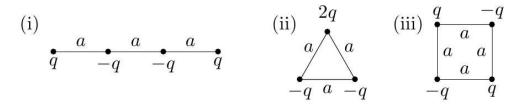
Elektrodynamik für das Lehramt WS 21/22

Dr. L. Janssen

9. Übung (Besprechung: 13.-17.12.21)

1. Elektrisches Feld eines Dipols


Das Dipolpotential ist durch

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^3} \tag{1}$$

gegeben. Berechnen Sie das elektrische Feld $\vec{E}(\vec{r})$ im ganzem Raum.

2. Dipolmoment einer Anordnung von Punktladungen

Wir betrachten die folgenden Anordnungen von Punktladungen:

- (a) Bestimmen Sie jeweils die Dipolmomente in den Anordnungen (i) bis (iii).
- (b) Zeigen Sie, dass Ihre Ergebnisse in (a) unabhängig von der Wahl des Koordinatenursprungs sind. Warum ist das so?

3. Quadropoltensor einer Anordnung von Punktladungen

Berechnen Sie für die Punktladungsanordnung (iii) aus Aufgabe 2 den Quadropoltensor sowie das elektrostatische Potential in großem Abstand bis zu Termen $\propto r^{-3}$.