

Continuous order-to-order transition from fixed-point annihilation

Lukas Janssen

David Moser

Emmy Noether-Programm

DFG Deutsche Forschungsgemeinschaft

ct.qmat **Complexity and Topology**

in Quantum Matter

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

Landau theory

Landau functional:

$F(\phi,\varphi) = \frac{r_1}{2}\phi^2 + \frac{r_2}{2}\varphi^2 + \lambda_1\phi^4 + \lambda_2\varphi^4 + 2\lambda_{12}\phi^2\varphi^2 + \mathcal{O}((\phi,\varphi)^6)$

$$\lambda_1\lambda_2-\lambda_{12}^2>0$$

Deconfined criticality

SU(2)-to-U(1) transition:

Effective field theory:

$$\mathcal{L} = (D_{\mu}z)^{\dagger}D_{\mu}z$$
 with

where $D_{\mu} = \partial_{\mu} - i a_{\mu}$

$$z^{\dagger}z = 1$$
 " $\mathbb{C}P^1$ model"

CP¹ model

Effective field theory:

 $\mathcal{L} = (D_\mu z)^\dagger D_\mu z$ with $z^\dagger z = 1$

where $D_{\mu} = \partial_{\mu} - i a_{\mu}$

Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät Theoretisch-Physikalisches Institut

Diplomarbeit

zur Erlangung des zur Ellangung um akademischen Grades eines Diplom-Physikers (Dipl.-Phys.)

Deconfined criticality

SU(2)-to-U(1) transition:

Effective field theory:

where $D_{\mu}=\partial_{\mu}-ia_{\mu}$

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

Mechanism

er parameter

 $N > N_{\rm c}$

Mechanism

ler parameter

 G_2

$$N = N_{\rm c}$$

Mechanism

ler parameter Ord

 G_2

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

α-Sn, HgTe

 $R_2 Ir_2 O_7 (R = Pr, Nd)$

Effective model

Lagrangian:

$$\mathcal{L} = \sum_{i=1}^{N} \psi_i^\dagger \left(\partial_ au + \sum_{a=1}^5 (1+s_a\delta) d_a(-\mathsf{i}
abla) \gamma
ight)$$

$$+ rac{G_1}{2N} (\psi^\dagger \gamma_{45} \psi)^2$$

$$+ rac{G_2}{2N} \sum_{a=1}^5 (\psi^\dagger \gamma_a \psi)^2$$

$$+ \frac{e^2}{8\pi N} \int \mathrm{d}^3 \vec{y} \psi^{\dagger}(\vec{x}) \psi(\vec{x}) \frac{1}{|\vec{x} - \vec{y}|} \psi^{\dagger}(\vec{y}) \psi(\vec{x}) \frac{1}{|\vec{x} - \vec{y}|} \psi^{\dagger}(\vec{y}) \psi^{$$

spherical harmonics $(d_a) = (\sqrt{3}p_y p_z, \sqrt{3}p_x p_z, \sqrt{3}p_x p_y, \frac{\sqrt{3}}{2}(p_x^2 - p_y^2), \frac{1}{2}(2p_z^2 - p_x^2 - p_y^2))$ $(s_a) = (+, +, +, -, -)$

cubic anisotropy $\delta \in [-1,1]$

[Moser, LJ, in preparation]

Partial bosonization

Weyl channel:

Nematic channel:

Dynamical bosonization

Fermion box diagrams:

Nematic channel:

$$S_{<} = \int_{\vec{k},\omega} \frac{1}{2} (r_{2} + \delta r_{2}) \varphi_{a}^{2} + \int_{\vec{k}_{1},\vec{k}_{2},\omega_{1},\omega_{2}} (g_{2} + \delta g_{2}) \varphi_{a} \psi^{\dagger} \gamma_{a} \psi + \int_{\vec{k}_{1},\vec{k}_{2},\vec{k}_{3},\omega_{1},\omega_{2},\omega_{3}} \delta G_{2} (\psi^{\dagger} \gamma_{a} \psi)^{2}$$

