Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Technische Universität Dresden Psychologie II Diagnostik und Intervention

47. Tagung experimentell arbeitender Psychologen,4. April 2005

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Methode

Ergebnisse

DISKUSSION

Überblick

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

heorie

Methode

rgebnisse

skussion

Problem und Ziele

Theorie

Methode

Ergebnisse

genutzt für (Fahr-)Eignungsdiagnostik

erfassen

- Tempo der Bearbeitung einfacher Aufgaben
- Fehlerneigung, wenn Test hinreichend lang

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Methode

genutzt für (Fahr-)Eignungsdiagnostik

erfassen

- Tempo der Bearbeitung einfacher Aufgaben
- Fehlerneigung, wenn Test hinreichend lang

wiederholte Testbearbeitung

- geringere Reaktionszeit
- geringerer Fehleranteil

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

genutzt für (Fahr-)Eignungsdiagnostik

erfassen

- Tempo der Bearbeitung einfacher Aufgaben
- Fehlerneigung, wenn Test hinreichend lang

wiederholte Testbearbeitung

- geringere Reaktionszeit
- geringerer Fehleranteil

kein Übungstransfer

- auf andere unähnliche Aufgaben
- Konzentration im Alltag

Gedächtnissuche und das Erkennen von Übung

Carmen
Hagemeister &
Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

genutzt für (Fahr-)Eignungsdiagnostik

erfassen

- Tempo der Bearbeitung einfacher Aufgaben
- Fehlerneigung, wenn Test hinreichend lang

wiederholte Testbearbeitung

- geringere Reaktionszeit
- geringerer Fehleranteil

kein Übungstransfer

- auf andere unähnliche Aufgaben
- Konzentration im Alltag

Validitätsproblem, wenn vorherige Übung nicht bekannt

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

I heorie

Methode

rgebnisse

Konzentration und Arbeitsgedächtnis

Westhoff (1995, S. 389):

"Der Mechanismus Konzentration ist ein neuronal begründetes System, mit dem ein Individuum Aktionsmuster bewußt und absichtsvoll koordiniert." Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

i neorie

Methode

Ergebnisse

Konzentration und Arbeitsgedächtnis

Westhoff (1995, S. 389):

"Der Mechanismus Konzentration ist ein neuronal begründetes System, mit dem ein Individuum Aktionsmuster bewußt und absichtsvoll koordiniert."

Arbeitsgedächtnis (z. B. Baddeley & Logie, 1999)

- gleichzeitige Speicherung und Verarbeitung von Information
- Supervisory Attentional System: Überwachung und Koordination von Handlungen

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

"Der Mechanismus Konzentration ist ein neuronal begründetes System, mit dem ein Individuum Aktionsmuster bewußt und absichtsvoll koordiniert."

Arbeitsgedächtnis (z. B. Baddeley & Logie, 1999)

- gleichzeitige Speicherung und Verarbeitung von Information
- Supervisory Attentional System: Überwachung und Koordination von Handlungen

Gemeinsamkeit beider Konstrukte

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

.

Diskussion

Westhoff (1995, S. 389):

"Der Mechanismus Konzentration ist ein neuronal begründetes System, mit dem ein Individuum Aktionsmuster bewußt und absichtsvoll koordiniert."

Arbeitsgedächtnis (z. B. Baddeley & Logie, 1999)

- gleichzeitige Speicherung und Verarbeitung von Information
- Supervisory Attentional System: Überwachung und Koordination von Handlungen
- Gemeinsamkeit beider Konstrukte
- Gedächtnissuche nutzen, um Übung in bestimmten Konzentrationstests zu erkennen

Theorie

Konzentrationstests des Bourdon-Typs

- mehrere Buchstaben merken
- in zufällig aussehenden Buchstabenfolgen diese Buchstaben anstreichen

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

ivietnode

Ergebnisse

Theorie

"Klassische" Aufgabe zur Gedächtnissuche (Sternberg, 1966):

