

Interaction effects in Bernal and twisted bilayer graphene

Lukas Janssen

Shouryya Ray

Emmy Noether-Programm

DEFG Deutsche Forschungsgemeinschaft

Jan Biedermann

ct.qmat

Complexity and Topology in Quantum Matter

Outline

(1) Introduction

(2) Interaction-induced Dirac cones

(3) Competing nematic & antiferromagnetic orders

$V_F(\mathbf{k} - \mathbf{k}_{\ell}) \cdot (\xi \sigma_x, \sigma_y)$ quantum criticality

(5) Conclusions

Outline

(1) Introduction

Interaction-induced Dirac cones (2)

(3) Competing nematic & antiferromagnetic orders

 $V_F(4) - K_{\ell} + (\xi \sigma_x, \sigma_y)$ quantum criticality

onclusions 5

Graphene

Graphene

Low-energy spectrum:

$$\varepsilon_{\mathbf{K}+\mathbf{q}} = \pm f_1 q + \mathcal{O}(q^2)$$

with $f_1/a_0 = v_F \hbar/a_0 = 3t/2 \simeq 4 \,\mathrm{eV}$

... for $a_0 \simeq 0.142 \,\mathrm{nm}, \ t \simeq 2.7 \,\mathrm{eV}$

Coulomb repulsion:

$$V(r) \propto \frac{e^2}{r}$$

unscreened

Coulomb repulsion:

$$V(r) \propto \frac{e^2}{r}$$

unscreened

Fermi velocity renormalization:

Coulomb repulsion:

$$V(r) \propto \frac{e^2}{r}$$

unscreened

Fermi velocity renormalization:

Transport:

Bernal bilayer graphene

AB stacking

Bernal bilayer graphene

[[]McCann & Fal'ko, PRL '06]

states	

Bernal bilayer graphene

Low-energy spectrum:

$$\varepsilon_{\mathbf{K}+\mathbf{q}} = \pm f_2 q^2 + \mathcal{O}(q^3)$$

with $f_2/a_0^2 = 3t^2/(4t_{\perp}) \simeq 20 \,\mathrm{eV}$

... for $t\simeq 3\,{
m eV}$, $t_{\perp}\simeq 0.3\,{
m eV}$

"Quadratic band touching"

[Malard *et al.*, PRB '07] [Zhang et al., PRB '08]

states	

Warping-induced Dirac cones:

Low-energy spectrum:

$$m{arepsilon_{\mathbf{K}+\mathbf{q}}} = f_1 q \pm f_2 q^2 \cos 3 arphi + \mathcal{O}(q^3)$$
 ... for $q \ll f_{1/2}$

with $f_1/a_0 = \sqrt{3}t_w/2 \simeq 0.09 \,\mathrm{eV} \ll f_2/a_0^2 \approx 20 \,\mathrm{eV}$

$$/f_2 \simeq 0.004 a_0^{-2}$$

... for $t_{\rm w}\simeq 0.1\,{\rm eV}$

Low-energy spectrum:

Coulomb repulsion:

 $V(r) \propto \frac{e^2}{r} e^{-r/r_0}$ screened

Coulomb repulsion:

Transport:

Coulomb repulsion:

Transport:

Landau levels:

Outline

(1) Introduction

(2) Interaction-induced Dirac cones

(3) Competing nematic & antiferromagnetic orders

$V_F(4) = K_{\ell} + (\xi \sigma_x, \sigma_y)$ quantum criticality

(5) Conclusions

Spinless fermions on Bernal bilayer

Hamiltonian:

$$H_0 = -t \sum_{\langle ij \rangle} \sum_{\ell=1}^2 a_{i\ell}^{\dagger} b_{j\ell} - t_{\perp} \sum_i a_{i1}^{\dagger} b_{i2} + h.$$

Spinless fermions on Bernal bilayer

Hamiltonian:

$$H_0 = -t \sum_{\langle ij \rangle} \sum_{\ell=1}^2 a_{i\ell}^{\dagger} b_{j\ell} - t_{\perp} \sum_i a_{i1}^{\dagger} b_{i2} + h.$$

Spectrum:

Spinless fermions on Bernal bilayer

Hamiltonian:

$$H_0 = -t \sum_{\langle ij \rangle} \sum_{\ell=1}^2 a_{i\ell}^{\dagger} b_{j\ell} - t_{\perp} \sum_i a_{i1}^{\dagger} b_{i2} + h.$$

Spectrum:

