unstable manifold to the center manifold. These objects are three-dimensional and can

therefore be responsible for trapping mechanisms in 4d mappings. In general such normally hyperbolic

invariant manifolds (nhims) can be used to calculate reaction rates of classical as well as quantum

systems [21, 106]. The 2d planes which are invariant under the dynamics are used later to choose

suitable sections through the 4d phase space in order to visualize the phase space in the vicinity of

periodic orbits in section 3.3.3.

Having introduced the very general notations of stability and center manifolds we start the analysis

of 4d mappings by reviewing properties known for higher dimensional systems and numerical tools

used in the literature. For this purpose coupled standard maps are very suitable. Due to their

parameters they allow to examine systems which are close to integrable (small 𝐾𝑖, 𝜉12) or which yield

a predominantly regular region close to the center of phase space embedded in a large region of chaotic

motion, so-called mixed systems (1.5 . 𝐾𝑖 ≤ 4 and 𝜉12 . 1). As the majority of the literature deals

with the near-integrable case we will concentrate on this first.
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3.2. Near-integrable systems

A great part of the understanding of mixed systems originates from near-integrable systems. The

starting point are action–angle coordinates given by 𝐼1, 𝐼2, . . . , 𝐼𝑓 , 𝜃1, 𝜃2, . . . , 𝜃𝑓 and a Hamiltonian

𝐻reg depending nonlinearly on the actions only

𝐻reg(I) with det

(︂
𝜕2𝐻reg

𝜕𝐼𝑖𝜕𝐼𝑗

)︂
̸= 0. (3.2)

Usually the actions are defined as positive real numbers and the angles are periodic over the interval

[0, 2𝜋) [89]. The solution of Hamilton’s equations of motion are

𝐼𝑗(𝑡) = 𝐼𝑗(0) (3.3)

𝜃𝑗(𝑡) =
𝜕𝐻reg

𝜕𝐼𝑗
(I(0)) · 𝑡+ 𝜃𝑗(0) =: 𝜔𝑗(I) · 𝑡+ 𝜃𝑗(0) (3.4)

in which the angles are evolving linearly in time with the frequencies 𝜔𝑗 given by the first derivative of

the Hamiltonian. This system is now perturbed by adding a further contribution to the Hamiltonian

which is assumed to be very small. Its smallness is then used to provide several approximations

of the perturbed system in terms of properties of the unperturbed one. Among possible methods

are classical perturbation theory or – if the Hamiltonian is of a special form – the calculation of

adiabatic invariants [89]. The latter will be especially helpful when describing the vicinity of nonlinear

resonances in section 3.2.2. Besides an analytical treatment it is also possible and necessary to use

numerical tools for an analysis of the classical phase space. In this section we will introduce the

analytical description and numerical tools available in the literature.

3.2.1. Analytical description of multidimensional, near-integrable systems

Starting from an integrable Hamiltonian in action–angle coordinates which we will call 𝐻reg we add

a perturbation to it which makes it non-integrable. We assume that this perturbation is periodic in

time with period 2𝜋/Ω and periodic in the angles such that it can be written as a Fourier series

𝐻𝜀(I,𝜃, 𝑡) = 𝐻reg(I) + 𝜀𝑉 (I,𝜃, 𝑡) = 𝐻reg(I) + 𝜀
∑︁

m,𝑛

𝑉m,𝑛(I)ei(m𝜃−𝑛Ω𝑡). (3.5)

The kam theorem ensures that tori of the unperturbed system will survive the perturbation and

just get deformed if their frequency (3.4) is sufficiently irrational. This is the case if the frequency

vector 𝜔 is Diophantine which means it must fulfill

|m𝜔 − 𝑛Ω| > 𝒦(𝜔,Ω)
(‖m‖1 + |𝑛|)𝑓+2

∀𝑛 ∈ Z,m ∈ Z𝑓 with ‖m‖1 + |𝑛| ≠ 0 (3.6)

where we used the norm ‖m‖1 :=
∑︀

𝑗 |𝑚𝑗 | and introduced the function 𝒦. The latter is independent
of m and 𝑛 [4, page 266]. Its concrete shape is not of importance here. Apart from this there are
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regions in phase space where this relation is violated and it is not guaranteed for the associated tori

to survive. They rather change their topology completely. In the following we will concentrate on

such tori starting with a vector of actions Ires for which the frequencies of the unperturbed system

𝜔res := 𝜔(Ires) = 𝜕𝐻reg/𝜕I(Ires) (3.7)

fulfill 𝑘 resonance conditions with the external frequency Ω

r𝑖𝜔res − 𝑠𝑖Ω = 0, 𝑖 = 1, . . . , 𝑘 (3.8)

where again 𝑠𝑖 ∈ Z and the vector r𝑖 ∈ Z𝑓 . In the following introduction we keep Ω and 𝑓 arbitrary.

Afterwards we consider 𝑓 = 2 and 𝑇 = 1 for describing 4d mappings. This leads to an external

driving frequency of Ω = 2𝜋.

Resonance structures in 4D maps While for 2d maps the Poincaré–Birkhoff theorem tells what

happens to tori which fulfill a resonance condition [87] there is no direct generalization of this theorem

to more degrees of freedom. Nevertheless, one differentiates four types of phase-space structures for

4d maps [100, 107]. Starting from a completely integrable Hamiltonian the winding number 𝜔(I)

of a torus given by initial conditions (I,𝜙) can fall into one of the four cases shown in figure 3.2.

The first row gives the name of the different classifications. The second row represents the resonance

(i) (ii) (iii) (iv)

classification
non-resonant

𝑘 = 0

single-uncoupled
resonance
𝑘 = 1

single-coupled
resonance
𝑘 = 1

double resonance
𝑘 = 2

resonance
condition
r𝜔 = 𝑠Ω

none
one with

r = (𝑟, 0)𝑇 or
r = (0, 𝑟)𝑇

one with
r = (𝑟1, 𝑟2)

𝑇 two with r1 ∦ r2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

an orbit
on the 2d torus

fills the 2d torus
densely

fills 𝑟 1d lines
densely

fills one 1d line
densely

has periodicity
𝑝 =

⃒⃒
det
(︀
r1|r2

)︀⃒⃒

result after
perturbation

deformed torus
if (3.6) fulfilled

2 times: 𝑟 1d
lines filled
densely

2 times: one 1d
lines filled
densely

4 periodic orbits

Figure 3.2.: Overview of resonance structures in 4d maps based on [107]. In the row of resonance
conditions the quantities are r ∈ Z2, 𝑠 ∈ Z such that 𝑟𝑥, 𝑟𝑦, 𝑠 are coprime. In columns (ii) and (iii)
there exists only one such (r, 𝑠) apart from a multiplication with −1. The last row illustrates which
structures might appear in phase space.
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conditions fulfilled on the torus. The third row shows symbolic pictures of the motion on this torus.

The last row of this table gives an insight into what structures might be found in the 4d phase space

of near-integrable maps. This is covered in section 3.2.2. The same objects will later re-occur for

mixed systems within the regular region embedded in a large chaotic sea in section 3.4.

Column (i) addresses non-resonant tori. After switching on a small perturbation they will still be

tori with the original topology according to the kam theorem. These 2d objects are still densely

traversed by orbits starting upon them.

In column (iv) the original torus fulfills two independent resonance conditions r1, r2. It follows

from this that it also fulfills infinitely many resonance conditions given by all possible integer linear

combinations 𝜌 := 𝛼r1 + 𝛽r2 and 𝜎 := 𝛼𝑠1 + 𝛽𝑠2

𝜌𝜔res − 𝜎Ω = 0. (3.9)

This leads to the definition of the so-called resonance module [108]. It is the sublattice of Z𝑓 given by

ℒ(𝜔res,Ω) :=
{︁
𝜌 ∈ Z𝑓 ,𝜌 ̸= 0 : ∃𝜎 ∈ Z such that 𝜌𝜔res − 𝜎Ω = 0

}︁
⊂ Z𝑓 (3.10)

where in our case 𝑓 = 2. The number of independent vectors in ℒ defines the rank of the resonance.

The rank of the double resonant case is therefore two. It is the resonance with the largest possible

rank for the case of 4d maps. All orbits starting on this torus are periodic. Therefore, column (iv)

corresponds to resonant tori of 2d maps which are also given by a family of periodic orbits. The

resonance module ℒ allows to define the order of the resonance. According to Meiss the order of the

resonance is the ‖ · ‖1 norm of the smallest nonzero vector in ℒ [108]

ord(ℒ) = min
r∈ℒ
{‖r‖1} . (3.11)

This generalizes the notion of the resonance order to higher than rank-1 resonances where it is just

given by ord(ℒ) = ‖r‖1.
Under a perturbation all what remains of a double resonant torus are four periodic orbits. Their

period 𝑝 is defined by ℒ in the following way. In order to calculate 𝑝 it is necessary to take two

“minimal” representatives r1, r2 from ℒ. By this we mean that these form a basis in ℒ as Z-module

space. In other words all elements in ℒ can be written as integer linear combinations of r1, r2. With

these vectors we can write the period as

𝑝 =
⃒⃒
⃒det

(︁
r1
⃒⃒
⃒r2
)︁⃒⃒
⃒ . (3.12)

If instead of a basis of ℒ two arbitrary vectors 𝛼1r
1 + 𝛽1r

2, 𝛼2r
1 + 𝛽2r

2 are used, equation (3.12)

would be larger by a factor |𝛼1𝛽2 − 𝛼2𝛽1|. Later we will use this as a test whether the chosen set of

resonance vectors is a suitable basis for ℒ. In this sense the above “minimal” means that the vectors

of the basis span a parallelogram of minimal area. We will comment on a possibly insufficient choice

in appendix C.
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The remnants of a double-resonant torus after a perturbation will be detectable in phase space by

a search for periodic orbits. The types of these periodic points are either [107]

one elliptic–elliptic (ee), one hyperbolic–hyperbolic (hh), and two elliptic–hyperbolic (eh) ones

or

two complex unstable (cu) and two elliptic–hyperbolic (eh) ones.

All other points of the unperturbed torus in (iv) change their topology. This is described in sec-

tion 3.2.2 where the vicinity of such a torus is analyzed.

The vicinity of a torus which fulfills only a single resonance condition is different from the double-

resonance case. Cases (ii) and (iii) address these types which do not occur in 2d maps. After a small

perturbation both yield one elliptic object and one hyperbolic object. In (ii) these objects are given

by 𝑟 disjoint 1d lines each. In (iii) these objects are just one 1d line each. Although the torus does

not survive the perturbation, it does not break into periodic points. Opposite to the double-resonant

case these structures are not detectable by a search for periodic orbits. Depending on the resonance

condition the fundamental object at the center of the resonance is either one or 𝑟 1d lines. If an orbit

is started on them, then it will fill these 1d objects densely. Therefore, they can be found in the phase

space by searching for 1d invariant objects or regular tori which degenerate to 1d curves [109].

3.2.2. Pendulum approximation

While the analysis of section 3.2.1 on resonance structures only tells something about a single torus,

we would now like to concentrate on the vicinity of such a resonantly broken torus. This is done

by introducing coordinates close to the resonant torus. The new action J are chosen such that they

express local deviation from the resonant torus. We first introduce a canonical transformation given

by the generating function [6, 83]

𝐹 (J,𝜃, 𝑡) = J(𝜇𝜃 − 𝜈Ω𝑡) + Ires𝜃 (3.13)

with a 𝑓 × 𝑓 matrix 𝜇 and a vector 𝜈 ∈ R𝑓 which have to be chosen appropriately later. From the

generating function (3.13) the transformation and their inverse are

𝜓 =
(︀
𝜇𝜃 − 𝜈Ω𝑡

)︀

I = J𝜇+ Ires
and

𝜃 = 𝜇−1 (𝜓 + 𝜈Ω𝑡)

J = (I− Ires)𝜇
−1.

(3.14)

The generating function (3.13) must be chosen such that the old angles 𝜃𝑖 in equation (3.14) are

given by an integer linear combination of the new angles 𝜓𝑗 in order to keep the periodicity of the

Hamiltonian (3.5) intact. This is achieved by using an integer matrix R ∈ Z𝑓×𝑓 and setting

𝜇 =
1

𝑟
R𝑇 (3.15)
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where we defined 𝑟 := det(R). With equation (3.15) the inverse of 𝜇 in equation (3.14) becomes

𝜇−1 = adj(R𝑇 ) ∈ Z𝑓×𝑓 .
With the transformation from equation (3.14) the new Hamiltonian reads

𝐾𝜀(J,𝜓, 𝑡) = 𝐻reg(Ires + J𝜇)− J𝜈Ω+ 𝜀𝑉res(J,𝜓, 𝑡). (3.16)

Here the abbreviation for the potential in the new coordinates in the vicinity to the resonance has

been introduced as

𝑉res(J,𝜓, 𝑡) :=𝑉 (Ires + J𝜇,𝜇−1 (𝜓 + 𝜈Ω𝑡) , 𝑡) (3.17)

=
∑︁

m,𝑛

𝑉m,𝑛(Ires + J𝜇)
⏟  ⏞  

=:𝑉m,𝑛
res (J)

ei(m𝜇
−1𝜓−Ω(𝑛−m𝜇−1𝜈)𝑡). (3.18)

It is important to realize that we can choose 𝜇 and 𝜈 such that the first 𝑘 new angles evolve much

more slowly than the remaining 𝑓 − 𝑘 ones. We can then average over time and the fast degrees of

freedom in order to obtain a Hamiltonian approximating the vicinity of the resonance. To see this

difference in the time scales, the regular part 𝐻reg is expanded up to second order in the new actions.

With the matrix of second derivatives of 𝐻reg,

ℋ𝑖𝑗 =
𝜕2𝐻reg

𝜕𝐼𝑖𝜕𝐼𝑗
(Ires), (3.19)

and the resonant frequency defined in equation (3.7) the Hamiltonian reads

𝐾𝜀(J,𝜓, 𝑡) = 𝐻reg(Ires) + J
(︀
𝜇𝜔res − 𝜈Ω

)︀
+

1

2
J𝑇𝜇 ·ℋ ·𝜇𝑇J

+ 𝜀
∑︁

m,𝑛

𝑉m,𝑛
res (J)ei(m𝜇

−1𝜓−Ω(𝑛−m𝜇−1𝜈)𝑡). (3.20)

It yields the equation of motion for the angles

𝜓̇𝑖 = 𝜇𝑖𝑗𝜔res𝑗 − 𝜈𝑖Ω+𝒪(𝜀,J) (3.21)

where 𝒪(𝜀,J) covers all terms of the order 𝜀, 𝐽𝑘 and higher.

For initial conditions close to the resonance 𝐽𝑖 = 0 and small perturbation strengths 𝜀 this will give

the separation of time scales provided 𝜇 and 𝜈 are chosen appropriately. If there are 𝑘 independent

resonance conditions (3.8), then the matrix R from equation (3.15) can be built up from integers in

the following way. The first 𝑘 rows are set to be the r𝑖. The remaining rows must now be chosen such

that det(R) ̸= 0. We call these integer vectors r𝑘+1 . . . r𝑓 and get

R :=
(︁
r1
⃒⃒
⃒ . . .

⃒⃒
⃒r𝑘
⃒⃒
⃒r𝑘+1

⃒⃒
⃒ . . .

⃒⃒
⃒r𝑓
)︁
. (3.22)

The additional r𝑘+1 to r𝑓 are chosen mutually perpendicular and perpendicular to the first r1, . . . , r𝑘.
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Furthermore, all r𝑖 must be chosen such that

𝑟 = det(R)→ min . (3.23)

In order to achieve this, it might be necessary to use a possible freedom in the choice of the resonance

vectors (3.8). The minimality of 𝑟 corresponds to the one mentioned on page 17 for the period (3.12)

for the case 𝑘 = 𝑓 . Equation (3.23) ensures that the first 𝑘 columns of R span the resonance module

ℒ with integer coefficients, i. e.

m ∈ ℒ ⇒ ∃! l ∈ Z𝑘 : m =
𝑘∑︁

𝑖=1

𝑙𝑖r
𝑖. (3.24)

The vector 𝜈 is set to

𝜈 =

{︃
𝑠𝑖/𝑟 𝑖 = 1, . . . , 𝑘

0 else.
(3.25)

From equation (3.21) it follows that

𝜓̇𝑖 =
1

𝑟

(︀
r𝑖𝜔res − 𝑟𝜈𝑖Ω

)︀
+𝒪(𝜀,J) (3.26)

and therefore up to first order in 𝜀 and J

𝜓̇𝑖 ≈ 0 for 𝑖 = 1, . . . , 𝑘

𝜓̇𝑖 ≈ 1
𝑟r
𝑖𝜔res for 𝑖 = 𝑘 + 1, . . . , 𝑓

(3.27)

such that the first 𝑘 degrees of freedom are indeed slowly varying. The remaining 𝑓 − 𝑘 degrees of

freedom vary much faster because r𝑖𝜔res ̸= 0. If this expression would be zero, the corresponding r𝑖

would fulfill a resonance condition with 𝑠𝑖 = 0 and had to be put into the set of resonance vectors at

the very beginning. The difference between fast and slow angles suggests to split the vector 𝜓 into

𝜓slow :=
(︀
𝜓slow,1, . . . , 𝜓slow,𝑘

)︀𝑇
:= (𝜓1, . . . , 𝜓𝑘)

𝑇 (3.28)

𝜓fast :=
(︀
𝜓fast,1, . . . , 𝜓fast,𝑓−𝑘

)︀𝑇
:= (𝜓𝑘+1, . . . , 𝜓𝑓 )

𝑇 (3.29)

which will simplify later notation by setting 𝑉 (J,𝜓, 𝑡) ≡ 𝑉 (J,𝜓slow,𝜓fast, 𝑡).

Although we follow Chirikov [6] here, he uses a slightly different choice for the matrix 𝜇 and

differentiates between two possibilities [6, p. 281]. He attributes the choice (3.22) to Ford although he

does not explicitly state that the remaining rows might best be filled up with integers only. If 𝜔res is

not a linear combination of the first r1, . . . , r𝑘, then Chirikov prefers the so-called orthogonal metric.

This means that the 𝑘+1-th row is set to a vector parallel to 𝜔res and the remaining rows are just set

perpendicular to 𝜔res and all preceding r𝑖. This choice is advantageous for the examination of Arnold

diffusion. We will not use it here.
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With the above choice (3.22) of 𝜇 the Hamiltonian (3.16) can be further simplified by means of

an adiabatic approximation which uses the separation of time scales. This is done analogously to

references [84, 89] but extended to more than just one fast action [110]. The average is performed by

using a close-to-identity canonical transformation generated by

𝐺(J,𝜓, 𝑡) = J𝜓 + 𝜀𝐺1(J,𝜓, 𝑡) + 𝜀2𝐺2(J,𝜓, 𝑡) + . . . (3.30)

introducing new coordinates J,𝜓. This yields the transformation up to first order in 𝜀

𝜓 = 𝜓 + 𝜀
𝜕𝐺1

𝜕J
(J,𝜓) +𝒪(𝜀2) and J = J+ 𝜀

𝜕𝐺1

𝜕𝜓
(J,𝜓) +𝒪(𝜀2) (3.31)

together with the inverse

𝜓 = 𝜓 − 𝜀𝜕𝐺1

𝜕J
(J,𝜓) +𝒪(𝜀2) and J = J− 𝜀𝜕𝐺1

𝜕𝜓
(J,𝜓) +𝒪(𝜀2). (3.32)

Again with the matrix of second derivatives ℋ from equation (3.19) the quadratic approximation of

equation (3.20) reads in the new coordinates

𝐾𝜀(J,𝜓, 𝑡) =𝐻reg(Ires) +

(︂
J+ 𝜀

𝜕𝐺1

𝜕𝜓
(J,𝜓)

)︂(︀
𝜇𝜔res − 𝜈Ω

)︀

+
1

2

(︂
J+ 𝜀

𝜕𝐺1

𝜕𝜓
(J,𝜓)

)︂𝑇
𝜇 ·ℋ ·𝜇𝑇

(︂
J+ 𝜀

𝜕𝐺1

𝜕𝜓
(J,𝜓)

)︂

+ 𝜀𝑉res(J,𝜓, 𝑡) + 𝜀
𝜕𝐺1

𝜕𝑡
(J,𝜓, 𝑡) +𝒪(𝜀2, 𝐽3) (3.33)

=𝐻reg(Ires) +

(︂
J+ 𝜀

𝜕𝐺1

𝜕𝜓
(J,𝜓)

)︂(︀
𝜇𝜔res − 𝜈Ω

)︀
+

1

2
J
𝑇
𝜇 ·ℋ ·𝜇𝑇J

+ 𝜀𝑉res(J,𝜓, 𝑡) + 𝜀
𝜕𝐺1

𝜕𝑡
(J,𝜓, 𝑡) +𝒪(𝜀2, 𝜀𝐽, 𝐽3) (3.34)

where in the last step also terms of the order 𝜀 · 𝐽 are neglected. On the contrary, terms of the order

𝐽
2
are taken into account. It is important to note that due to the choice of 𝜇 and 𝜈 the term

J
(︀
𝜇𝜔res − 𝜈Ω

)︀
=

𝑓∑︁

𝑖=𝑘+1

𝑓∑︁

𝑗=1

𝐽 𝑖𝜇𝑖,𝑗𝜔res𝑗 =

𝑓−𝑘∑︁

𝑖=1

𝐽 fast,𝑖
1

𝑟
r𝑘+𝑖𝜔res (3.35)

includes only r𝑘+1 . . . r𝑓 and reduces to contributions by the fast actions Jfast. The same holds for

𝜀
𝜕𝐺1

𝜕𝜓
(J,𝜓)

(︀
𝜇𝜔res − 𝜈Ω

)︀
=

𝑓−𝑘∑︁

𝑖=1

𝜀
𝜕𝐺1

𝜕𝜓fast,𝑖

(J,𝜓)
1

𝑟
r𝑘+𝑖𝜔res. (3.36)

The transformation 𝐺1 has to be chosen such that the resulting Hamiltonian neither depends on the

time 𝑡 nor on the fast angles 𝜓fast. In order to achieve this, a new potential is introduced. It is the

old potential 𝑉res averaged with respect to time over one period of the driving and with respect to
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the fast angles specified in equation (3.27) over [0, 2𝜋). It reads

⟨𝑉res⟩(J,𝜓slow) :=
1

(2𝜋)𝑓−𝑘𝑇

𝑇∫︁

0

d𝑡

2𝜋∫︁

0

d𝜓fast,1 . . .

2𝜋∫︁

0

d𝜓fast,𝑓−𝑘 𝑉res(J,𝜓, 𝑡) (3.37)

=
1

(2𝜋)𝑓−𝑘 𝑇

∑︁

m,𝑛

𝑉m,𝑛
res (J)

𝑇∫︁

0

d𝑡

2𝜋∫︁

0

d𝜓𝑘+1 . . .

2𝜋∫︁

0

d𝜓𝑓e
i(m𝜇−1𝜓−Ω(𝑛−m𝜇−1𝜈)𝑡). (3.38)

The choice of this average guarantees that the new potential only depends on the slow angles and

describes the phase space in the vicinity of the resonance most appropriately. With 𝜇 from equa-

tion (3.22) the averaged potential simplifies further as the integrals over the fast angles yield Kronecker

symbols. At this point it is important that 𝜇 was chosen in equation (3.15) such that its inverse is

an integer matrix. If we set this integer matrix S := 𝜇−1, we obtain from the integrals over 𝜓fast,𝑖

1

(2𝜋)𝑓−𝑘

2𝜋∫︁

0

d𝜓𝑘+1 . . .

2𝜋∫︁

0

d𝜓𝑓e
imS𝜓 = eimS𝜓slow

𝑓∏︁

𝑗=𝑘+1

𝛿∑︀
𝑖𝑚𝑖𝑆𝑖𝑗 ,0 = eimS𝜓slow

𝑓∏︁

𝑗=𝑘+1

𝛿(S𝑇m)𝑗 ,0
(3.39)

where in the product S𝜓slow the vector 𝜓slow is thought to be filled up with zeros. Equation (3.39)

tells that only those Fourier components m contribute for which the 𝑓 − 𝑘 last elements of the vector

S𝑇m are all zero. This is fulfilled for all vectors of the resonance module ℒ due to the orthogonality

of r𝑘+1, . . . , r𝑓 on ℒ. Furthermore, the right choice of the vectors in 𝜇, equation (3.23), asserts that

all integer vectors m ∈ Z𝑓 fulfilling equation (3.39) are given by an integer linear combination of the

first 𝑘 columns of R. Therefore the sum over m in the Fourier series can be expressed by a sum over

the elements of ℒ using equation (3.24). With the abbreviation Rslow for the first 𝑘 columns of R we

can replace an arbitrary sum over the Fourier components according to

∑︁

m∈Z𝑓

𝑓(m)

𝑓∏︁

𝑗=𝑘+1

𝛿(S𝑇m)𝑗 ,0
=

∑︁

lslow∈Z𝑘

𝑓(Rslowlslow) (3.40)

and obtain with

m𝜇−1𝜈 ≡m𝑇𝜇−1𝜈 = (adj(R)m)𝑇𝜈 = 𝑟𝜈slowlslow (3.41)

for the averaged potential (3.25)

⟨𝑉res⟩(J,𝜓slow) =
1

𝑇

∑︁

lslow∈Z𝑘

∑︁

𝑛∈Z
𝑉

Rslowlslow,𝑛
res (J)ei(Rslowlslow)

𝑇S𝜓slow

𝑇∫︁

0

d𝑡 e−i(Ω(𝑛−sslowlslow)𝑡) (3.42)

=
∑︁

lslow∈Z𝑘

𝑉
Rslowlslow,sslowlslow
res (J)ei𝑟lslow𝜓slow . (3.43)

The generating function 𝐺 is used to remove all fast degrees of freedom from the Hamiltonian (3.34).
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In order to achieve this, the time dependent potential, the term 𝜕𝐺1
𝜕𝑡 , and the expression (3.36) will

be replaced by ⟨𝑉res⟩. In order to achieve this replacement, 𝐺1 has to fulfill

𝑓∑︁

𝑖=𝑘+1

(︁𝜀
𝑟
r𝑖𝜔res

)︁ 𝜕𝐺1

𝜕𝜓𝑖
(J,𝜓, 𝑡)− 𝜀𝜕𝐺1

𝜕𝑡
(J,𝜓, 𝑡) = 𝜀

(︀
⟨𝑉res⟩(J,𝜓slow)− 𝑉res(J,𝜓, 𝑡)

)︀
(3.44)

where equation (3.35) has been used in the sum at the right hand side. In order to get 𝐺1 it is useful

to expand it into a Fourier series. As the concrete shape of 𝐺1 does not provide further insight, we

omit it here.

After the averaging over time and the fast angles the Hamiltonian reads

𝐾𝜀(J,𝜓, 𝑡) = 𝐻reg(Ires) +

𝑓−𝑘∑︁

𝑖=1

𝐽 fast,𝑖
1

𝑟
r𝑘+𝑖𝜔res +

1

2
J
𝑇
𝜇 ·ℋ ·𝜇𝑇J+ 𝜀⟨𝑉res⟩(J,𝜓slow) (3.45)

≈ 𝐻reg(Ires + J𝜇) + 𝜀⟨𝑉res⟩(J,𝜓slow). (3.46)

In case of just one resonance r1, 𝑠1 the resonance approximation is given by

𝐾𝜀(J,𝜓, 𝑡) = 𝐻reg(Ires + J𝜇) + 𝜀
∑︁

𝛼∈Z∖{0}

𝑉 𝛼r1,𝛼𝑠1

res (J) · cos(𝑟𝛼𝜓1) (3.47)

which is exactly the expression known from 2d maps (𝑓 = 1) embedded in a higher dimensional phase

space [6, page 282]. In the case of 4d maps there might also be two resonance conditions fulfilled.

Then the phase space in the vicinity of the destroyed torus is described by

𝐾𝜀(J,𝜓, 𝑡) = 𝐻reg(Ires + J𝜇) + 𝜀
∑︁

𝛼,𝛽∈Z∖{0}

𝑉 𝛼r1+𝛽r2,𝛼𝑠1+𝛽𝑠2

res (J) · cos 𝑟(𝛼𝜓1 + 𝛽𝜓2). (3.48)

Although this Hamiltonian is time-independent, it is not integrable. This significantly complicates

the description. Note that in equation (3.47) and equation (3.48) real Fourier coefficients have been

introduced.

The last step is to transform the Hamiltonian (3.46) back to the original coordinates. Now we omit

the time 𝑡 from the transformation (3.14) and use

𝜓 = 𝜇𝜃 J = (I− Ires)𝜇
−1 (3.49)

which yields the Hamiltonian

𝐻(I,𝜃) = 𝐻reg(𝐼) + 𝜀
∑︁

𝛼∈Z𝑘

𝑉 𝛼1r1+···+𝛼𝑘r
𝑘,𝛼1𝑠1+···+𝛼𝑘𝑠

𝑘
(I)ei(𝛼1r1+···+𝛼𝑘r

𝑘)𝜃 (3.50)

approximating the vicinity of the resonance in phase space. The most important fact about this

averaged Hamiltonian is that it does not depend on time and that only certain Fourier modes are

present, namely the ones given by linear combinations of the resonance vectors r1, . . . , r𝑘. Especially
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for 4d mappings it is possible to derive a 2d Poincaré map for this conservative Hamiltonian in a

straight forward manner. This is outlined in appendix G for an example choice of Fourier coefficients.

3.2.3. Normal forms

Another possibility to obtain Hamiltonians describing resonant motion is given by normal form analy-

sis which is a very useful tool to gain insight into the phase-space structure of systems with more than

two degrees of freedom. The different topologies of resonantly broken tori is presented in figure 3.2

on page 16. This difference is also visible from a normal form analysis by distinguishing resonant,

single resonant, and double resonant normal forms [100, 107, 111–113]. Just like the above pendulum

approximation also the normal forms of double resonant tori do not yield an integrable approximation

for the vicinity of the resonance [107]. The use of normal forms is not covered in this thesis.

3.2.4. Arnold diffusion and Arnold web

In this work we consider systems for which the number of degrees of freedom is too high to let the

regular tori separate different phase-space regions. Therefore, in these systems chaotic motion is not

longer confined by regular tori. If these systems are near-integrable, then the majority of tori will

still be existing due to the kam theorem. As they are surrounded by resonantly broken tori and their

stochastic layers [6], these thin regions of chaotic motion form an interconnected web of chaoticity. In

1964 Arnold was the first one to show by means of an example system that chaotic orbits will be able

to slowly meander from the vicinity of an arbitrary torus into an arbitrary close vicinity of another

torus [22, 23]. Therefore, this web is called Arnold web. The proof of its existence is based on several

steps. First, he proves that the torus is a so-called whiskered torus. This is a torus which has stable

and unstable manifold attached to it along which it is possible to get into the vicinity of another

torus. Then such tori are used to built up transition chains connecting initial and final torus [23].

The literature distinguishes between the so-called Arnold diffusion and the Arnold mechanism. The

latter term refers to the mechanism described by Arnold in terms of so-called whiskered tori and

transition chains. This mechanism does not need to be a unique one [114]. The term Arnold diffusion

more generally describes the global instability of near-integrable systems. As the latter takes place by

means of a slow drift along resonances, it is called diffusion although the process itself is deterministic.

Moreover, the term diffusion is slightly confusing as it is unclear whether the process can be modeled

by a diffusion process with a diffusion coefficient 𝐷 or if it is e. g. sub-diffusive due to trapping

mechanisms.

The lowest dimensional case where Arnold diffusion is possible is given by periodically driven

systems with two degrees of freedom or equivalently by autonomous system with three degrees of

freedom as already mentioned on page 11. Both kinds of systems can be reduced to 4d maps by

using either a stroboscopic Poincaré section or by an ordinary Poincaré section on the energy shell.

Due to their dimensionality these 𝑓 = 2.5 and 𝑓 = 3 cases provide an Arnold web. However, in this

case the web is special with respect to the diffusion as it will take place along a 1d direction [6, page

353] and – provided that it is a diffusion process – is describable using a scalar diffusion coefficient.
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Higher dimensional problems with more than three degrees of freedom yield a diffusion tensor and

various directions in which the Arnold diffusion proceeds. Following Chirikov we will call these regions

stochastic layers. The notion of stochasticity raises from the fact that the orbits seem to perform a

stochastic process although the dynamics are completely deterministic of course. The narrowness of

these regions in near-integrable systems gives rise to call them layers. This term will allow us later

to distinguish between these layers and a large chaotic sea surrounding a generic regular region with

interwoven channels of the Arnold web, see section 3.4.2.

Following Chirikov [6] the Arnold diffusion can in principle be estimated from the pendulum ap-

proximation presented in section 3.2.2. The dynamics in the web of chaoticity is dominated by a

fast motion in the vicinity of rank-1 resonances. This fast motion is also present in 2d maps where

orbits move around the elliptic regions of resonantly broken tori very fast. In the context of higher

dimensional maps it is called motion across the resonance layer. Contrary to this fast motion there

is a motion along the direction of the resonance condition (3.8) in whose vicinity the motion takes

place. Here we have 𝑘 = 1 as it is a rank-1 resonance. This slow component of the chaotic motion

which gives rise to the Arnold diffusion is called motion along the resonance layer .

The minimal example model of Arnold diffusion must yield a so-called three-frequency Hamilto-

nian [6, page 352]. Instead of starting with the general Hamiltonian from equation (3.5) where all

Fourier components are present the Hamiltonian is set up with the minimum amount of necessary

contributions. In order to provide the necessary resonance structure the minimal example model reads

𝐻𝜀(I,𝜃, 𝑡) = 𝐻reg(I) + 𝜀 (𝑉mG cos(mG𝜃) + 𝑉mL cos(mL𝜃) + 𝑉mD cos(mD𝜃)) . (3.51)

The three resonances are called guiding , layer , and driving resonance, respectively. Which is which

is thereby not ultimately defined from the very beginning. Rather a comparison of these resonances

at a certain point in phase space gives rise to call one resonance the layer and another the guiding

resonance, for example. Especially when following a trajectory the role of the resonances can switch [6,

page 352]. At each step the resonance along which the slow diffusion takes place is called the guiding

resonance, or actual resonance by Chirikov. If this would be the only resonance, then the motion

would be integrable, compare equation (3.47). In order to introduce a small stochastic layer around

this guiding resonance we need another potential term. This is the layer resonance and it does not

need to be very strong. In a generic system it even does not need to be present explicitly as all the

overtones of the perturbation will create the stochastic layer anyway. While the dominant resonance

will be the one along which a chaotic orbit diffuses, the strength of the next-to-dominant resonance

will be responsible for the velocity of the diffusion and hence be called the driving resonance, or

virtual -resonance by Chirikov [6, page 352].