- 1 oder mehrere Ziffern merken (Memory Set)
- 1 Ziffer wird dargeboten
- entscheiden, ob Ziffer zu merken war

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

"Klassische" Aufgabe zur Gedächtnissuche (Sternberg, 1966):

- 1 oder mehrere Ziffern merken (Memory Set)
- 1 Ziffer wird dargeboten
- entscheiden, ob Ziffer zu merken war

Ergebnis:

- ca. 38 ms Suchzeit pro Item im Memory Set
- gleiche Suchzeit pro Item f
 ür "ja"- und ..nein"-Antworten
- Suche ist erschöpfend
- Prinzip gilt f
 ür verschiedene Arten von Aufgaben, z.B. Buchstaben, Items, die Skatkarten ähnlich sind

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Theorie

Theorie

Kategorie-Effekt (Lively, 1972; Lively & Sanford, 1972):

- Zielreize aus einer Menge (Buchstaben oder Ziffern)
- Distraktoren aus den Mengen
 - der Zielreize (Negative Same Set)
 - aus anderer Menge (Negative Different)
- entscheiden, ob Item zu merken war

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

rgebnisse

Kategorie-Effekt (Lively, 1972; Lively & Sanford, 1972):

- Zielreize aus einer Menge (Buchstaben oder Ziffern)
- Distraktoren aus den Mengen
 - der Zielreize (Negative Same Set)
 - aus anderer Menge (Negative Different)
- entscheiden, ob Item zu merken war

Ergebnis:

- Suchzeit für Distraktoren geringer, wenn aus anderer Menge als Zielreize (Negative Different)
- gleichzeitige Suche / Vergleich
 - in Liste der Items
 - von Kategorie
- Unterschied zwischen Distraktoren aus den beiden Mengen nimmt mit der Ubung ab

Ergebnisse

Diskussion

VersuchsteilnehmerInnen:

- 25 Frauen, 35 Männer
- rechtshändig
- 21 bis 50 Jahre (Mittel 28, Standardabweichung 8 Jahre)
- Führerschein mindestens 3 Jahre
- 3 Fachhochschulreife, 43 Abitur, 13 abgeschlossenes Studium

Gruppenbildung nach ungeraden und geraden Vp-Nummern Alle Personen bearbeiteten die gleichen Aufgaben

Verwendete Items:

	Memory-Set-Size		
	1	2	4
Positive Set	R	K, R	F, H, K, R
Negative Same Set	В	B, J	B, J, L, N
Negative Different Set	3	3, 7	1, 3, 4, 7

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

heorie

Methode

Ergebnisse

Diskussior

Problem and 7

2 Sitzungen mit denselben Tests und Fragebögen

Reihenfolge innerhalb der Sitzung:

	0
Tests mit Memory-Set-Size	4, 2, 1
	4, 2, 1
Fragebögen zum Autofahren	
Tests mit Memory-Set-Size	4, 2, 1
	4, 2, 1

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Methode

Ergebnisse

Ergebnisse auf der Ebene der Gruppe

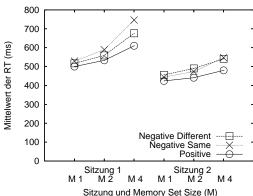


Abbildung:

Mittelwert des Mittelwerts der Reaktionszeit in den Tests am Beginn der Sitzungen pro Tag, Set und Memory-Set-Size, N=60

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse

JISKUSSION

Ergebnisse

Diskussion

Reaktionszeit war länger

- in der ersten Sitzung verglichen mit der zweiten
- je größer das Memory Set
- bei "Nein"-Antworten auf Buchstaben (Negative Same) als bei "Nein"-Antworten auf Zahlen (Negative Different)

mit der Ubung verringerten sich

- Effekt von Memory Set Size (= Suchzeit pro Item)
- Unterschied von "Nein"-Antworten auf Buchstaben und "Nein"-Antworten auf Zahlen

