

Introduction to Matlab

Logical indexing and plots

Dario Cuevas and Vahid Rahmati

Exercises

- 1. Using for loops, calculate the volumes of cilinders whose radii are $r = \{1,1.2,1.3\}$ and whose height is h = 5. That is, calculate three volumes (one for each cilinder). Write these volumes to a vector VolumesCilinder. The volume of a cilinder is given by $V = \pi r^2 h$.
- 2. Repeat the previous exercise, but now with $r = \{1, 1.2, 1.3\}$ and $h = \{5, 10, 12\}$. Write the results to a 3x3 matrix. Hint: use two nested for loops.
- 3. Write a function with two inputs, a vector VecX and a number Y. The function should search VecX and find those elements that equal X. The output of the function is a vector Z with those indices. The function must work with any size of vector VecX.

Logical indexing

- Important function: find
- To find the elements of an array that satisfy a condition, we use logical indexing.
 For example, for a vector VecX = 2:2:20;.
- idx = find(VecX<7) gives the indices of VecX whose values are smaller than 7.
- VecX(idx1) gives you the values of VecX which are smaller than 7.
- For MatX = magic(5); [idxRow, idxCol] = find(MatX<10); gives the two indices of each element of MatX smaller than 10.
- MatX([idxRow,idxCol]) does NOT return the values of MatX which are smaller than
 10. To do this, we use logical indexing, for example:
 - MatX(MatX<10)
 - MatX(MatX>5)
 - MatX(MatX~=5)

Logical indexing

- You can replace certain values of a matrix:
 - MatX(MatX==5) = -1;
 - MatX(MatX<=3) = MatX(MatX<=3)+1;
 - MatX(MatX>10 && MatX<20) = 15; %More than one condition
- You can find all the elements of a row (or column) that satisfy a condition:
 - MatX(1, MatX(1,:)<20)
 - MatX(MatX(:,3)>5,3) = 200;
- Can you see what this code does?

```
MatX = magic(5);
MatX(MatX>10) = -(1:(numel(MatX(MatX>10))));
```

Exercises: Create a matrix MatY = ceil(10*rand(10))

- 1. Change the elements of MatY that are smaller than 3 into -1
- 2. Change the elements of MatY between 4 and 7 into -2
- 3. Change the positive elements of the first column of MatY into 0.

Plot command

- plot(x,y), where x and y are vectors of the same size. For example
 - x = 1:0.1:10; y = sin(x); plot(x, y)
 - x1 = -pi:0.1:pi; plot(x1, 2*cos(x1))
 - x2 = 1:10; plot(x2, x2.^2, 'red') %or blue, black, b, r, g, p, m, etc...
 - x3 = 0:0.1:pi/2; plot(x3, arctan(x3), 'b*') % color + marker
 - x4 = -10:10; plot(x4, heaviside(x4), '-.');
- List of markers and colors: help plot
- You can put more than one function in a plot:
 - plot(x, sin(x), 'g', x, cos(x), 'red')

Plot command

- Example: x = 0:0.1:2*pi; plot(x, 2*sin(0.5*x));
- Useful properties

Property	What it does
title	Sets title for the plot figure
xlabel/ylabel	Gives a label to each axis
legend	Creates a floating legend
axis([x1, x2, y1, y2])	Changes the range of the plot
axis equal/square/tight	Changes the aspect ratio of the plot
grid on/off	Turn the grid on or off
LineWidth	Changes the width of the plot line

• get(gca) gives a list of all the things you can change