Matthias Vojta

Würzburg-Dresden Cluster of Excellence

3D-2D equivalence of ordered states on harmonic honeycomb lattices

Lukas Janssen (TU Dresden)

Wilhelm G. F. Krüger

ct.qmat

Complexity and Topology in Quantum Matter

Outline

- 1. Introduction
- 2. 3D-2D mapping
- 3. Heisenberg-Kitaev-I models on the hyperhoneycomb lattice
- 4. Quantum effects
- 5. Conclusions

Other lattices?

 \mathcal{X}

 γ -Li₂IrO₃, ...

 α -Li₂IrO₃, α -RuCl₃, ...

[Modic *et al.*, '14] [Kimchi et al. '14]

Li₂IrO₃: Magnetic order

β -Li₂IrO₃

incommensurate spiral [Biffin *et al.* '14]

... and γ -Li₂IrO₃ as well

[Modic *et al.* '14]

Li₂IrO₃: Magnetic order

β -Li₂IrO₃

3D-2D equivalence

Classical energies \checkmark Phase diagrams 🗸 Direction of moments \checkmark Magnon bands (\checkmark) Quantum effects 🗡

Coordination number: 3

... and γ -Li₂IrO₃ as well

Outline

- 1. Introduction
- 2. 3D-2D mapping
- 3. Heisenberg-Kitaev-I models on the hyperhoneycomb lattice
- 4. Quantum effects
- 5. Conclusions

... can be induced in β -Li₂IrO₃ by magnetic field [Ruiz *et al.* '17]

ĥ

"quasi-2D" states \iff sites separated by **b** magnetically equivalent

3D-2D mapping: reciprocal space

... applies to *all* high-symmetry points

3D-2D mapping: reciprocal space

... applies to *all* high-symmetry points

Outline

- 1. Introduction
- 2. 3D-2D mapping
- 3. Heisenberg-Kitaev-I models on the hyperhoneycomb lattice
- 4. Quantum effects
- 5. Conclusions

$$\mathcal{H}_{\mathrm{HK}} = J \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K \sum_{\langle ij \rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma} - \mathbf{h} \cdot \sum_{i} \mathbf{S}_{i}$$

$$\mathcal{H}_{\mathrm{HK}} = J \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K \sum_{\langle ij \rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma} - \mathbf{h} \cdot \sum_{i} \mathbf{S}_{i}$$

3D spiral state

magnetically inequivalent sites along **b**!

$$\mathbf{Q} = \frac{2}{3}\mathbf{Y} \notin ac$$
 plane!

Example #2: Γ interactions

2 different types of x and y bonds

... but same local environment ... choose interactions accordingly [Lee & Kim, PRB '15]

Example #2: HK±Γ model

$\mathcal{H}_{\mathrm{HK\Gamma}} = \sum \left[J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K S_{i}^{\gamma} S_{j}^{\gamma} \pm \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) \right]$

... $\Gamma = A \cos \theta$

Example #2: HK±Γ model

$\mathcal{H}_{\mathrm{HK\Gamma}} = \sum \left[J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K S_{i}^{\gamma} S_{j}^{\gamma} \pm \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) \right]$

Example #2: HK±F model

$\mathcal{H}_{\mathrm{HK\Gamma}} = \sum \left[J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K S_{i}^{\gamma} S_{j}^{\gamma} \pm \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) \right]$

Incommensurate spiral

magnetically equivalent sites along **b**!

 $\mathbf{Q} \parallel \mathbf{a}^* \in ac$ plane!

⇒ "quasi-2D" state

Incommensurate spiral

$\mathbf{Q} \parallel \mathbf{a}^* \in \mathbf{ac} \text{ plane!}$

⇒ "quasi-2D" state

Commensurate period-3 state $(J \ll |K|, |\Gamma|)$

3D-2D

Period-3 state "K state" [Ducatman *et al.*, PRB '18] 3D HK±Γ

Duality transformation

Period-3 state $2D HK \pm \Gamma$

120° state 2D HKF

β-Li₂IrO₃ order: Dual of 120°-state

Duality explains key features of β -Li₂IrO₃:

Zigzag chains of coplanar spins (i)

... as duality transformation preserves coplanarity along zigzag chains

(ii) Counterrotating spirals

... spins on two sublattices rotate in opposite directions

(iii) Angle between next-nearest neighbors $\approx 120^{\circ}$

... with ordering wavevector $\mathbf{q} = 0.57(1)\mathbf{a}^* \approx 2/3\mathbf{a}^*$

Outline

- 1. Introduction
- 2. 3D-2D mapping
- 3. Heisenberg-Kitaev-I models on the hyperhoneycomb lattice
- 4. Quantum effects
- 5. Conclusions

 $\varepsilon_{\mathbf{q}}(\mathsf{hyperhoneycomb}) = \varepsilon_{\mathbf{q}}(\mathsf{honeycomb})$ for all $\mathbf{q} \in ac$ plane

Staggered magnetization near Kitaev limit

... for S = 1/2 Heisenberg-Kitaev model

Conclusions

3D-2D equivalence of ordered states ...

- ... applies to all ordered states with $\mathbf{Q} \in ac$ plane
- ... leads to (largely) identical phase diagrams
- ... can be extended to full harmonic series $\mathcal{H}\langle n \rangle$
- ... independent of model
- ... establishes equivalence of magnetic order in α -Li₂IrO₃, β -Li₂IrO₃, and γ -Li₂IrO₃

[Krüger, Vojta, LJ, arXiv:1907.05423]