Scale-dependent Hubbard-Stratonovich: arphi

Modified Yukawa-coupling flow:

 dg_2 $\frac{d \ln b}{d \ln b}$

$$\varphi_a\mapsto arphi_a-rac{\delta G_2}{g_2}(\psi^\dagger\gamma_a\psi)$$

... cancels 4-fermion term

$$=-r_2\frac{\partial\delta G_2}{\partial\ln b}$$

[Gies, Wetterich, PRD '02] [Pawlowski, Ann. Phys. '07] [Floerchinger, Wetterich, PLB '09]

Tree-level scaling

Charge:	$[e^2] = 4 - d >$
4-fermion coupling:	$[G_{1,2}] = 2 - d$
Yukawa coupling:	$[g_{1,2}] = 4 - d$
Order-parameter mass:	$[r_{1,2}] = 2 > 0$
Order-parameter couplings:	$[\lambda_n] = \frac{4+(2-2)}{2}$
Anisotropy parameter:	$[\delta] = 0$ margi

- 0 relevant
- < 0 irrelevant
- > 0 relevant

relevant

$$rac{(4-d)}{2} = egin{cases} (4-d)/2 > 0, & n=3 & ext{relevant} \ 2-d < 0, & n=4 & ext{irrelevant} \end{cases}$$

inal

N = 10

N = 2

N = 1.91

N = 1

$\langle \phi angle \sim \exp(-2t_{\mathsf{IR}})$

$\langle \phi angle \sim \exp(-2t_{\mathsf{IR}})$

Dynamically bosonized RG flow

$\langle \phi angle \sim \exp(-2t_{\mathsf{IR}})$

Critical behavior

Order parameters:

Finite-temperature phase diagram:

... asymmetry in energy scales!

[Moser, LJ, in preparation]

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

QCD₄ **plus 4-fermion interactions**

Lagrangian:

$$\mathrm{i} \bar{\psi} \gamma^{\mu} D_{\mu} \psi + rac{1}{4} F$$

in Veneziano limit N_{color} , $N_{flavor} \rightarrow \infty$ with fixed $x = N_{flavor}/N_{color}$

$$egin{split} \mathcal{O}_1 &= ig(ar{\psi}^a \gamma_\mu \psi^big)^2 + ig(ar{\psi}^a \gamma_\mu \gamma_5 \psi^big)^2 \ \mathcal{O}_2 &= ig(ar{\psi}^a \psi^big)^2 - ig(ar{\psi}^a \gamma_5 \psi^big)^2 \end{split}$$

Tree-level scaling:

Gauge coupling |g| = 0marginal 4-fermion couplings $[G_{1,2}] = -2$ irrelevant

 $F_z^{\mu\nu}F_{\mu\nu}^z + \frac{1}{2}\sum_{\alpha=1}^2 G_\alpha \mathcal{O}_\alpha$

[Gies, Jaeckel, Wetterich, PRD '04] [Gies, Jaeckel, EPJC '06] [Braun, JPG '12] [Gukov, NPB '17]

... marginally relevant (asymptotic freedom)

33

35

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

Spin-boson model

Spin-1/2 in fluctuating field:

$$\mathcal{H}_{spin-boson} = g_{xy}(h^{x}S^{x})$$

with
$$\langle \mathcal{T}_{ au} h^a(au) h^b(0)
angle \propto rac{\delta^{ab}}{| au|^{2-\epsilon}}$$

$(h^{y}S^{y}) + g_{z}h^{z}S^{z} + \mathcal{H}_{\text{bulk}}(\vec{h})$

[Sengupta, PRB '00] [Zhu, Si, PRB '02] [Zaránd, Demler, PRB '02] [Weber, Vojta, PRL '23] [Weber, arXiv '24]

... consistent with predictions!

Outline

(1) Introduction

(2) Continuous order-to-order transition from fixed-point annihilation

(3) Examples

- Luttinger semimetals
- QCD₄ plus 4-fermion interactions
- Spin-boson models

(4) Conclusions

Conclusions

[Moser, LJ, in preparation]