Low energy:

$$arepsilon_{
m K+q} = \pm f_2 q^2 + f_3 q^3 \cos 3\varphi + O(q)$$

with $f_3/a_0^3 = f_2/(2\sqrt{3}a_0^2) \simeq 6 \,{
m eV}$

... significantly larger than f_1/a_0

Coulomb repulsion:

$$H_{\text{int}} = V \sum_{\langle ij \rangle} \sum_{\ell=1}^{2} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2})$$

Coulomb repulsion:

$$H_{\text{int}} = V \sum_{\langle ij \rangle} \sum_{\ell=1}^{2} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2})$$

Feynman diagram:

Coulomb repulsion:

$$H_{\text{int}} = V \sum_{\langle ij \rangle} \sum_{\ell=1}^{2} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2})$$

Strong-coupling limit:

Charge-layer polarization

Feynman diagram:

Coulomb repulsion:

$$H_{\text{int}} = V \sum_{\langle ij \rangle} \sum_{\ell=1}^{2} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2})$$

Strong-coupling limit:

Charge-layer polarization

Feynman diagram:

Full gap opening

Self-energy corrections:

... technical obstacles: two-loop, nonrelativistic & anisotropic propagator ... trick: real-space evaluation [Groote et al., NPB '99]

Self-energy corrections:

$\propto (f_3/f_2)V^2\mathcal{O}(q)$ linear in q !

... technical obstacles: two-loop, nonrelativistic & anisotropic propagator ... trick: real-space evaluation [Groote et al., NPB '99]

Self-energy corrections:

 $\propto (f_3/f_2)V^2\mathcal{O}(q)$

Effective spectrum:

linear in q !

... technical obstacles: two-loop, nonrelativistic & anisotropic propagator ... trick: real-space evaluation [Groote et al., NPB '99]

Self-energy corrections:

 $\propto (f_3/f_2)V^2\mathcal{O}(q)$

Effective spectrum:

linear in q !

... technical obstacles: two-loop, nonrelativistic & anisotropic propagator ... trick: real-space evaluation [Groote et al., NPB '99]

$f_1^{\mathrm{eff}}/a_0 \sim V^2/(t^2/t_\perp) \sim \mathcal{O}(1\,\mathrm{eV}) \gg t_\mathrm{w}$

Renormalization group flow

Effective Hamiltonian:

 $H_0 \propto f_1^{\text{eff}} \mathcal{O}(q) + f_2 \mathcal{O}(q^2) + f_3 \mathcal{O}(q^3)$

Phase diagram

Phase diagram

Outline

(1) Introduction

(2) Interaction-induced Dirac cones

(3) Competing nematic & antiferromagnetic orders

$V_F(4) - K_{\ell} + (\xi \sigma_x, \sigma_y)$ quantum criticality

(5) Conclusions

Spin-1/2 fermions on Bernal bilayer

Toy Hamiltonian:

$$H_{\text{int}} = U \sum_{i} \sum_{\ell=1}^{2} (n_{i\ell\uparrow} - \frac{1}{2}) (n_{i\ell\downarrow})$$

$(-\frac{1}{2}) + V \sum_{i\ell} \sum_{\ell=1}^{2} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2}) + \dots$ $\langle ij angle$ $\ell{=}1$

... with parameters chosen to stabilize antiferromagnetic and/or nematic orders

Spin-1/2 fermions on Bernal bilayer

Toy Hamiltonian:

$$H_{\text{int}} = U \sum_{i} \sum_{\ell=1}^{2} (n_{i\ell\uparrow} - \frac{1}{2}) (n_{i\ell\downarrow}$$

Mean-field phase diagram:

$(-\frac{1}{2}) + V \sum_{i\ell} \sum_{\ell} (n_{i\ell} - \frac{1}{2})(n_{j\ell} - \frac{1}{2}) + \dots$ $\langle ij \rangle$ $\ell=1$

... with parameters chosen to stabilize antiferromagnetic and/or nematic orders

Order parameters:

[Ray, LJ, PRB '21]

Order parameters:

Coexistence-to-AFM transition:

[Ray, LJ, PRB '21]

Order parameters:

Nematic-to-coexistence transition:

Order parameters:

Nematic-to-coexistence transition:

Emergent Lorentz symmetry!

