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=, Equilibrium
= 7 =0 always solution
e i\/—Q’?g((TT)) = t\/g’g(TT))' solution for A <0
s A(T,p,...) must change sign at T¢.
= Simplest case: A(T) =a(T -T¢)
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Weakly first order
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More degrees of freedom

e.g. magnetism + lattice deformation
= magnetic order parameter 7
= lattice deformation u: +u not equivalent = odd powers allowed
» &= An’ + Bt + bu + An?u (b = ‘bulk modulus’)
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2
= Minimize w.r.t. u: a—u =bu + )\772 =0, wu= —>‘—Z—
= Re-insert into &:

/\2774 )\2 4 5 )\2 4
d=AP B+ 2L AT g2 (B 2
U n+2b ) (B (2)
= \ large (strong coupling to lattice) and/or b small (very

compressible lattice) = ‘effective’ B < 0 = first order

walso: uocn? o« T - T

August 31, 2016



University of Stuttgart

Critical Fluctuations close to T¢

m Close to T, fluctuations are big and correlated

= Correlation between order parameter at different places:

g(7,7") = (@ (Mx()) - (x(F)N=()) (3)

= no correlation = (x(7)z (7)) = (x(F)Nz(7"))

= Mean-field theory not applicable
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= Important concept: ‘correlation length’ £(T)
= Susceptibility x o< 3; ; g;,; diverges at phase transition

= &(T) diverges at phase transition: this is how system learns
everywhere what order to pick

= Long-range behavior much more important than short-range
interactions

August 31, 2016
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Close to T¢: beyond mean-field

How close is ‘close’ 7 How big is ‘big’?

Fluctuations comparable to order parameter:

((An)?) ~n? (4)

Regime:

. T-To| B? _ BT¢ (5)
C To 9n2aiTR2ES T 8m2aGB

&o: correlation length at =0

BT
8m2aG3

outide 7, Landau theory should work;
negligible

<1l = 7

= Good example for large &, and small 7: superconductor
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Critical Scaling and Universaity Classes

short-range interactions (e.g. magnetic) = small §, = large 7
quantities typically behave like [T - T¢|:

ITgC—T)—a (i.e. not a jump!)

n cocT_a:(
[ ] 770(7'_6
myocT !V

m TV

Universal relations between them known, e.g., a + 28+~ = 2.

Values depend on dimension d and symmetry of order parameter
= ‘universality class’

Knowledge about them from ‘scaling theory’
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Scaling Theory

Near T, correlation length diverges

Making everything bigger by some factor should not ‘essentially’
change situation
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G(\'By) = \G(Bo) (6)

Indeed the case in second-order phase transitions: a few ‘global
features’ more important than ‘local details’

applied to Ising model:

Collect spins into bigger ‘block spin’

close enough to T, £(T') > Lplock

block spin Sy ~ +L{ .

Same model as before, but with modified parameters.
repeat
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Renormalization Group

More elaborate scheme based on scaling arguments:
= scheme:
e go to larger scales/ lower energies/ ...

e some couplings are going to get smaller (‘irrelevant’)
e some get bigger (‘relevant’)

e in between: ‘marginal’: maybe important, maybe not
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= different microscopic models have similar phase transitions

= finds few relevant aspects out of many microscopic features
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Spatial variation: Ginzburg-Landau
® = [ &3 ¢(7), e.g.: surface of a finite system, variation of 7 costs
energy. Parameter G fixes length scale of ‘acceptable’ variation:
= [ (A7) + Br'(7) + G(Tn())?) (7)

(superconductivity) What if G <07 Similar to B <0, we need

higher-order terms like E(Vv2n(7))2.
Example: spirals
Relevant terms Gg¢?n? + Eq'*n?

g_j;=Gn2+2Eq2n2=0 = ¢y =—£>0 (8)
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Topological defects

available topological defects determined by symmetry class

(homotopy group)

August 31, 2016

point defects: vortices (e.g. superconductors)
line defects: domain walls

very stable
Lifshitz invariants

lack of inversion symmetry

free energy can cotnain terms linear in gradient

system likes variation even for G > 0

allow ‘particle-like’ solutions to GL equation: defects (e.g.
skyrmions)
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Superconductivity: GL |

= Order parameter: complex scalar (or 2d vector)

= Quite a bit known about spatial dependence (magnetic field) =
Ginzburg-Landau equation

= [ @ (AR@P+ Bo@[ + GIveE+...) -
- [ (e DR S+ e )
©)