Although this three-frequency model can be used to predict the rate of Arnold diffusion [6, 35, 89]

it does not need to be valid for generic systems. There the number of present and also dominant

resonances might exceed three [37]. Apart from this drawback we cannot use the three-frequency

model in section 3.4 as we focus on mixed systems where a regular region is embedded in a large

chaotic component in phase space. In order to apply the diffusion-coefficient calculation according
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to the above references, it would first be necessary to find a fictitious integrable system whose weak

perturbation yields the coupled standard maps from our setup.

3.3. Numerical tools for the analysis of regular and chaotic motion

In order to be able to analyze dynamical systems, there are several tools which provide insight into the

nature of the dynamics. Most of them are introduced using near-integrable systems such as the coupled

standard maps for moderate 𝐾 values and small coupling between the degrees of freedom. In this

way it is often easier to understand how these tools work and how they allow to distinguish between

regular and chaotic dynamics. The numerical methods can be divided into methods based on time-

series analysis and methods based on Lyapunov exponent calculations. In this thesis we use one of each

types of methods, namely the analysis of fundamental frequencies and the fast Lyapunov indicator.

Beside these two there are other measures. Among them are finite-time Lyapunov-exponents like

the Lyapunov characteristic exponents (lce) [115, 116], the smaller and the general alignment index

(sali, gali) [117–119], helicity or twist angles [120–122], or the mean exponential growth factor of

nearby orbits (megno) [123, 124].

3.3.1. Frequency analysis

The determination of frequencies belongs to the class of methods based on time-series analysis. It is

carried out on single classical orbits interpreted as a time series. Note that in the following we use

the rotation number defined in [0, 1) rather than the frequency in [0, 2𝜋). In order to be consistent

with the literature, we denote this rotation number also by the symbol 𝜔.

Aim of the frequency analysis The kam theorem assures that in a near-integrable system certain

tori survive the non-integrable perturbation. The question arises which frequencies are the ones with

which the regular motion evolves along these invariant tori. This knowledge is helpful within three

respects. First, these frequencies can be used to approximate the dynamics of the regular region

and extend it across stochastic layers [125]. Second, the distribution of frequencies can be used to

determine very small regions of resonantly broken tori [13, 126]. This is especially important for

understanding the global structure of higher dimensional phase spaces because nonlinear resonances

are given in algebraic relations between the frequencies and can be checked easily. Third, it is possible

to calculate time-frequency decompositions of orbits in order to see which frequencies are important

at a given time. This is especially relevant when chaotic orbits are considered which get close to the

regular region. Such orbits may get trapped in the vicinity of regular structures and then mimic their

behavior. The frequency analysis thus allows to see at which regular tori a chaotic orbit gets trapped

for a finite time span [127–131]. These three aspects make the frequency analysis a valuable tool.

Besides celestial mechanics and molecular dynamics frequency analysis is also used in the examination

of particle accelerator dynamics [132].
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Realizations of the frequency analysis The simplest way of calculating these frequencies is using

lifts, i .e. using mappings without applying any modulo operations [46, 101, 108]. This however is

restricted to cases where the corresponding lift map is known. Other methods are based on wavelet

transforms [129, 130, 133, 134] and are especially useful when examining the trapping of chaotic

orbits in high-dimensional phase spaces. The frequency analysis used here is based on the work of

Laskar [36, 128, 135] which belongs to the class of windowed Fourier transform methods which where

already used before by Martens, Davis, and Ezra to examine the energy transport in molecules [127].

While Laskar used numerical minimization in order to determine the fundamental frequency of a signal,

there is a much faster way using an interpolation formula given by Bartolini, Bazzani, Giovannozzi,

Scandale, and Todesco [136]. This is numerically much simpler and yields the same result.

When systems are considered where there is more than just one relevant frequency then a choice

has to be made how to extract the 𝑓 frequencies from the 2𝑓 dimensional orbits. For near-integrable

systems one uses the conjugate coordinate pairs (𝑞𝑗𝑡 , 𝑝
𝑗
𝑡 ) of all degrees of freedom 𝑗 = 1, . . . , 𝑓 . From

these one defines a complex time signal 𝑧𝑗𝑡 = 𝑞𝑗𝑡 − i𝑝𝑗𝑡 which is then analyzed. Hence one gets 𝑓

frequencies 𝜔. While Laskar [36] uses these 𝑧𝑗𝑡 in order to calculate the windowed Fourier transform,

Vela-Arevalo and Wiggins [129] use these 𝑧𝑗𝑡 to calculate wavelet transforms using a Morlet–Grossman

mother wavelet.

It is important to note that all of these methods have the following fundamental drawback. They

all have to split the original 2𝑓 dimensional signal given by the orbit into 𝑓 complex signals in order

to get 𝑓 frequencies. However all degrees of freedom and hence all signals 𝑧𝑗𝑡 contain information

about all frequencies. The splitting of the original orbit into the separate degrees of freedom might

therefore result in spurious resonance conditions. This is especially the case for systems not being

near-integrable, see section 3.4.2. We face the problem when using Laskar’s method. There the most

important frequency of degree of freedom 𝑗 = 1 is of course also present in the signal given by the

second degree of freedom 𝑗 = 2. It might even be that the contribution of 𝜔1 is more prominent in

𝑧2𝑡 than the frequency 𝜔2 we are interested in. This also holds for all harmonics of both fundamental

frequencies such that even 2 ·𝜔1 might be more important than 𝜔2 in 𝑧2𝑡 . Therefore blindly taking

the two most important frequencies might result in erroneous output. Instead of (𝜔1, 𝜔2) we might

end up with (𝜔1, 2 ·𝜔1) giving rise to a spurious −2 : 1 : 0 resonance.

In this thesis these spurious resonances can be detected by analyzing whether they are part of the

image of the frequency map ℱ of the unperturbed system or not. If they lie apart, then they are

spurious and can be neglected, see again section 3.4.2 for an example. Another possible solution

is to calculate not only the most important frequency of 𝑧𝑗=1
𝑡 and 𝑧𝑗=2

𝑡 but the 𝑘 most important

ones [109]. Then we can choose the two most important frequencies from these 𝑓 × 𝑘 ones such that

they are non-resonant and still maximally present in all 𝑧𝑗𝑡 . While this is used in reference [109] to

analyze chaotic orbits being trapped at regular tori, it might also be used to calculate the frequency

map. This however excludes resonantly broken tori from the examination. A likewise problem exists

when trying to calculate the actions of tori from trajectories [137] which is also impossible when the

torus under consideration is broken up by the perturbation.
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Using a wavelet transformation [129] instead of Laskar’s method does not solve this problem per se

but it eases the detection of the fundamental frequencies. This is because it allows to plot an image

of all frequency contributions at a time. Thus, having determined the most important frequency all

the harmonics of this frequency can be skipped when searching for the second frequency. Typically all

degrees of freedom contain information about all frequencies. Therefore, all frequencies are contained

in a single wavelet transform for example determined from the signal 𝑧1𝑡 . The wavelet transforms are

discussed in this section.

An application of the analysis of the fundamental frequencies to coupled standard maps in the near-

integrable case was done by Laskar [36]. It is mainly based on analyzing the image of the frequency

map

ℱ(p,q) = 𝜔(p,q) ∈ [0, 1)𝑓 . (3.52)

It links initial conditions (p,q) of an integrable system to the frequency vector 𝜔 of the torus the

motion takes place on. For action–angle coordinates this map is given by the derivative of the

Hamiltonian with respect to the action coordinate but it might also be defined for non-symplectic

systems [108]. In order to calculate the image of the frequency map ℱ numerically, one considers a set

of initial conditions placed on a set of lines, i. e. a grid with a much higher resolution in one direction.

As the above mapping is continuous, the image of this grid will be a deformed set of lines. Apart

from this continuous change the image will look very regular. If the above mapping is calculated for

a near-integrable system, then the regularity of this map will be destroyed due to the breaking up of

resonant tori. The topological change in phase space is conveyed to the frequency plane. From the

non-regularity of the latter the resonance conditions can be read off.

To emphasize the procedure, we calculate the frequency map for the weakly-coupled standard maps

from equation (3.1). Therein the parameter 𝜉12 is responsible for the coupling between both degrees

of freedom. If it is slowly increased more and more resonances will be visible. Especially coupling

resonances will appear, i. e. resonances with 𝑠 = 0 in equation (3.8). The corresponding transition

for increasing 𝜉12 and therefore decreasing regularity of the image of the frequency map ℱ is shown

in figure 3.3.

Typically the width of the resonance lines in the frequency plane is inversely proportional to the

magnitude of the integers necessary to describe the resonance condition [6, page 279]. This follows

from the equation for the Diophantine frequency vectors (3.6). This is visible in figure 3.3 for the

single-uncoupled resonances in figure (a). The largest resonances are 6 : 0 : 1 and 0 : 6 : 1 which

correspond to 𝜔𝑖 = 1/6. The next but largest are 7 : 0 : 1 and 0 : 7 : 1. They are indeed thinner,

see the dashed lines in figure (a) as well as their surrounding. Whenever a resonance condition is

fulfilled, all initial conditions lying in the resonance zone described by the pendulum approximation

in section 3.2.2 will give rise to the same frequency, namely the one fulfilling the resonance condition

of the broken torus. This is due to the fact that the algorithm determines the most important 𝜔𝑖 of

the motion. By adopting to the same frequencies certain tori are missing such that there appear gaps

in the image of the frequency map ℱ from (3.52). These gaps are visible as bright areas in figure 3.3.
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Figure 3.3.: Image of the frequency map for coupled standard maps. The parameters are set to
𝐾1 = 𝐾2 = 1.3 and 𝜉12 = 0, 10−4, 10−3 and 10−2 for figures (a) to (d), respectively. Already
the uncoupled case contains resonances but they are of the single-uncoupled type, see column (ii)
in figure 3.2. The most important ones are shown by straight dashed lines for the first degree of
freedom. By introducing a coupling also slanting resonances appear in figure (b). They represent
tori fulfilling single-coupled resonance condition, see column (iii) in figure 3.2. Some of these lines
are again shown by straight dashed lines. Intersections of resonance lines are images of the frequency
map for tori which fulfill two resonance conditions and hence are double resonant, see column (iv)
in figure 3.2. With increasing coupling, figures (b) to (d), an increasing number of resonances is
visible. All these resonances are present already in figure (b) but get more and more pronounced.
With increasing coupling 𝜉12 and therefore increasing perturbation the image of the frequency map
ℱ gets more and more distorted. Although the values of the parameters are taken from [36], the
definition of the coupled standard maps in (3.1) differ by a factor two within the sine of the coupling
term.
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Laskar calls these structures more generally a non-regularity of the frequency map. Their shape gives

rise to the resonance structure of the system.

However, not all widths of all resonances scale with the denominator of equation (3.6) in figure 3.3.

A very prominent example is the 1 : −1 : 0 coupling resonance in figures 3.3(b) to (d). The reason

for this lies in the fact that the 2d grid of initial conditions used for calculating the image of ℱ
from (3.52) crossed the resonance structure not at its widest point but more at a small hyperbolic

region, see references [108, page 5] and [138].

Wavelet transforms

In near-integrable systems it is possible to perform an analysis of the fundamental frequencies also for

chaotic orbits. Using windowed Fourier transforms or wavelet transforms allows to calculate which

are the most important frequencies in the motion of a chaotic orbit at a given time. As these orbits

wander around in the stochastic layers of resonantly broken tori they will yield frequencies comparable

to the ones of the resonance they stick to [36, 41, 42, 101, 129, 130, 133]. Once the frequency map is

known it is possible to plot chaotic orbits into it. These frequencies thereby allow to conclude what

kind of motion the chaotic orbit performs while it is sticked to a resonance.

The wavelet transform we use is taken from reference [129]. For a given orbit (𝑝1𝑘, 𝑝
2
𝑘, 𝑞

1
𝑘, 𝑞

2
𝑘) of

length 𝑁 it is given by setting

𝑧1𝑘 = 𝑞1𝑘 − i𝑝1𝑘 for 𝑘 = 0, . . . , 𝑁 (3.53)

and calculating

𝐿𝜓𝑧
1(𝑎, 𝑡) =

1√
𝑎

𝑁∑︁

𝑘=0

𝑧1𝑘 ·𝜓*
(︂
𝑘 − 𝑡
𝑎

)︂
. (3.54)

Therein 𝜓 is given by the so-called Morlet–Grossman wavelet [139, page 157]

𝜓(𝑡) =
1

𝜎
√
2𝜋

e2𝜋i𝜅𝑡e−𝑡
2/2𝜎2

. (3.55)

The quantity 𝑎 in (3.54) is called scale. For the mother wavelet (3.55) it is inverse proportional to the

frequency 𝜔 [129]

𝑎 =
1

2

(︃
𝜅+

√︂
𝜅2 +

1

2𝜋2𝜎2

)︃
1

𝜔
. (3.56)

Apart from the simple 𝑎(𝜔) relation the Morlet–Grossman mother wavelet has the further advantage

that it can be computed very efficiently. The decay of the Gaussian can be used to restrict the

sum (3.54) to a small range of integers.

Some example wavelets of orbits from the coupled standard maps from figure 3.3(c) are shown

in figure 3.4. The chosen initial conditions are such that they cover different kinds of dynamical
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behavior. Figures (a) and (b) show a chaotic orbit which was started in the chaotic sea of the

second degree of freedom. Although this orbit is chaotic, its chaoticity is visible only in the wavelet

calculated from the second degree of freedom. For the other one it is even possible to determine the

most important frequency according to Laskar. This is denoted by the arrows. During the first quarter

of the time evolution a trapping occurs as can nicely be seen in figures (a) and (b). The frequency

−𝜔1 is marked at 1 − 𝜔1 due to the frequencies being restricted to [0, 1). Figures (c) and (d) show

the wavelet transform of an orbit started at a point which would lie in the chaotic sea of both maps

if they where uncoupled. The wavelets from both degrees of freedom yield a very similar picture.

Figures (e) and (f) belong to an orbit from the ee-type surrounding of a period-6 orbit embedded

in the main regular region in the center of phase space. As it is not exactly the fixed point only

one of the most dominant frequencies is 1/6 as denoted by the arrows. Figures (g) and (h) show the

wavelet for an orbit from the main regular region at the center of phase space. The two frequencies

are 𝜔1 = 0.18816383 and 𝜔2 = 0.19300918. They do not fulfill a resonance condition. They only

approximately fulfill 11𝜔1 + 10𝜔2 = 3.99989396337. Figures (i) and (j) show again an orbit from the

regular region but its initial condition is chosen to be further away from the center than the period-6

orbit from figure (e) and figure (f). We could therefore call it to be outside of the period-6 rank-2

resonance. This has to be taken cum grano salis as the resonance cannot be used to define an inside

and outside in phase space.

3.3.2. Fast Lyapunov indicator

In order to easily distinguish between regular and chaotic orbits, we will use the Fast Lyapunov

indicator fli. It was introduced by Froeschlé and Lega [140] and further investigated in references [43,

45, 141–145]. Given a mapping 𝒫 this quantity allows to distinguish between chaotic, regular, and

resonantly broken behavior. It is defined as

𝐹 (u(0), v(0), 𝑡max) = log ||v(𝑡max)|| (3.57)

where the vector v is a vector propagated by the tangent mapping. In order to calculate it, the

mapping 𝒫 and its linearization D𝒫 are used. First, an initial condition is chosen for the tangential

vector v(0). In all calculations for 4d maps in this thesis it is set to v(0) := (1, 1, 12(
√
5− 1), 1) which

is taken from reference [141]. With this and an initial condition u(0) = (𝑝1, 𝑝2, 𝑞1, 𝑞2) the so-called

variational equations

u(𝑡+ 1) = 𝒫(u(𝑡)) (3.58)

v(𝑡+ 1) = D𝒫(u(𝑡)) ·v(𝑡) (3.59)

can be solved iteratively and yield the quantities necessary to calculate (3.57). The fli calculation is

also possible for time-continuous systems where (3.58) and (3.59) are replaced by a set of differential

equations such that both components (u,v) are solved simultaneously.

According to the authors of reference [141] the above definition fluctuates very strongly especially
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 3.4.: Wavelet representations for di�erent orbits of the coupled standard maps in the weak-
coupling case. The parameters are as in �gure 3.3. The di�erent orbits cover chaotic and regular
motion as well as resonantly broken tori and chaotic motion whose chaoticity is only visible in one
degree of freedom, see text. The arrows denote the fundamental frequencies assigned to these orbits
by Laskar's method. All plots show the logarithm of the squared waveletlog jL  j2 and range from
blue (low values) to red (high values).
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Figure 3.7.: Skew phase-space sections for 𝒫llu. The sections are chosen to be | cos(𝛼)𝑝2 −
sin(𝛼)𝑝1| = 0 with 𝛼 = 0, 18𝜋,

1
4𝜋,

3
8𝜋,

1
2𝜋 from top to bottom. The direction of the axis denoted by

𝛼 is e𝛼 = cos(𝛼)e𝑝1 + sin(𝛼)e𝑝2 . The right hand side displays the same as the left hand side from a
different point of view, namely along the e𝛼-axis. Two orbits are depicted in different colors (green
and blue) in order to improve the visibility of the geometry and serve as a guide to the eye.
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efficiently using the solution to the equations of motion for linear 2d maps [152]. This solution allows

to parametrize the position and momentum (𝑞𝑖(𝑡𝑖), 𝑝𝑖(𝑡𝑖)) on a torus for each degree of freedom 𝑖 = 1, 2

with two real parameters 𝑡𝑖 ∈ R. This leads to a parametrization of the 2d torus by two parameters.

The points within the section can then be calculated numerically by a root search. For the purpose

of visualization it is sufficient to use a routine for calculating contour lines of two dimensional data

arrays [154]. This procedure is much less time consuming than iterating orbits numerically.

FLI values

Besides the orbits themselves we calculate the fli introduced in section 3.3.2. In order to be able to

interpret the values of this indicator, a 4d grid is placed over the phase space and the fli is calculated

on this grid. From the histogram of fli values shown in figure 3.8 different kinds of orbits can be

attributed to ranges of fli values. This can then be used to define a colormap which represents

the different kinds of dynamics adequately and is plotted in the background of the histogram. Red

is assigned to the peak at low values as it originates from regular motion. Blue is assigned to all

values larger than 10 and represents chaotic motion. In order to reduce computation time, the fli

calculation is aborted if the fli goes above 450 such that all the chaotic orbit with fli ≥ 450 belong

to just one bin.

This colormap is also used in figure 3.9 to display the fli values on a 2d plane in the first degree

of freedom (𝑞1, 𝑝1) and via a surface of constant value for the fli calculated on the whole 3d section.

These plots allow a clear visualization of the regular domain inside the 3d section. The advantage

of the fli calculation versus the direct calculation of orbits is that it is much faster. This is due

fli = 10
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Figure 3.8.: Histogram of fli values for 𝒫llu. The abscissa shows the fli values on a linear scale
while the ordinate shows the absolute number of fli values on a logarithmic scale. The colormap in
the background is chosen such that it matches the corresponding features in the fli histogram. The
arrow indicates where the orbit type changes from regular (red) to chaotic (blue). The grid of initial
conditions is 128× 128× 128× 128 and the number of iterations for the fli calculation is 4000.
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q1

p1

q2

| p2 | ≤ ε

Figure 3.9.: Section of the designed map 𝒫llu including fli values. The fli is visualized on the
(𝑞1, 𝑝1) plane and by a surface of constant value inside the 3d section. For better visibility these
isosurface is cut towards the spectator. The orbits in this phase-space section are calculated using
𝜀 = 10−5.
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to the fact that the length of the orbits in the fli calculation is much smaller than it is necessary

for the direct visualization of orbits inside the section. The number of iterations is reduced from

approximately 109 for a slab of width 𝜀 = 10−5 to 4000 iterations per initial condition in the fli

calculation.

Estimating the size of the regular region

With the histogram in figure 3.8 it is also possible to estimate the size of the regular phase-space

volume. This estimate is only correct up to the resolution of the initial conditions used for the fli

calculation. Therefore it does not account for the fractal structure. If all initial conditions with

fli ≤ 10 are considered regular, then from the above histogram the size of the regular region is

estimated to

𝑉 reg, numerical
4d

=
#{initial conditions with fli ≤ 10}

1284
=

4, 407, 331

268, 435, 456
= 0.01642 (3.73)

where the total phase-space volume equals unity. In this respect the 3d section shown in figure 3.9 is

misleading as the size of the regular region shown there is intuitively overestimated.

For the case of purely linear motion inside the regular region it is also possible to determine the 4d

volume of the regular region analytically. In order to do so, we first consider the 2d case. Starting

point is a general linear map 𝒫 with no periodic boundary conditions. According to reference [152]

we write this map as

(︃
𝑞′

𝑝′

)︃
= 𝒫

(︃
𝑞

𝑝

)︃
=

(︃
𝒫11𝑞 + 𝒫12𝑝
𝒫21𝑞 + 𝒫22𝑝

)︃
. (3.74)

Note that in this case 𝒫 = D𝒫. As long as the fixed point at the origin is elliptic, |12tr(𝒫)| < 1, it

is possible to write down an autonomous Hamiltonian with one degree of freedom whose curves of

constant energy interpolate the orbits of the mapping. It is given by [152]

𝐻(𝑝, 𝑞) = 𝛼
(︀
𝒫12𝑝2 + (𝒫11 − 𝒫22)𝑞𝑝− 𝒫21𝑞2

)︀
with 𝛼 =

arccos
(︀
1
2tr(𝒫)

)︀
√︀

4− tr(𝒫)2
. (3.75)

The constant prefactor 𝛼 in this expression is necessary to yield a time-continuous system whose

solutions have the same frequencies along the tori as the kicked system it interpolates (3.74). This

Hamiltonian can be used to give the functional dependence of 𝑝(𝑞) for a given initial condition. It

reads [152]

𝑝*±(𝑞) =
𝒫22 − 𝒫11

2𝒫12
𝑞 ±

√︀
4− tr(𝒫)2
2𝒫12

√︃
4𝒫12𝐻(𝑝0, 𝑞0)

𝛼(4− tr(𝒫)2) − 𝑞
2 (3.76)
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from which the maximum deflection 𝑞max of the torus can be read off to be

𝑞2max =
4𝒫12𝐻(𝑝0, 𝑞0)

𝛼(4− tr(𝒫)2) . (3.77)

For a 2d map the volume of the regular region is then given by

𝑉 reg
2d

=

𝑞max∫︁

−𝑞max

d𝑞 (𝑝*+(𝑞)− 𝑝*−(𝑞)) =
√︀
4− tr(𝒫)2
𝒫12

𝑞max∫︁

−𝑞max

d𝑞
√︀
𝑞2max − 𝑞2 (3.78)

=
𝜋

2

√︀
4− tr(𝒫)2
𝒫12

𝑞2max, (3.79)

where the maximum deflection 𝑞max specifies the extent of the island in position space by means of

the largest position value of the outermost torus of the island. It is given as an external parameter

to the map and determines the limits of the linear region. However, equation (3.78) for 𝑉2d is only

valid if 𝑞max is really the delimiting parameter for the regular region. It does not account for possible

bonds in the 𝑝 direction which reduce the island size further, for example by reaching the boundary

of phase space or by reaching 𝑝 values where the definition of the kinetic energy differs from the linear

definition on which equation (3.75) is based upon.

Equation (3.77) can now be used to determine the volume of the regular region of the 4d map

given by the designed potential (3.69). Together with a kinetic energy of 𝑇 (p) = p2/2 this yields two

uncoupled linear maps 𝒫𝑗 , 𝑗 = 1, 2. According to equation (2.4) they are given by

(︃
𝒫𝑗11 𝒫𝑗12
𝒫𝑗21 𝒫𝑗22

)︃
=

(︃
1 1

−𝑟𝑗 1− 𝑟𝑗

)︃
and therefore 4− tr(𝒫𝑗)2 = 4𝑟𝑗 − 𝑟2𝑗 . (3.80)

A given initial condition leads to a certain maximal deflection 𝑞1,max in the first and 𝑞2,max in the

second degree of freedom. The corresponding orbit is regular only if these two maximal deflections do

not leave the region where the potential is quadratic. With Γ =
[︀
−1

2 ,
1
2

]︀
×
[︀
−1

2 ,
1
2

]︀
×
[︀
−1

2 ,
1
2

]︀
×
[︀
−1

2 ,
1
2

]︀

being the whole phase space, we have

𝑉 reg
4d

=

∫︁

Γ

d𝑝1d𝑞1d𝑝2d𝑞2 Θ
(︁
𝑄2 −

(︁𝑟1
2
𝑞1,max(𝑞1, 𝑝1)

2 +
𝑟2
2
𝑞2,max(𝑞2, 𝑝2)

2
)︁)︁

(3.81)

=

∫︁

Γ

d𝑝1d𝑞1d𝑝2d𝑞2 Θ

(︂
𝑄2 − 2𝑝21 + 2𝑟1𝑝1𝑞1 + 2𝑟1𝑞

2
1

4− 𝑟1
− 2𝑝22 + 2𝑟2𝑝2𝑞2 + 2𝑟2𝑞

2
2

4− 𝑟2

)︂
. (3.82)

Here the parameter 𝑄 is again the quantity defining the extent of the regular region in equation (3.70).

This integral can be solved by diagonalizing the quadratic form in the Heaviside function. It consists
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of two terms which can be written using 𝑓(𝑥) := 𝑄2 − 𝑥
4−𝑟𝑖 as

d𝑝d𝑞𝑓
(︀
2𝑝2 + 2𝑟𝑝𝑞 + 2𝑟𝑞2

)︀
= d𝑝d𝑞𝑓

⎛
⎝
(︃
𝑞

𝑝

)︃𝑇 (︃
2𝑟 𝑟

𝑟 2

)︃(︃
𝑞

𝑝

)︃⎞
⎠ = d𝑝d𝑞𝑓

⎛
⎝
(︃
𝑞

𝑝

)︃𝑇
ℋ
(︃
𝑞

𝑝

)︃⎞
⎠

(3.83)

= d𝑝d𝑞 |det𝒱 | 𝑓
(︀
𝜆1𝑞

2 + 𝜆2𝑝
2
)︀

(3.84)

= d𝜑d𝜌
|det𝒱 |√
detℋ

𝜌𝑓
(︀
𝜌2
)︀

(3.85)

where 𝜆1,2 are the eigenvalues of the matrix ℋ defined in equation (3.83) and 𝒱 is the matrix of

eigenvectors of ℋ. As ℋ is symmetric, 𝒱 is orthogonal and | det(𝒱)| = 1. In the last step (3.85)

polar coordinates are introduced. Inserting equation (3.85) into equation (3.82) we obtain

𝑉 reg
4d

=
2𝜋√︀
detℋ1

2𝜋√︀
detℋ2

∞∫︁

0

d𝜌1 𝜌1

∞∫︁

0

d𝜌2 𝜌2Θ

(︂
𝑄2 − 1

4− 𝑟1
𝜌21 −

1

4− 𝑟2
𝜌22

)︂
(3.86)

=
2𝜋√︀
detℋ1

2𝜋√︀
detℋ2

√
4− 𝑟1𝑄∫︁

0

d𝜌1 𝜌1

√
4− 𝑟2

√︁
𝑄2 − 1

4−𝑟1 𝜌
2
1∫︁

0

d𝜌2 𝜌2. (3.87)

In the first step we increase the region of integration from the compact phase space (a 4d cube) to

R4. This is possible as the Heaviside function is zero outside the original phase-space volume. With

equation (3.87) the final result for the volume of the regular region reads

𝑉4d =
1

2

2𝜋√︀
detℋ1

2𝜋(4− 𝑟2)√︀
detℋ2

√
4− 𝑟1𝑄∫︁

0

d𝜌1 𝜌1

(︂
𝑄2 − 1

4− 𝑟1
𝜌21

)︂
(3.88)

=
1

8
· 2𝜋(4− 𝑟1)𝑄

2

√︀
detℋ1

· 2𝜋(4− 𝑟2)𝑄
2

√︀
detℋ2

(3.89)

=
𝜋2

2

√︂
4− 𝑟1
𝑟1

√︂
4− 𝑟2
𝑟2

𝑄4. (3.90)

For the parameters 𝑟1 = 1.51, 𝑟2 = 1.8, 𝑄 = 0.22 from figure 3.5 this formula yields 𝑉 reg
4d

= 0.01641

compared to 𝑉 reg, numerical
4d

= 0.01642 from equation (3.73). Hence, very good agreement with the

analytical result is found using the fli as a numerical estimate of the phase-space volume.
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3.4.2. Designed maps: Islands with resonances, 𝒫nnc

In order to understand the generic case of the coupled standard maps, it is necessary to include

nonlinear resonances into our designed system. We achieve this by changing the definition (3.70) to

𝑉 (𝑞1, 𝑞2) =

⎧
⎨
⎩

𝑉quadratic(𝑞1, 𝑞2) +
𝑅1
3 𝑞

3
1 +

𝑅2
3 𝑞

3
2 +𝑅12𝑞1𝑞

2
2, 𝑉quadratic(𝑞1, 𝑞2) ≤ 𝑄2

𝑄2 + 𝑔(𝑞1, 𝑞2), otherwise
(3.91)

with the new parameters 𝑅1, 𝑅2, and 𝑅12. In this expression the quadratic part is given by equa-

tion (3.69) plus higher order terms in 𝑞1 and 𝑞2. Note that this potential is discontinuous. In order to

make it continuous, the expression for the ellipsis in equation (3.70) would have to be replaced by the

polar representation 𝑟(𝜙) of the equipotential line of the polynomial potential including the higher

order terms from equation (3.91). However, this representation is not known analytically. Another

possibility is to smooth the potential using a Gaussian as it was done for 2d maps [138, 152]. However,

we decided to use the discontinuous potential in order to keep the computation time in a reasonable

limit. This is especially important for the very time consuming calculations necessary to calculate the

3d sections.

Frequency analysis

The new potential in equation (3.91) can be tuned by changing the parameters 𝑅1 and 𝑅2 as well

as 𝑅12. The parameters 𝑅1 and 𝑅2 introduce nonlinearities to the separate degrees of freedom. The

third parameter 𝑅12 introduces a coupling between the two degrees of freedom. These nonlinearities

in the potential introduce nonlinear resonances in phase space, as described in section 3.2. For 2d

maps these resonances can be observed directly in phase space. This is not possible for 4d maps, at

least not to the same extent. In order to see which resonances are introduced, it is useful to look at the

frequency map analysis, see section 3.3.1. This is done for various parameter changes in figure 3.10.

For the linear-uncoupled case with 𝑅1 = 𝑅2 = 𝑅12 = 0 the frequencies of the two 2d maps can be

calculated analytically [152, equation (3.16)]. They are given by

𝜔𝑖 =
1

2𝜋
arccos

(︁
1− 𝑟𝑗

2

)︁
(3.92)

and therefore

(𝜔1, 𝜔2) = (0.2106, 0.2341). (3.93)

The corresponding point is marked by a red circle in figure 3.10(a). If only the first degree of freedom

is made nonlinear, 𝑅1 = 3.0, then only the frequency 𝜔1 will yield resonances as depicted in fig-

ure 3.10(b). The dashed line marks the 𝜔1 = 1/5 resonance. The second degree of freedom still yields

a constant value 𝜔2 = 0.2341. The points scattered around the line at 𝜔2 = 0.2341 are due to chaotic

orbits which where not filtered away by the criterion fli < 2, see page 33. If both degrees of freedom
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Figure 3.10.: Image of the frequency map for several different parameters 𝑅1, 𝑅2, and 𝑅12 of the
designed map (3.91). The initial conditions are placed at 𝑝1 = 𝑝2 = 0 and 𝑞1 ∈ (0, 0.13), 𝑞2 ∈
(0, 0.13). The grid of initial conditions in 𝑞1 has 1200 points, the one in 𝑞2 has 120 point. Figure (a)
shows the linear map 𝒫llu, where 𝑅1 = 𝑅2 = 𝑅12 = 0. The frequency pair (𝜔1, 𝜔2) = (0.2106, 0.2341)
is marked by a circle as a guide to the eye. Figure (b) shows 𝑅1 = 3.0, 𝑅2 = 0.0. Figure (c) shows
𝑅1 = 3.0, 𝑅2 = 1.2 where both degrees of freedom yield a whole range of frequencies. However there
are no resonances visible in 𝜔2. Figure (d) shows 𝑅1 = 3.0, 𝑅2 = 1.2 and 𝑅12 = 0.3 which define
the map 𝒫nnc. This system also yields coupling resonances as it is typical for generic systems, see
also figure 3.3.
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are perturbed in an uncoupled way, 𝑅1 = 3.0, 𝑅2 = 1.2 but 𝑅12 = 0, then the image of ℱ covers a 2d

region in the 𝜔1-𝜔2-plane. The parameters of the second degree of freedom, 𝑟2 = 1.8 and 𝑅2 = 1.2,

are chosen such that the resulting map covers only a small range of frequencies 𝜔2, see figure 3.10(c).

This ensures that there are no low-order single-uncoupled resonances in the second degree of freedom.

However, due to the fact that more points are visible in the plot, further resonances in the first degree

of freedom get visible. They are already present in figure 3.10(b).

By inserting a coupling between both degrees of freedom, 𝑅12 = 0.3, we generate coupling reso-

nances. These are visible in figure 3.10(d) where again slanting resonances through the image of ℱ
appear, compare figure 3.3. This final parameter set 𝑟1 = 1.51, 𝑅1 = 3.0, 𝑟2 = 1.8, 𝑅2 = 1.2, and

𝑅12 = 0.3 defines the map 𝒫nnc, where the letters nnc stand for nonlinear, nonlinear, coupled

and describe the motion of the degrees of freedom at the center. The most prominently visible reso-

nances are 5 : 0 : 1 and 6 : −1 : 1. Also visible in figure 3.10(d) is the different resolution in 𝑞1 and

𝑞2 for the grid of initial conditions, see section 3.3.1. This is the reason why the image appears to

consist of nearly horizontal lines especially in the lower right part of the image of the frequency map

ℱ . All slanting resonances shown by the dashed lines in figure 3.10(d) intersect at (𝜔1, 𝜔2) = (1/5, 1/5).