Outline

Introduction (1)

Interaction-induced Dirac cones (2)

(3) Competing nematic & antiferromagnetic orders

 $V_F(\mathbf{k}) - \mathbf{k}_{\ell} + \mathbf{k}_{\ell}$

onclusions

Correlated insulator

[Inbar *et al.*, Nature '23]

T = 300 K

[Inbar et al., Nature '23]

Lattice model

Hamiltonian:

 $H_0 = \sum_{i \neq j} t(\mathbf{R}_i - \mathbf{R}_j) c_i^{\dagger} c_j$

Lattice model

Hamiltonian:

$$H_0 = \sum_{i \neq j} t(\mathbf{R}_i - \mathbf{R}_j) c_i^{\dagger} c_j$$

Slater-Koster hopping:

$$t(\mathbf{r}) = \begin{cases} -V_{pp\pi} \frac{x^2 + y^2}{r^2} e^{-\frac{r-a_0}{r_0}} - 0 \\ 0 \end{cases}$$

[Moon & Koshino, PRB '13] [Koshino et al., PRX '18]

... with $V_{pp\pi}pprox -2.7\,{
m eV}$, $V_{pp\sigma}pprox 0.48\,{
m eV}$, and decay length $r_0pprox 0.319a_0$

Electronic band structure

Electronic band structure

Fermi velocity:

Electronic band structure

Fermi velocity:

Toy lattice model:

$$H = \sum_{i \neq j} t(\mathbf{R}_i - \mathbf{R}_j) c_i^{\dagger} c_j + V_1 \sum_{\langle ij \rangle} n_i I_j$$

; nj

Toy lattice model:

$$H = \sum_{i \neq j} t(\mathbf{R}_i - \mathbf{R}_j) c_i^{\dagger} c_j + V_1 \sum_{\langle ij \rangle} n_i$$

Simplifications:

- Spinless fermions

- Neglect corrugation effects
- Increased interlayer hopping $V_{pp\sigma}$

nj

3.753.50 $t(\mathbf{R}) = -V_{pp\pi}e^{-(|\mathbf{R}|-a_0)/r_0} \left(1 - \left(\frac{\mathbf{R} \cdot \mathbf{e}_z}{|\mathbf{R}|}\right)^2\right) - V_{pp\sigma}e^{-(|\mathbf{R}|-d_0)/r_0} \left(\frac{\mathbf{R} \cdot \mathbf{e}_z}{|\mathbf{R}|}\right)^2$ Nearest-neighbor intralayer interactions only 3.253.002.252.00... such that $heta_{
m magic}^{(1)}\simeq 3.5^\circ$ 1.7523 574 6 $\theta_{\text{magic}}^{(1)}$ [deg]

Quantum phase diagram: Mean-field theory

Quantum phase diagram: Mean-field theory

Twist-tuned transition

Kramers intervalley coherent insulator

 \bigcirc

Band structure:

Twist-tuned transition

Kramers intervalley coherent insulator

Band structure:

Real-space currents:

[Biedermann & LJ, *in preparation*]

Twist-tuned quantum criticality

KIVC order parameter Δ vs $\tilde{\theta}$:

Twist-tuned quantum criticality

KIVC order parameter Δ vs $\tilde{\theta}$:

Effective field theory:

 $\mathcal{L} = ar{\psi} \gamma^\mu \partial_\mu \psi + g \left[(ar{\psi} \gamma_3 \psi)^2 + (ar{\psi} \gamma_5 \psi)^2
ight]$

... Gross-Neveu-XY

with emergent Lorentz invariance

Twist-tuned quantum criticality

KIVC order parameter Δ vs $\tilde{\theta}$:

Phase diagram:

Effective field theory:

 $\mathcal{L} = ar{\psi} \gamma^\mu \partial_\mu \psi + g \left[(ar{\psi} \gamma_3 \psi)^2 + (ar{\psi} \gamma_5 \psi)^2
ight]$

... Gross-Neveu-XY

with emergent Lorentz invariance

[Biedermann & LJ, *in preparation*]

Outline

(1) Introduction

(2) Interaction-induced Dirac cones

(3) Competing nematic & antiferromagnetic orders

$F(\mathbf{A}) = \mathbf{K}_{\ell} + \mathbf{K}_{\ell} +$

(5) Conclusions

Conclusions

Bernal bilayer

Candidate ground states

State of Matter Semimetallic (SM) Valley-Hall (VH) Quantum Anomalous Hall (QAH) Valley-Polarized (VP) Kramers Intervalley-Coherent (KIVC)

Valley polarization

... with $\eta_{ij} = \pm 1$ for clockwise (counterclockwise) hopping [Ramires & Lado, PRB '19]

$$V = V_1 + V_2$$
$$V = V_1 + V_2$$

ng Dirac cones

ng Dirac cones