= Known symmetrles _gauge invariance; consistent ‘trick’
—thV - —ihV - —A

= Need functional derivative w.r.t. ¢)(7) and w.r.t. A: charged
electrons modify electromagnetic field.
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Superconductivity: GL Il
= Minimisation w.r.t. A(#) give equation defining a current:
Lo pole (1/)* (-N - 6—!1)1/;-1,0(@'6 - 6—21)1/;*)
hc hc
(10)

With V x B = 47“5 one gets
- he* L ooer . L ooe .
j = N-iv-—Alp -y liv- —A)YT 11
J 2m(w(lv hc )¢ 1/J(ZV hc )¢)’ (11)
where e* = 2e.
= Minimisation w.r.t. ¢(7) and ¥*(#) determine order parameter:
1 Lot ) T-T
o (109 = SA) 0 +a L) + @) ) =0
2m C TC
(12)

Looks like Schrédinger equation: ‘wave function of the
August 31, sondensate’
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Microscopic variant and BCS theory

= Some attractive elecron-electron interaction

= (via phonons, see isotope effect; also note that this is
long-range => mean-field good)

= Attraction only between electrons close to Fermi level, but let's
simplify.

H =% (¢ —M)Cgoci += Z Vi cT i+ (13)

O',O'

= Perturbation theory in V; ;, does not work: preserves a
Fermi-liquid at all orders WhICh is not the ground state

= try mean-field theory

August 31, 2016
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BCS theory |

= Possible mean-field decoupling with terms <cl§;,ac§',a)c-%,a'c-1€',g'
can describe magnetic order

= alternative mean-field decoupling:

Tt Tt
cl:: O‘C—k G’IC—ZI’,O"CZI’,O' _><CI;,UC—E,U’>C—E’,U’CE’,G
T
+ Cl_é,ac—l::,a’ (C—IQ’,J’CZ:’,U>
At
<CI:),O'C—7€,O")<C—]:}',O”C]:}’,O'> : (14)

= For V(k, k") = V; and singlet pairing:

AP
Hyr =3 (= 1)}, ZC;; o AX e -
ko "o o 0

(15)
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BCS theory Il

biquadratic, almost there!

Particle-hole transformation for | electrons — Nambu spinor

€ — -A” ¢ Al?
Hyp = Z(C;%,T’ h;m) ( PH ) e | 1A
k

“A —(ep—p) hy | Vo
(16)
= Diagonalize:
Tkt U % | uz g it (17)
Y CT» X ui cTa
-k,| -k, k -k}
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e BCS theory I
u
H= Z E’;nk o + EO with EE =14/ (EE - LL)2 + ‘AP (18)
k.o

= n is the number operator for v: ground state has none
= ground state:

~k,\ k.t

k

[wncs) o [Tviol00 o [T (g + el el )0 (19)
k,o

ug, = cost; and ug, = sin 6y for real A

August 31, 2016



www.uni-stuttgart.de

University of Stuttgart
nany

Gap = order parameter
= Self-consistency equation:
-A
Ao A (20)

= A =0 one possible solution: no superconductivity

For V) < 0 (attraction!), more solutions “3.—0| =X E%c possible

Ao,a’(l;) = ZE’ Vfc,l?:’<c_l§;',a’cl§’,a>

See also: complex order parameter from before

complex number

BCS ground state is coherent state: has defined phase

Broken symmetry: gauge invariance
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‘Brute-force’ numerics: Markov-chain Monte Carlo

= Method:
e Start with some (e.g. random) configuration, energy E
e Changeitabit= F;
e Accept change with probability max(1,e %1 je=8F0)
e Do this ‘long enough’
= Advantages:

e ‘Unbiased’: Good when you have not much of an idea
e Flexible

= Disadvantages:
e ‘Long enough’ can be prohibitive

e Especially hard near phase transitions, for many quantum
problems

e Finite systems can be misleading

Alan Sokal: ‘Monte Carlo is an extremely bad method, it should be

used only when all alternative methods are worse.’
August 31, 2016
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Quantum Phase Transitions

= Phase transitions driven by T, entropy, thermal fluctuations
= Phase transition may also be driven by other parameter

= Different Hamiltonian = different ground state

= Transition can be first order, i.e., ‘the same’ for finite T’

m OratT=0

= Quantum fluctuations dominate

= signatures seen at higher T
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Spin liquids and Topological Phase transitions

So far: Interactions = ordered phase, chracterized by order
parameter

Other possibility: interactions, but no pattern
Example: Frustration

Additional ingredient: Quantum mechanics
New concept: ‘topological order’

Example: fractional Quantum Hall

‘Non-local’ order

2016