According to section 3.2.1 the main resonance structure in phase space is therefore given by a period-5

orbit, see later in figure 3.11. However, in contrast to the coupled standard maps in figure 3.3 on

page 29 the point of intersection of all shown resonance lines does not lie in the direct product of the

frequency images of the uncoupled maps, shown in figure 3.10(c). This is due to the choice of the

parameters 𝑅1, 𝑅2, and 𝑅12. The uncoupled maps cover very distinct ranges of frequencies, namely

approximately 𝜔1 ∈ [0.19, 0.21] and 𝜔2 ∈ [0.2325, 0.2340] as can be seen in figure 3.10(c). Therefore,

the point (1/5, 1/5) is also not part of the image of the final nonlinear system in figure 3.10(d) and the

main 1 : −1 : 0-coupling resonance known from the coupled standard maps example is not part of the

image of ℱ .

We have to mention that the 1 : −1 : 0 resonance occurs in the numerical data as a spurious

resonance. This is due to the fact that the first degree of freedom (𝑞1, 𝑝1) as well as the second one

(𝑞2, 𝑝2) yield a periodic signal with 𝜔𝑖 = 1/5 such that obviously 1 ·𝜔1 − 1 ·𝜔2 = 0 is fulfilled. This is

one of the spurious resonances addressed in section 3.3.1.

Besides the single-coupled resonance-lines like 4 : 1 : 1 or 6 : −1 : 1 in figure 3.10(d) there is the

single-uncoupled 5 : 0 : 1 resonance which occurs due to the nonlinearity of the first degree of freedom

alone. As basis of the resonance module we will use the resonances

5 : 0 : 1 and 6 : −1 : 1 (3.94)

because they are suitable for building a basis of the resonance module ℒ from equation (3.10) as they

yield the right period according to equation (3.12). We will comment on this choice in section 4.4.4

when discussing resonance-assisted tunneling. According to equation (3.11) the order of this rank-2

resonance is two. This is because r = (1,−1) is the smallest resonance in the corresponding resonance

module ℒ(𝜔 = (1/5, 1/5)). Note that this is the order of the rank-2 resonance. This resonance is the

single point (1/5, 1/5) given by both resonances in equation (3.94). The order of the rank-1 resonances

5 : 0 : 1 and 6 : −1 : 1 separately is six and eight, respectively.
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Now that we have introduced nonlinear resonances we can have a look at the section through the

4d phase space. This is shown in figure 3.11 from two different perspectives. Shown in red are

again regular tori around the central ee-type fixed point at (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0, 0, 0, 0). Embedded

in this regular domain are orbits shown in orange. They belong to the broken tori of the rank-2

resonance around the period-5 orbit. Contrary to the fixed point at the center, none of the iterates

of the periodic orbit is part of the section. The five 𝑝2 values are only close to zero. Due to this

closeness it is meaningful to plot their projection into this section. In between the ee-type periodic

orbits u𝑝 there is also an eh-type period-5 orbit. This corresponds exactly to the general observation

from section 3.2.1. The ee-type and eh-type periodic orbits are shown in red and mint, respectively,

corresponding to the colors in figure 3.1.

The period-5 orbit trivially has the winding numbers 𝜔 = (1/5, 1/5) and thereby fulfills all of the

above resonance conditions (3.94). This is not the case for the uncoupled system figure 3.10(c) where

we find a 5 : 1 resonance in the first degree of freedom but none in the second. Hence, the motion

in the first degree of freedom is a period-5 orbit but for most initial conditions the second degree of

freedom fills a 1d torus densely. This resembles the case (ii) in figure 3.2.

The ee-type periodic orbit resides at the center of the elliptic regions shown in orange. The eh-type

periodic orbit lies in between. It is surrounded by a chaotic orbit shown in blue. Initial conditions

placed there yield orbits which are chaotic but stay a very long time in this narrow stochastic layer.

If iterated long enough, they will escape the resonance zone and enter the large chaotic sea. In

−q1
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−q2

| p2 | ≤ ε
q1

p1

q2

| p2 | ≤ ε

Figure 3.11.: Section through the 4d phase space of the designed map 𝒫nnc. The left and the right
picture show the same data but differ in the spectator’s perspective. Due to the nonlinear terms in
equation (3.91) the regular region contains a large resonance structure depicted in orange. At the
center of the orange objects there is an elliptic–elliptic period-5 orbit shown by red spheres. The
blue orbit in between the resonance structure is a chaotic orbit which has not yet entered the chaotic
sea. The axes in the left hand side plot are centered at (0, 0, 0). On the right hand side the axes are
shifted for clarity.
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section 3.4.2 we will also discuss the other way around where chaotic orbits approach this zone from

the outside and get trapped at regular structures.

FLI values and volume of the regular and stochastic region

A fli calculation performed similar to the designed map with linear regular region, see page 41,

shows that there is not only a regular and a fully chaotic component but also a stochastic region. The

corresponding histogram is shown in figure 3.12. The volume of the regular region is estimated to be

𝑉 reg, numerical
4d

=
#{initial conditions with fli ≤ 15}

1284
=

2, 525, 893

268, 435, 456
= 0.00941 (3.95)

and the volume of the stochastic region is

𝑉 stochastic, numerical
4d

=
#{initial conditions with fli ∈ (15, 100]}

1284
=

296, 093

268, 435, 456
= 0.00110.

(3.96)

These quantities are used later to estimate the number of quantum eigenstates living on these phase

space regions, see section 4.2.2.

The fli histogram can be used to colorize the fli values in the 3d sections appropriately to reveal

the extent of regular and chaotic regions. Apart from the distinction between regular and chaotic

motion it is also possible to detect resonantly broken motion and regions of only weak chaoticity [140].

A phase-space section including fli values is shown in figure 3.13. The extent of the ee-type period-5
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Figure 3.12.: Histogram of fli values calculated for 𝒫nnc. The abscissa shows the fli values on
a linear scale while the ordinate shows the absolute number of fli values on a logarithmic scale.
Contrary to 𝒫llu there exists a stochastic region (green) in the phase space of 𝒫nnc. The grid of
initial conditions is 128 × 128 × 128 × 128. The fli calculation was aborted if the fli went above
450 such that all chaotic orbits beyond fli = 450 belong to just one bin.
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−q1

p1

−q2

| p2 | ≤ ε

Figure 3.13.: Section through the 4d phase space of the designed map 𝒫nnc. The displayed orbits
are the same as in figure 3.11. Additionally fli values are visualized in the (𝑞1, 𝑝1) plane and by a
surface of a constant fli value (green). The constant value of this isosurface is chosen such that it
shows the border between stochastic (green) and chaotic (blue) region. The isosurface is cut towards
the spectator for better visibility.
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resonance zone is now visible in this plot. This is achieved by choosing the surface of constant fli

values to be at fli = 100. According to figure 3.12 this is between stochastic (green) and chaotic

(blue) fli values, hence the surface is shown in green in figure 3.13.

Frequency analysis for rank-2 resonance

As the rank-2 resonance from equation (3.94) gives rise to a periodic orbit, it is possible to investigate

this resonance separately by means of the frequency map analysis from section 3.4.2. In order to

do so, the 5-fold map is evaluated in the vicinity of one of the ee-type zones depicted in orange in

figures 3.11 and 3.13 and the corresponding frequencies are called 𝜔′
𝑗 in order to distinguish them

from the frequencies of the 1-fold map 𝜔𝑗 . The resonance itself yields further substructures which can

be investigated using the frequency map ℱ , see figure 3.14. Note that it is not important in which

section the 2d grid of initial conditions is chosen. A 2d grid in the (𝑞1, 𝑞2)-plane is suited as well as

a grid in the coordinate system given by a skew section. Both choices intersect enough tori to give a

complete image of the frequency map. The outcome of the frequency map analysis does not depend

sensitively on the concrete choice of the plane of initial conditions. This is an advantage opposed to

the use of phase-space sections which rely on a most appropriate choice of the section.

The analysis shows that the considered subsystem of the rank-2 ee-type period-5 orbit is again

near-integrable. It yields two rank-1 resonances, namely the 3 : 1 : 3 and the 4 : 1 : 4 resonance, as

indicated in the figure. Their order is seven and nine, respectively. They intersect on the frequency

plane at (𝜔′
1, 𝜔

′
2) = (1, 0) which is equivalent to (0, 0) as the frequencies are defined on 𝜔′

𝑗 ∈ [0, 1), see

page 26. This intersection is again not part of the image of ℱ . The rank-2 resonance induced by the

intersection has order two. Its period is one in terms of the 5-fold map used for the frequency analysis.

It therefore corresponds to the period-5 orbit u𝑝 at the center of the resonance zone. Furthermore,
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Figure 3.14.: Image of the frequency map ℱ for the main rank-2 ee-type period-5 resonance of the
designed map 𝒫nnc. Again there are several resonances visible. This time the 5-fold map is used to
calculate the sequence of points from which the frequencies are determined. The initial conditions
where placed around the point (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0.17113955, 0.00258983,−0.17379745,−0.00650123)
for which the phase-space sections are shown later in figure 3.18 to figure 3.21.
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the range of 𝜔′
2 values in figure 3.14 is just given by the values of 𝜔2 along the 5 : 0 : 1 resonance line

in figure 3.10(d). They are related via the period 𝑝 = 5 of the fixed point according to

𝜔′
2 = 5 ·𝜔2 mod 1. (3.97)

For another example with a period-4 resonance see the discussion of figure 3.27.

Phase-space sections at different positions 𝑝1 and 𝑝2

In order to see the whole phase space, it is necessary to shift the 3d section through the phase space.

This is done by choosing 𝑝2 = 𝑝𝑖2 for several 𝑝
𝑖
2 which is shown in figure 3.15. This is comparable to the

double sections introduced by Froéschle [140, 147] for single orbits. Another choice for a phase-space

section is given by choosing a fixed 𝑝1 such that the section contains the second degree of freedom

completely. The corresponding orbits are shown in figure 3.16. Here the resonance zones are not

visible inside the same section but appear at different values of 𝑝1, cf. figure 3.15. By shifting 𝑝1
this section also shows that there are no resonances with the external driving in the second degree of

freedom, which we already noticed in figure 3.10, where the frequency map ℱ shows no irregularities in

𝜔2. Due to the weak coupling such resonances would appear as island structures on the (𝑝2, 𝑞2)-planes

and would also be visible in the fli planes.

Using color to provide the 4th coordinate

The varying section conditions through the 4d phase space in figures 3.15 and 3.16 allow to visualize

several orbits at a time. If only one orbit is considered, then it is possible to use a projection onto the

3d section and encode the fourth coordinate by a color scale as is done for example in reference [91].

The authors call this dyeing of orbits accompanied with a 3d plotting “the method of color and

rotation”. It is further used to analyze galactic potentials [92, 146].

The advantage of such projections is that we can read of the minimal and maximal extent of

an orbit in the three directions of the 3d plots. This is possible as now all points of the orbit

are shown in contrast to the above section through the phase space. Furthermore, it is possible to

distinguish whether an orbit runs on a torus given by one connected component or if it visits several

separated objects successively. This is an information which cannot be deduced from the 3d phase-

space sections directly. It unveils if the resonantly broken tori were subject to a rank-1 or rank-2

resonance condition [107, 108, page R4301], cf. section 3.2.1.

Figure 3.17 shows a selection of orbits of different types from 𝒫nnc. As depicted by the color bar

in figure 3.17(a), the colormap ranges from blue over green to red. The maximal values covered by

the orbits are |𝑝2| = 0.17. Figure 3.17(a) shows an orbit inside the main regular island. It appears

as one connected torus. The torus in figure 3.17(b) is of the same topology but lies further away

from the center than the rank-2 resonance surrounding the period-5 orbit. In 2d maps the orbit in

figure 3.17(b) would be said to lie outside the resonance zone. This is imprecise here as the resonance

zone does not divide the phase space into an inside and an outside part. Figure 3.17(c) shows an
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Figure 3.15.: Sections through the 4d phase space of 𝒫nnc at various positions 𝑝2 = 𝑝𝑖2 with
𝑝𝑖2 = −0.315 + 0.035 · 𝑖 = −0.315,−0.28, . . . , 0.315 for 𝑖 = 0, 1, . . . , 18. As both degrees of freedom
are only weakly coupled inside the regular domain, the resonance zones and the main island just
change in size. Sections with 𝑝𝑖2 close to the phase-space boundary at |𝑝𝑖2| = 0.5 (not shown) yield
chaotic orbits only.
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Figure 3.16.: Sections through the 4d phase space of 𝒫nnc at various positions 𝑝1 = 𝑝𝑖1 with
𝑝𝑖1 = −0.288 + 0.042 · 𝑖 = −0.288,−0.256,−0.182, . . . , 0.288 for 𝑖 = 0, 1, . . . , 18. Only up to two
resonance zones of the period-5 orbit are visible at the same time as the section shifts through them
while changing 𝑝𝑖1. The labels I to V denote the five resonance-zones around the period-5 ee-type
orbit. For comparison the resonances are labeled the same way in the inset on the lower right which
is identical to figure 3.11.
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Figure 3.17.: Projection of different 4d orbits of 𝒫nnc using color to visualize the fourth coordinate
𝑝2. Shown in black are orbits inside the section given by |𝑝2| < 𝜀. Figures (a) and (b) show orbits
belonging to the main regular island inside and outside the resonance, respectively. Figures (c)
and (d) show a rank-1 and rank-2 resonance inside the main island, respectively. Figure (e) shows
an orbit inside a rank-1 resonance embedded in the rank-2 resonance of figure (d). Figure (f) shows
an orbit in the stochastic layer around the rank-2 resonance of figure (d).
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orbit within the elliptic part of the rank-1 6 : −1 : 1 resonance around the central fixed point. This

resonance is already addressed in figure 3.10(d). Within this resonance zone there exists a 1d line

being invariant under the dynamics, cf. column (iii) in figure 3.2. Therefore, the resonantly broken

tori of this resonance are still given by one connected component in phase space, as is visible in

the projection of figure 3.17(c). Figure 3.17(d) shows an orbit in the ee-type vicinity of the rank-2

resonance given by the period-5 periodic orbit. It is clearly visible from the projected orbit that this

phase-space structure is decomposed into five disjoint regions. In each of them the topology of the

object is the same as the one of the orbits in the main island. As seen in figure 3.14 the vicinity of the

ee-type period-5 orbit yields a near-integrable system. This system includes resonances with respect

to the 5-fold map. An orbit inside such a sub-resonance is depicted in figure 3.17(e). It belongs to the

rank-1 3 : 1 : 3 resonance of this subsystem seen in figure 3.14.Figure 3.17(f) shows a chaotic orbit in

the stochastic layer of the system. The absence of red and blue colors emphasizes that the stochastic

region is indeed a very narrow object in the 4d phase space. The shown orbit only covers a range of

|𝑝2| < 0.052.

Skew phase-space sections containing invariant eigenspaces

The skew section introduced in section 3.3.3 can be used to visualize the phase-space structure in the

vicinity of one of the elliptic–elliptic resonance zones, namely the period-5 orbit at

u𝑝 := (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0.17113955, 0.00258983,−0.17379745,−0.00650123). (3.98)

This is shown in figures 3.18 to 3.21. All contain a comparison of perpendicular and skew sections

by means of orbits shown in gray. However, in each figure another set of orbits and thereby another

aspect of the phase space is highlighted. The perpendicular sections are at 𝑝2 = 0.00258983 in figure

(c) and at 𝑝1 = 0.17113955 in figure (d). The skew sections defined by the linearization D𝒫nnc, see
equation (3.63), contain either the first (a) or the second degree of freedom (b) completely. The

sections are all shifted to contain u𝑝. In all figures 3.18 to 3.21 the 2d planes tangential to the central

manifold of the first and second degree of freedom are shown in blue and green, respectively. Figure

(a) contains the blue plane completely while the green one is completely contained in (b) only. In the

respective other plots the planes are given by lines.

In figure 3.18 the orbits started on the tangential planes are shown in orange and red. If the orbits

were started on the respective center manifold instead of on its tangential, then these orbits would lie

on 1d tori. This remarkable difference allows to find the center manifold numerically [109]. As the

highlighted orbits in figure 3.18 are started only on the tangential plane to the center manifold they

are not exactly 1d but very thin. Hence, the orange and red orbit shown in figure 3.18 stay close to

the plane they started on and lie almost completely inside the skew sections (a) and (b), respectively.

If the system would be perfectly linear in the vicinity of the periodic point u𝑝, then the orbits would

lie on these planes exactly. Due to the nonlinearity the orbits bend away from the 2d plane as the

initial conditions move further away from u𝑝 in the middle. The perpendicular sections (c) and (d)
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cannot reproduce this clear picture. However, these sections look still similar to the skew ones due to

the weak coupling of both degrees of freedom.

In figure 3.19 the orbits are started on a surface parallel to the blue plane of the first degree of

freedom. Their initial conditions are placed with increasing distance from the green plane of the

second degree of freedom. The corresponding colors are red, orange, and yellow. They highlight the

same orbits in all figures (a) to (d). Especially the fact that the initial conditions are chosen parallel

to the blue plane with increasing distance to the green plane is clearly visible in (a), where the orbits

are concentric, and (b), where the orbits are stacked on top of each other along the blue line.

Figure 3.20 is similar to figure 3.19. This time the orbits are started parallel to the green plane of

the second degree of freedom with increasing distance from the plane of the first degree of freedom

shown in blue. Again the colors are red, orange, and yellow, respectively.

Finally figure 3.21 shows a chaotic orbit in the stochastic layer in between the ee-type surrounding

of u𝑝. This layer also contains the eh-type period-5 orbits (not shown) mentioned on page 18.

The orbits shown in figures 3.18 to 3.21 match the observation from the linear case in figure 3.7.

There the uncoupled system 𝒫llu was depicted in a skew section | cos(𝛼)𝑝2− sin(𝛼)𝑝1| = 0. For 𝛼 = 0

and 𝛼 = 𝜋/2 the sections of 𝒫llu look simple. For intermediate values of 𝛼 they resemble the structures

of the nonlinear map 𝒫nnc viewed in perpendicular sections, |𝑝2| = 0 or |𝑝1| = 0. We can deduce

that a part of the effects seen in the nonlinear map 𝒫nnc is due to an inappropriate choice of the

section. However, contrary to the uncoupled case it is impossible to globally define an appropriate

plane section. Only the vicinity of the periodic point is clarified by the choice from equation (3.63).

Arnold diffusion

In section 3.2.4 the Arnold web is introduced. It describes the chaotic region surrounding the thin

resonance zones in near-integrable systems. The system 𝒫nnc we consider here, however, is not near-
integrable in a global sense. It is given by a predominantly regular region embedded in a large chaotic

sea. In order to discuss Arnold diffusion and the existence of an Arnold web, it is necessary to

restrict ourselves to the regular region. As mentioned in section 3.4.2, the cubic terms in the potential

transform the regular region of 𝒫llu into the nonlinear and near-integrable one of 𝒫nnc. Therefore,

this system is suitable to perform the above mentioned frequency analysis on page 46 and yields an

Arnold web. This web is connected to the outside chaotic sea.

In order to analyze this connection it is possible to search for orbits which, for example, start in the

stochastic domain deep inside the regular region and very slowly wander outside into the large chaotic

sea. Besides calculating such orbits it is also of interest to determine the velocity of this transport

towards the chaotic sea, especially under the premise that it is a normal diffusion process. We thereby

neglect the possibility that it might also be possible that the transport within the Arnold web might

be sub-diffusive due to trapping mechanisms.

The velocity of the diffusion is relevant to understand how quantum mechanical eigenstates are able

to penetrate into the region of stochastic motion surrounding the regular islands. The very small rate

of diffusion along the resonance layers might be linked to how eigenfunctions decay into the Arnold
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a)

b)

c) d)

Figure 3.18.: Shown in gray are several regular orbits in the vicinity of u𝑝. Shown in blue and
green are the tangential planes to the center manifold of u𝑝. Shown in orange and red are orbits
started on the blue or green surface, respectively.
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a)

b)

c) d)

Figure 3.19.: Plot like in figure 3.18. The initial conditions are placed with increasing distance (red
to yellow) from the tangential plane of the second degree of freedom (green) parallel to the plane of
the first degree of freedom (blue).
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a)

b)

c) d)

Figure 3.20.: Plot like in figure 3.19. The initial conditions are now placed with increasing distance
(red to yellow) from the tangential plane of the first degree of freedom (blue) parallel to the plane
of the second degree of freedom (green).
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a)

b)

c) d)

Figure 3.21.: Plot like in figure 3.18. Highlighted is an orbit in the stochastic layer.
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web [51–53] just as it is known from dynamical localization [155].

In near-integrable systems as described in section 3.2.4 it is possible to give the direction of Arnold

diffusion by means of approximately conserved quantities. This direction can then be used to calculate

the rate of the slow diffusion along the resonance layers [37, 43]. This however is not viable in our case

of a regular island embedded in a large chaotic sea. Although we might interpret the given system as

being the outcome of a small perturbation of some regular system 𝐻reg, it is unknown how to build

such a fictitious system. Possible ways could be the methods already used for 2d maps [125, 138],

namely the analysis of fundamental frequencies, normal form analysis, or Lie-transformation methods.

In the case of 4d maps, however, they do not necessarily yield regular systems. For example a normal

form might not yield a fully integrable system [107]. Furthermore, these approximations might not

be precise enough to determine the direction of the slow diffusion accurately. This is due to the fact

that this direction is calculated in the stochastic layers, where the approximations are of less accuracy

than in the regular center. Apart from these problems the pure knowledge of 𝐻reg is not sufficient

as it is also necessary to know the corresponding action–angle variables. We do not address such

constructions here and omit the calculation of diffusion coefficients.

3.4.3. Generic maps: Coupled standard maps, 𝒫csm

Although the designed map 𝒫nnc provides a regular island with nonlinear resonances, the transition

into the chaotic sea is still very sharp. We can use the coupled standard maps introduced in section 3.1

in order to overcome this non-generic feature. The mapping is given by

𝑝′1 = 𝑝1 +
𝐾1

2𝜋
sin
(︀
2𝜋𝑞′1

)︀
+
𝜉12
2𝜋

sin
(︀
2𝜋(𝑞′1 + 𝑞′2)

)︀
+ 1/2 mod1− 1/2

𝑝′2 = 𝑝2 +
𝐾2

2𝜋
sin
(︀
2𝜋𝑞′2

)︀
+
𝜉12
2𝜋

sin
(︀
2𝜋(𝑞′1 + 𝑞′2)

)︀
+ 1/2 mod1− 1/2

𝑞′1 = 𝑞1 + 𝑝1 mod1

𝑞′2 = 𝑞2 + 𝑝2 mod1.

(3.1)

and yields three parameters 𝐾1,𝐾2 and 𝜉12. In order to get a phase space with a regular region

embedded in a larger chaotic domain we choose 𝐾1 = 2.25,𝐾2 = 3.0, and 𝜉12 = 0.1. We will call

the map using this parameter set 𝒫csm. In order to analyze the phase-space structure of this system

we will first calculate the fli distribution and then show 3d phase-space sections including this fli

values.

FLI values and volume of the regular and stochastic region

Like for the designed map in section 3.4.1 it is possible to calculate the fli on a grid over the 4d phase

space and thereby estimate the volume of the regular region as well as the region of the embedded

stochastic layers. The histogram in figure 3.22 presents the distribution of fli values calculated on

a 128 × 128 × 128 × 128 grid. Contrary to the case of the designed map with linear regular region

in figure 3.8 many resonances are present for the coupled standard maps. Therefore the portion of
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phase space with fli values between regular and chaotic motion is much larger. This is shown by the

green area of the histogram. Like in the fli histogram of 𝒫nnc in figure 3.12 three different kind of

orbits can be classified. The leftmost peak is regular and marked in red, the rightmost peak chaotic

and therefore marked in blue. The fli values in between originate from the thin stochastic layers in

the regular region and are marked in green.

Again the fli histogram allows to estimate the volume of the regular region as well as the stochastic

zone. The volumes are

𝑉 reg, numerical
4d

=
#{initial conditions with fli ≤ 15}

1284
=

1, 739, 913

268, 435, 456
= 0.00648 (3.99)

and

𝑉 stochastic, numerical
4d

=
#{initial conditions with fli ∈ (15, 65]}

1284
=

1, 839, 004

268, 435, 456
= 0.00685.

(3.100)

It is important to note that the volume of the stochastic layer of 𝒫csm is by a factor of six larger than

for 𝒫nnc, cf. equation (3.96).

The colormap defined by this histogram is also used in figure 3.23 to display the fli values within

a phase-space section. They allow for a clear visualization of the regular part of phase space and the

stochastic layer in the coupled standard maps 𝒫csm. The fli is calculated on a 2d plane given by the

first degree of freedom (𝑞1, 𝑝1) and on the whole 3d section. On the 2d plane the values are indicated

directly by their color. The 3d values are visualized by a surface of constant fli value, fli = 65.
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Figure 3.22.: Histogram of fli values calculated for 𝒫csm. The abscissa shows the fli values on a
linear scale while the ordinate shows the absolute number of fli values on a logarithmic scale. The
colormap in the background is chosen according to the peaks belonging to regular, weakly chaotic,
and fully chaotic motion. The fli-calculation was aborted if the fli went above 450. The grid of
initial conditions is 128× 128× 128× 128.
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Figure 3.23.: Section of the coupled standard maps 𝒫csm including fli values. Shown in red are
regular orbits of the main island. Resonantly broken tori within the island are marked in orange.
Chaotic orbits are shown in blue. The fli is shown on a 2d (𝑞1, 𝑝1) plane and by a surface of constant
fli value. This isosurface given by fli = 65 is cut towards the spectator for better visibility. The
orbits in this phase space section are calculated using 𝜀 = 10−5.

This isosurface therefore marks the interface between stochastic and fully chaotic motion.

Figure 3.23 features regular orbits around the central fixed point (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0.0., 0.0, 0.5, 0.5)

shown in red and chaotic orbits shown in blue. The regular region is surrounded by a large chain

of resonances shown in orange. This chain is given by a ee-type period-4 orbit. The corresponding

eh-type orbit is embedded in the stochastic layer. A chaotic orbit within this layer is also shown

in blue. If the fli values are also visualized, then the extent of the regular region and the interface

between stochastic and fully chaotic region gets visible due to the appropriate choice of the colormap

according to figure 3.22.

The main difference to 2d maps is that chaotic orbits starting in the outside chaotic component

can penetrate the stochastic layer around the resonance chain. This is because neither the broken

tori shown in orange nor the outermost regular orbits shown in red are able to separate the central

fixed point from the chaotic sea. In figure 3.24 a part of such a chaotic orbit going into the stochastic

layer is shown. It was started in the chaotic component and iterated for 𝑁 = 3.9 · 1012 iterations.

The majority of the iterates lie in the chaotic component away from the regular center. The plot is

restricted to a small cuboid in order to better visualize the penetration of the stochastic layer. The

color code of the orbit is given by the iteration count. Early parts of the orbit are shown in blue,

intermediate parts in green, and late parts in red. If neighboring points inside this 3d section yield

the same color, then this means that the orbit visited the same phase-space region with subsequent

iterations. This allows to recognize if and where the orbit gets trapped [109], see the right hand

side of figure 3.24. One way of determining at which phase-space structures orbits get trapped is the

frequency analysis. Given a chaotic orbit sticking to some small region in phase space a time-dependent

frequency analysis may reveal the cause of the trapping [129, 130, 133], see also the wavelet transform



66 3.4 Systems with regular dynamics and a large chaotic sea

Figure 3.24.: Chaotic orbit penetrating the stochastic layer around the ee-type resonance chain
in 𝒫csm. The orbit was started at (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (−0.45,−0.45, 0.06, 0.07) within the chaotic sea
and iterated 𝑁 = 3.9 · 1012 times. Shown in black are the regular and resonantly broken tori from
figure 3.23. The color code of the chaotic orbit is given by the iteration count. Early parts of the
orbit are shown in blue, intermediate parts in green, late parts in red. The right hand side figure
shows regions of stickiness.

in figure 3.4(a) for an example from near-integrable coupled standard maps. Other possibilities cover

the analysis of the distribution of Lyapunov exponents [156]. The trapping mechanism is not part of

this thesis and discussed elsewhere [109].

Note that the trapping of the chaotic orbit in figure 3.24 happens around a resonance zone of

the ee-type subsystem. In order to also analyze the global structure of the system and the ee-type

period-4 subsystem, we can perform a frequency calculation of the whole system and of the 4-fold

map, as it is done for 𝒫nnc on page 47 and 52.

Analysis of fundamental frequencies

The frequency map analysis has already been applied to coupled standard maps by Laskar [36].

However, he uses a mapping with a slightly different coupling. The result of the frequency analysis of

𝒫csm is shown in figure 3.25. As the initial conditions are placed on a grid with much finer resolution in

one direction, the image under the frequency map ℱ is given by deformed 1d curves. Some resonances

are labeled by dashed lines. As the most important ones we can identify the rank-1 resonances 4 : 0 : 1

and 3 : 1 : 1. Both are of order five. The two lines intersect at (𝜔1, 𝜔2) = (1/4, 1/4). The corresponding

rank-2 resonance is of order two, cf. page 48.

In the above frequency map only the most important frequencies are taken into account. These

might not always yield enough information. Especially for stickiness phenomena it is necessary to also

know higher order frequencies. This is done by taking several frequencies for a given time window of

an orbit into account. This leads to several so-called ridges in the frequency-time representation of

orbits [130]. If a wavelet transform is used to visualize the frequency content of a classical orbit, then

the higher order frequencies can be seen directly, see 𝜔3 later in figure 3.27.

One effect of higher order are sub-resonances being embedded in the regular vicinity of a ee-type
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Figure 3.25.: Image of the frequency map ℱ for 𝒫csm. For each initial condition an orbit was
iterated for 𝑁 = 4096 steps and a pair of frequencies (𝜔1, 𝜔2) was calculated using Laskar’s method.
In order to reduce the noise on this picture, the fli was calculated beforehand. If it was too large,
then the orbit was discarded from the frequency calculation, cf. figure 3.22. Some resonances are
indicated by dashed lines.
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Figure 3.26.: Frequency map analysis around a ee-type rank-2 resonance for 𝒫csm. In order to
analyze the subsystem, the 4-fold map is used. The initial conditions are placed close to the period-
4 orbit at (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0, 0, 0.60121805, 0.51028145). Some resonances are indicated by dashed
lines.
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periodic orbit. For 𝒫csm we can use the 4-fold iteration in the vicinity of one of the ee-type periodic

orbits shown in figure 3.23, just as is done for 𝒫nnc on page 52. The frequencies determined for the

4-fold map are labeled with 𝜔′
𝑗 in order to distinguish them from the frequencies 𝜔𝑗 calculated from

the 1-fold mapping, see figure 3.25. The range spanned by 𝜔′
2 is given by the range of frequencies 𝜔2

along the 4 : 0 : 1 from figure 3.25 according to 𝜔′
2 = 4 ·𝜔2 mod 1.

Having determined the resonance structure of the sub-system we can now place an initial condition

on one of the rank-1 resonances of figure 3.26, e.g. the 4 : 1 : 4 resonance. A suitable initial condition

can be found by using a 2d fli plane which is calculated over the first degree of freedom at (𝑞2, 𝑝2) =

(0.52, 0.0). In this plane the sub-resonance is well visible such that we can choose an initial condition

inside the ee-type vicinity (not shown). Figure 3.27 shows the wavelet calculated from the orbits

started at (𝑞1, 𝑞2, 𝑝1, 𝑝2) = (0.42, 0.52, 0.16, 0.0) and iterated 50000 times. The wavelet has been

calculated using the first degree of freedom 𝑧 = 𝑞1 − i𝑝1 according to section 3.3.1. The left hand

side of both figures (a) and (b) show the full wavelet. As the orbit is regular, the wavelet does not

change in time significantly. The right hand side of both figures shows the time average of the wavelet

which yield prominent maxima. The most important frequencies are calculated using the faster

method according to Bartolini, Bazzani, Giovannozzi, Scandale, and Todesco [136] instead of Laskar’s

method [36]. They are indicated by a blue and a green arrow respectively and are accompanied by

higher harmonics up to order 3. The higher harmonics of the first frequency 𝜔1 must be neglected when

searching for the second frequency 𝜔2 in order to avoid a spurious resonance condition like 𝜔2 = 2𝜔1,

see page 27. The determined frequencies are 𝜔1 = 0.25 and 𝜔2 = 0.32406436 in figure 3.27(a) and

𝜔1 = 0.92593564 and 𝜔2 = 0.29625744 in figure 3.27(b). While the frequencies from figure 3.27(a)
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Figure 3.27.: Wavelets 𝐿𝜓 for 𝒫csm (a) and 𝒫4
csm (b) for an orbit of the 4 : 1 : 4 sub-resonance

of the 4-fold map 𝒫4
csm, see figure 3.26. The figures (a) and (b) are accompanied by a plot of the

time-averaged wavelet. The arrows indicate the most important frequencies 𝜔1 and 𝜔2 determined
by Laskar’s method including some higher harmonics. The frequencies are 𝜔1 = 0.25 and 𝜔2 =
0.32406436 in figure (a) and 𝜔′

1 = 0.92593564 and 𝜔′
2 = 0.29625744 in figure (b). Figure (a) also

contains a higher order frequency given by 𝜔3 = 0.23148391.
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fulfill the 4 : 0 : 1 resonance from figure 3.25 the ones from figure 3.27(b) fulfill the 4 : 1 : 4 resonance

from figure 3.26. It is important to note that the higher order frequencies given by the analysis of

the 4-fold mapping 𝒫4
csm are also contained in the averaged wavelet and the frequency analysis of the

1-fold map. The corresponding higher order frequency 𝜔3 = 0.23148391 is linked to the result of the

4-fold map via 𝜔′
1 = 4 ·𝜔3 mod 1. Due to being a higher order frequency, 𝜔3 is not directly visible

in the frequency map of figure 3.25 because there only the two most relevant frequencies are plotted.

