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1. Calculating bosonized correlation functions 7 Points

a) 1 Point
To establish a benchmark against which the bosonized correlation functions can be tested, we first cal-
culate the following fermionic Green’s functions

GR(x− x′, τ − τ ′) = 〈Tτ R†(x′, τ ′)R(x, τ)〉 and GL(x− x′, τ − τ ′) = 〈Tτ L†(x′, τ ′)L(x, τ), (1)

where τ denotes imaginary time, and Tτ is the imaginary time ordering operator. For fermionic operators
O(τ) and O′(τ ′), its action can be summarized as

Tτ O(τ)O′(τ ′) = O(τ)O′(τ ′) θ(τ − τ ′)−O′(τ ′)O(τ) θ(τ ′ − τ). (2)

To find the expression of the Green’s functions, start from the linearized Hamiltonians

Hr =
∑
q

r̂vF q r
†
qrq with r = R,L and R̂ = +1, L̂ = −1. (3)

You may then Fourier transform the creation and annihilation operators to momentum space, and use
the Heisenberg picture in imaginary time,

O(τ) = eτH O e−τH , (4)

where H is the Hamiltonian. Finally, you can evaluate the Green’s functions in Lehmann representation,
which amounts to inserting a complete set of basis states in between the two fermionic operators. Re-
stricting yourself to zero temperature, you can evaluate the expectation value with respect to the ground
state, in which all states with negative energy are occupied. You may then take the continuum limit
in momentum space to evaluate the momentum sums, but keep in mind that the linearized low-energy
theory is only valid at sufficiently small momenta, which we have learned in the lecture can be taken into
account by the introduction of an exponential cutoff factor e−α|q| into the momentum sums. (Alterna-
tively, you may use the coherent state path integral formalism, or the equation of motion technique).

b) 1 Point

In the next steps, we study a similar expression using the bosonized Hamiltonian, and normal ordering.
To this end, consider a spinless Luttinger liquid associated with the Hamiltonian

H =

∫
dx

2π

( u
K

(∂xφ)2 + uK(∂xθ)
2
)
, (5)

and where the right and left moving modes are bosonized as

r†(x) =
U†r√
2πα

eiΦr(x) where Φr(x) = r̂φ(x)− θ(x) and [φ(x), θ(x′)] =
iπ

2
sgn(x′ − x). (6)

In the lecture, we saw that normal ordering of the bosonized fields amounts to placing all bosonic creation
operators “to the left”, which can be implemented by a decomposition of Φr into parts Φ±r that contain
only bosonic creation operators, or annihilation operators, respectively. These operators create bosonic
excitations with respect to the non-interacting vacuum. Importantly, this vacuum is not the ground state
for the interacting system. To solve this discrepancy in the next exercise, start by finding a transformation
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of the bosonized fields that maps the interacting Hamiltonian to a non-interacting one.

c) 2 Points

Use this mapping, along with the finite-size expressions of the commutators

[Φr(x),Φr′(x
′)] = δr,r′ ln

(
α+ ir̂(x− x′)
α− ir̂(x− x′)

)
, (7)

[Φ+
r (x),Φ−r′(x

′)] = δr,r′ ln
(

1− e−2π(α+ir̂(x−x′))/L
)
, (8)

where L is the length of the wire, to show that normal ordering in the interacting system amounts to

r†(x′)r(x) =
−i
2π

1

r̂(x− x′)− iα

(
α√

α2 + (x− x′)2

)K+1/K−2
2

·̃
·r
†(x′)r(x)̃·· (9)

in the limit L → ∞, and where ·̃
·

·̃
· denotes normal ordering with respect to the ground state of the

interacting system. Is the resulting expression consistent with the result obtained in the fermionic calcu-
lation?

d) 1 Point

Finally, we turn to the evaluation of correlation functions using the field theoretical approach to bosoniza-
tion. To this end, we recall that the Fourier transforms of the bosonized fields to momentum and Mat-
subara frequencies are given by

φ(x, τ) =
1√
βL

∑
q,ωn

ei(qx−ωnτ)φq,ωn
and θ(x, τ) =

1√
βL

∑
q,ωn

ei(qx−ωnτ)θq,ωn
, (10)

in terms of which the action associated with the Luttinger liquid Hamiltonian of Eq. (5) reads

S =
∑
q,ωn

(
iqωn
π

φ−q,−ωn
θq,ωn

+
u

2πK
q2φ−q,−ωn

φq,ωn
+
uK

2π
θ−q,−ωn

θq,ωn

)
. (11)

Identify the matrix S that allows to bring the action to the form

S =
1

2

∑
q,ωn

(φ∗q,ωn
, θ∗q,ωn

)Sq,ωn

(
φq,ωn

θq,ωn

)
. (12)

In the next step, we will use the path integral formalism to evaluate the general correlation function

C = 〈Tτ
∏
j

ei(Ajφ(xj ,τj)+Bjθ(xj ,τj)) = 〈Tτ ei(A1φ(x1,τ1)+B1θ(x1,τ1)) ei(A2φ(x2,τ2)+B1θ(x2,τ2)) . . .〉 (13)

involving a general number of bosonized operators at some positions xj and imaginary times τj , and
real prefactors Aj and Bj . Given the imaginary time evolution detailed in Eq. (4), show that the time
evolution of an exponential of an operator O field can be written as

eiAO(τ) = eτH eiAO e−τH (14)

with O = O(τ = 0). Use this to sketch the most important steps in the construction of the path integral
for C, and state the path integral form of the correlation function (without evaluating it).

e) 1 Point

After going to Fourier space, solve the path integral by a suitable shift of the integration variables. Show
that this leads to

C = exp

−1

2

1

βL

∑
k,l

∑
q,ωn

ei(q(xk−xl)−ωn(τk−τl))(Ak, Bk)S−1
q,ωn

(
Al
Bl

) . (15)
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f) 1 Point
As is discussed in detail in Appendix C of Giamarchi’s book “Quantum Physics in One Dimension”, the
explicit evaluation of the Eq. (15) of yields C = 0 unless

∑
j Aj = 0 =

∑
j Bj . For

∑
j Aj = 0 =

∑
j Bj

and at zero temperature, on the other hand, one finds

C = exp

{
−1

2

∑
k<l

(
[−AkAlK −BkBlK−1]F1(xk − xl, τk − τl) + [AkBl +BkAl]F2(xk − xl, τk − τl)

)}
(16)

with

F1(x, τ) = ln

(√
x2 + (u|τ |+ α)2

α

)
and F2(x, τ) = −i arg (uτ + α sgn(τ) + ix) . (17)

Check that this prescription reproduces the earlier results.1

1Note that there is a caveat concerning bosonic and fermionic imaginary time ordering that is taken into account correctly
by the expressions of F1 and F2 as given in Eq. (17) - for more on that, see Appendix C of Giamarchi’s book.
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