Ergebnisse - Ubung bei Individuen erkennen Steigungen der Regressionsgleichungen

Klassifizierung in der logistischen Regression Prädiktor: Differenz der Steigungen der Regressionen mit der unabhängigen Variable Memory-Set-Size und der abhängigen Variable Mittelwert der RT von Negative Different und Negative Same

Gruppe 1 $(n_1 = 30)$ geübt, Gruppe 2 $(n_2 = 30)$ ungeübt

	vorherges		
beobachtet	keine Übung	Übung	korrekt
keine Übung	19	11	63,3%
Übung	5	25	83,3%
Gesamtprozentsatz			73,3%

Anmerkung. Der Trennwert lautet 0,5.

Nagelkerkes $R^2 = 0.2$

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

heorie

Methode

Ergebnisse

Ergebnisse - Übung bei Individuen erkennen Steigungen der Regressionsgleichungen

Gruppe 1 ($n_1 = 30$) ungeübt, Gruppe 2 ($n_2 = 30$) geübt

Mittelwert der Reaktionszeiten: kein signifikanter Beitrag zum Erkennen von Übung

Median der Reaktionszeiten: 55,0% korrekte Zuordnungen

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

heorie

Methode

Ergebnisse

Gruppe 1 $(n_1 = 30)$ geübt, Gruppe 2 $(n_2 = 30)$ ungeübt

- Prädiktor: Differenz der Mittelwerte der Reaktionszeiten der Sets Negative Same und Negative Different bei Memory-Set-Sizes 2 und 4
- 75,0% korrekte Klassifikationen
- Nagelkerkes $R^2 = 0.42$

Gruppe 1 $(n_1 = 30)$ ungeübt, Gruppe 2 $(n_2 = 30)$ geübt

- Prädiktor: Differenz der Mittelwerte der Reaktionszeiten der Sets Negative Same und Negative Different bei Memory-Set-Size 2
- 71,7% korrekte Klassifikationen
- Nagelkerkes $R^2 = 0.26$

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

neone

Methode

Ergebnisse

Ergebnisse - Übung bei Individuen erkennen Differenz der Leistung bei Memory-Set ≥ 2

Problem:

- Korrelationen der Differenzen mit der Gesamtleistung bis r=0.5
- langsamere Personen haben größere Leistungsunterschiede
- Richtung des Unterschieds statt Größe betrachten

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

neorie

Methode

Ergebnisse

Ergebnisse - Übung bei Individuen erkennen Richtung der Differenz bei Memory-Set ≥ 2

Prädiktor: Differenz der Mittelwerte der Reaktionszeiten der Sets Negative Same und Negative Different bei Memory-Set-Sizes 2 und 4

Gruppe 1 $(n_1 = 30)$ geübt, Gruppe 2 $(n_2 = 30)$ ungeübt

- 75,0% korrekte Klassifikationen
- Nagelkerkes $R^2 = 0.42$

Gruppe 1 ($n_1 = 30$) ungeübt, Gruppe 2 ($n_2 = 30$) geübt

- 70,0% korrekte Klassifikationen
- Nagelkerkes $R^2 = 0.24$

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

TICOTIC

Methode

Ergebnisse

- Differenz der Steigungen: kein stabiler Beitrag zum Erkennen von Übung
- Differenz der Leistung bei höherer Memory Set Size: akzeptabler Beitrag
 Problem: positive Korrelation von Differenz und Gesamtleistung korrelierte Prädiktoren
- Richtung des Unterschieds der Leistung bei höherer Memory-Set-Size: akzeptabler Beitrag

Danke für Ihre Aufmerksamkeit!

Gedächtnissuche und das Erkennen von Übung

Carmen Hagemeister & Christina Seidler

Problem und Ziele

Theorie

Methode

Ergebnisse