The other frequencies are related by 𝜔′
2 = 4 ·𝜔2 mod 1.

Skew phase-space sections containing invariant eigenspaces

Apart from the perpendicular sections given by 𝑝2 = 0 in figures 3.23 and 3.24, it is also possible

to use skew sections especially in the vicinity of the ee-type period-4 orbit, just as it is done for

the designed map 𝒫nnc in figures 3.18 to 3.21. Two examples of such a skew section are given in

figures 3.28 to 3.30. All figures show the vicinity of the period-4 orbit

u𝑝 := (𝑝1, 𝑝2, 𝑞1, 𝑞2) = (0.202436103, 0.0205629071, 0.398781948, 0.489718546). (3.101)

Figures (a) to (d) visualize the same orbits in gray in different sections but put emphasis on other

classes of orbits in each of the figures 3.28 to 3.30 by highlighting the orbits in various colors. The

perpendicular sections are placed at 𝑝2 = 0.0205629071 in figure (c) and at 𝑝1 = 0.202436103 in

figure (d). The skew sections defined by the linearization D𝒫csm, see section 3.3.3 on page 34, contain

either the first (a) or the second degree of freedom (b) completely. The sections are all shifted to

contain u𝑝. In all figures 3.28 to 3.30 the 2d planes tangential to the central manifold of the first and

second degree of freedom are shown in blue and green, respectively. Figure (a) contains the blue plane

completely while the green one is completely contained in (b) only. In the respective other plots the

planes are given by lines.

In figure 3.28 the orbits started on the tangential planes are shown in orange and red similarly

to figure 3.18. As mentioned on page 57 the planes are tangential to the center manifolds of u𝑝.

Therefore, orbits started on them are approximately given by 1d tori. As the center manifolds of u𝑝
are invariant under the dynamics of the 4-fold map, the map can be restricted to them which then

yields 2d maps on these 2d manifolds [104, 105], see also page 13. It is important to note that the

center manifolds are broken at resonances of the mapping. As these resonances are distributed densely

over the phase space within the ee-type vicinity of u𝑝, the center manifolds are highly non-connected

objects [109]. However, neglecting this fact and ignoring the resonances the 1d tori on the center

manifolds can be said to be a one-parameter family of invariant 1d objects. The same is true for the

isolated 1d invariant lines at the center of a rank-1 resonances, see columns (ii) and (iii) in figure 3.2

for details and figure 3.17(c) for an example. Although a single resonant torus breaks up into just one

1d invariant line the rank-1 resonance defines a family of resonant tori in phase space each resulting

in a 1d invariant line such that these lines appear in families, again ignoring the resonances.

As the frequency analysis of 𝒫csm in section 3.4.3 points out, there also exist rank-1 resonances
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a)

b)

c) d)

Figure 3.28.: Shown in gray are several regular orbits in the vicinity of u𝑝. Shown in blue and
green are the tangential planes to the center manifold of u𝑝. Shown in orange and red are orbits
started on the blue or green surface, respectively.
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a)

b)

c) d)

Figure 3.29.: Plot like in figure 3.28. Highlighted are two orbits belonging to a rank-1 resonance
around u𝑝. In figure 3.27(b) the frequency analysis of an orbit started in this zone is presented. It
reveals it to be a 4 : 1 : 4 resonance of the 4-fold mapping.
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a)

b)

c) d)

Figure 3.30.: Plot like in figure 3.28. Highlighted is an orbit in the stochastic layer around the
resonance. Note that this orbit seems to fill a 2d area only.



3.4.3 Generic maps: Coupled standard maps, 𝒫csm 73

in the 4-fold iteration of the coupled standard maps embedded in the ee-type region around u𝑝,

cf. figure 3.26. One of them is shown in figure 3.29, namely the 4 : 1 : 4 resonance already investigated

by the wavelet transform in figure 3.27. At its center resides a 1d line invariant under the 4-fold

mapping. This line is given by a family of broken tori fulfilling a rank-1 resonance and breaking up

into one 1d invariant line each. It therefore has a completely different origin than the 1d tori on the

central manifolds of the ee-type fixed point.

Figure 3.30 shows a chaotic orbit in the stochastic layer in between the ee-type surrounding of u𝑝.

This layer also contains the eh-type period-4 orbits (not shown) mentioned on page 18. If this chaotic

orbit is iterated long enough, it will leave the thin stochastic layer and enter the chaotic sea by taking

its itinerary trough the Arnold web. The rate with which this diffusion process takes place is very

hard to determine in systems which are far away from near-integrability such as the given 𝒫csm. The
reason is that the direction along which the diffusion is slowest is hard to determine. In figure 3.30

the chaotic orbit seems to fill a 2d area. However, it also wanders slowly into a third direction eslow

which will lead the trajectory out into the chaotic sea. Once this direction eslow is known, the diffusion

coefficient of the Arnold diffusion would have to be determined along eslow. Note that eslow is position

dependent and is in general not given by the normal to the almost 2d area the orbit fills in the 3d

section in figure 3.30 (a) to (d). Only the projection of eslow onto the 3d sections coincides with the

normal to the approximately 2d orbit.

The above skew sections are chosen such that they contain the tangential plane to the center mani-

fold. This introduces appropriate phase-space sections for the ee-type vicinities of rank-2 resonances.

For rank-1 resonances this cannot be done due to the lack of invariant 2d manifolds connected to

them. One possibility is to use a section perpendicular to the tangential at the 1d invariant torus in

the center of the ee-zone mentioned in the last row of figure 3.2.
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In this chapter we want to focus on the properties of eigenfunctions of systems with a mixed phase

space, on quantum mechanical consequences of the Arnold web, and on the quantum mechanical

coupling between the regular and the chaotic domain.

Therefore, we will study the 4d maps introduced in chapter 3 quantum mechanically. A main key

to the understanding of quantum mechanics is the analysis of the eigenstates of the time evolution

operator. For systems with a mixed phase space these eigenstates can typically be divided into regular

and chaotic states as was pointed out by Percival [47]. As regular quantum states predominantly live

on the regular phase-space region, their number can be estimated by the volume of this region accord-

ing to the semiclassical eigenfunction hypothesis [47, 157, 158]. While classically regular and chaotic

dynamics exist on separate invariant sets in phase space, both regions are coupled quantum mechan-

ically by the process of dynamical tunneling which was introduced by Davis and Heller [56] based on

a work by Lawton and Child investigating vibrational modes of the H2O molecule [159]. Dynamical

tunneling is important for a huge range of physical problems such as mesoscopic systems [11, 70], op-

tical or microwave resonators [65–69], the splitting of energy levels and decay rates of excited helium

atoms [57–59]. Furthermore, the subject of energy transport in molecules is a field where dynamical

tunneling is a topic of intensive recent studies [56, 60–64], experimentally as well as theoretically.

Dynamical tunneling is a purely quantum mechanical phenomenon coupling phase-space regions

which are classically disconnected. This covers all kinds of possible couplings between subsystems,

e. g. direct couplings or couplings mediated by single intermediate states or entire subsystems. One

very prominent example of the latter is the tunneling coupling between two regular regions being

mediated and drastically enhanced by chaotic states in between. This process was called chaos-assisted

tunneling by Bohigas, Tomsovic, and Ullmo [72] in 1993 and intensively investigated thereafter [57,

68, 73–77, 160–162].

The distinction into direct and indirect couplings leads to the nomenclature of direct tunneling

rates 𝛾𝑑 which solely addresses the direct coupling of phase-space regions. These direct rates can be

used to understand the chaos-assisted tunneling as a two-step process given by two direct tunneling

contributions, namely a regular-to-chaotic and a chaotic-to-regular tunneling step [79]. In this work

we solely focus on tunneling transitions from a regular to a chaotic domain in phase space. They can

be predicted if the underlying classical phase space is free of resonances using the fictitious integrable

system approach [78]. This approach allowed to predict direct regular-to-chaotic tunneling rates for

2d maps [78, 79] and billiard-like systems [81, 82]. Here we apply this approach to higher dimensional

systems for the first time.

In generic systems not only the direct processes determines the regular-to-chaotic tunneling phe-
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nomena. Especially the presence of nonlinear resonances leads to very effective couplings between

the regular and the chaotic domain mediated by excited regular states. This was dubbed resonance-

assisted tunneling (rat) by Brodier, Schlagheck, and Ullmo [83, 84] and further investigated in ref-

erences [163, 164]. Due to the omnipresence of nonlinear resonances this effect is very important,

e. g. in molecular systems [62, 165]. An impressive agreement over several orders of magnitude be-

tween prediction and numerical experiment was achieved by combining direct tunneling rates with

the rat prediction [166].

In this chapter we will first introduce the quantum mechanical time evolution of classical maps in

section 4.1. In order to examine the quantum mechanical properties of the maps from chapter 3, we

will present eigenfunctions of the systems 𝒫llu, 𝒫nnc, and 𝒫csm in section 4.2. For this purpose we

use Husimi distributions in the 3d phase-space sections introduced in section 3.3.3 and position-space

probability-densities. This will allow to determine the difference between regular and chaotic states

in 4d maps. As 𝒫nnc and 𝒫csm yield classical nonlinear resonances in the regular region, we can

investigate eigenstates living in the elliptical part of the resonance chain as well as in the stochastic

layer.

The fundamental difference to 2d maps is the connectivity of the stochastic layers for arbitrary

small couplings. We investigate this important subject in section 4.3. This is done by first analyzing

the imprint of the Arnold web on eigenstates of the time evolution operator 𝑈 in section 4.3.1 where we

address the issue whether there exist eigenstates inside the web of stochastic layers that reach out into

the chaotic sea. We investigate this for the map 𝒫csm by numerically going towards the semiclassical

limit. The search for special eigenstates is accompanied by a time evolution of wave packets. This

analysis shows in a very clear and convincing way how quantum mechanics can penetrate into the

stochastic layers in the semiclassical limit and is presented in section 4.3.2.

The penetration of the stochastic layer by wave packets is a quantum mechanical analogue of a

classically allowed process which is unique to systems with more than two degrees of freedom. In

contrast to this dynamical tunneling is a purely quantum mechanical coupling of classically discon-

nected parts of phase space which occurs for arbitrary dimensions. We cover this aspect for 4d maps

in section 4.4 in terms of the fundamentally important dynamical tunneling rates 𝛾. For the linear

map 𝒫llu we compare numerical data with the first tunneling prediction for 4d mappings using the

fictitious integrable system approach and find very good agreement.

If nonlinearities are introduced, we arrive at the system 𝒫nnc for which the effects of resonance-

assisted tunneling (rat) appear drastically in the numerical data, shown in section 4.4.4. Using the

theory of rat, reviewed in section 4.4.5, we present a first approach towards a prediction of the

tunneling rates for 4d maps in section 4.4.6. In order to do so, we follow the derivation for 2d maps

and thereby gain a qualitative understanding of the underlying coupling mechanisms. However, due

to the larger dimension a quantitative prediction is a much harder task then for 2d maps.
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4.1. Quantization of Classical Maps

The major advantage of kicked systems is the possibility to express their time evolution operator

exactly. The starting point is the Hamiltonian of the form

𝐻(p,q, 𝑡) = 𝑇 (p) + 𝑉 (q)
∑︁

𝑛∈Z
𝛿(𝑡− 𝑛). (4.1)

The special time dependence 𝛿(𝑡 − 𝑛) allows an exact split-operator ansatz [152, 167, 168] for the

unitary time evolution operator 𝑈 ,

𝑈 = e−
i/~𝑉 (q̂)e−

i/~𝑇 (p̂). (4.2)

The quantum mechanical problem is given by solving the eigenvalue equation of 𝑈

𝑈 |𝜓⟩ = ei𝜙|𝜓⟩ (4.3)

leading to the eigenfunctions |𝜓⟩ and the eigenphases 𝜙 ∈ [0, 2𝜋). We evaluate the operator 𝑈 in

position representation, using dimensionless quantities as mentioned on page 12. This also implies

that Planck’s constant is replaced by a dimensionless effective Planck’s constant. It represents the

value of the physical constant ~0 = 6.62606957 · 10−34 Js divided by the action given by the typical

length 𝑙0 and momentum 𝑝0 used to scale the system to the dimensionless coordinates. By means of

this quotient ~ = ~0/𝑙0𝑝0 the parameter ~ expresses how deep into the realm of quantum mechanics

the system is. The smaller ~ the larger is the typical classical action 𝑙0𝑝0 compared to the physical

constant ~0 and the more classical a system will behave. Therefore, the so-called semiclassical limit

is given by ℎ→ 0 or in other words 1/ℎ→∞.

If the potential in equation (4.1) is periodic with periodicity lengths 𝑀𝑞,𝑖 in direction 𝑖,

𝑉 (q) = 𝑉 (q+Mq) with Mq =

(︃
𝑀𝑞,1

𝑀𝑞,2

)︃
∈ R2, (4.4)

then one must use a discrete grid pj rather than continuous values p in the momentum representation

of the time evolution operator (4.2) [152, 169]. Given the number of grid points 𝑁𝑖 in each direction

of momentum space the spacing of the grid in the different directions is given by Δ𝑞,𝑖 = 𝑀𝑝,𝑖/𝑁𝑖. In

order to ease notation, we introduce the diagonal matrices

M𝑝 :=

(︃
𝑀𝑝,1 0

0 𝑀𝑝,2

)︃
, N :=

(︃
𝑁1 0

0 𝑁2

)︃
and Δ𝑝 :=

(︃
Δ𝑝,1 0

0 Δ𝑝,2

)︃
= M𝑝N

−1 (4.5)

with which the grid in momentum space reads

pk = p0 +Δ𝑝 ·k with k ∈ {0, 1, . . . 𝑁1 − 1} × {0, 1, . . . 𝑁2 − 1}. (4.6)
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The vector p0 is the leftmost point with respect to all dimensions. It has to be chosen such that the

grid does not leave the allowed momentum space region on which the classical map is defined. This

means that for each direction 𝑗 = 1, 2 we have

𝑝𝑘,𝑗 ∈ [𝑝min, j, 𝑝min, j +𝑀𝑝,𝑗) ∀𝑘 ∈ 0, . . . 𝑁𝑗 − 1 ⇔ 𝑝0,𝑗 ∈ [𝑝min, j, 𝑝min, j +Δ𝑝,𝑗). (4.7)

The vector p0 defines the position of the whole grid. By choosing another p0 we change the

quantum system without altering the resolution N. This property would make p0 a useful parameter

in order to generate ensembles of quantum systems. However, restriction (4.7) is a bit cumbersome,

especially as it contains the resolution N of the grid implicitly. It is more convenient to introduce

parameters over the domain [0, 1) × [0, 1) in order to express all possible momentum lattices [169].

This is done according to reference [170, page 22 ff.] by rewriting equation (4.6) to

pk = Δ𝑝

(︁
𝜃𝑞 + n(0)

𝑝 + k
)︁

with k ∈ {0, 1, . . . 𝑁1 − 1} × {0, 1, . . . 𝑁2 − 1}. (4.8)

Here we introduced the Bloch phases 𝜃𝑞 ∈ [0, 1)× [0, 1) according to the periodic boundary conditions

of the potential [169]. In equation (4.8) the integers n(0)
𝑝 are introduced as

n(0)
𝑝 = ⌈Δ−1

𝑝 pmin − 𝜃𝑞⌉ (4.9)

where ⌈𝑥⌉ is the ceiling function, i. e. it is the smallest integer not less than 𝑥 calculated element wise.

To summarize we can say that for a given momentum space extent [𝑝min, j, 𝑝min, j+𝑀𝑝,𝑗) for 𝑗 ∈ 1, 2

a grid can be defined using equation (4.8). This definition provides the parameters N and 𝜃𝑝. Note

that there is a similar grid defined in position space with corresponding parameters 𝜃𝑝

qj = Δ𝑞

(︁
𝜃𝑝 + n(0)

𝑞 + j
)︁

with j ∈ {0, 1, . . . 𝑁1 − 1} × {0, 1, . . . 𝑁2 − 1} (4.10)

given the kinetic energy 𝑇 (p) is periodic. This is the case for the maps we consider here as they

are restricted to a 4d phase space with periodic boundary conditions. To be precise the functions in

equation (4.2) have to be periodic with respect to the indices j and k of the grid, namely

e−
i/~𝑉 (qj) = e−

i/~𝑉 (qj+M𝑞e) ∀𝑗, e and e−
i/~𝑇 (pk) = e−

i/~𝑇 (pk+M𝑝e) ∀𝑘, e, (4.11)

where e are the vectors of the canonical basis of R2. If necessary, this periodicity can be estab-

lished by restrictions on the parameters 𝜃 [169]. However, if equation (4.11) is fulfilled, the grid in

momentum (4.8) as well as position (4.10) can be used.

As this is the case for the mappings we use, the position grid (4.10) can be inserted into the

position-space representation of the time evolution operator (4.2). As there is a total number of

𝒩 := detN = 𝑁1𝑁2 grid points, this gives rise to a 𝒩 × 𝒩 matrix having 𝒩 eigenvalues and

eigenvectors. This leads to the generalization of the formula used for the time evolution operator for
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2d maps

𝑈nk = ⟨qn|𝑈 |qk⟩ = 2𝜋~ e−i/~𝑉 (qn)
𝑁1−1∑︁

𝑗1=0

𝑁2−1∑︁

𝑗2=0

e−
i/~𝑇 (pj)e−

i/~pj(qn−qk) (4.12)

to higher dimensional systems. It requires the specific choice of the effective Planck’s constant [152],

2𝜋~𝑗 =
𝑀𝑝,𝑗 ·𝑀𝑞,𝑗

𝑁𝑗
(4.13)

where we introduced Planck’s constant of the 𝑗-th degree of freedom ~𝑗 . It is important to note that

the fraction in equation (4.13) is the phase space volume in the 𝑗-th degree of freedom divided by the

number of grid points in that direction. Assuming that the only physical relevant case is given by the

same ~𝑗 for every degree of freedom this implies that the left hand side of (4.13) is the same for all 𝑗

such that we have

(2𝜋~)𝑓 =
𝑉phase space

𝒩 (4.14)

with ~ := ~𝑗 independent of 𝑗. Here the exponent 𝑓 is the number of degrees of freedom of the

system, i. e. 𝑓 = 2 in our case. This formula confirms that for 𝑓 degrees of freedom the total number

of quantum states 𝒩 is given by the volume in phase space divided by (2𝜋~)𝑓 . In other words on

average every eigenstate will occupy a phase-space volume ℎ𝑓 .

Using the grids from equations (4.10) and (4.8) we can transform equation (4.12) into an expression

in which the sums can be carried out by a fast Fourier transform (fft). Given a set of grid parameters

this allows to set up the matrixU very fast. Moreover, it allows to applyU to a vector in position space

𝜑k := ⟨qk|𝜑⟩ without the need of building up U completely. This allows to use numerical methods for

sparse matrices, see appendix J. This is necessary as the scaling of the matrix size 𝒩 with 1/ℎ2 leads to

large matrix sizes for small ℎ which is required for resolving small classical phase-space regions such as

the stochastic layer of 𝒫csm, see equation (3.100). Such computations are performed in section 4.3.1

using the Lanczos algorithm in order to diagonalize systems with 1/ℎ = 1000 leading to matrices of

size 106 × 106.

4.2. Eigenstates of the time evolution operator 𝑈

The most direct connection between classical and quantum mechanics can be seen in the properties

of the eigenstates. In our case we focus on eigenstates of the time-evolution operator 𝑈 and present

examples for the different classes of eigenstates for the classical systems defined in chapter 3, namely

the designed maps without and with nonlinear resonances, 𝒫llu and 𝒫nnc on pages 37 and 48, and the

coupled standard maps in the weakly coupled case, 𝒫csm on page 63.
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4.2.1. Eigenstates of 𝒫llu

In order to introduce the quantum mechanical viewpoint, we first show some eigenstates of the system.

We visualize them in two different ways. One is the position-space probability-density |𝜓(𝑞1, 𝑞2)|2.
The other one is a Husimi representation H(q0,p0) [171] within a 3d section through the 4d phase

space. This representation is given by the overlap of the state |𝜓⟩ with coherent states |𝛼(q0,p0)⟩
placed in phase space at points (q0,p0),

⟨q|𝛼(q0,p0)⟩ =
1

𝜋~
exp

(︂
−(q− q0)

2

4~
+

i

~
p0q

)︂
, (4.15)

and allows to see connections between classical phase-space structures and quantum states.

As mentioned above the eigenstates can be roughly divided into regular and chaotic states. The

number of either class can be estimated by the volume of the corresponding classical region in phase

space according to the semiclassical eigenfunction hypothesis [47, 157, 158]. The volume of the regular

domain of 𝒫llu is calculated in section 3.4.1 on page 43. As we have 𝑉 reg
4d

= 0.01642, approximately

1.6 percent of the eigenstates are regular. If we choose 1/ℎ = 50, then there is a total number of 2500

states. Approximately 41 of them are regular states and 2459 are chaotic. It is possible to attribute

quantum numbers 𝑚1 and 𝑚2 to regular states. In the case of the linear regular region one can count

the nodal lines in position space in order to determine these quantum numbers. Another possibility

is to calculate overlaps with eigenstates of the harmonic oscillator, see also appendix B.

A selection of regular eigenstates is shown in figures 4.1 to 4.5. In all these pictures the Husimi

distribution is calculated over the 3d phase-space section 𝑝2 = 0. The corresponding values are

visualized by isosurfaces of the Husimi function. They are plotted using a colormap ranging from

opaque-red for large values to translucent-yellow for zero probability. The Husimi distribution is

shown in a tilted view and in two straight views along the 𝑝1 and the 𝑞2 axis, shown in (a), (b), and

(c), respectively. These plots are accompanied by classical orbits (black) and an inset showing the

position-space probability-density |𝜓𝑚1,𝑚2
reg |2.

For a fully integrable, linear system the ground state is given by a Gaussian coherent state in

both degrees of freedom. The ground state 𝜓0,0
reg in the linear region of 𝒫llu has a very similar shape.

However, it also has contributions in the chaotic part of phase space due to dynamical tunneling which

are not visible in the plot due to exponential smallness, see section 4.4. The near-Gaussian shape is

reflected in the Husimi distribution in the 3d phase-space section of figure 4.1(a) and can also be seen

in plot (c) where the first degree of freedom is nicely visible as the view is along the 𝑞2 axis. The view

along the 𝑝1 axis in (b) shows that there is only one peak along the 𝑞2 axis for the fixed value 𝑝2 = 0

of the section. This is due to the Gaussian shape in the second degree of freedom.

Figure 4.2 shows the eigenstate 𝜓1,0
reg. This is the first excited state with respect to the first degree

of freedom. Accordingly the Husimi distribution is concentrated in phase space on a classical torus

with a non-zero extent in (𝑞1, 𝑝1) but residing at (𝑞2, 𝑝2) = (0, 0). In the second degree of freedom

the Husimi distribution is given by a Gaussian function. This can be seen by the fact that there is

no nodal line along the 𝑞2 axes. Contrary to that only the second degree of freedom is excited for



4.2.1 Eigenstates of 𝒫llu 81
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Figure 4.1.: Ground state 𝜓0,0
reg

of 𝒫llu for 1/ℎ = 50. Figure (a) shows the 3d section also used in
figure 3.6. It contains semi-transparent surfaces where the value of the Husimi function is constant.
The inset shows the position-space probability-density. Figures (b) and (c) show the same 3d section
from two different points of view.
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Figure 4.2.: Eigenstate 𝜓1,0
reg

of 𝒫llu for 1/ℎ = 50. The setup of the plot is the same as in figure 4.1.
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the eigenstate 𝜓0,1
reg, shown in figure 4.3. Therefore, the main Husimi weight is concentrated on a

1d torus in the second degree of freedom and on the fixed point of the first degree of freedom at

(𝑞1, 𝑝1) = (0, 0). As the second degree of freedom is cut by the section condition |𝑝2| = 0, the Husimi

region with maximum weight is present only at two separate values of 𝑞2. In the first degree of freedom

the Husimi is again given by a Gaussian distribution. If both degrees of freedom are excited with one

quantum, we reach state 𝜓1,1
reg, shown in figure 4.4. Here the Husimi distribution is concentrated on

a real 2d torus in the 4d phase space. The cut made by the section leads to the Husimi distribution

being concentrated on two 1d ellipses inside the 3d section. This ellipses coincide with the respective

quantizing classical torus. If both degrees of freedom are higher excited, the quantizing tori are closer

to the chaotic sea. An example state with (𝑚1,𝑚2) = (5, 3) is shown in figure 4.5 for 1/ℎ = 50. This

state is one of the last states present inside the island at this value of Planck’s constant. Due to its

vicinity to the chaotic region it shows a remarkable tail into the chaotic sea. This is a consequence

of dynamical tunneling which couples the classically disconnected regular and chaotic regions and is

the subject of a detailed investigation in section 4.4.

Due to the small volume of the regular island the majority of the eigenstates localize on the chaotic

part of phase space. An example is given in figure 4.6. At the edge of the section a box of side length√
ℎ ≈ 0.141 is shown. It is the remnant of a 4d Planck cell of volume ℎ2 in the 3d section.

The value of the effective Planck’s constant is linked to the resolution of the quantum eigenstates.

With decreasing ℎ states can explore features of the classical phase space better and a larger number

of eigenstates fits into a classical volume of a given size. If we increase 1/ℎ from 50 to 90, those states
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Figure 4.3.: Eigenstate 𝜓0,1
reg

of 𝒫llu for 1/ℎ = 50. The setup of the plot is the same as in figure 4.1.
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Figure 4.4.: Eigenstate 𝜓1,1
reg

of 𝒫llu for 1/ℎ = 50. The setup of the plot is the same as in figure 4.1.
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Figure 4.5.: Eigenstate 𝜓5,3
reg

of 𝒫llu for 1/ℎ = 50. The setup of the plot is the same as in figure 4.1.
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p1
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q2

| p2 | ≤ ε

√
h

q1
q2

|ψch|2

Figure 4.6.: A chaotic eigenstate of 𝒫llu for 1/ℎ = 50. Due to the small regular phase-space region
the majority of the states is looking like this example. The phase-space plot also features a box of
side length

√
ℎ to give a qualitative estimate of the quantum mechanical resolution. The right hand

side shows a position-space probability-density plot.

formally living at the interface between regular and chaotic region for 1/ℎ = 50 move deeper into the

regular region and their chaotic admixture decreases. This can be seen in figure 4.7 where the state

𝜓5,3
reg is depicted for 1/ℎ = 90. Although it still has an chaotic admixture it is no longer visible in the

shown isosurfaces. Due to the higher quantum resolution there are approximately 105 regular states

facing 6295 chaotic ones. Figure 4.8 shows a chaotic state at 1/ℎ = 90. The ℎ-box included in this

figure is smaller compared to the one shown for 1/ℎ = 50 in figure 4.6.

4.2.2. Eigenstates of 𝒫nnc

By introducing nonlinearities to the system its quantum properties change. In order to visualize some

eigenfunctions for the map 𝒫nnc we fix 1/ℎ = 50 such that there are 2500 quantum states in total. As

shown in figure 3.12 when calculating the fli histogram there are three qualitatively different regions

in phase space. The regular region should supports approximately 23 eigenstates. The stochastic

region would yields enough volume for 2 to 3 states. The majority of the states are chaotic, namely

2475.

Figure 4.9 shows the ground state of the regular subsystem. Similar to the ground state of 𝒫llu it

is given by a Gaussian function. The first excited states within the island look also similar to the

ones of 𝒫llu such that we omit them here. Figure 4.10 shows 𝜓5,3
reg which is one of the last regular

states supported at 1/ℎ = 50. The criterion whether a state is regular or not is only fuzzily defined.
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Figure 4.7.: Eigenstate 𝜓5,3
reg

of 𝒫llu for 1/ℎ = 90. The setup of the plot is the same as in figure 4.1.
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Figure 4.8.: A chaotic eigenstate of 𝒫llu for 1/ℎ = 90. The phase-space plot also features a box of
side length

√
ℎ to give a qualitative estimate of the quantum mechanical resolution.
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It depends on how much weight inside the chaotic domain is tolerated before a state is not called

regular any longer. Apart from this fundamental inaccuracy it is hard to tell which eigenstate is the

last one. In 2d maps regular eigenstates only have one quantum number and can therefore be ordered

according to this number. Therefore, the last state within the regular region can be determined by

increasing the quantum number and stopping as soon as the states have too much weight inside the

chaotic domain. For 4d maps there are two quantum numbers and the last existing states for 1/ℎ = 50

are given approximately by 𝑚1 +𝑚2 = 8. Therefore, state 𝜓5,3
reg is only one of the last regular states.

We will come back to this on page 114 when discussing resonance-assisted tunneling phenomena for

𝒫nnc.

Contrary to the linear case, 𝒫nnc yields nonlinear resonances in phase space. They are also able to

support eigenstates. However, to see this we have to decrease ℎ considerably. If we choose 1/ℎ = 300,

then there are also eigenstates on the ee-type resonance chain and on the stochastic layer. Two

such example states are given in figure 4.11 and figure 4.12. It is an interesting but numerically very

challenging question to also find eigenstates living on the rank-1 6 : −1 : 1 resonance highlighted

by the orbit in figure 3.17(c). We comment on this briefly in section 4.3.1 but will not investigate

quantum mechanical consequences of rank-1 resonances in this thesis.
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Figure 4.9.: Ground state 𝜓0,0
reg

of the regular region of 𝒫nnc for 1/ℎ = 50. Figure (a) shows the
Husimi function in the 3d section used in the classical picture from figure 3.11. Figures (b) and (c)
show views along the 𝑞1 and 𝑞2 axis, respectively.
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Figure 4.10.: Eigenstate 𝜓5,3
reg

of the regular region of 𝒫nnc for 1/ℎ = 50. It is one of the last states
to exist together with all states whose quantum numbers are 𝑚1+𝑚2 = 8, see also figure C.1 where
the border of existing quantum states is shown.

.

4.2.3. Eigenstates of 𝒫csm

The classical coupled standard maps are introduced in section 3.4.3 and can be quantized according

to section 4.1.

Here the assignment of quantum numbers to regular states is not as simple as for the designed

maps. Nevertheless, the lowest states of the regular region are easy to identify. The ground state is

shown for the choice of 1/ℎ = 50 in figure 4.13. At this value of 1/ℎ the ground state 𝜓0,0
reg undergoes

an avoided crossing in the eigenphase 𝜙 with another state. This can be seen in the position-space

probability-density plot of figure 4.13 where a significant admixture of another state can be seen. An

analysis of the eigenphases reveals that it is interfering with 𝜓4,1
reg. In the Husimi representation this

coupling is less visible. It still resembles a Gaussian state as in figure 4.1. Excited states inside the

regular region and chaotic states supported in the chaotic sea look similar to the ones shown for 𝒫llu
and 𝒫nnc and we omit them here.
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Figure 4.11.: Eigenstate 𝜓
reg

of 𝒫nnc for 1/ℎ = 300 localized on the resonance chain. For this chain
the quantum numbers related to the first degree of freedom do not apply. However, it can be said
to be the ground state with respect to the second degree of freedom. Also excited states inside this
resonance exist at this 1/ℎ.
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Figure 4.12.: Eigenstate 𝜓
reg

of 𝒫nnc for 1/ℎ = 300 localized on the stochastic part of the resonance
chain. For this chain the quantum numbers related to the first degree of freedom do not apply.
However, it can be said to have a quantum number of two in the second degree of freedom.
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Figure 4.13.: Ground state 𝜓0,0
reg

of 𝒫csm for 1/ℎ = 50. Figure (a) shows the Husimi function in the
3d section used in the classical picture from figure 3.23. It contains semi-transparent surfaces of
constant value of the Husimi and an inset showing the position-space probability-density. Figures
(b) and (c) show views along the 𝑞1 and 𝑞2 axis, respectively.

4.3. Quantum signatures of the stochastic layer

The reason why systems with more than two degrees of freedom are so important is not just given by

the fact that they match the vast majority of relevant physical systems. It is also the fundamental

difference given by the existence of the so-called Arnold web. While there are many works covering

the classical aspects of the interconnected web of stochastic layers not much is known about quantum

mechanical consequences. Examples are given by the work of Leitner and Wolynes [48] focusing on

energy flow in weakly chaotic systems, the investigations of Demikhovskii, Izrailev, and Malyshev

addressing Arnold diffusion in quantum systems for driven coupled nonlinear oscillators [50, 51] or

rippled waveguides [52], and the work by Malyshev and Chizhova covering a Hamiltonian with two

and a half degrees of freedom [53]. Also the influences of Arnold diffusion on ballistic transport in 3d

billiards [49] and on nonlinear Schrödinger equations [54, 55] are investigated.

In contrast to the works in the literature we would like to concentrate on systems with a mixed

phase space like 𝒫csm. Phase spaces like that of 𝒫csm cover very common physical situations like, for

example, driven atoms [19]. Usually the phrase Arnold web is used in the literature for near-integrable

systems only. In our context it refers to the interconnected web of chaotic layers around the resonances

embedded in the regular domain in the center of phase space. However, as these systems are not

near-integrable, much less is known about them analytically and the aspect of the connectivity of

chaotic zones of such mixed systems is not very often investigated quantum mechanically. Although,
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for example, reference [172] investigates mixed systems by means of coupled standard maps with

𝐾1 = 𝐾2 = 3.0 and 𝜉12 = 0.4, it addresses how higher dimensional quantum systems do not show

effects of dynamical localization. A direct investigation of the Arnold web in the vicinity of the regular

region is missing.

We want to determine the influence of the Arnold web on quantum mechanics directly. Therefore,

we use the knowledge obtained by the phase-space section of 𝒫csm in section 3.4.3 in order to find the

physically relevant regions of stochasticity. Apart from determining the relevant regions in phase space

the 3d sections will also be used in order to approximate the direction of slow diffusion. This direction

is usually known in near-integrable systems but missing in our setup as mentioned in section 3.4.2.

When investigating the role of the Arnold web in quantum mechanics several approaches are possi-

ble: In section 4.3.1 we extend the calculation of eigenstates started in section 4.2.3 to much smaller

values of ℎ. First we estimate the necessary quantum resolution in order to resolve the stochastic

region with eigenstates of 𝑈 . Equipped with the ability to calculate eigenfunctions with sufficient

resolution we then search for eigenstates living in the chaotic domain as well as reaching into the

stochastic web surrounding the resonance chain of the main regular region.

Another approach is given by wave-packet dynamics. In order to mimic the classical itinerary from

the outside chaotic sea into the Arnold web shown in figure 3.24, we present the time evolution of

wave packets running into the stochastic zone in section 4.3.2. Together with a visualization of the

wave packet we will analyze how deep they can penetrate the stochastic domain depending on 1/ℎ.

4.3.1. Eigenstates resolving the stochastic layer

In this section we want to investigate quantum signatures of the stochastic layer. The fundamental

difference to 2d maps is that this layer is accessible classically from the outside chaotic sea as is

shown in figure 3.24. Our aim is to investigate whether this process has a quantum mechanical

counter part. This would, for example, be given by eigenstates simultaneously living on the chaotic

region and penetrating the stochastic region. As the rank-2 resonance given by the period-4 orbit

of 𝒫csm is the biggest one in phase space, we will focus on the stochastic layer containing the eh-

type periodic orbit winding around the ee-type periodic orbit. An analysis of a rank-1 resonance,

e.g. the 6 : −1 : 1 resonance from figure 3.17(c), is also very interesting. This is due to the fact

that the classical description of such a rank-1 resonances is much simpler because the corresponding

integrable approximations are known [6, page 278]. However, the quantum mechanical treatment of

this resonance is not covered in this thesis. This is mainly because the surrounding chaotic layer is

much smaller than for the rank-2 resonance and therefore much harder to investigate numerically.

The volume of the stochastic layer wrapping around the period-4 island chain is estimated in

equation (3.100) to be

𝑉 stochastic, numerical
4d

= 0.00685. (4.16)

According to equation (4.14) every eigenstate belongs to a phase-space volume of ℎ2. So in order to



4.3.1 Eigenstates resolving the stochastic layer 91

resolve the volume of the stochastic layer we need to have

1/ℎ &
1√

0.00685
≈ 12. (4.17)

This however assumes that the stochastic region can be well resolved in all directions. But from

figure 3.17(f) we know that the stochastic region is very thin. It is confined within |𝑝2| < 0.052.

Hence, a quantum state at least has to resolve a phase-space volume of approximately 0.14 which yields
1/ℎ & 100. However, the bound |𝑝2| < 0.052 is the total extent of the stochastic layer and neglects the

very thin structure of the layer. In order to be able to resolve it, ℎ has to be approximately 1/1000.

This is shown in figure 4.14 where a 2d fli plane is used to visualize the width of the stochastic layer

in a (𝑞1, 𝑝1) plane. The fli plane is accompanied by a box of side length
√
ℎ for ℎ = 1/1000. It

shows that this choice is in principle capable of resolving the stochastic layer.

In order to carry out the quantum calculation at such a large value of 1/ℎ = 1000, we use the Lanczos

algorithm presented in appendix J based on reference [173]. It allows to perform the diagonalization

p1

−q1

q2

| p2 | ≤ ε

√
h

Figure 4.14.: Comparison of the quantum resolution and the size of the stochastic layer of 𝒫csm.
The fli plane is calculated at (𝑞2, 𝑝2) = (0.52, 0.0) for varying (𝑞1, 𝑝1). Red areas belong to regular
motion, green orbits represent chaotic motion trapped inside the stochastic layer, and blue regions
are part of the chaotic sea. The ℎ-box is shown for ℎ = 1/1000 and fits well into the stochastic layer.
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of the time evolution operator in an iterative way which is necessary because the storage of the full

106 × 106 matrix 𝑈 as well as all of its eigenvectors is beyond actual computational resources in

terms of memory. The Lanczos algorithm is based on the choice of an initial vector |𝜑1⟩. The final

outcome are eigenvectors |𝜓⟩ having a maximum overlap with this state, |⟨𝜑1|𝜓⟩| → max. This allows

to calculate relevant eigenvectors by choosing |𝜑1⟩ appropriately. Here two approaches are possible:

Either a coherent state placed at a point of interest in phase space can be used or direct product

states of eigenstates of two uncoupled 2d standard maps can be used to create |𝜑1⟩. For the first

choice the coherent state would be placed inside the stochastic layer as we are interested in states

localizing there. Note that the eigenstates in figures 4.11 and 4.12 have been calculated this way by

using the Lanczos algorithm with the initial state placed at the periodic point from equation (3.98)

and its eh counterpart, respectively. For the second choice given by eigenstates of uncoupled 2d

maps figure 4.15 shows two such eigenvectors for 2d standard maps with parameters similar to 𝒫csm,
namely 𝐾1 = 2.25 and 𝐾2 = 3.0. The eigenstates are chosen such that they concentrate inside the

stochastic layer of the first 2d map and inside the chaotic sea of the second 2d map.

One of the resulting eigenvectors from such a calculation is shown in figure 4.16. In figure (a)

the Husimi function is visualized over the entire 3d section |𝑝2| ≤ 𝜀 by surfaces of constant value,

the colormap ranges from translucent-yellow (low) to opaque-red (high). As the state is chaotic,

the regular region is merely visible. The smaller insets in figures (b) and (c) show views along the

coordinates 𝑝1 and 𝑞2, respectively. In these plots the value of the Husimi function is only displayed

on the planes 𝑝1 = 0 and 𝑞2 = 0.5, which corresponds to the planes intersecting the regular island.

In the insets the colormap of the Husimi function ranges from yellow (low) to red (high). Especially

in (b) one can see that the Husimi has weight in between the resonance and the main island. The

corresponding area is marked by a blue arrow.

This example state is one among several being overall chaotic but advancing into the stochastic

region. However, the enormously slow classical Arnold diffusion inside this layer might lead to dy-

namical localization along the web and lead to an exponential decrease of eigenfunctions [51, 52] as

K = 2.25

−0.50

−0.25

0.00

0.25

0.50

p

0.0 0.5 1.0

q

K = 3.0

−0.50

−0.25

0.00

0.25

0.50

p

0.0 0.5 1.0

q

Figure 4.15.: Eigenstates of the 2d standard map for 𝐾 = 2.25 and 𝐾 = 3.0 for 1/ℎ = 1000. Shown
is the Husimi distribution over the 2d phase space. The colormap ranges from yellow (small) to red
(large). Superimposed on both is the corresponding classical phase space.
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Figure 4.16.: Eigenstate of 𝒫csm for 1/ℎ = 1000. Figure (a) shows the Husimi function in the 3d
section. The small box at the bottom indicates the size of Planck’s constant. Figures (b) and (c)
visualize the Husimi function on 2d planes at 𝑝1 = 0 and 𝑞2 = 0, respectively. The blue arrow
indicates a region of increased weight of the eigenstate inside the stochastic layer.

known for 2d maps [155]. This does not contradict the observations of Adachi, Toda, and Ikeda [172]

of dynamical localization being of less importance in higher dimensions because the slow diffusion

process dominating the Arnold diffusion is a 1d process according to section 3.2.4.

In order to find examples of chaotic eigenstates reaching further into the stochastic layers than the

state depicted in figure 4.16 one could try to increase the resolution of the quantum calculation by

enlarging 1/ℎ further. Another approach is to introduce maps which yield a larger stochastic layer

region than 𝒫csm. The most promising attempt is to alter the phase space of the coupled standard

maps in the following way. As the regular region is placed at the center of phase space, a large portion

of the outside chaotic sea can be cut off without changing the island in the middle. This cutting is

done by introducing a modulo operation which reduces the effective size of the phase space. While

this changes the chaotic region significantly, the regular region stays exactly the same. The shape

of the stochastic layer is not affected as it also resides close to the center of phase space. However,

every orbit started inside the layer will at some point of its itinerary get into the chaotic sea and

thereby sense the change in phase space. As the modulo is applied along the coordinates 𝑞𝑖 and 𝑝𝑖 the

cutting is best done using a symmetrized version of the map allowing to remove a very large part of

the chaotic phase space. Although this increased the size of the stochastic layer by a factor of four, we

could not find eigenstates reaching significantly further into the stochastic layer than the one shown

in figure 4.16.
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4.3.2. Wave-packet dynamics into the stochastic layer

The fundamental difference between 4d and 2d maps is the interconnectivity of all chaotic regions.

As regular tori do not separate phase-space regions, chaotic orbits are able to penetrate the stochastic

region around the resonances, see figure 3.24. In section 4.3.1 quantum signatures of this stochastic

layer are analyzed by eigenfunctions of the time evolution operator. In this section we follow the

classical process underlying figure 3.24 more directly by considering the time evolution of wave packets

initially placed within the chaotic domain. We choose a wave packet placed at (𝑝1, 𝑝2, 𝑞1, 𝑞2) =

(−0.45,−0.45, 0.05, 0.05) which is close to the border of the 4d phase space. We are especially

interested in how the time evolved wave packet will penetrate the stochastic region similar to the

classical chaotic orbit shown in figure 3.24 and investigate this in dependence on Planck’s constant ℎ.

In order to enable the time evolved wave packet to explore all possible details of the phase space

it is necessary to propagate the initial state sufficiently long. The time scale for this is given by the

so-called Heisenberg time

𝜏ℋ =
ℎ

Δ𝜀
=

ℎ

~Δ𝜙
= 𝒩 = 1/ℎ2 (4.18)

where Δ𝜀 is the mean level spacing of the quasienergies and we used 𝜀 = −~ ·𝜙, the mean eigenphase

spacing Δ𝜙 = 2𝜋/𝒩 , the matrix size 𝒩 , and equation (4.14).

Once the time evolution is done for 𝜏ℋ steps, the state is propagated for further 1000 steps. At

these iterations the Husimi distribution is calculated in the vicinity of the stochastic layer of interest.

The values of the Husimi distribution of these 1000 steps are summed up to give a time-averaged

Husimi distribution. Figure 4.17(a) shows the time-averaged Husimi distribution for 1/ℎ = 300 in the

vicinity of the stochastic layer around the period-4 orbit. The data is visualized in terms of surfaces of

constant value of the Husimi function. The colormap ranges from high (red) to small values (yellow).

The position of the spectator is comparable to the one in figure 3.23. In order to visualize the

penetration into the stochastic layer, figures 4.17(b) to (f) show a slab of the Husimi values indicated

by the green outline in figure 4.17(a) for different values of 1/ℎ. Figure 4.17(b) shows the averaged

Husimi distribution for 1/ℎ = 300 in this slab. The orange box is of side length
√
ℎ and denotes the

quantum resolution, compare figure 4.14 and 4.16. The Husimi function decays uniformly into the

regular domain not noticing the stochastic region at all. This changes significantly for increasing 1/ℎ.

In figure 4.17(f) it is clearly visible how the time evolved wave packet enters into the stochastic domain

between the main regular region and the period-4 resonance. In order to quantify the intrusion into

the stochastic region, we measure the weight of the Husimi function H for positions 𝜆 along different

1d paths in phase space.

The straight red line in figures 4.17(b) to (f) ranges from the chaotic sea (𝜆 = 0) directly into

the regular region (𝜆 = 1). The green line starts at the same point inside the chaotic sea (𝜆 = 0)

but points directly into the stochastic layer (𝜆 = 1). We compare the weight along these lines in

figure 4.18. The positional dependence of the averaged Husimi function H along the line into the

regular island is shown by the red curves in figure 4.18(a). The weight of all averaged wave packets
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Figure 4.17.: Time evolution of wave packets into the stochastic layer. Figure (a) shows the
averaged Husimi function calculated for 1/ℎ = 300 in the vicinity of the period-4 resonance. The green
box indicates the slab shown in figures (b) to (f) which correspond to 1/ℎ = 300, 500, 1000, 2500, 5000.
The orange box is of side length

√
ℎ and indicates the quantum resolution. The straight lines reach

from the chaotic sea into the the regular island (red) and along the stochastic region (green). The
position dependent Husimi weight shown in figure 4.18 is calculated along these lines.
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decays the same way from the chaotic region (𝜆 = 0) towards the central ee-type fixed point (𝜆 = 1)

independently of the inverse effective Planck’s constant 1/ℎ. The Husimi-function values H(𝜆) cross

the value 1/2 approximately at the same position 𝜆 ≈ 0.55.

The much more striking result is how the wave packet enters the stochastic region in figure 4.18(b)

for increasing 1/ℎ. For 1/ℎ = 300 the wave packet behaves equivalently when approaching the regular

region and the stochastic layer. In both figures figures (a) and (b) the weight H starts to drop at

𝜆 = 0.5. This reflects the flat shape of the surfaces of constant Husimi-function values in figure 4.17(b).

When approaching the semiclassical limit of large 1/ℎ the wave packet explores more and more of the

stochastic region as can be seen qualitatively from the surfaces of constant Husimi-function values in

figure 4.17(f).

We will measure this deeper exploration of the stochastic region using a quantum mechanical in-

trusion depth 𝜆1/2 defined by

H(𝜆1/2) = 1/2, (4.19)

i. e. 𝜆1/2 is the location along the lines at which the time-averaged Husimi function is 1/2. In order to

see the influence of increasing 1/ℎ we use 1− 𝜆1/2, i. e. the distance of the point (4.19) to the endpoint

along the green and red paths in figure 4.17. It has the property to go to zero for maximal intrusion.

It is shown versus 1/ℎ in a double logarithmic plot in figure 4.19. The red points belong to the negative

intrusion depth along the line going directly into the regular region. They approximately saturate at

1 − 𝜆1/2 = 0.45. Their slight increase towards larger 1/ℎ gives a hint that equation (4.19) might not

yet be the correct quantity to measure the intrusion depth. The green points belong to the negative

intrusion depth along the green line into the stochastic layer. Here the values tend towards zero for
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Figure 4.18.: Position dependent Husimi weight along different paths in phase space for different
quantum resolutions. Figure (a) shows the weight dependence when going from the chaotic sea
(𝜆 = 0) into the regular domain (𝜆 = 1, c. f. the red lines in figure 4.17). Figure (b) displays the
dependence along the stochastic region (green lines in figure 4.17). All curves are scaled to have the
same weight of approximately one in the chaotic sea, 𝜆 = 0.
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Figure 4.19.: Dependence of the negative quantum mechanical intrusion depth 1− 𝜆1/2 on 1/ℎ for
the path into the regular domain (red) and along the stochastic layer (green) in double logarithmic
scale. The lines are guides to the eye. A power law with exponent 0.2 (straight line) is obtained
from a fit to the data based on the path into the stochastic layer.

increasing 1/ℎ and no saturation is visible for the shown 1/ℎ range. A fit of the data suggests a scaling

1− 𝜆1/2 ∼ (1/ℎ)−0.2 = ℎ0.2 (4.20)

and is indicated by the straight line in figure 4.19. A comparison of the power law fit from equa-

tion (4.20) with a fit to an exponential shows that the residual of the exponential fit is considerably

worse. However, as only a very small range of values is covered along the ordinate of figure 4.19, the

behavior cannot be significantly distinguished from

1− 𝜆1/2 = −0.066061 · log(1/ℎ) + 0.793732. (4.21)

It is an open and very interesting question how the functional dependence of the negative intrusion

depth 1 − 𝜆1/2 is related to dynamical localization [155] and the classical rate of Arnold diffusion

as mentioned in section 3.4.2 on page 63. Due to the fact that the slow Arnold diffusion is a 1d

process, eigenstates might undergo the same dynamical localization known from 2d maps although

the general setup of dynamical localization was found to be of less significance in higher dimensional

systems [172]. This makes the analysis of the intrusion in 6d maps an interesting question because

there the classical Arnold diffusion is a 2d phenomenon [6, page 353] and dynamical localization might

also be suppressed for the quantum resolution of the Arnold web.

We would like to close with two technical remarks. First, note that the green path along the

layer is only roughly equivalent to the direction of slow diffusion inside the layer, eslow, introduced

in section 3.4.3 on page 73. For a more accurate choice of a path into the stochastic layer a careful

analysis of the classical properties is necessary. However, we do not expect qualitative difference in

the behavior of the curves shown in figure 4.18. Second, equation (4.18) implies that the wave-packet

propagation becomes more time consuming for increasing 1/ℎ. This is because first the propagation

time has to be enlarged to 𝒩 , and second one step of the time evolution done using the fft and
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various multiplications scales like 𝒩 log𝒩 . Therefore, the overall effort scales like 1/ℎ4 log 1/ℎ. Due

to this increase of computing effort only the data for 1/ℎ = 300 to 2500 is based on a wave-packet

propagation until the Heisenberg time 𝜏ℋ ranging from 90000 iterations to 6250000 iterations. For
1/ℎ = 5000 we iterated the wave packet only 2145059 times which is approximately 0.086 · 𝜏ℋ but

already took four months of computation on an actual desktop computer.

4.4. Dynamical tunneling rates

Section 4.2 impressively shows that quantum eigenstates of the time evolution operator do not com-

pletely live on either the regular or the chaotic domain in phase space. Classically these subsystems

are interwoven in a very complicate way but still form disjoint sets each invariant under the dynamics.

Quantum mechanically this is no longer the case. If a state is completely localized, for example in the

regular island, its weight in the other domain will increase under the time evolution, i. e., the state

will tunnel from the regular island into the chaotic sea. This process is called dynamical tunneling

after Davis and Heller [56] who introduced it when considering the quantum mechanical connection of

classically disconnected regular regions in the phase space of molecules. The key quantity to describe

this process is the tunneling rate 𝛾. It indicates the speed with which the process takes place and

therefore also measures the strength of the coupling between the classically disconnected phase-space

regions.

The fact that the majority of physical systems has a mixed phase space makes dynamical tunnel-

ing vital for the understanding of these systems in the realms of quantum mechanics. Prominent

examples cover classically forbidden processes in atoms and molecules [56–64], optical or microwave

resonators [65–69], and mesoscopic systems [11, 70].

Hence, dynamical tunneling rates are very interesting quantities, which however are hard to predict

due to the complex underlying classical phase-space structures. In order to find a prediction, several

aspects have been investigated in the literature. Tomsovic and Ullmo investigated the level splittings

of two symmetry-related regular regions divided by a chaotic domain and found that the chaotic

dynamics leads to a large enhancement of the splittings whenever a chaotic state gets close to the two

regular states in the quasi-energies [68, 160, 162]. They therefore introduced the notation of chaos-

assisted tunneling. Here, however, we consider systems with only one regular domain embedded in a

chaotic sea. In reference [79] the link between both setups is investigated and they are found to be

very similar. For systems with one regular island the tunneling process from the regular to the chaotic

region is called regular-to-chaotic tunneling. This process appears in two versions. If a regular states

couples directly to the ensemble of chaotic states, then it is said to undergo direct regular-to-chaotic

tunneling . Otherwise the coupling is mediated via intermediate states. The quantum transition into

the chaotic sea is called resonance-assisted tunneling if the coupling to the intermediate state is caused

by a classical nonlinear resonance in phase space.

The direct regular-to-chaotic tunneling might be seen as the most fundamental of these processes

because it addresses the most direct coupling between classically disconnected regions. It is investi-
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gated intensively for 2d maps [77–79] and systems being reducible to such maps like driven systems

with one degree of freedom [71], billiards systems [68, 76], measurements on optical or microwave

cavities [67, 78, 80–82], or transport processes in 2d electron systems [11, 70]. Central to this in-

vestigation is the possibility of a prediction of this direct tunneling rate. Bäcker, Ketzmerick, Löck,

and Schilling [78] introduced a formula based on a fictitious integrable system mimicking the regular

phase-space region and with this allowing to derive analytical formulas for the direct tunneling rate

𝛾𝑑. After presenting numerical data for the map with linear regular region, 𝒫llu, in section 4.4.2 the

fictitious-integrable-system approach is applied to 4d maps the first time.

Although the direct regular-to-chaotic tunneling is the more fundamental process it is often over-

shadowed by the resonance-assisted tunneling (rat) [83, 84]. The emerging effects are visible for

example in highly excited Rydberg states of driven atoms [59] and molecules in general [62, 64]. This

theory is especially important in the semiclassical limit 1/ℎ → ∞ where it can predict peaks in the

tunneling rates to high accuracy. However, the rat theory only explains how resonances assist the

tunneling process due to an enhancement of the tunneling at certain values of the parameter 1/ℎ.

For a detailed prediction of the dynamical tunneling process it is necessary to incorporate the direct

tunneling rates 𝛾𝑑 [166]. We investigate the effects of classical resonances in 4d mappings on the

dynamical tunneling rates 𝛾 in section 4.4.5 where we present an approach to generalize the rat

approach of 2d maps. The tunneling rates of 𝒫nnc presented in section 4.4.4 are compared to this

theory in section 4.4.6. We finish with a numerical investigation of dynamical tunneling rates for the

coupled standard maps system 𝒫csm in section 4.4.7.

An important aspect of higher dimensional systems is the smallness of the regular region compared

to the chaotic domain. This is not only the case in the mappings introduced in section 3.4 but also for

example for highly excited driven helium where the regular region is given by so-called frozen planet

configurations [19, 20, 149, 150]. This enormous dominance of the chaotic domain is also investigated

for 2d maps where it leads to a flooding of regular phase-space structures by chaotic eigenstates [174–

176]. The flooding phenomenon is related to the fact that for an increasing number of degrees of

freedom more and more phase-space volume of the regular domain is concentrated at the interface

to the chaotic region. A link to higher dimensional systems is presented in reference [177] where the

high dimensionality of the system is emulated by a quasi-periodically driven 2d standard map.

4.4.1. Numerical calculation of dynamical tunneling rates

In this thesis numerically determined tunneling rates are obtained by introducing an opening into the

quantum system. This opening is modeled by changing the time evolution operator 𝑈 such that the

weight of any state in a certain opening region in phase space is set to zero. Furthermore, we choose

this opening region such that it does not intersect with the regular domain. Whenever the potential

𝑉 (q) is evaluated at the points of the opening while constructing 𝑈 according to equation (4.12)

the corresponding values of 𝑈 are set to zero. This corresponds to the introduction of an additional

infinite imaginary potential in the opening region. As a result we obtain a non-unitary quantum map

𝑈open.
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By introducing the opening the eigenvalue equation (4.3) of 𝑈 changes to

𝑈open|𝜓⟩ = ei(𝜙+i𝛾decay/2)|𝜓⟩ such that ‖𝑈open|𝜓⟩‖2 = e−𝛾decay ‖|𝜓⟩‖2 . (4.22)

In this equation the eigenphase of 𝑈open is given by 𝜙 + i𝛾decay/2. Here 𝜙 corresponds to the real

part of the eigenphase of the unitary operator 𝑈 plus a possible shift. The imaginary part 𝛾decay/2

defines the decay rate of the states. As shown on the right hand side of equation (4.22) it describes

how much weight an eigenstate of 𝑈open looses per unit time.

In order to use this formalism to calculate regular-to-chaotic tunneling rates we can place the

opening in the phase space such that it covers only parts of the chaotic domain. Assuming a fast

transport inside the chaotic sea the decay rates 𝛾decay of the regular states can be regarded as being

the regular-to-chaotic tunneling rates 𝛾 of these regular states. This is because typically the tunneling

rate is a very small quantity especially for states far away from the chaotic domain. The slow tunneling

process is therefore only minimally perturbed by the very fast transport from the chaotic sea out of

the system.

This method of using an open quantum system has a big advantage: As the operator 𝑈open is sub-

unitary all its eigenvalues lie within the unit circle of the complex plane C, cf. equation (4.22). This

allows to use iterative diagonalization schemes which aim to return the largest eigenvalues. The gain

from this is twofold. First, it reduces the memory demand of the computation as it is not necessary

to build up the 𝒩 × 𝒩 matrix 𝑈open. It suffices to apply the linear operator from equation (4.22)

on a vector |𝜑⟩ of length 𝒩 ∝ 1/ℎ2. Second, this calculation is much faster as we can stop the

diagonalization as soon as all long-lived eigenstates are calculated.

In this thesis the arpack-package [178] is used to calculate the wanted eigenvalues and eigenvectors

of large sub-unitary matrices 𝑈open. The number of states which is calculated for a given value of 1/ℎ

can be estimated from the phase-space volume of the regular region 𝑉 reg
4d

, see section 3.4 on pages 43,

50, and 63. The number of calculated eigenstates 𝑁ev out of all eigenvectors 𝒩 = ℎ−2𝑉phase space is

set to 2.5 ·𝑉 reg
4d

/𝑉phase space · 𝒩 . The factor 2.5 is chosen to assure that all regular states are found.

The opening is specified in position space such that it removes arbitrary points in momentum space.

The fli is used to ensure that the opening does not change the regular part of phase space.

Note that the above method based on projecting weight out of the system is one among several

possibilities to calculate dynamical tunneling rates [79, 125, 152]. Other methods are for example based

on wave-packet propagation. The advantage of this propagation method is that it is not necessary to

set up a 𝒩×𝒩 matrix 𝑈open. However, the algorithm is very slow [152] and only yields one decay rate

at a time. Another possibility which has been successfully applied to 2d maps is the determination of

avoided crossings [125]. Contrary to the wave-packet based method this requires the diagonalization

of the time evolution operator matrix under parameter variation in order to determine all avoided

crossings between the regular state of interest and the chaotic states. From the width of the avoided

crossings the dynamical tunneling rates can be determined by Fermi’s golden rule [79]. As in our case

the size of the matrix 𝑈open increases with 𝒩 ∝ 1/ℎ2 this approach does not allow to calculate the

tunneling rates in the semiclassical limit of large 1/ℎ.
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4.4.2. Direct regular-to-chaotic tunneling rates 𝛾𝑑 of 𝒫llu

Our aim is to calculate, predict, and understand dynamical tunneling rates for 4d maps with a

mixed phase space. In order to predict tunneling rates, it is more promising to use the designed maps

of section 3.4.1 as a first subject of investigation rather than the generic system of the coupled standard

maps 𝒫csm. This approach already served as a good starting point for the investigation of dynamical

tunneling in 2d maps [78, 152]. The advantage is that one can first look at the system without

nonlinear resonances and focus solely on the direct-regular-to-chaotic tunneling-rates 𝛾𝑑. Among the

presented maps the system 𝒫llu is the most simple possible setup in terms of well separated regular

and chaotic phase-space regions.

Before we present numerically determined data for 𝒫llu we want to comment on the potential 𝑉 of

the mapping. While 𝒫llu was designed to have a continuous potential 𝑉 its first derivatives yield jumps

at the border of the ellipsis separating the different potential definitions in equation (3.70). This can

lead to diffraction-like processes [179] in quantum mechanics which play a role if the Hamiltonian is

not sufficiently smooth [180, 181]. However, as also diffraction processes describe classically forbidden

quantum transitions, we will include them to the processes described as tunneling and not take them

into account separately.

In order to calculate the tunneling rates numerically, we open the quantum system by adding

absorbing boundary conditions as explained in section 4.4.1. The opening of the system is introduced

such that it does not intersect with the regular region. In position space the ellipse defined by the choice

of 𝑄2 in equation (3.70) gives an extent of the regular island in 𝑞1 and 𝑞2 of 𝑞1,max =
√︀
2/𝑟1𝑄 = 0.2532

and 𝑞2,max =
√︀
2/𝑟1𝑄 = 0.2319, respectively. The fli values can be used to confirm that the regular

domain is included in this region. If the fli is calculated on a 4d grid in phase space and then

averaged over both 𝑝-axes then the resulting fli plot vs. 𝑞1 and 𝑞2

𝑞1, 𝑞2 ↦→
1

𝑁2

∑︁

𝑝1,𝑝2

fli(𝑝1, 𝑝2, 𝑞1, 𝑞2) (4.23)

shows where the regular region ends projected onto the position space. This is shown in figure 4.20.

The projected fli values will be helpful if the edge of the regular domain cannot be determined

analytically.

In figure 4.21 we show the numerically determined tunneling rates 𝛾𝑑 vs. the inverse effective

Planck’s constant 1/ℎ. We consider the lowest excited states 𝜓0,0
reg, 𝜓

1,0
reg, 𝜓

0,1
reg, and 𝜓

1,1
reg of the regular

region. Their position-space probability-density is shown in the inset of figure 4.21. For all states we

find an exponential decrease of 𝛾𝑑 with increasing 1/ℎ. Especially for small values of 1/ℎ fluctuations

are visible in the data due to the coarse grid on which the wave functions are given. The obtained

numerical data resembles the data presented for 2d maps [78].

Note that in order to calculate the dynamical tunneling rates from the data obtained by the diag-

onalization of 𝑈open a post-processing of the data is necessary in order to determine the eigenstates

of interest for all values of 1/ℎ. This is described in appendix B.
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Figure 4.20.: Projected fli values onto position space for 𝒫llu. At each point (𝑞1, 𝑞2) the mean
value of the fli (4.23) is calculated. If the value is smaller than 0.999 times the maximum value of
fli = 450 then the corresponding point is shown in red. These points have at least one point in 𝑝1
or 𝑝2 where there is regular dynamics yielding a non-maximum fli. All other points are marked in
blue as they yield chaotic motion for all values of the momenta. The hatched white area denotes
the opening of the quantum system which does not intersect with the regular region at any value of
the momenta. The white line is given by the designed potential (3.70) and matches the numerical
projection of the regular region.
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Figure 4.21.: Numerically determined direct regular-to-chaotic tunneling rates 𝛾𝑑 for vs. 1/ℎ for
𝒫llu determined by opening the system, equation (4.22). The corresponding eigenstates are shown
in insets at fixed values of 1/ℎ. The quantum numbers for the states are given by the number of
nodal lines in 𝑞1 and 𝑞2 direction.
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4.4.3. Prediction of 𝛾𝑑 using the fictitious integrable system approach

The fictitious integrable system approach was very successfully applied to 2dmaps and 2d billiards [78,

79, 81, 82]. In this section we want to apply this approach the first time to 4d mappings in order to

predict direct regular-to-chaotic tunneling rates 𝛾𝑑 and we will find very good agreement. However,

first we want to introduce the approach.

The eigenstates of 𝑈 intrinsically bear the coupling between regular and chaotic domain within

them. Especially as shown in figure 4.5 highly excited states in the regular region have a large

contribution also in the classically disconnected chaotic domain. However, while the whole quantum

system underlies the coupling between regular and chaotic domain, it can be interpreted being the

result of a coupling introduced to two previously uncoupled regular and chaotic subsystems. The

fictitious integrable system approach aims for creating these subspaces.

Due to dynamical tunneling the eigenstates 𝜓𝑚,𝑛reg of the time evolution operator 𝑈reg of the quantum

system belonging to the purely regular dynamics are not eigenstates of the full system 𝑈 . Therefore,

they are called quasi-modes. This notation goes back to Arnold [182] and originally means solutions

to the eigenvalue equation for 𝑈 which are only correct up to a certain order in Planck’s constant ℎ.

Depending on the relative size of the regular phase-space region in comparison with Planck’s constant

only a finite number of quasimodes 𝜓𝑚,𝑛reg are used to create a projection operator 𝑃reg onto the regular

subsystem. An arbitrary basis in the orthogonal complement of the subspace defined by 𝑃reg can be

used to define the decomposition into regular and chaotic subspaces of the full Hilbert space.

If we assume that the basis states of regular and chaotic subsystem, 𝜓𝑚,𝑛reg and 𝜓ch, are known, then

it is possible to obtain the coupling 𝑣 between both subsystems. If a particular regular and chaotic

state are considered, then this coupling is given by

𝑣𝑚,𝑛ch = ⟨𝜓ch|𝑈 |𝜓𝑚,𝑛reg ⟩. (4.24)

As 𝑣 is a consequence of the dynamical tunneling, it is possible to determine the tunneling rates 𝛾𝑑

from the couplings, e. g. via Fermi’s golden rule [79]. In these terms equation (4.24) leads to the

tunneling rate of 𝜓𝑚,𝑛reg into the single chaotic state 𝜓ch. In order to obtain the overall tunneling rate

of 𝜓𝑚,𝑛reg into the whole chaotic subsystem, we have to average over all chaotic states. The result in

terms of the direct tunneling rate is [79]

𝛾𝑑𝑚,𝑛 =
∑︁

ch

⃒⃒
𝑣𝑚,𝑛ch

⃒⃒2
(4.25)

and can be re-written in terms of a projector 𝑃ch =
∑︀

ch |𝜓ch⟩⟨𝜓ch| onto the chaotic subsystem

𝛾𝑑𝑚,𝑛 = ‖𝑃ch𝑈𝜓
𝑚,𝑛
reg ‖2 = ‖(1− 𝑃reg)𝑈𝜓

𝑚,𝑛
reg ‖2, (4.26)

where we further used the projector onto the regular subsystem, 𝑃reg =
∑︀

𝑘,𝑙 |𝜓
𝑘,𝑙
reg⟩⟨𝜓𝑘,𝑙reg|, and the

property that both projectors span the full system 𝑃reg + 𝑃ch = 1 [79].
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Arrived at equation (4.26) the necessary ingredient to predict direct regular-to-chaotic tunneling

rates is the knowledge of the purely regular subsystem 𝑈reg. For the mapping 𝒫llu such a purely

regular system can be constructed. As the classical dynamics of 𝑈reg have to coincide with 𝒫llu on

the regular part of the latter, we just have to extend the regular dynamics of 𝒫llu beyond its actual

domain into the chaotic region. This is done by choosing the potential 𝑉reg(q) of 𝑈reg to be given by

equation (3.69). For this choice of 𝑉reg(q) it is possible to derive the eigenstates analytically. They

are given by the eigenfunctions of two uncoupled harmonic oscillators, see later.

Note that the described construction of 𝑈reg implies that the fictitious integrable system is also a

kicked system and therefore decomposable into a kinetic and potential part like 𝑈 in equation (4.2).

This can be used to evaluate equation (4.26) semiclassically [79, 152]. The result was applied success-

fully to various maps and billiards [78, 79, 81, 82]. For 4d maps it is generalized to

𝛾𝑑𝑚,𝑛 =

∫︁

Γ𝑞

d2𝑞
⃒⃒
𝜓𝑚,𝑛reg (q)

⃒⃒2
2

(︂
1− cos

(︂
𝑉 (q)− 𝑉reg(q)

~

)︂)︂
(4.27)

in which Γ𝑞 = [−0.5, 0.5)× [−0.5, 0.5) denotes the whole position space of 𝒫llu, 𝑉 is the potential from

equation (3.70) and 𝑉reg is the potential of the fictitious regular system 𝑈reg from equation (3.69).

We now want to compare the numerically obtained data from section 4.4.2 with the prediction (4.27).

The comparison is shown in figure 4.22 and displays a very good agreement over more than ten orders

of magnitude with deviations smaller than a factor of two. This demonstrates that the fictitious

integrable system approach is also valid in higher dimensions. The plot also nicely shows that higher

excited regular states have higher tunneling rates. This explains the chaotic admixture of the eigen-
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Figure 4.22.: Prediction of direct regular-to-chaotic tunneling rates 𝛾𝑑 for 𝒫llu using the fictitious
integrable system approach (4.27) (solid lines) compared to numerically obtained data (dots). For
all states a very good agreement is found over up to ten orders of magnitude.
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states in section 4.2 especially for 𝜓5,3
reg at 1/ℎ = 50 in figure 4.5.

The evaluation of equation (4.27) requires an analytical expression of the quasimodes 𝜓𝑚,𝑛reg . As

mentioned above, they are given by the eigenstates of the harmonic oscillator [79, 152]

𝜓𝑚,𝑛reg (q) = 𝜓𝑛reg(𝑞1)𝜓
𝑚
reg(𝑞2) with (4.28)

𝜓𝑛reg(𝑞) =
1√
2𝑛𝑛!

4

√︂
Re 𝜎

𝜋~
𝐻𝑛

(︃√︂
Re 𝜎

~
𝑞

)︃
e−

𝜎
2~ 𝑞

2
. (4.29)

Here 𝐻𝑛 is the 𝑛-th order Hermite polynomial orthogonal over R with weighting function e−𝑞
2
. The

parameter 𝜎 is given according to the entries of the matrix of the linear mapping (3.80) by

𝜎 =
𝜎′ + i

(︀
𝜎′2 − 1

)︀
cos 𝜃 sin 𝜃

cos2 𝜃 + 𝜎′2 sin2 𝜃
with (4.30)

𝜎′ =

√︃
(𝑀21 −𝑀12)sign(𝑀12 +𝑀21)−

√︀
(𝑀12 +𝑀21)2 + (𝑀22 −𝑀11)2

(𝑀21 −𝑀12)sign(𝑀12 +𝑀21) +
√︀

(𝑀12 +𝑀21)2 + (𝑀22 −𝑀11)2
and (4.31)

tan(2𝜃) =
𝑀22 −𝑀11

𝑀12 +𝑀21
, (4.32)

see again [79] for reference.

4.4.4. Dynamical tunneling rates of 𝒫nnc

To analyze the influence of nonlinear resonances on quantum mechanics in higher dimensions we

study the dynamical tunneling rates of the map 𝒫nnc. Numerically, we open the system as described

in section 4.4.1. The opening is placed similar to the opening of 𝒫llu. In order to ensure that the
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Figure 4.23.: fli values calculated on the 4d phase space and averaged over the momenta. The
values are plotted in the 2d position space in order to reveal the regular region. All points with
an average fli below 0.999 · 450 are shown in red and all points above in blue. The hatched region
denotes the opening used to calculate the tunneling rates 𝛾 for 𝒫nnc. The white dashed line is the
ellipsis defining the regular region in the designed potential (3.91).
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Figure 4.24.: Regular-to-chaotic tunneling rates 𝛾 vs. 1/ℎ for 𝒫nnc, determined by opening the
system, equation (4.22). The corresponding eigenstates are shown in insets at fixed values of 1/ℎ.
Despite an overall exponential trend prominent peaks and plateaus are present.

regular phase-space volume is not affected, the averaged fli vales according to equation (4.23) are

shown in figure 4.23 together with the opening used for the quantum calculation.

In figure 4.24 we show numerically determined tunneling rates for the ground state and the first

excited states of 𝒫nnc. These rates are strikingly different from the pure exponential decay of the

direct rates 𝛾𝑑 for 𝒫llu. Although the data shows an overall exponential trend it also shows rich

features given by prominent peaks at single values of 1/ℎ and broader plateaus over finite ranges of
1/ℎ.

In the following we concentrate on the state 𝜓0,3
reg shown in green. It has two sharp maxima at

1/ℎ = 82 and 97 as well as a slightly broader one at 1/ℎ = 122. It is our aim to understand the

emergence of these peaks qualitatively and predict them quantitatively. Note that the states 𝜓0,0
reg and

𝜓1,0
reg only yield plateaus and no sharp peaks. This phenomenon will also be addressed.

4.4.5. Interlude: Theory of resonance assisted tunneling (RAT)

Nonlinear resonances can introduce drastic changes into quantum properties of classical systems,

e. g. for the dynamical tunneling rates. The prediction of these rates in context of classical nonlinear-

ities was done for near-integrable systems [83, 84] and also for mixed systems far from integrability

where a regular domain is embedded inside a surrounding chaotic region [163, 164, 166, 183].

The description of tunneling rates in the presence of classical nonlinear resonances is based on a

comparison to a system without resonances. The link between these two systems can be described by
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the following symbolic representation of the Hamiltonians:

𝐻1

perturbation theory
=

𝐻2

+ 𝛿𝑊 (4.33)

↓ introduce fictitious integrable systems

𝐻3

=

𝐻4

+ 𝜀𝑉. (4.34)

Here 𝐻1 is the system we want to analyze. It yields a regular subsystem with nonlinear resonances

embedded in a large chaotic sea. It is thought of being the result of a system without nonlinear

resonances, called 𝐻2, under a small perturbation 𝛿𝑊 . The regular dynamics of 𝐻2 is approximated

by a fictitious integrable system 𝐻4 in order to extend the regular phase space into the chaotic

domain [78], cf. section 4.4.3. If this fictitious system 𝐻4 is perturbed by 𝜀𝑉 , the perturbation

introduces nonlinear resonances and yields the system 𝐻3. For simplicity tiny stochastic layers within

the regular island are not shown in the symbolic pictures. In order to construct useful quasi-modes

whose tunneling rates can be predicted, the eigenstates of 𝐻4 are used.

The main idea behind the fictitious integrable system approach is to describe the tunneling rates

of system 𝐻2 by using 𝐻4 as regular subsystem and the eigenstates of 𝐻4 as quasimodes for 𝐻2, see

section 4.4.3. In order to proceed along similar lines for 𝐻1 and 𝐻3 we use the fact that the left

hand side and the right hand side of (4.33) and (4.34) are connected only by small perturbations 𝜀𝑉

and 𝛿𝑊 , respectively. Using quantum perturbation theory expression, the eigenstates of 𝐻3 can be

obtained by means of the eigenstates of 𝐻4 [184]

|𝜓𝑚,𝑛reg ⟩ = |𝜓𝑚,𝑛reg ⟩ (4.35)

+
∑︁

𝑘,𝑙 ̸=𝑚,𝑛

⟨𝜓𝑘,𝑙reg|𝜀𝑉 |𝜓𝑚,𝑛reg ⟩
𝜀𝑚,𝑛 − 𝜀𝑘,𝑙

|𝜓𝑘,𝑙reg⟩

+ 2nd order containing (𝜀𝑉 )2 terms

+ 3rd order containing (𝜀𝑉 )3 terms

+ higher orders.

In this expression |𝜓𝑘,𝑙reg⟩ are the eigenstates of𝐻4 and thereby suitable quasi-modes of𝐻2. Accordingly,

the states |𝜓𝑚,𝑛reg ⟩ are the eigenstates of 𝐻1 and quasimodes of 𝐻3. If we now use formula (4.26) and
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insert (4.35) we find [79, 166]

𝛾𝑚,𝑛 = ‖𝑃ch 𝑈 |𝜓𝑚,𝑛reg ⟩‖2 (4.36)

= ‖𝑃ch 𝑈 |𝜓𝑚,𝑛reg ⟩+
∑︁

𝑘,𝑙 ̸=𝑚,𝑛

⟨𝜓𝑚,𝑛reg |𝜀𝑉 |𝜓𝑘,𝑙reg⟩
𝜀𝑚,𝑛 − 𝜀𝑘,𝑙

𝑃ch 𝑈 |𝜓𝑘,𝑙reg⟩+ higher order in (𝜀𝑉 )‖2 (4.37)

≈ ‖𝑃ch 𝑈 |𝜓𝑚,𝑛reg ⟩‖2 +
∑︁

𝑘,𝑙 ̸=𝑚,𝑛

⃒⃒
⃒⃒
⃒
⟨𝜓𝑚,𝑛reg |𝜀𝑉 |𝜓𝑘,𝑙reg⟩
𝜀𝑚,𝑛 − 𝜀𝑘,𝑙

⃒⃒
⃒⃒
⃒

2

‖𝑃ch 𝑈 |𝜓𝑘,𝑙reg⟩‖2

+ higher order terms in (𝜀𝑉 ) + interference terms

(4.38)

= 𝛾𝑑𝑚,𝑛 +
∑︁

𝑘,𝑙 ̸=𝑚,𝑛

⃒⃒
⃒⃒
⃒
⟨𝜓𝑚,𝑛reg |𝜀𝑉 |𝜓𝑘,𝑙reg⟩
𝜀𝑚,𝑛 − 𝜀𝑘,𝑙

⃒⃒
⃒⃒
⃒

2

𝛾𝑑𝑘,𝑙

+ higher order terms in (𝜀𝑉 )

+ interference terms omitted by incoherent sum (4.38)

(4.39)

where 𝛾𝑑𝑘,𝑙 is again the direct tunneling rate of the state |𝜓𝑘,𝑙reg⟩. In order to see if the incoherent

sum is an appropriate simplification, it is possible to compare the different terms in the sum of

equation (4.39). As long as one dominates the others it is valid to omit the interference terms. This

will be the case for most of the 1/ℎ values later.

In equation (4.39) the sum over the states |𝜓𝑘,𝑙reg⟩ represents a coupling of the initial state |𝜓𝑚,𝑛reg ⟩
to the states |𝜓𝑘,𝑙reg⟩ whose direct tunneling rate 𝛾𝑑𝑘,𝑙 then enter the incoherent sum of equation (4.39).

Higher order contributions from equation (4.35) yield further intermediate steps |𝜓𝑖,𝑗reg⟩ in between

|𝜓𝑚,𝑛reg ⟩ and |𝜓𝑘,𝑙reg⟩ in this tunneling process. This gives rise to tunneling paths Γ connecting the initial

state to the final state via intermediate steps

Γ : |𝜓𝑚,𝑛reg ⟩ → · · · → |𝜓𝑖,𝑗reg⟩ → · · · → |𝜓𝑘,𝑙reg⟩. (4.40)

It is important to note that the dominant contributions to 𝛾𝑚,𝑛 in equation (4.39) are typically given

by the terms of the sum with the largest direct tunneling rates 𝛾𝑑𝑘,𝑙. In other words for a given value

of Planck’s constant 𝛾𝑚,𝑛 is mostly determined by processes ending in final states |𝜓𝑘,𝑙reg⟩ which are as

close to the chaotic sea as possible. We will denote the subset of most relevant paths with 𝒢.

We can now link equation (4.39) to the description of nonlinear resonances using adiabatic per-

turbation theory, cf. section 3.2.2 on page 18. The resulting Hamiltonian (3.50) of this description

tells us that the potential 𝑉 whose matrix elements ⟨𝜓𝑚,𝑛reg |𝜀𝑉 |𝜓𝑘,𝑙reg⟩ appear in equation (4.39) only

consists of a subset of Fourier components. This subset is given by the integer vectors describing the
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resonance in whose vicinity the approximation is performed. From equation (3.50) we have

𝐻3

(I,𝜃) =

𝐻4

(I) + 𝜀
∑︁

𝛼,𝛽∈Z∖0

𝑉 𝛼r𝑎+𝛽r𝑏,𝛼𝑠𝑎+𝛽𝑠𝑏(I)ei(𝛼r
𝑎+𝛽r𝑏)𝜃. (4.41)

In this formula the classical resonances enter by r𝑎,𝑏, 𝑠𝑎,𝑏 which are given by the resonance conditions

imposed on the classical frequencies (3.8) r𝑎,𝑏𝜔res = 𝑠𝑎,𝑏.

The fact that only some Fourier modes are present yields selection rules in the possible couplings

of the perturbation series (4.35). The simplest approach for determining the quantum system corre-

sponding to the classical Hamiltonian (4.41) is done by a canonical quantization. After the replacement

I ↦→ Î and 𝜃 ↦→ 𝜃 and choosing the angle-space representation

Î ↦→ ~
i

𝜕

𝜕𝜃
(4.42)

the eigenstates |𝜓k
reg⟩ ≡ |𝜓𝑘1,𝑘2reg ⟩ of the system 𝐻4 can be written as

⟨𝜃|𝜓𝑘1,𝑘2reg ⟩ =
1

2𝜋
ei(𝑘1+

1/2)𝜃1ei(𝑘2+
1/2)𝜃2 , (4.43)

where we have used the fact that the coordinates of the adiabatically averaged Hamiltonian have

2𝜋-periodic angles. The exponents 1/2 = 𝜇/4 are the Maslov-indices for the two degrees of freedom.

As both degrees of freedom yield two turning points per quantizing torus we have 𝜇 = 2. The

eigenfunctions (4.43) of Î with eigenvalues 𝐼𝑗 = ~(𝑘𝑗 + 1/2) are also eigenfunctions of the unperturbed

part of the Hamiltonian (4.41) with eigenvalues

𝐻4(~(𝑘1 + 1/2), ~(𝑘2 + 1/2)). (4.44)

In order to obtain the first order quantum perturbation expression for the perturbed eigenstates we

have to calculate the matrix elements of the potential

⟨𝜓𝑘1,𝑘2reg |𝜀
∑︁

𝛼,𝛽∈Z∖0

𝑉 𝛼r𝑎+𝛽r𝑏,𝛼𝑠𝑎+𝛽𝑠𝑏 (̂I)ei(𝛼r
𝑎+𝛽r𝑏)𝜃|𝜓𝑚1,𝑚2

reg ⟩. (4.45)

Under the assumption that the Fourier coefficients do not depend on the actions themselves we find

⟨𝜓k
reg|𝜀𝑉 |𝜓m

reg⟩ = 𝜀
∑︁

𝛼,𝛽∈Z∖0

𝑉 𝛼r𝑎+𝛽r𝑏,𝛼𝑠𝑎+𝛽𝑠𝑏
(︁
𝛿k,m+(𝛼r𝑎+𝛽r𝑏) + 𝛿k,m−(𝛼r𝑎+𝛽r𝑏)

)︁
. (4.46)

The prediction of dynamical tunneling rates according to equation (4.39) in addition requires a

prediction of the direct tunneling rates 𝛾𝑑𝑘,𝑙. These rates 𝛾
𝑑
𝑘,𝑙 describe the decay of a localized quasi-

mode in the absence of nonlinear resonances. Finding these rates, however is a non-trivial task. In

2d maps adiabatic averaging using Lie-transformation techniques, normal form analysis, or recon-
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structions from Fourier transformations of classical orbits are used to provide fully regular systems

whose eigenvectors are good quasi modes for the regular region [78, 79]. While it is possible to obtain

such a system also for the map with linear regular region 𝒫llu, see section 4.4.3, it is not possible to

derive such an 𝐻reg for maps with nonlinear resonances straightforwardly. The main obstacle is that

all forms of interpolations as performed in the 2d case do not necessarily yield integrable systems.

The fact that they are time independent is not longer sufficient as is discussed in section 3.2.2 and

exemplified in terms of a time independent Hamiltonian with two degrees of freedom in appendix G

showing chaotic dynamics.

However, it is possible to give an approximate prediction of the resonance-assisted tunneling rates

without the knowledge of the direct tunneling rates from equation (4.39). This approximation is

based on neglecting all tunneling paths in equation (4.39) whose endpoint is not sufficiently close to

the chaotic sea as mentioned above. There the subset of paths, whose final state cannot couple to

another state inside the island having a larger direct tunneling rate, is called 𝒢. For paths Γ in 𝒢
the direct tunneling rate 𝛾𝑑𝑘,𝑙 is then approximated by the last used Fourier coefficient of the coupling

again. This is shown in references [163, 183, equations (7) and (9) or (1.28) and (1.37), respectively]

where the mean level splitting is given as

Δ𝜙 =

(︂
𝜏𝑉eff
~

)︂2

(4.47)

and the effective potential reads

𝑉eff = 𝑉𝑟:𝑠

𝑘−1∏︁

𝑙=1

𝑉𝑟:𝑠
𝜀0 − 𝜀𝑙𝑟

, (4.48)

where 𝜏 is the driving period of the system and 𝑘 denotes the number of states included in the process.

For 2d maps of the Fourier component 𝑉𝑟:𝑠 in this expression given by the period of the periodic orbit

underlying the resonance [163, 183]. The product in equation (4.48) corresponds to the terms of order

𝑘 − 1 in equation (4.39). The prefactor 𝑉𝑟:𝑠 approximates the direct tunneling rate of the last state

along the path of intermediate states.

For 4d maps a reduction to only one Fourier component is only possible if the main resonance in

phase space is of rank-1 [6]. However, in 𝒫nnc a rank-2 resonance is dominating the phase space as

pointed out in 3.4.2. Hence, the resonance-assisted tunneling is based on an approximate Hamiltonian

(4.41) which cannot be reduced to just one Fourier term. Such a Hamiltonian system with two degrees

of freedom in general yields a mixed phase space as can be seen from the normal form of double

resonant Hamiltonians [107]. An example of such a system is shown in appendix G. The presence of

chaos highly complicates the determination of the Fourier components from the classical phase space

compared to the 2d case. An approach to this determination is presented later in section 4.4.6.

If we assume that the Fourier coefficients of the two basic resonances are known, 𝑉 r𝑎,𝑠𝑎 and 𝑉 r𝑏,𝑠𝑏 ,

then we can generalize formula (4.48) to the multi-resonance case by using the appropriate Fourier

coefficient connecting the single intermediate steps |𝜓𝑖,𝑗reg⟩ along the tunneling path Γ. In our case
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equation (4.48) therefore translates into

𝑉 Γ
eff = 𝑉last amplitude

∏︁

k∈{steps along path Γ}

|𝑉k|2
𝜀k,end − 𝜀k,begin

. (4.49)

In this expression the product gathers together all contributions mediated by the single steps along

Γ. The energy denominator 𝜀k,end − 𝜀k,begin is given by the difference in the quasienergy 𝜀 of the

start and the endpoint of step k. The coupling matrix element 𝑉k is set to be either 𝑉 r𝑎,𝑠𝑎 or 𝑉 r𝑏,𝑠𝑏

depending on which resonance is responsible for the current step k.

Finally the tunneling rate from state 𝜓m
reg due to the contribution of path Γ is obtained from the

effective couplings 𝑉 Γ
eff according to equation (4.47) and the relation between the tunneling splitting

and the tunneling rate, 𝛾 = Δ𝜙 [79, equation 44],

𝛾Γm =

(︂
𝑉 Γ
eff

~

)︂2

(4.50)

where we used that the period of the driving is 𝜏 = 1. The complete prediction of the tunneling rate of

state 𝜓m
reg based on all paths from 𝒢 is then given by the incoherent sum according to equation (4.39)

𝛾m =
∑︁

Γ∈𝒢
𝛾Γm. (4.51)

We will use this formula in order to give a prediction to the tunneling rates of 𝒫nnc.

4.4.6. Prediction of tunneling rates for 𝒫nnc, RAT

The prediction of tunneling rates for the system 𝒫nnc based on equation (4.49) depends on three

aspects. First, the nonlinear resonance induces selection rules on the possible couplings. Therefore,

only certain tunneling paths are present in equation (4.39) from which only the ones in the set of the

relevant paths 𝒢 are used to calculate effective couplings according to equation (4.49). Second, the

energy denominator in the prediction determines which intermediate regular states are responsible for

the tunneling enhancement due to avoided crossings in the quasienergy 𝜀. Third, it is necessary to

determine the Fourier coefficients of the potential in order to get the coupling matrix elements for a

detailed prediction of the tunneling rates. We will concentrate on these three aspects in the following

and conclude with a prediction.

Selection rules from nonlinear resonances

In order to understand the emergence of the peaks in the tunneling rates of figure 4.24, we can use

the result of the classical analysis of 𝒫nnc from section 3.4.2. The most important feature in phase

space is the the period-5 orbit embedded in the regular island given by equation (3.98). It is caused

by the rank-2 resonance mentioned on page 48. The analysis of the frequency map in figure 3.10(d)
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shows that the two rank-1 resonances

5 : 0 : 1 and 6 : −1 : 1. (3.94)

can be used as basis of the resonance module. This fixes this choice of r𝑎, 𝑠𝑎 and r𝑏, 𝑠𝑏 in equa-

tion (4.41). If we absorb 𝜀 into the Fourier modes for brevity and further neglect their action depen-

dence, then the Hamiltonian becomes

𝐻3

(I,𝜃) =

𝐻4

(I) + 𝑉 (5,0),1e5i𝜃1 + 𝑉 (6,−1),1ei(6𝜃1−𝜃2)

+ 𝑉 (11,−1),2ei(11𝜃1−𝜃2) + 𝑉 (1,−1),0ei(𝜃1−𝜃2) + · · ·+ c. c.

(4.52)

where the first line contains the two fundamental Fourier modes according to the choice of r𝑎, 𝑠𝑎 and

r𝑏, 𝑠𝑏 and the second line contains an example of higher order Fourier modes given by 𝛼 = 1, 𝛽 = 1

and 𝛼 = −1, 𝛽 = 1.

This form of the potential yields selection rules originating from equation (4.46) which read

(︃
𝑘

𝑙

)︃
=

(︃
𝑚

𝑛

)︃
+ 𝛼

(︃
5

0

)︃
+ 𝛽

(︃
6

−1

)︃
. (4.53)

These rules lead to couplings between certain unperturbed states |𝜓𝑖,𝑗reg⟩ such that several tunneling

paths Γ emerge. Some examples are shown schematically in figure 4.25 for the initial state |𝜓0,1
reg⟩.

These paths include processes of different order and therefore the matrix elements (4.46) of these

paths contain also higher order Fourier coefficients. In this context higher order means Fourier indices

(m, 𝑛) which are multiples of the basic integers given by the resonance conditions, i. e. |𝛼| > 1 and/or

|𝛽| > 1 in equations (4.41) and (4.46). The depicted state |𝜓0,1
reg⟩ is coupled to |𝜓16,0

reg ⟩. The coupling
is possible given that at least one of the following Fourier components 𝑉m,𝑛 or product of Fourier

components is nonzero:

1st order contributions via Fourier mode 𝑉 (16,−1),3 ̸= 0 in the sum in (4.35)

2nd order contributions via Fourier modes 𝑉 (6,−1),1 × 𝑉 (10,0),2 ̸= 0 in (4.35)

3rd order contributions via Fourier modes 𝑉 (6,−1),1 × 𝑉 (5,0),1 × 𝑉 (5,0),1 ̸= 0 in (4.35).

In this diagram loops are omitted. This is appropriate because we are only interested in tunneling

paths Γ which go directly out of the island. All other paths can be neglected as they yield much

smaller contributions in equation (4.39) and equation (4.49) due to a larger number of small factors.

With the same reasoning also tunneling paths intermediately increasing the second quantum number

𝑚2 are omitted. This might change if the basis of the resonance module is chosen differently as

addressed in appendix C. Due to neglecting loop contributions a fourth order term does not exist, as
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m1

m2

(0, 1)

V (16,−1),3

V (6,−1),1 × V (10,0),2

V (5,0),1 × V (5,0),1 × V (6,−1),1

Figure 4.25.: Possible connections between two regular quantum states via rat for 𝒫nnc based on
the choice of equation (3.94). Shown in black are points denoting quantum number pairs (𝑚1,𝑚2).
Shown in orange are all points reachable from the initial state |𝜓0,1

reg
⟩. Given this initial state the

arrows indicate via which paths Γ a coupling to |𝜓16,0
reg
⟩ is possible and which Fourier components

are included.

the difference between the two states does not allow a connection based on four single steps with the

two given resonances (3.94). Also not all processes of order up to three are shown. For example the

second order process is not only possible via |𝜓6,0
reg⟩ but also via |𝜓10,1

reg ⟩. For the first order process

there are even 3 possibilities in total.

Which of the processes is dominating depends on the way the Fourier components of the potential

decay with increasing order. Usually for an analytic 𝑉 one assumes [6, page 304]

𝑉m,𝑛 ∝ e−𝜎(‖m‖1+|𝑛|) (4.54)

with some coefficient 𝜎 which is not relevant here. If 𝜎 is small, then the potential contains many

harmonics. The dominating process is given by a comparison of equation (4.54) with the relation

between different order of the potential, namely 𝜀𝑉 versus (𝜀𝑉 )2 and (𝜀𝑉 )3. In the following we will

proceed like for 2d maps and restrict the Fourier series to the first order terms [79], i. e.

|𝛼| = 1 and/or |𝛽| = 1. (4.55)

However, as mentioned on page 110 this does not guarantee the pendulum approximation (4.52)

to be integrable. This is also shown in appendix G where the phase space of the Hamiltonian in

equation (4.52) is investigated.

As mentioned on page 106 we want to focus on |𝜓0,3
reg⟩ and explain the peaks of 𝛾0,3 from figure 4.24.

For a given value of 1/ℎ only a certain number of regular states exist. Therefore only certain coupling

paths are possible. They are given examplarily for 1/ℎ = 90 in figure 4.26 where the extent of the

regular island is visualized by a red dashed line. This line is the border between the existing and the

non-existing regular states. Therefore, it is an expression for the interface between the regular and the

chaotic domain in phase space transferred to the quantum-number quarter-plane. On the left hand

side of this line black dots mark existing regular quantum states. However, the plot is cut off along the

𝑚2 axis. At the right hand side of the line no regular states exist. This is expressed by random blue

points symbolizing the chaotic sea. Due to the restriction on the first order Fourier coefficients only

two types of arrows are displayed in contrast to the example case of figure 4.25. This reduction onto
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m1

m2

Figure 4.26.: Possible tunneling paths at 1/ℎ = 90. The black and orange points indicate existing
regular states with quantum numbers (𝑚1,𝑚2). The numerically determined border of the regular
island of 𝒫nnc is drawn as a dashed red curve in the quantum-number quarter-plane. On the
right hand side of this line no regular states exist. This is illustrated by the random blue points,
symbolizing the chaotic sea. The arrows indicate possible tunneling paths for the given initial state
show in green, 𝜓0,3

reg
. The paths depend on the choice of the resonances 5 : 0 : 1 and 6 : −1 : 1.

the smallest Fourier mode is an important simplification for which it is very important to note that

it highly depends on the choice of the classical resonances used to describe the phase-space structure,

here the 5 : 0 : 1 and the 6 : −1 : 1 resonance. We comment on an alternative choice in appendix C.

All the paths in figure 4.26 end beyond the dashed line in the chaotic sea. It is important to

note that this border cannot be defined in a strict sense as mentioned already on page 86 when

discussing the eigenstates of 𝒫nnc. This is because the question when a regular state ceases to exist

for decreasing 1/ℎ or comes into existence for increasing 1/ℎ cannot be defined precisely. Apart from

this impreciseness an estimated form of the border is given by a diagonal line 𝑚2 = 𝑁 − 𝑚1 with

some offset 𝑁 depending on 1/ℎ. This shows that the last states inside the regular zone for a given
1/ℎ are approximately given by the states of constant 𝑚1 +𝑚2 and that by increasing 1/ℎ new regular

states start to exist in groups.

Energy denominators

The question arises which of the potentially important intermediate steps in figure 4.26 are responsible

for the enhanced tunneling rates. Therefore, it is necessary to check the prefactor 𝑉 𝛼r𝑎+𝛽r𝑏,𝛼𝑠𝑎+𝛽𝑠𝑏 of

the Fourier mode and the energy denominator (𝜀m − 𝜀k)−1 in equation (4.39). The denominator can

be obtained numerically using equation (4.22) and

𝜀 = −~ ·𝜙. (4.56)

If |𝜀m − 𝜀n| is very small, the corresponding eigenstates couple to each other and the tunneling rates

increase according to equation (4.39). The comparison between 𝛾 and small quasienergy differences

is shown in figure 4.27. From this picture the main outcome of this investigation can be deduced. It

tells which quantum states are responsible for the enhancement of the tunneling rates. In the case of
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Figure 4.27.: Tunneling rate 𝛾 (bottom) and spectrum 𝜙 (top) vs. 1/ℎ for the state |𝜓0,3
reg
⟩ of 𝒫nnc.

Positions where 𝛾0,3 shows peaks (1/ℎ = 82, 97, and 122) coincide with tiny avoided crossings between

|𝜓0,3
reg
⟩ and three other states which are allowed to couple according to figure 4.26.

the data shown in figure 4.27 the three peaks originate from a coupling of |𝜓0,3
reg⟩ to |𝜓6,2

reg⟩, |𝜓11,2
reg ⟩, and

|𝜓16,2
reg ⟩, respectively.
While there exist predictions for the quasienergy for resonance-free islands of 2d maps [152], we

would like to use a fit

𝜀 −→ polynomial fit of the data (4.57)

of the numerical data in order to describe the quasienergies for the prediction of tunneling rates.

As the 𝜀m highly fluctuate at the smallest values of 1/ℎ these fits omit the first part of the 𝜀m(1/ℎ)

curve. It is further necessary to smoothly fit trough the avoided crossings with other regular states.

These avoided level crossings are not necessarily small like the ones of |𝜓0,3
reg⟩ in figure 4.27 but can be

rather large as the one between |𝜓6,2
reg⟩ and |𝜓11,2

reg ⟩ visible in the same figure. The detailed procedure

of the fitting is discussed in appendix F. As the peak positions of the tunneling-rate predictions are

given by the zeros of the quasienergy differences, these positions depend highly on the accuracy of

the performed smooth interpolation.
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Estimating the parameters of the pendulum approximation from phase-space properties

A prediction or interpolation of the quasienergies 𝜀 is necessary in order to apply equation (4.49) for

a single given path Γ. Furthermore, we need to determine the remaining parameters of the resonance

Hamiltonian 𝐻3 from equation (4.52). These are the Fourier coefficients 𝑉m,𝑛 and the integrable part

𝐻4 in equation (4.41). The system 𝐻4 is usually expanded up to second order [6]

𝐻4(I) =
1

2
I𝑇ℋI (4.58)

where a constant term has been dropped. Therefore, the missing parameters are given by the Fourier

coefficients and the coefficients of the symmetric matrix ℋ with matrix elements ℋ𝑖𝑗 .
In 2dmaps the Hamiltonian approximating the vicinity of the resonance (4.41) gives an autonomous

system with one degree of freedom and hence is integrable. If all Fourier coefficients of the one-degree-

of-freedom Hamiltonian of order two or higher are neglected as discussed with equation (4.54), then

this model reduces significantly. As long as there is just one resonance dominating the phase space of

a 2d map, this reduction to only one Fourier term is always uniquely possible. The Fourier coefficient

to which the potential is reduced to is given by the period of the resonance. For example for a 𝑟 : 𝑠

resonance it is the first term cos(𝑟𝜃) of the sum from equation (4.41). This uniqueness is based on the

fact that resonances in 2d maps are always given by periodic orbits of some period 𝑟. Therefore there

always exists an integer 𝑟 which gives rise to the lowest order potential term cos(𝑟𝜃). The resulting

system is a mathematical pendulum and hence very much is known about it, e. g. the equation of the

separatrix and the enclosed area. This can be used in order to obtain the Fourier coefficients from the

given classical phase space [125, 163, 166]. Due to the importance of this pendulum model we will

also call the adiabatically averaged approximation of the higher dimensional system in the vicinity

of the nonlinear resonance a pendulum approximation although it is a higher dimensional pendulum

now.

We now want to determine the parameters of 𝐻3 in order to predict dynamical tunneling rates for

𝒫nnc. As we know how the pendulum approximation 𝐻3 emerged from the full system 𝒫nnc, namely

by the adiabatic averaging described in section 3.2.2, the straight forward way of determining the

missing parameters could be following the derivation of 𝐻3. However, this is not possible as the

very starting point in equation (3.5) is not known. In terms of 𝒫nnc this would mean knowing the

integrable system without the resonance and furthermore the action–angle variables of it. Generally

speaking the basic idea behind the prediction of the missing parameters is to circumvent the necessity

of knowing the integrable Hamiltonian [163]. The way this works for 2d maps is outlined by the

following three aspects which are written here in more general words such that we can try to apply

them also to 4d maps:

1. We have to determine dynamical invariants of the pendulum Hamiltonian 𝐻3 which can be

identified geometrically in the phase spaces of 𝒫nnc. In 2d maps this is the periodic point and

the separatrix enclosing the resonance chain. In higher dimensional systems a further possibility

are paths connecting heteroclinic orbits.
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2. Furthermore we have to derive numerical quantities from these geometrical objects which are

invariant under canonical transformation. In 2d maps this is achieved by using the area enclosed

by the separatrices and by using the trace of the linearization around the periodic orbit. For

4d maps there are more invariants possible, namely enclosed areas and 4d volumes [185, page

286].

3. The relations between the quantities from point 2 and the parameters of 𝐻3, ℋ𝑖𝑗 and 𝑉 𝑚,𝑛,

have to be determined. In 2d maps this is possible as the pendulum model itself is integrable.

If we want to predict the parameters of 𝐻3 for 𝒫nnc in the same way as for 2d maps, we face two

fundamental differences. First, it is not as obvious as for 2d maps which Fourier modes to keep in

order to match the physical situation while simultaneously gaining a truncated𝐻3 which is analytically

manageable. The overall expected decay behavior of the Fourier modes from equation (4.54) is not

helpful here. Second, and probably the more important, the pendulum approximation 𝐻3 is in general

not integrable. For 4d maps this can for example be investigated using a Poincaré section reducing

𝐻3 to a 2d mapping. We demonstrate this for the example choice of Fourier modes of equation (4.52)

in appendix G where this 2d Poincaré map is introduced.

In the following we demonstrate how to obtain an estimate on the coefficients by making rather crude

assumptions. First, the integrable part of equation (4.52) is replaced by its quadratic approximation

as done in equation (4.58). If we neglect any coupling in this quadratic term by assuming the matrix

ℋ to be diagonal

ℋ11 =
1

𝑚1
, ℋ22 =

1

𝑚2
, and ℋ12 = ℋ21 = 0, (4.59)

then it is possible to derive a relation between the parameters and the trace of the linearization of 𝒫nnc
around the periodic orbit from equation (3.98) if we further restrict the Fourier coefficients 𝑉 𝛼1,𝛼2 of

the potential in equation (4.52) to be

𝑉 𝑘1,0 ̸= 0 𝑉 0,𝑘2 ̸= 0 and 𝑉 𝛼1,𝛼2 = 0 else (4.60)

for a fixed choice of two integers 𝑘1, 𝑘2. This relation is derived in appendix I and reads

(−1)𝑘1𝑘12𝑉 𝑘1,0

𝑚1
= −

{︂
arccos

(︂
trD𝒫nnc

4
+

1

4

√︁
8 + 2tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂}︂2

and

(−1)𝑘2𝑘22𝑉 0,𝑘2

𝑚2
= −

{︂
arccos

(︂
trD𝒫nnc

4
− 1

4

√︁
8 + 2tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂}︂2

.

(4.61)

However, note that the restriction to equation (4.60) is not deducible from the rank-2 resonance. If

we want to use a resonance approximation suitable for the resonance around a periodic orbit then we

must not drop Fourier coefficients coupling the degrees of freedom in equation (4.41). This complicates

the equations significantly as shown in equation (I.17). Only if the dominating resonance structure

in phase space would be a rank-1 resonance, then the above decoupling of degrees of freedom would
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be fully reasonable. An example system where only rank-1 resonances occur is the uncoupled map

described in the frequency map analysis of figure 3.10(c). However, there the tunneling rates are

completely different from the ones of 𝒫nnc shown in figure 4.24. The tunneling rates of the system

with the uncoupled regular region from figure 3.10(c) are shown for comparison in appendix E. They

lack the prominent peaks of the data for 𝒫nnc. This emphasizes that the tunneling processes in 𝒫nnc
really rely on the coupling of the degrees of freedom and on the rank-2 resonance.

For 2d maps it is possible to relate the size of a single resonance zone to the parameters of the

pendulum. If we measure the size of the period-5 resonance zone in both degrees of freedom, namely

in (𝑝1, 𝑞1) at (𝑝2, 𝑞2) = (0, 1/2) and in (𝑝2, 𝑞2) at (𝑝1, 𝑞1) = (0, 1/2), then we get the areas 𝑆1 = 0.009395

and 𝑆2 = 0.075353. This estimate is calculated using a polygon placed according to the outline of the

regular region of the resonance. As this outline is no longer given by an orbit as in 2d maps we use

fli planes to estimate this size. Using the formula from 2d maps from reference [163, equation (3)]

with

𝑉 1,2 ·𝑚1,2 =

(︂
𝑆1,2
16

)︂2

(4.62)

we can solve equation (4.61) and equation (4.62) for 𝑉 𝑖. These two numbers are then used as replace-

ment of 𝑉𝑟:𝑠 in (4.48). If the tunneling path Γ takes a step along the first resonance r𝑎 then 𝑉1 is used,

if it uses a link based on the second resonance r𝑏 then 𝑉2 is put into the product of equation (4.49).

If the prediction using rat is compared to the numerical data from figure 4.24, one finds that

the above approximation gives one-step couplings 𝑉1 and 𝑉2 which are approximately an order of

magnitude too large. Therefore, we choose more appropriate values for the one-step couplings and

get

𝑉1 = 2.5 · 10−5 and 𝑉2 = 1.5 · 10−5 (4.63)

which yield a better agreement. It is an open and challenging question whether it is possible to derive

analytical expressions for the matrix elements of the perturbation potential 𝑉 . It might be that the

possibility of reducing the two degree of freedom pendulum Hamiltonian equation (4.41) to a 2d map

is helpful, see appendix G. A further possibility is that investigating the 2d center manifolds of the

ee-type periodic orbit could yield insight. Also on these manifolds the system is reducible to a 2d

map. It might be possible to achieve the three steps mentioned on page 112 for orbits on the center

manifolds of 𝒫nnc and on the center manifolds of the pendulum Hamiltonian.

Prediction

If the tunneling paths Γ are all determined according to the selection rules from equation (4.53), then

their separate tunneling rates 𝛾Γm can be calculated via equation (4.49) using the energy denominators

from the interpolation in appendix F and Fourier coefficients from equation (4.63). These contributions

enter the incoherent sum in the first term of equation (4.39). We can compare this prediction with

the numerical data obtained from the open system in figure 4.24. This is shown in figure 4.28 for
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Figure 4.28.: Prediction of tunneling rates for the state |𝜓0,3
reg
⟩ of 𝒫nnc vs. 1/ℎ using rat. The insets

are similar to figure 4.26 and symbolize the possible tunneling paths. The prediction (solid line) is
the incoherent sum of all paths.

the state 𝜓0,3
reg. The drops in the predictions stem from the increase of the quantum resolution with

increasing 1/ℎ. Whenever a new regular state is supported inside the island the product in figure 4.49

gains an extra small factor. As the regular states tend to come into existence in groups, these drops

appear in an avalanche-like fashion, cf. page 114. This is also shown in the insets. They denote which

paths are present at which intervals of the 1/ℎ-axis.

Although all of these tunneling paths are possible, only some of them pass the states found to be

responsible for the peaks in figure 4.27. The most important path for a given interval of the 1/ℎ-axis is

given by the largest contribution according to equation (4.49) in the incoherent sum of the direct rates

𝛾𝑑 from equation (4.39). A comparison of the relevance of the paths based on the energy denominators

is given in appendix H.

Note that the rat prediction formula depends on the calculation of the coupling matrix ele-

ments (4.45) which themselves are based on the canonical quantization rules in equation (4.42)

introduced to quantize the pendulum Hamiltonian (3.50). The drawback of this approach is that

the results may deviate from numerical data by orders of magnitude. This was investigated and im-

proved for 2d maps by introducing more appropriate matrix elements [166]. The basic idea is a more

appropriate version of quantizing the resonance Hamiltonian (4.41). This is done by first writing the

variables of the classical Hamiltonian as harmonic oscillator-like variables and then introduce bosonic

ladder operators [110]. In combination with the direct regular-to-chaotic tunneling rates this leads to

a much better prediction in 2d maps. [125, 166].
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4.4.7. Dynamical tunneling rates of 𝒫csm

We now consider the system 𝒫csm. In order to open the system we use projected fli values in order to

determine a valid opening which does not change the regular region, cf. page 4.4.2. The corresponding

fli plot together with the opening is depicted in figure 4.29. It also shows that the phase space of

𝒫csm does not contain further regular structures besides the main regular island at other positions q.

However, due to being a projection along the momenta the plot does not exclude the possibility of

further regular islets in the classical phase space at q ≈ (1/2, 1/2).

After the diagonalizations the relevant eigenstates have to be extracted from the data and connected

along the 1/ℎ axis as described in appendix B. For the coupled standard maps one faces the severe

problem of avoided crossings and a quantum-number assignment is only possible for the lowest states.

Higher excited states do not yield such a clear separation of the degrees of freedom and the two

quantum numbers cannot just be read off easily.

The tunneling rates of this very generic system are shown in figure 4.30. In contrast to the data

of the designed maps 𝒫llu and 𝒫nnc the regular-to-chaotic tunneling rates fluctuate extensively with

varying 1/ℎ. Due to the complicated classical phase-space structure much more resonances are present

in the classical system and the tunneling rates are much more complicated than for the designed

maps. The fact that 𝒫csm shows much more avoided crossings in the quasienergy spectrum makes it

very hard to even identify the important coupling states qualitatively as done for 𝒫nnc in figure 4.27.

Therefore, a complete prediction of the tunneling rates is much harder and stays an interesting and

challenging problem for future investigations.
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Figure 4.29.: Average fli values plotted over position space for the coupled standard maps 𝒫csm

according to equation (4.23). If the value is smaller than 0.999 times the maximum value of fli = 450,
then the corresponding point is shown in red. These points have at least one point in 𝑝1 or 𝑝2 where
there is regular dynamics yielding a fli not in the rightmost peak of figure 3.22. All other points
are marked in blue as they yield chaotic motion for all values of the momenta. The hatched white
area denotes the opening of the quantum system which must not intersect with the regular region
at any value of the momenta.
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Figure 4.30.: Tunneling rates of 𝒫csm vs. 1/ℎ for the states |𝜓0,0
reg
⟩, |𝜓1,0

reg
⟩, |𝜓1,1

reg
⟩, and |𝜓0,3

reg
⟩ given in

the insets. Due to the very complicated classical phase-space structures a lot of resonances introduce
various avoided crossings leading to enhanced tunneling rates at several values of 1/ℎ.





5. Summary and outlook

In order to understand the dynamical properties of physical systems ranging from molecules to solar

systems, it is of vital importance to extend the knowledge available for systems with two or fewer

degrees of freedom to higher dimensional ones. This thesis is a step towards this direction. Its

first main goal is to extend notions and insights from 2d to 4d maps classically as well as quantum

mechanically. The second goal is to investigate new phenomena not present in systems with 𝑓 ≤ 2,

like quantum consequences of the Arnold web.

In chapter 3 the classical dynamics is investigated. Central to this is the introduction of 3d phase-

space sections. They allow to recognize structures known from 2d phase spaces in 4d maps. This is

exemplified by means of three different mappings of increasing complexity in phase-space. First, we

introduce a mapping specifically designed to yield a simple phase-space structure whose regular part

is given by completely linear dynamics (section 3.4.1). In order to approach more physically relevant

systems, we introduce nonlinearities to this system (section 3.4.2). The final step is an investigation

of the generic case of a system of coupled standard maps (section 3.4.3). In order to explore the 4d

phase space, in section 3.4.2 we introduce shifted sections as well as skew sections which completely

reveal the phase-space structure. They lead to the important result that some of the complicated

structures visible in the 3d phase-space sections occur just because of an inappropriate choice of the

section. We show how an appropriate section can be obtained based on the linearization around

elliptic-elliptic periodic orbits.

Although 3d sections of the classical phase space give important insights, they cannot give the full

representation of the dynamics. Therefore, we additionally use projections of orbits from 4d onto

3d, where the missing coordinate is indicated by color. These clearly reveal the difference between

resonances of rank one and two in section 3.4.2. This is an aspect which cannot be solely deduced from

a picture of the classical phase space, in contrast to 2d maps. Also the overall resonance structure has

to be determined by investigating the image of the frequency map. Besides the nonlinear resonances

the classical volumes of the regular region in phase space are important quantities. While for 2d maps

these volumes are given by the encircled area of the outermost torus, we use the fli to estimate the

4d volumes.

Quantum mechanically, the 3d phase-space sections are an important companion as well. Using

Husimi distributions in chapter 4 they allow to determine if eigenstates localize on the main regular

region, on nonlinear resonances, or on the stochastic layer. Furthermore, the sections are an indis-

pensable help when investigating the quantum mechanical consequences of the Arnold web. As this

thesis focuses on systems with a mixed phase space, only these sections allow to estimate the location

of the Arnold web in phase space. We study the impact of the Arnold web on quantum mechanics by
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the propagation of wave packets for which the intrusion depth into the Arnold web is investigated. In

section 4.3 we observe how the depth of intrusion changes when going deeper into the semiclassical

limit. It is a very important but yet unsolved question whether and how this penetration into the

Arnold web is linked to the phenomenon of dynamical localization.

While the Arnold web is present classically and has quantum mechanical consequences, there exist

other features only present in quantum mechanics. The most prominent one is the coupling between

classically disconnected phase-space regions given by dynamical tunneling. In order to understand

the quantum mechanical coupling between the regular and the chaotic region, we analyze dynamical

tunneling rates. We therefore extend the fictitious integrable system approach [78] to a 4d mapping

and find very good agreement to numerically obtained regular-to-chaotic tunneling rates.

In addition to this direct coupling between the regular and the chaotic region we also investigate

resonance-assisted tunneling (rat) effects for a map with nonlinear resonances. Here the results of the

classical frequency map analysis are used to obtain the resonances and intermediate states which are

relevant for the tunneling enhancement. This allows to obtain qualitative insights into the resonance-

assisted tunneling mechanisms. However, due to the much more complicated resonance structures in

phase space a quantitative description is very complicated. Although we give some steps towards a

full determination of all necessary ingredients, an understanding as complete as for 2d maps is still

an open question.

For the future the main open questions concern how the 3d phase-space sections studied in this

thesis can be further optimized to understand strongly coupled systems. This is important classically

for investigating trapping mechanism of chaotic orbits and quantum mechanically for analyzing the

role of the Arnold web quantitatively. Furthermore, the results of this thesis give insights towards

the understanding of dynamical tunneling rates for systems with a higher dimensional mixed phase

space. It is an open and challenging task to determine quantitative predictions of the tunneling rates

in the setup of resonance-assisted tunneling.



Appendix

A. Potential of the designed map

Section 3.4.1 introduces a map whose potential gives rise to a regular region clearly and cleanly

separated from the surrounding chaotic domain. The kinetic energy of this mapping simply reads

𝑇 (p) =
1

2
p2. (3.68)

As written in section 3.4.1, the potential in position space is also quadratic close to the center of the

(𝑞1, 𝑞2) space. The linear regular region is achieved by setting the potential

𝑉quadratic(q) =
𝑟1
2
𝑞21 +

𝑟2
2
𝑞22 (3.69)

where 𝑟1 and 𝑟2 are real parameters. This potential has to be truncated at some point in order to

get the chaotic part properly. Therefore, we introduce a further parameter 𝑄. As soon as the values

of the potential 𝑉quadratic are above a threshold 𝑄2, the definition of the potential changes. The first

ansatz is

𝑉 (𝑞1, 𝑞2) =

⎧
⎨
⎩

𝑉quadratic(𝑞1, 𝑞2), 𝑉quadratic(𝑞1, 𝑞2) ≤ 𝑄2

𝑄2 + const · 𝑓(𝑞1, 𝑞2), else
(A.1)

where the function 𝑓 is such that it is zero on the ellipsis defined by 𝑉quadratic(𝑞1, 𝑞2) = 𝑄2 and increases

linearly in radial direction towards the border of the position-space region [−0.5, 0.5)× [−0.5, 0.5)
where it reaches the value 1. This 𝑓 is given by

𝑓(𝑞1, 𝑞2) =
𝑟(𝑞1, 𝑞2)− 𝑟elli(𝑞1, 𝑞2)

𝑟rect(𝑞1, 𝑞2)− 𝑟elli(𝑞1, 𝑞2)
(A.2)

where 𝑟(𝑞1, 𝑞2) =
√︀
𝑞21 + 𝑞22 is the radial distance from the center and the two functions

𝑟rect(𝜙) =
1

2max{| sin𝜙|, | cos𝜙|} =

⎧
⎨
⎩

1
2| cos𝜙| , 𝜙 ∈ [−𝜋/4, 𝜋/4) ∪ [3𝜋/4, 5𝜋/4)

1
2| sin𝜙| , 𝜙 ∈ [𝜋/4, 3𝜋/4) ∪ [5𝜋/4, 7𝜋/4)

(A.3)

𝑟elli(𝜙) =

√︀
2/𝑟2𝑄√︁

1− (1− 𝑟1
𝑟2
) cos2(𝜙)

(A.4)
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are the radius in polar coordinates of ellipsis and rectangle respectively. The angle 𝜙 is the angle of

the polar coordinates in the (𝑞1, 𝑞2) plane and can be defined using

𝜙(𝑞1, 𝑞2) = arctan 2(𝑞2, 𝑞1) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan(𝑞2/𝑞1) 𝑞1 > 0, 𝑞2 > 0

arctan(𝑞2/𝑞1) + 𝜋 𝑞1 < 0, 𝑞2 > 0

arctan(𝑞2/𝑞1) + 𝜋 𝑞1 < 0, 𝑞2 < 0

arctan(𝑞2/𝑞1) + 2𝜋 𝑞1 > 0, 𝑞2 < 0

∈ [0, 2𝜋]. (A.5)

For sake of later improvement it is useful to write the potential even more general. Therefore, the

function 𝑓 in (A.1) is replaced by 𝑔 ∘ 𝑓 which also allows a nonlinear interpolation onto the border of

phase space using another function 𝑔. It also allows to incorporate an interpolation to a value on the

border which depends on the angle 𝜙, see later. The final form of the function is given by the general

ansatz mentioned on page 37

𝑉 (𝑞1, 𝑞2) =

⎧
⎨
⎩

𝑉quadratic(𝑞1, 𝑞2), 𝑉quadratic(𝑞1, 𝑞2) ≤ 𝑄2

𝑄2 + 𝑔(𝑓(𝑞1, 𝑞2)), else.
(3.70)

In the following we choose a parabola for 𝑔

𝑔(𝑟) = 𝑟(𝑎− (𝑎− 𝑏+𝑄2)𝑟) +𝑄2 (A.6)

where 𝑟 takes values in [0, 1] and 𝑎 and 𝑏 are real parameters. To ensure that the dynamics in the

chaotic region is really chaotic the second derivative of 𝑔 at zero must be negative. These points 𝑟 = 0

correspond to the ellipsis defined by 𝑓 = 0. They therefore represent the points at the interface of

both domains of definition in (3.70). If the second derivative would be positive, then 𝑔 would have

a local minimum in the (𝑞1, 𝑞2) plane. In this minimum regular motion would be possible. To avoid

this the parameters have to fulfill 𝑏 < 𝑎+𝑄2.

The derivative in the outside region has to be calculated using polar coordinates (𝑟, 𝜙). We get

𝜕𝑔 ∘ 𝑓
𝜕𝑞𝑖

(𝑞1, 𝑞2) = 𝑔′(𝑓(𝑞1, 𝑞2)) ·
(︂
𝜕𝑓

𝜕𝑟
(𝑞1, 𝑞2) ·

𝜕𝑟

𝜕𝑞𝑖
(𝑞1, 𝑞2) +

𝜕𝑓

𝜕𝜙
(𝑞1, 𝑞2) ·

𝜕𝜙

𝜕𝑞𝑖
(𝑞1, 𝑞2)

)︂
(A.7)

in which 𝑔′(𝑟) = 𝑎− 2 · (𝑎− 𝑏+𝑄2)𝑟 and

𝜕𝑓

𝜕𝑟
· 𝜕𝑟
𝜕𝑞𝑖

(𝑞1, 𝑞2) =
1

𝑟rect − 𝑟elli
𝑞𝑖
𝑟
. (A.8)

The 𝜙–part reads

𝜕𝑓

𝜕𝜙
(𝑞1, 𝑞2) =

𝑟 − 𝑟rect
(𝑟rect − 𝑟elli)2

𝜕𝑟elli
𝜕𝜙
− 𝑟 − 𝑟elli

(𝑟rect − 𝑟elli)2
𝜕𝑟rect
𝜕𝜙

(A.9)
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and

𝜕𝜙

𝜕𝑞𝑖
(𝑞1, 𝑞2) = 𝑞𝑖/𝑟

2 (A.10)

where we have used the abbreviation 𝑞𝑖 = 𝑞1𝛿2𝑖 − 𝑞2𝛿1𝑖. The remaining expressions are

𝜕𝑟rect
𝜕𝜙

=

⎧
⎨
⎩

tan(𝜙)𝑟rect 𝜙 ∈ [−𝜋/4, 𝜋/4) ∪ [3𝜋/4, 5𝜋/4)

− cot(𝜙)𝑟rect 𝜙 ∈ [𝜋/4, 3𝜋/4) ∪ [5𝜋/4, 7𝜋/4)
(A.11)

and

𝜕𝑟elli
𝜕𝜙

= −
√︂

2

𝑟2
𝑄

(1− 𝑟1
𝑟2
) sin(𝜙) cos(𝜙)

[︁
1− (1− 𝑟1

𝑟2
) cos2(𝜙)

]︁−3/2
. (A.12)

With the abbreviations 𝑅 = 𝑟rect − 𝑟elli, Δ = 1
𝑟𝑅

[︁
𝜕𝑟elli
𝜕𝜙 (𝑟 − 𝑟rect)− 𝜕𝑟rect

𝜕𝜙 (𝑟 − 𝑟elli)
]︁
, and Ξ = 𝜕𝑟rect

𝜕𝜙 −
𝜕𝑟elli
𝜕𝜙 we arrive at the following expression for the coupled region

𝜕𝑉

𝜕𝑞𝑖
= 𝑔′(𝑓(𝑞1, 𝑞2)) ·

𝜕𝑓

𝜕𝑞𝑖
= 𝑔′(𝑓(𝑞1, 𝑞2)) ·

𝑞𝑖 + 𝑞𝑖Δ

𝑟𝑅
. (A.13)

The second derivative can be calculated likewise. Using the expressions

𝜕2𝑟elli
𝜕𝜙2

=

√︂
2

𝑟2
𝑄
(1− 𝑟1

𝑟2
)
(︁
3(1− 𝑟1

𝑟2
) sin2(𝜙) cos2(𝜙)− (1− (1− 𝑟1

𝑟2
) cos2(𝜙))(cos2(𝜙)− sin2(𝜙))

)︁

(1− (1− 𝑟1
𝑟2
) cos2(𝜙))−5/2

,

(A.14)

𝜕2𝑟rect
𝜕𝜙2

=

⎧
⎨
⎩

𝑟rect(1 + 2 tan2(𝜙)) 𝜙 ∈ [−𝜋/4, 𝜋/4) ∪ [3𝜋/4, 5𝜋/4)

𝑟rect(1 + 2 cot2(𝜙)) 𝜙 ∈ [𝜋/4, 3𝜋/4) ∪ [5𝜋/4, 7𝜋/4)
, (A.15)

and

𝜕2𝜙

𝜕𝑞𝑖𝜕𝑞𝑗
=
𝛿1𝑖𝛿2𝑗 − 𝛿2𝑖𝛿1𝑗

𝑟2
− 2

𝑟4
𝑞𝑗𝑞𝑖 =

𝜀𝑖𝑗3
𝑟2
− 2

𝑟4
𝑞𝑗𝑞𝑖 (A.16)

we can introduce Σ = 𝜕2𝑟elli
𝜕𝜙2 (𝑟 − 𝑟rect)− 𝜕2𝑟rect

𝜕𝜙2 (𝑟 − 𝑟elli) and write

𝜕2𝑓

𝜕𝑞𝑖𝜕𝑞𝑗
=

1

𝑟𝑅

{︂
𝛿𝑖𝑗 −

𝑞𝑖𝑞𝑗
𝑟2
− 𝑞𝑖𝑞𝑗Ξ

𝑟2𝑅

(︂
𝛿𝑖2𝛿𝑗1 − 𝛿𝑖1𝛿𝑗2 −

2𝑞𝑖
𝑟2

(︂
𝑞𝑗 +

𝑞𝑗Ξ

𝑅

)︂)︂
Δ+

𝑞𝑖
𝑟2𝑅

(︂
𝑞𝑗
𝑟
Σ− 𝑞𝑗Ξ

)︂}︂

(A.17)
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and arrive at

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
= 𝑔′′(𝑓)

𝜕𝑓

𝜕𝑞𝑖

𝜕𝑓

𝜕𝑞𝑗
+ 𝑔′(𝑓)

𝜕2𝑓

𝜕𝑞𝑖𝜕𝑞𝑗
. (A.18)

If 𝑏 in equation (A.6) is not a constant but varies along the border of phase space, we have to

account for the additional 𝜙-dependence. The general expressions in the chaotic region then reads

𝑉 (𝑞1, 𝑞2) = 𝑄2 + 𝑔(𝑓(𝑞1, 𝑞2), 𝜙(𝑞1, 𝑞2)) (A.19)

and the corresponding first derivatives are

𝜕𝑉

𝜕𝑞𝑖
=
𝜕𝑔

𝜕𝑓

𝜕𝑓

𝜕𝑞𝑖
+
𝜕𝑔

𝜕𝜙

𝜕𝜙

𝜕𝑞𝑖
. (A.20)

Choosing a common shorthand notation for the derivative then the second derivative reads

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
= 𝑔|𝑓𝑓𝑓|𝑗𝑓|𝑖 + 𝑔|𝑓𝜙(𝑓|𝑗𝜙|𝑖 + 𝑓|𝑖𝜙|𝑗) + 𝑔𝜙𝜙𝜙|𝑖𝜙|𝑗 + 𝑔|𝑓𝑓|𝑖𝑗 + 𝑔|𝜙𝜙|𝑖𝑗 .

We choose the function 𝑔 to be a parabola going from the ellipsis to the border. This parabola ends

at a value given by a sine along the rectangular border. This sine is of the form

𝑉 |q∈border(𝑞1, 𝑞2) =
𝐾

2𝜋
sin(2𝜋(𝑚 · 𝑞1 + 𝑛 · 𝑞2)) (A.21)

where 𝑛,𝑚 ∈ Z and 𝐾 is a real parameter. This constraint on the parabola can be met by adding a

function depending on 𝜙 to the above 𝑏

𝑏 −→ 𝑏(𝜙) = 𝑏+

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐾
2𝜋 sin(𝜋(𝑛 tan(𝜙) +𝑚)) 𝜙 ∈ [−𝜋

4 ,
𝜋
4 )

𝐾
2𝜋 sin(𝜋(𝑛+𝑚 cot(𝜙))) 𝜙 ∈ [𝜋4 ,

3𝜋
4 )

𝐾
2𝜋 sin(𝜋(−𝑛 tan(𝜙) +𝑚)) 𝜙 ∈ [3𝜋4 ,

5𝜋
4 )

𝐾
2𝜋 sin(𝜋(𝑛−𝑚 cot(𝜙))) 𝜙 ∈ [5𝜋4 ,

7𝜋
4 ).

(A.22)

The resulting potential is shown in terms of a contour plot in figure 3.5 together with a colormap

in the background. Section 3.4.1 addressed the resulting phase-space structures.

The definition of the potential is complicated. This is only necessary in order to ensure that there

are no regular regions embedded in the chaotic domain and that there is a sharp transition from

regular to chaotic behavior as demanded in section 3.4.1. The most important ingredient of this

potential however is its harmonic interior which gives rise to the linear and hence regular dynamics.

B. Quantum-number assignment-algorithm

In this appendix we discuss how the eigenstates from the diagonalization of the open system 𝑈open,

equation (4.22), are sorted and how quantum numbers are assigned in order to predict the tunneling

rate for a given state 𝜓𝑚,𝑛reg under variation of 1/ℎ. This can be done in various ways, e.g. by calculating
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overlaps with harmonic oscillator eigenstates or by numerically counting the number of nodes in both

𝑞 directions, see the ‖𝜓‖2-insets in figures 4.1 to 4.5. For generic systems such as the coupled standard

maps, it is a non-trivial task to assign quantum numbers to states due to the intense coupling between

all eigenstates caused by dynamical tunneling, see for example references [72, 186–188]. In such generic

cases it can be helpful to also consider the slope of the eigenphases 𝜙 with respect to 1/ℎ in order to

assign quantum numbers to given states.

In this thesis we proceed as follows in order to extract the regular states from the data. First, we

start with the smallest value of ℎ at the rightmost data points of the 1/ℎ axis. For every eigenstate

calculated for this 1/ℎ the eigenstate with the next smaller 1/ℎ is determined. The one which looks

the most similar to the actual state is said to be the same state. This is performed by an overlap of

the two states. As this overlap has to be calculated between two states with different ℎ and therefore

different grid sizes and offset, the eigenstate on the finer grid is interpolated down to the coarser grid

using a 2d spline-interpolation of scipy [189]. In order to leave out chaotic states, the overlap has to

be above a certain threshold. This algorithm yields a series of numerical eigenstates for decreasing 1/ℎ

and thereby tracks quantum states across different diagonalizations. In order to minimize the time

of computation, the search for the best matching eigenvector can be reduced to the ones lying close

in the eigenphase spectrum with 𝜙(1/ℎ) = −𝜀(1/ℎ)/~. This is due to the fact that the regular states

are expected to have a continuous dependency of the eigenphases on ℎ and that their level velocity,

i. e. the slope of 𝜙(1/ℎ), is not too big. The quantum state tracking algorithm therefore fails at small
1/ℎ where the regular states quantize close to the border of the regular region.

While decreasing 1/ℎ and following the initial eigenstate through the calculated data the overlap

between adjacent states drop below the threshold at a certain value of 1/ℎmax, and the tracking is

stopped. This occurs for two reasons. First, all regular states have a minimal 1/ℎmax value below

which ℎ is too large to resolve the classical phase space sufficiently and therefore the eigenstate ceases

to exist. Second, the above algorithm is applied to all calculated eigenstates. If the initial state at

the largest 1/ℎ is non-regular, the algorithm will already stop at the first step as for a chaotic state

there will be no eigenstate at the next smaller 1/ℎ with a very large overlap. Thereby it is possible to

remove all chaotic eigenstates. For all other states it is possible to assign quantum numbers according

to the number of nodal lines of ‖𝜓‖2 in 𝑞1 and 𝑞2 direction.
The main drawback of the above quantum-number assignment-algorithm is that it will follow

avoided crossings along the adiabatic basis instead of the diabatic basis which connects branches

of similar looking eigenstates. In order to swap the two branches of each avoided crossing in the

eigenphase spectrum, it is necessary to manually reconnect them. The last step is then to attribute

quantum numbers to the calculated states. This can again be done semi-automatically for the de-

signed map as there the two degrees of freedom decouple along the coordinate axes 𝑞1 and 𝑞2 in the

regular region. Figure B.1 shows an example of an avoided crossing. Here the assignment is changed

by hand to the one shown in the figure. The automatic search does not yield the correct swapping of

the quantum state at the avoided crossing. In order to finally assign the correct quantum numbers,

it is necessary to use a value of 1/ℎ where the number of nodal lines of ‖𝜓‖2 in 𝑞1 and 𝑞2 direction
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Figure B.1.: Assignment of quantum numbers in the spectrum of the designed map 𝒫nnc. The black
dots are the numerical data. As the number of calculated states at each 1/ℎ is higher than 𝑉 reg

4d
/ℎ2,

there are also chaotic states in this data. The algorithm filters the regular states and connects them
to each other. At avoided crossings the assignment has to be done manually, e.g. between 𝜓7,3

reg
and

𝜓12,3
reg

at 1/ℎ ≈ 115. The result is shown by colored points connected by lines which serve as guide to

the eye. The insets show the position-space probability-density |𝜓
reg

(q)|2 for the states marked by
the arrows.



C Alternate paths due to alternate resonances in the description of RAT 131

are clearly defined. Apart from these difficulties it is still useful to assign the quantum numbers as

automatically as possible as the number of regular states also increases with 1/ℎ2 as 1/ℎ gets larger.

For the right hand side of figure B.1 there are already approximately 180 regular eigenstates which

need to be determined and related to the eigenstates at smaller 1/ℎ.

C. Alternate paths due to alternate resonances in the description of

RAT

In figure 4.26 possible resonance-induced tunneling paths Γ for the initial quantum state |𝜓0,3
reg⟩ are

shown. They symbolize the couplings to higher excited states which potentially lead to an increase

of the tunneling rate as discussed in section 4.4.6 on page 112. They are based on the choice that

the dominating resonances are 5 : 0 : 1 and 6 : −1 : 1. Figure C.1 shows tunneling paths for |𝜓0,3
reg⟩ of

the map 𝒫nnc at other values of Planck’s constant. While we present 1/ℎ = 90 in the main text, here
1/ℎ = 50 and 1/ℎ = 130 are shown. Like in the figure on page 114 the border between regular and

chaotic domain is shown by a dashed red line in the quantum-number quarter-plane. As this line is

not precisely defined, we obtain a non-convex behavior for the case 1/ℎ = 130.

If other resonances r𝑎,𝑏, 𝑠𝑎,𝑏 are chosen to be the basis of the relevant Fourier subset in equa-

tion (4.41), we obtain different selection rules (4.53). Although these selection rules lead to the exact

same grid of potentially coupling partners in the rat paths (4.49), shown in orange in figure C.1,

we obtain different paths when truncating the potential at the lowest order of the Fourier modes,

i. e. |𝛼| ≤ 1 and/or |𝛽| ≤ 1, see page 112. At this point we have to keep in mind that the truncation

is necessary in order to simplify the resonance Hamiltonian to a form where it might be possible to

predict the size of the Fourier components 𝑉m,𝑛, see the discussion on page 116.

m1

m2

m1

m2

Figure C.1.: Possible tunneling paths Γ at 1/ℎ = 50 and 1/ℎ = 130. The black and orange points
indicate existing regular states with quantum numbers (𝑚1,𝑚2). The border of the regular island of
𝒫nnc is drawn as a dashed red curve in the quantum-number quarter-plane. At the right hand side
of this line no regular states exist. This is illustrated by the random blue points which symbolize
the chaotic sea.
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Two different choices of resonance vectors as basis of the resonance module ℒ(1/5, 1/5) are

5 : 0 : 1 and 4 : 1 : 1 (C.1)

and

6 : −1 : 1 and 4 : 1 : 1. (C.2)

Note that example (C.2) is chosen insufficiently according to the requirement of equation (3.12). The

determinant of the matrix given by r𝑎,𝑏 is ten and therefore double the period 𝑝 = 5 . We use this to

show the consequences of such a wrong choice.

All possible paths emerging for this choices for the state 𝜓0,3
reg at 1/ℎ = 90 are shown in figure C.2.

Although the grid of reachable states (orange dots) in figure C.2(a) is the same as in figure C.1, the

paths Γ leading to states close to the chaotic domain differ. Hence, other quasienergy denominators

enter the rat prediction and might give a different prediction. Note that the state 𝜓11,2
reg responsible

for the peak in the tunneling rate in figure 4.27 is not among the intermediate steps of the tunneling

paths Γ. We present a rat prediction based on this resonance module basis in section D contrary

to the choice (3.94) in the main text. Let us again emphasize that this difference comes from the

truncation simplification of the resonance Hamiltonian (4.41) and hence is not a direct but an indirect

result of changing the basis of the resonance module. Especially the choice of the resonance basis (C.1)

allows an increase of the second quantum number with the lowest order transitions |𝛼| ≤ 1 and/or

|𝛽| ≤ 1.

In contrast to equation (C.1) the choice of equation (C.2) is insufficient. This can be seen in

figure C.2(b). There the set of reachable states differ from the ones in figure (a). Here the state 𝜓11,2
reg

is really missing and not just unaddressed due to a truncation of the Fourier series.

a)

m1

m2

b)

m1

m2

Figure C.2.: Alternative paths Γ for 𝜓0,3
reg

based on different choices of r𝑎,𝑏, 𝑠𝑎,𝑏. Figure (a) is based
on equation (C.1), figure (b) is based on equation (C.2).
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D. Alternate resonances in the description of RAT leading to

different tunneling rates

Appendix C shows that a different choice of the basis of the resonance module of the rank-2 resonance

of 𝒫nnc gives rise to other sets 𝒢 of tunneling paths Γ. From this we might deduce that the rat

prediction based on this choice also differs because different quasienergy denominators appear in

equation (4.49).

However, a different choice of the basis also leads to different formulas from which the parameters

of the resonance approximation equation (4.52) are determined, see for example appendix I where the

linearization of the mapping and the monodromy matrix of the resonance Hamiltonian are discussed.

Although we cannot give an analytical expression for the Fourier modes of the potential 𝑉 and ℋ𝑖𝑗
in terms of quantities determined from the classical phase space, see the discussion on page 116,

it is very likely that the coupling matrix elements for different bases of the resonance module are

different. This change in the coupling matrix elements of 𝑉 would compensate the effect of different

paths if we would not truncate the paths at lowest order. The truncation can completely remove

states from the set of all relevant tunneling paths 𝒢 which are vital to the explanation of the peak

structure of the tunneling rates. One such example is the state 𝜓11,2
reg from figure 4.27 which is missing

in figure C.2(a) completely. This flaw has serious consequences in the prediction of the dynamical

tunneling rates as can be seen in figure D.1. Because of the fact that the state 𝜓11,2
reg , responsible for

the peak at 1/ℎ = 97, is missing in the tunneling paths the rat prediction misses this peak. The

corresponding small quasienergy denominator of equation (4.49) is not present in any of the paths

in equation (4.51). The coupling matrix elements 𝑉1, 𝑉2 (4.63) for the resonances have been set to

5.5 · 10−5 for both resonances.

E. Tunneling rates of map with nonlinear resonances but uncoupled

regular region

When introducing nonlinearities to the purely linear and uncoupled regular region of 𝒫llu the transition
to 𝒫nnc was done in several steps. While more and more terms were enabled in the potential of

equation (3.91) the according change was observed by calculating the image of the frequency map ℱ
in figure 3.10. One of the systems introduced during this transition from 𝒫llu to 𝒫nnc was the system
with nonlinearities in both degrees of freedom but no coupling term inside the regular island, see

figure 3.10(c).

While the tunneling rates of 𝒫nnc in figure 4.24 require a rank-2 resonance Hamiltonian in order to

obtain the responsible tunneling steps in figures 4.26 and 4.27, this is not the case for the nonlinear

but uncoupled regular region. As the second degree of freedom does not yield resonances at all, there

are just rank-1 resonances in the first degree of freedom as shown in figure 3.10(c) and the tunneling

rates of this system shown in figure E.1 look very different from the ones of 𝒫nnc. In particular they

lack the prominent rat peaks for |𝜓0,3
reg⟩ at 1/ℎ = 82, 97, and 122. This emphasizes the necessity of
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Figure D.1.: rat prediction of the tunneling rate 𝛾 for 𝜓0,3
reg

based on choice (C.1) for the basis of
the resonance module ℒ. The rat prediction misses the peak at 1/ℎ = 97 as the state responsible
for the coupling, 𝜓11,2

reg
, is not covered by the tunneling paths Γ. The insets show the contributing

paths at the given values of 1/ℎ.

10−12

10−10

10−8

10−6

10−4

10−2

100

γ

10 30 50 70 90 110 130

1/h

∣∣∣ψ̃0,0
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Figure E.1.: Tunneling rates 𝛾 of the map with nonlinear resonances but uncoupled regular region,
figure 3.10(c). Due to the missing second resonance condition of 𝒫nnc the state |𝜓0,3

reg
⟩ cannot couple

to higher excited ones as in figure 4.27. Hence, it lacks the peaks at 1/ℎ = 82, 97, and 122.
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the rank-2 resonance when describing the resonance-assisted tunneling of 𝒫nnc in section 4.4.6.

The plateaus in 𝛾 are also present in 𝒫nnc, for example for the ground state 𝜓0,0
reg in figure 4.24. They

emerge from couplings to states which are not supported inside the regular region yet but already

start to manifest at the interface between regular and chaotic domains. Such states can be seen in the

eigenphase spectrum E.2 of the ground state 𝜓0,0
reg. Although 𝜓

0,0
reg is allowed to couple to 𝜓5,0

reg, 𝜓
10,0
reg ,

and 𝜓15,0
reg these states do not yet exist at the 1/ℎ values where there eigenphases are degenerate. Such

states give rise to broad plateaus in the tunneling rate rather than pronounces peaks. This is known

for 2d maps. There one can show that states lying symmetrically with respect to the resonance chain

will couple very efficiently [84, page 102]. By shifting the resonance closer to the center of the regular

island plateaus in 𝛾 can be transformed into sharp peaks by creating more accessible volume behind

the resonance. As resonance chains are not able to separate regions in the phase space in 4d maps, it

is an open question how to generalize this notion of “phase-space volume behind the resonance”.

F. Interpolation of quasienergies

As mentioned in section 4.4.6 it is necessary to predict the quasienergies 𝜀𝑚,𝑛 of regular states 𝜓
𝑚,𝑛
reg in

order to calculate the tunneling rates in the case of resonance-assisted tunneling. We do this by fitting

the data numerically obtained by diagonalizing the discretized time-evolution operator of the open

system 𝑈open. For the system 𝒫nnc the eigenphases 𝜙 from equation (4.22) converge to a constant

value for each state for increasing 1/ℎ. Therefore, we consider them rather than the quasienergies 𝜀

from equation (4.56).

ψ0,0
reg

ψ5,0
reg ψ10,0

reg ψ15,0
reg
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1/h

data

polynomial fit

Figure E.2.: Eigenphase 𝜙 and polynomial fit of the eigenphase for the ground state 𝜓0,0
reg

and states
allowed to couple to it, 𝜓5,0

reg
, 𝜓10,0

reg
, and 𝜓15,0

reg
. All potential coupling partners are not supported inside

the regular domain when their phases and hence quasienergies are close to that one of the ground
state.
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When performing a fit of the quasienergies we have to overcome two problems. First, we do not

want to have the highly fluctuating part of the eigenphase data at small values of 1/ℎ to have too much

influence on the fit. Second, the fit should pass smoothly trough the avoided crossings connecting

the diabatic bases. In order to solve these issues, the fit of the data is done as follows: First, the

numerical data is interpolated by a spline of third order using the ndimage library of scipy [189].

This interpolation is then used to calculate an estimate for the second derivative 𝜕2𝜙/𝜕(1/ℎ)2 to each

numerical data point (1/ℎ, 𝜙). If this second derivative is above a certain threshold, the corresponding

data point is discarded. The remaining points are used as input for fitting a polynomial of order

three. The polynomials for the eigenphases 𝜙 enter the rat prediction (4.49) via the quasienergies

𝜀 leading to figure 4.28. The intermediate steps of the interpolation and fitting procedure are shown

in figure F.1. It contains the available data from the diagonalization of the open quantum system

denoted by small crosses and full circles. This raw data is interpolated by using a cubic spline giving

the dashed line. The points where the second derivative of the spline interpolation is sufficiently small

are indicated by the full circles while the regions of high oscillation are indicated by the small crosses.

The data shown by full circles are used as input for the polynomial fit of order three. This fit is shown

by the solid line. The crossings of the solid line of 𝜓0,3
reg with the ones of 𝜓6,2

reg, 𝜓
11,2
reg , and 𝜓16,2

reg give rise

to the peaks of the prediction in figure 4.28.
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reg ψ12,1

reg

ψ16,2
reg

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϕm,n

30 50 70 90 110 130

1/h

data

spline interpolation

data filtered by 2nd derivative

polynomial fit

Figure F.1.: Fit of the numerically determined eigenphases 𝜙 for some example states. Full dots
and small crosses denote the numerical data. The dashed line shows a cubic spline interpolating the
data. Points where the interpolation is sufficiently smooth are marked by dots. These dots are used
in order to obtain the polynomial fit shown by the solid line.
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G. 2D Poincaré map for the pendulum approximation

Systems with less then two and a half degree of freedom are very special compared to the majority

of higher dimensional systems mainly because regular tori separate phase space regions. Apart from

this there are further, slightly more subtle differences from higher dimensional systems such as the

fact that nonlinear resonances always lead to periodic orbits and that the pendulum approximation

for the vicinity of resonances – just as every adiabatic approximation – is integrable due to a lack of

explicit time dependence. For the 4d mappings considered in this thesis these special properties do

not occur.

However, the 4d mappings still have some special properties compared to systems with even more

degrees of freedom. One of them is that the Arnold Diffusion of near-integrable systems only proceeds

along a 1d line as mentioned on page 25. Another aspect is that the pendulum approximation is

given by a time independent Hamiltonian with two degrees of freedom which itself does not yield

Arnold diffusion. Furthermore, the dynamics of this approximation can be reduced to a 2d Poincaré

section using the fact that the energy of this pendulum Hamiltonian is conserved. Starting point is

the Hamiltonian

𝐻3(I,𝜃) =
1

2
I𝑇ℋI+ 𝑉 (5,0),1 cos(5𝜃1) + 𝑉 (6,−1),1 cos(6𝜃1 − 𝜃2) + 𝑉 (11,−1),2 cos(11𝜃1 − 𝜃2) (G.1)

inspired by equation (4.52). In this Hamiltonian the regular part 𝐻4(I) has been approximated by its

quadratic term according to equation (4.58). It is given by the symmetric but in general not necessarily

diagonal matrix ℋ. The potential terms are chosen to mimic the phase space of 𝒫nnc. Note, however,
that it is not known which potential terms enter the pendulum approximation of the rank-2 resonance

of 𝒫nnc. If the off-diagonal element of the matrix are zero, ℋ12 = 0, none of the potential terms

must be zero too. Otherwise the system would be given by two uncoupled degrees of freedom which

could be obtained by introducing an appropriate choice of center of mass coordinates. However, as

mentioned on page 143, the center of mass transformation must be done using a unimodular matrix

in order to keep the periodicity of the angles 𝜃.

The Poincaré surface of section is placed in the phase space as follows. First, it is defined in the

𝜃-space only using the restriction

𝜃2 = 𝜋/2. (G.2)

To obtain a valid 3d surface of section inside the 4d phase space we further need to restrict it onto

the energy shell. This is done by only using one of the actions, namely 𝐼1, for the mapping and

determining 𝐼2 by solving equation (G.1) for it. In order to do this uniquely it is necessary to further

restrict the section condition from equation (G.2) to

𝐼2 > 0. (G.3)

If an initial point is placed on the (𝜃1, 𝐼1) plane, then equations (G.1) to (G.3) allow to solve the



138 G 2D Poincaré map for the pendulum approximation

Hamiltonian for the remaining two coordinates (𝜃2, 𝐼2) provided the total energy 𝐸 is fixed beforehand

and that the initial condition is compatible with this energy. For this initial condition Hamilton’s

equations of motion can be integrated numerically. If the trajectory again crosses the section condition,

i. e. by fulfilling equations (G.2) and (G.3) at the same time, then the new values of (𝜃1, 𝐼1) at this

intersection point define the next pair of iterates of the mapping.

The resulting Poincaré mapping is shown in figure G.1. The main figure shows iterates of the 2d

mapping defined in the positional coordinate along the green line, i. e. 𝜃1, and the action projected

onto the green line, i. e. 𝐼1. The insets show example orbits in position space atop a contour plot of

the potential from equation (G.1). They also include the Poincaré surface of section in angle space

given by equation (G.2) as a green line.

The integration is performed using the gnu Scientific Library [190] employing the Bulirsch–Stoer

method of Bader and Deuflhard. Whenever the orbit crossed the section condition in the correct
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Figure G.1.: Plot of the 2d Poincaré section of the pendulum approximation of a 4d map. The
parameters areℋ1 = ℋ2 = 1,ℋ12 = 0, 𝑉 (5,0),1 = 1.2, 𝑉 (6,−1),1 = 0.3, and 𝑉 (11,−1),2 = 0.2. The total
energy is set to 𝐸 = 1.0. The upper plot shows the whole 𝜃1 axis. The lower plot is a magnification
of the rightmost island. Initial condition started in or close to the other islands in the upper plot are
shown in pale colors. The white areas correspond to invalid initial condition due to the fixed total
energy. The insets to the lower plot show example trajectories in position space (𝜃1, 𝜃2) together
with a contour plot of the potential 𝑉 and the Poincaré surface of section shown as a green line.
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direction the orbit was integrated onto the section condition using a method proposed by Henon [191].

The presented 2d mapping for the resonance Hamiltonian can provide an insight into how compli-

cated the vicinity of a resonance in the 4d phase space of 𝒫nnc is. For a concrete link between the

approximation and the physical system 𝒫nnc it would be necessary to know the parameters of the

resonance approximation. In order to get a full impression of the pendulum approximation it would

be furthermore necessary to investigate this 2d mapping for other values of the total energy 𝐸.

H. RAT prediction broken down to single paths

The incoherent sum (4.39) includes tunneling paths Γ to all possible states in the regular island which

are connected to the initial state via the selection rules (4.46). As mentioned on page 108, only a

subset 𝒢 of them is important, namely these paths Γ which end in states being close to the classical

interface of regular and chaotic dynamics. In our prediction only these paths are considered and their

single contribution is calculated via equation (4.49).

In order to see which of the paths in 𝒢 considered in the incoherent sum of equation (4.49) is the

dominant one, it is possible to plot the single contributions of the incoherent sum. This is done in

figure H.1. There all paths in 𝒢 are shown in gray. The path yielding the largest contribution is

marked by color. The dashed line is the incoherent sum of all paths at a given 1/ℎ. With this the plot
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Figure H.1.: rat prediction of 𝛾0,3 for 𝒫nnc showing the contributions by single paths Γ. The dashed
line is the incoherent sum in equation (4.39) only including paths Γ in 𝒢. The single contribution
of these paths is displayed by gray curves. The dominant contribution is highlighted by color. The
insets show the dominant path at the values of 1/ℎ marked by the arrows.
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also allows to check that neglecting the interference terms in equation (4.38) is valid.

I. Linearization of the pendulum approximation

One of the canonical invariants for the link between the Hamiltonian (4.52) approximating the vicinity

of the resonance and the real map 𝒫nnc is given by the trace of the linearization around the periodic

orbit in the center of the rank-2 resonance. In order to find this trace, we first write the Hamiltonian

in a more general form to simplify the notation. The Hamiltonian reads

𝐻3(𝜃, I) =
1

2
IℋI+

∑︁

𝛼∈Z2∖{0}

𝑉 𝛼 cos(𝛼𝜃) (I.1)

and can be linearized around the stable fixed point I = 0 and 𝜃 = 𝜃0. The position of this stable fixed

point depends on the sign and strength of the Fourier modes. If all of them are positive, then there

is a stable equilibrium at 𝜃0 = (𝜋, 𝜋). The linearization of the dynamics around this point reads

𝐻(𝜃,𝜃) =
1

2
IℋI+

∑︁

𝛼∈Z2∖{0}

𝑉 𝛼
(︂
1− 1

2
[(𝜃 − 𝜃0)𝛼]2

)︂
cos(𝛼𝜃0). (I.2)

As this system is linear, Hamilton’s equation of motion can be solved in general [85]. Using the

deviation from the equilibrium 𝛿𝜃 = 𝜃 − 𝜃0 the solution is given by the exponential function

(︃
𝛿𝜃(𝑡)

𝐼(𝑡)

)︃
= exp (𝑡𝒜)

(︃
𝛿𝜃(0)

𝐼(0)

)︃
(I.3)

which contains the matrix

𝒜 :=

(︃
0 ℋ
V 0

)︃
(I.4)

where we defined the matrix of second derivatives of the Hamiltonian with respect to the angles

evaluated at 𝜃0

V =
𝜕2𝐻

𝜕𝜃𝑖𝜕𝜃𝑗
(𝜃0) = −

∑︁

𝛼∈Z2∖{0}

𝑉 𝛼 cos(𝛼𝜃0)𝛼𝑖𝛼𝑗 . (I.5)

The exponential matrix exp(𝑡𝒜) is the monodromy matrix of the system. Its eigenvalues for 𝑡 =

1, 2, . . . have to be compared to the eigenvalues of the linearized mapping D𝒫nnc and the powers

thereof. The eigenvalues of exp(𝒜) are given by the zeros of the characteristic polynomial of 𝒜 which

can be expressed by the characteristic polynomial of the matrix ℋV

𝑃𝒜(𝜆) = 𝑃ℋV(𝜆2). (I.6)



I Linearization of the pendulum approximation 141

For two degrees of freedom the eigenvalues of the 2× 2 matrix ℋV are given by

𝜌± =
tr(ℋV)

2
± 1

2

√︀
tr(ℋV)2 − 4 det(ℋV). (I.7)

Whether the eigenvalues of 𝒜 are real or imaginary depends on the choice of 𝜃0 being the stable or

unstable equilibrium. In fact we can encounter all four cases introduced in chapter 3 on page 12,

namely ee, eh, hh, or cu-type behavior. It will be of ee-type or hh-type if the eigenvalues of ℋV

are all negative or all positive real numbers, respectively. If both are real but their sign differs, then

it is the eh-case. If the eigenvalues of ℋV are conjugate complex numbers, then the equilibrium of

the Hamiltonian will be of cu-type.

As mentioned in section 4.4.6, the spectrum of the linearization is an invariant under canonical

transformations. Hence, the trace of the monodromy matrix of the time evolution, tr{exp(𝒜)}, is the
same as the one for the linearization D𝒫nnc of 𝒫nnc

tr{exp(𝒜)} = tr{D𝒫nnc}. (I.8)

For the different cases of stability the trace for the pendulum model reads

tr(exp𝒜)𝑛 =
∑︁

𝜆∈C:𝜆2∈𝜎(ℋV)

e𝑛𝜆 + e−𝑛𝜆 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 cos(𝑛𝜔1) + 2 cos(𝑛𝜔2), ee

2 cosh(𝑛𝛽1) + 2 cos(𝑛𝜔2), eh

2 cosh(𝑛𝛽1) + 2 cosh(𝑛𝛽2), hh

2 cosh(𝑛(𝛽1 + 𝜔1)) + 2 cosh(𝑛(𝛽2 + 𝜔2)), cu

(I.9)

which is expressed in terms of the roots of the eigenvalues of the spectrum 𝜎 of ℋV, 𝜆2 = 𝛽 + i𝜔.

In particular we are interested in 4d maps where the relevant parameters are given by tr{D𝒫nnc}
and tr{D𝒫nnc2}, see figure 3.1. According to equation (I.8) this corresponds to 𝑛 = 1 and 𝑛 = 2 in

equation (I.9). These two cases can be combined in order to solve equation (I.9) for 𝜔1 and 𝜔2 and

we get for the ee case

0 = cos2(𝜔1,2)−
tr{D𝒫nnc}

2
cos(𝜔1,2) +

1

8
(tr{D𝒫nnc})2 −

1

8
tr{D𝒫nnc2} −

1

2
. (I.10)

and therefore

𝜔1,2 = arccos

(︂
tr{D𝒫nnc}

4
± 1

4

√︁
8 + 2 · tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂
. (I.11)

In order to link the parameters of the Hamiltonian equation (I.1) to equation (I.11), we have to

express the eigenvalues 𝜔1,2 of exp(𝒜) by ℋ𝑖𝑗 and the Fourier coefficients of the potential 𝑉 explicitly.

This is not possible in general. Therefore, we have to choose which parts of the full approximation
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we neglect, see section 4.4.6 on page 113. For the uncoupled case with no off-diagonal terms in ℋ,

ℋ11 =
1

𝑚1
, ℋ22 =

1

𝑚2
, and ℋ12 = ℋ21 = 0, (4.59)

and only one Fourier mode per degree of freedom,

𝑉 𝑘1,0 ̸= 0 𝑉 0,𝑘2 ̸= 0 and 𝑉 𝛼1,𝛼2 = 0 else (4.60)

for fixed 𝑘1, 𝑘2, the matrix ℋV reads

ℋV =

(︃
−𝑘12 𝑉

𝑘1,0

𝑚1
cos(𝑘1𝜃0,1) 0

0 −𝑘22 𝑉
0,𝑘2

𝑚2
cos(𝑘2𝜃0,2)

)︃
. (I.12)

With the abbreviations

𝑉 1 := −𝑘12𝑉 𝑘1,0 cos(𝑘1𝜃0,1) 𝑉 2 := −𝑘22𝑉 0,𝑘2 cos(𝑘2𝜃0,2) (I.13)

and equation (I.7) the eigenvalues of ℋV are

𝜌± =
1

2

(︃
𝑉 1

𝑚1
+
𝑉 2

𝑚2

)︃
± 1

2

⃒⃒
⃒⃒
⃒
𝑉 1

𝑚1
− 𝑉 2

𝑚2

⃒⃒
⃒⃒
⃒ =

{︃
𝑉 1/𝑚1

𝑉 2/𝑚2.
(I.14)

If 𝜃 is placed at an ee-type equilibrium, then the eigenvalues from equation (I.14) are all negative.

Hence, using equation (I.6) the eigenvalues of the monodromy matrix are

𝜔±
1 = ±i

√︀
|𝜌+| = ±i

√︁
|𝑉 1/𝑚1| and 𝜔±

2 = ±i
√︀
|𝜌−| = ±i

√︁
|𝑉 2/𝑚2|. (I.15)

Therefore we finally have with equation (I.11)

𝑉 1,2

𝑚1,2
= −

{︂
arccos

(︂
trD𝒫nnc

4
± 1

4

√︁
8 + 2tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂}︂2

. (I.16)

Assuming the stable equilibrium at 𝜃0 = (𝜋, 𝜋) we have cos(𝑘𝑖𝜃0,𝑖) = (−1)𝑘𝑖 and therefore obtain

(−1)𝑘1𝑘12𝑉 𝑘1,0

𝑚1
= −

{︂
arccos

(︂
trD𝒫nnc

4
+

1

4

√︁
8 + 2tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂}︂2

and

(−1)𝑘2𝑘22𝑉 0,𝑘2

𝑚2
= −

{︂
arccos

(︂
trD𝒫nnc

4
− 1

4

√︁
8 + 2tr(D𝒫nnc2)− (trD𝒫nnc)2

)︂}︂2

.

(4.61)

This is the relation we wanted to obtain in order to relate the parameters of the resonance Hamilto-

nian (4.52) to properties of the map 𝒫nnc. If more Fourier modes coupling both degrees of freedom

are present, it is no longer possible to solve equation (I.7) for the parameters. For example if the
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Fourier modes are restricted to

𝑉 𝑘1,0 ̸= 0 𝑉 𝑘2,𝑘3 ̸= 0 and 𝑉 𝛼1,𝛼2 = 0 else (4.60)

for fixed 𝑘1, 𝑘2, and 𝑘3, then the matrix ℋV is given by

ℋV =

(︃
(−1)𝑘1+1𝑘1

2 𝑉 𝑘1,0

𝑚1
+ (−1)𝑘2+𝑘3+1𝑘2

2 𝑉 𝑘2,𝑘3

𝑚1
(−1)𝑘2+𝑘3+1𝑘2𝑘3

𝑉 𝑘2,𝑘3

𝑚1

(−1)𝑘2+𝑘3+1𝑘2𝑘3
𝑉 𝑘2,𝑘3

𝑚2
(−1)𝑘2+𝑘3+1𝑘3

2 𝑉 𝑘2,𝑘3

𝑚2

)︃
(I.17)

and its eigenvalues (I.7) are too convoluted to be solved for, e. g., 𝑉
𝑘1,0

𝑚1
and 𝑉 𝑘2,𝑘3

𝑚2
. Therefore, these

equations have to be solved numerically together with the remaining equations from other phase-space

properties like volumes and areas of the resonance mentioned in section 4.4.6.

Note that a canonical transformation with a generating function similar to equation (3.13) – where

we set Ires = 0 and the rows of 𝜇 to (𝑘1, 0) and (𝑘2, 𝑘3) – is not helpful as it simply shifts the

coupling to ℋ. It is also important to keep in mind the periodicity of 𝜃 if the Hamiltonian is further

transformed. These transformations should always be done in a way such that the new angles are

again 2𝜋-periodic. This is for example possible by using unimodular matrices, i. e. matrices with

only integer entries but determinant one. Such transformation yield again the right periodicity. If

transformations yield non-2𝜋-periodic coordinates then the quantum mechanical eigenfunctions of the

unperturbed part of equation (I.1) do not have the form given in equation (4.43).

J. Iterative diagonalization schemes for the semiclassical limit

In order to examine quantum mechanical eigenstates in the semiclassical limit, it is necessary to

decrease the value of the effective Planck’s constant 1/ℎ → ∞. Although our aim is to diagonalize

the discretized version of the time evolution operator 𝑈 , it is not necessary to first create the matrix

U and diagonalizing it afterwards. We can circumvent this by exploiting that the action of 𝑈 on a

vector |𝜓⟩ can also be expressed by calculating a Fourier transform according to the split-operator like

ansatz in equation (4.2). The main drawback is that the algorithms used to determine the eigenstates

of 𝑈 are now iterative algorithms whose convergence is not always guaranteed.

Inverse iteration

Given that we know a good approximation 𝑧0 of an eigenvalue of 𝑈 then it is possible to calculate

the corresponding eigenvector via inverse iteration [192]. Starting from a random initial vector |𝜓0⟩
we have to solve

(𝑈 − 𝑧𝑖) |𝜑𝑖+1⟩ = |𝜓𝑖⟩ (J.1)

iteratively for 𝑖 = 0, 1, 2, . . . by setting the inhomogeneity to |𝜓𝑖+1⟩ = |𝜑𝑖+1⟩/|||𝜑𝑖+1⟩|| in the next

step. The eigenvalue is updated according to 𝑧𝑖+1 = 𝑧𝑖+1.0/⟨𝜓𝑖|𝜑𝑖+1⟩. In order to avoid the creation
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of the matrix U, equation (J.1) has to be solved iteratively. Although 𝑈 and 𝑈−1 can be applied

to |𝜓⟩ very efficiently using fft algorithms, it is not possible to solve equation (J.1) for |𝜑𝑖+1⟩ in
the same efficient way. In order to obtain |𝜑𝑖+1⟩ we use an iterative solver for sparse linear systems

because these methods only need the mapping |𝜓⟩ ↦→ (𝑈−𝑧𝑖)|𝜓⟩ in order to solve equation (J.1). The

drawback is that the solvers have to apply 𝑈 very often to determine the solution of equation (J.1)

and thereby one step of the inverse iteration. We used the solver bicgstab [189]. Therefore, even if

only ten steps of the inverse iteration are necessary, we will still have to apply 𝑈 very often depending

on 1/ℎ. This makes the inverse iteration inappropriate for the maps we consider here. The same

reasoning applies for the “shift and invert” method of the Arnoldi method mentioned above because

there a linear equation similar to equation (J.1) has to be solved.

Arnoldi method

For open systems we can use the Arnoldi method [178] to calculate the largest eigenvalues and corre-

sponding eigenvectors. This method does not converge for closed systems as there all eigenvalues have

a modulus of one and are thereby not well separated from each other. It is also possible to determine

eigenvalues close to a given complex number 𝑧0 but this so-called “shift and invert” method requires

to solve the linear system (𝑈 − z0)|𝜓⟩ = |𝜒⟩ with given |𝜒⟩. While we are able to perform 𝑈 |𝜓⟩ and
𝑈−1|𝜓⟩ we cannot simply invert 𝑈 − 𝑧0 as mentioned for the inverse iteration.

Lanczos algorithm

Based on reference [173] we can use the Lanczos algorithm in order to diagonalize the time-evolution

operator 𝑈 . As this algorithm is only applicable to Hermitian matrices we cannot apply it to 𝑈

directly. We rather use the matrix 𝐻 = 𝑈 + 𝑈 † which is Hermitian and has the eigenvalues 2 cos(𝜙)

if the eigenvalues of 𝑈 are given by ei𝜙. As 𝑈 and 𝐻 commute they also posses a common set of

eigenvectors. We can calculate the eigenvectors of 𝐻 and later determine if they are also eigenvectors

of 𝑈 , which is the case as long as the eigenvalues are not degenerate.

The Lanczos algorithm for the Hermitian matrix 𝐻 iteratively creates a 𝑁Lanczos×𝑁Lanczos tridiag-

onal matrix 𝐿𝑁Lanczos
which can be diagonalized efficiently by, for example, using lapack’s routine for

real symmetric tridiagonal matrices dstvr. The creation of the tridiagonal matrix done by choosing

an initial vector |𝜑1⟩ together with the definitions |𝜔0⟩ = |𝜑0⟩ = 0. Then we perform the following

iteration for 𝑗 = 1, 2, . . . , 𝑁Lanczos

|𝜔𝑗⟩ ← 𝐻|𝜑𝑗⟩
𝛼𝑗 ← ⟨𝜑𝑗 |𝜔𝑗⟩
𝛽𝑗 ← ⟨𝜑𝑗 |𝜔𝑗−1⟩
|𝜑𝑗+1⟩ ← |𝜔𝑗⟩ − 𝛼𝑗 |𝜑𝑗⟩ − 𝛽𝑗 |𝜑𝑗−1⟩
|𝜑𝑗+1⟩ ← |𝜑𝑗+1⟩/|𝜑𝑗+1⟩

(J.2)

where the arrow indicates an assignment in the sense of a programming language. Note that due to
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𝐻 being Hermitian the quantities 𝛼𝑗 and 𝛽𝑗 are real. They build up the real-symmetric tridiagonal

matrix 𝐿𝑁Lanczos

𝐿𝑁Lanczos
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1 𝛽2

𝛽2 𝛼2 𝛽3

𝛽3 𝛼3
. . .

. . . . . . 𝛽𝑁Lanczos

𝛽𝑁Lanczos
𝛼𝑁Lanczos

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (J.3)

To set up this matrix it is only necessary to apply 𝐻 repeatedly. The size of the matrix must fulfill

𝑁Lanczos ≥ 𝒩 with 𝒩 being the matrix size of 𝑈 and 𝐻 to ensure that the eigenvalues of 𝐻 are in the

spectrum of 𝐿𝑁Lanczos
as well. After the creation of 𝐿𝑁Lanczos

we diagonalize this matrix to obtain some

of the eigenvalues cos(𝜙) and eigenvectors |𝑣cos⟩. The fact that we concentrate on a few eigenvectors

is necessary because we want to use matrix sizes 𝒩 for 𝑈 which are much too large to fit into the

computers memory. Therefore, we are not able to store all eigenvectors at a time.

If we have calculated a couple of eigenvectors |𝑣cos⟩, we have to transform them back to the position-

space representation of the original system 𝐻. As the transformation from 𝐻 to 𝐿𝑁Lanczos
is given by

the vectors |𝜑𝑗⟩ calculated to obtain 𝐿𝑁Lanczos

𝑀𝐿𝑁Lanczos
𝑀 † = 𝐻 with 𝑀 = (𝜑1|𝜑2| . . . |𝜑𝑁Lanczos

) (J.4)

we could have saved all these intermediate vectors and apply the inverse transformation. But as the

memory again is not large enough to store these intermediate steps, we have to perform the loop in

equation (J.2) again to calculate the columns of 𝑀 iteratively and calculate the eigenvectors of 𝐻

from the subset of eigenvectors of 𝐿𝑁Lanczos
, {|𝑣cos⟩}. Note that the transformation is given by 𝑀 and

𝑀 † as the columns of 𝑀 are orthogonal vectors which can easily be seen from (J.2) by induction.

Hence the transformation on the eigenvectors is given by

|𝜑⟩ =𝑀 |𝑣cos⟩ and the inverse |𝑣cos⟩ =𝑀 †|𝜑⟩. (J.5)

Therefore the calculation of eigenvectors of 𝑈 in the semiclassical limit basically needs two time

consuming operations: The creation of 𝐿𝑁Lanczos
– which for a given initial vector only has to be done

once because we can store it to disk – and the transformation of the eigenvectors of 𝐿𝑁Lanczos
, |𝑣cos⟩,

to the eigenvectors of 𝐻 and 𝑈 , |𝜑⟩. If we have the eigenvectors of 𝑈 we can easily determine the

corresponding eigenvalue by the application of 𝑈 – we just divide the largest entry in 𝑈 |𝜑⟩ by the

corresponding value of |𝜑⟩.

ei𝜙 = ⟨q𝐼 |𝑈𝜑⟩/⟨q𝐼 |𝜑⟩ with 𝐼 such that |⟨q𝐼 |𝜑⟩| = max {|⟨q𝑖|𝜑⟩|, 𝑖 = 1, . . . , 𝑁Lanczos} . (J.6)

In order to determine eigenstates being supported on regions of interest in phase space we have

to select the most relevant eigenvectors of 𝐿𝑁Lanczos
. This is done by choosing the initial state |𝜑1⟩
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close to the state we want to obtain. One possibility is given by coherent states placed at interesting

classical structures like inside the stochastic region, see figure 4.12 for an example. Another choice is

to set up |𝜑1⟩ as a direct product of eigenstates of 2d maps like in figure 4.16. In the basis where

𝐿𝑁Lanczos
is tridiagonal the initial vector is given by the unit vector being zero at every index except

for the first entry. Therefore, the first entry of the eigenvectors of 𝐿𝑁Lanczos
represent the overlap of

the eigenstate with the initial vector. Thus, the eigenstates of 𝑈 which are of interest are given by the

eigenvectors of 𝐿𝑁Lanczos
with the largest first component. The tridiagonal matrix can be diagonalized

in parallel efficiently. During this calculation all eigenvectors are calculated but only the ones with

the largest first component are kept and then transformed back to the position-space representation.
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