

Theory of Phase Transitions

M. Daghofer

Institute for Functional Matter and Quantum Technologies, University of Stuttgart

August 31, 2016

Content

- Phase transitions (e.g. van der Waals)
- Macroscopic/microscopic description
- Symmetry breaking and Phase transitions
- Mean-Field theory for the Ising model
- (Ginzburg-)Landau approach
 - Second order
 - weakly first order
 - coupled order parameters
- Limitations of mean-field theory
- Excitations
- Quantum Phase transitions and order without symmetry breaking

Equilibrium

• $\eta = 0$ always solution

•
$$\eta = \pm \sqrt{-\frac{A(T)}{2B(T)}} = \pm \sqrt{\frac{|A(T)|}{2B(T)}}$$
 solution for $A < 0$

- A(T, p, ...) must change sign at T_C .
- Simplest case: $A(T) = a(T T_C)$

August 31, 2016

$$\Phi(\eta, T, p, \dots) = \Phi_0(T, p, \dots) + A(T, p, \dots) \eta^2 + C(T, p, \dots) \eta^3 + B(T, p, \dots) \eta^4 + F(T, p, \dots) \eta^5 + D(T, p, \dots) \eta^6 + \dots$$
 (1)

More degrees of freedom

e.g. magnetism + lattice deformation

- lacktriangleright magnetic order parameter η
- lattice deformation u: $\pm u$ not equivalent \Rightarrow odd powers allowed
- $\Phi = A\eta^2 + B\eta^4 + \frac{b}{2}u^2 + \lambda\eta^2 u \ (b = \text{`bulk modulus'})$
- Minimize w.r.t. u: $\frac{\partial \Phi}{\partial u} = bu + \lambda \eta^2 = 0$, $u = -\frac{\lambda \eta^2}{b}$
- Re-insert into Φ:

$$\Phi = A\eta^2 + B\eta^4 + \frac{\lambda^2 \eta^4}{2b} - \frac{\lambda^2 \eta^4}{b} = A\eta^2 + (B - \frac{\lambda^2}{2b})\eta^4 \qquad (2)$$

- λ large (strong coupling to lattice) and/or b small (very compressible lattice) \Rightarrow 'effective' $B < 0 \Rightarrow$ first order
- also: $u \propto \eta^2 \propto T_C T$

Critical Fluctuations close to T_C

- Close to T_C , fluctuations are big and correlated
- Correlation between order parameter at different places:

$$g(\vec{r}, \vec{r}') = \langle x(\vec{r})x(\vec{r}')\rangle - \langle x(\vec{r})\rangle\langle x(\vec{r}')\rangle \tag{3}$$

- no correlation $\Rightarrow \langle x(\vec{r})x(\vec{r}')\rangle = \langle x(\vec{r})\rangle\langle x(\vec{r}')\rangle$
- Mean-field theory not applicable
- Important concept: 'correlation length' $\xi(T)$
- Susceptibility $\chi \propto \sum_{i,j} g_{i,j}$ diverges at phase transition
- $\xi(T)$ diverges at phase transition: this is how system learns everywhere what order to pick
- Long-range behavior much more important than short-range interactions

Close to T_C : beyond mean-field

- How close is 'close'? How big is 'big'?
- Fluctuations comparable to order parameter:

$$\langle (\Delta \eta)^2 \rangle \approx \eta^2$$
 (4)

Regime:

$$\tau = \frac{|T - T_C|}{T_C} \approx \frac{B^2}{9\pi^2 a^4 T_C^2 \xi_0^6} \approx \frac{B^2 T_C}{8\pi^2 a G^3}$$
 (5)

- ξ_0 : correlation length at T=0
- outide au, Landau theory should work; $\frac{B^2T_C}{8\pi^2 aG^3}\ll 1 \quad \Rightarrow \quad au$ negligible
- Good example for large ξ_o and small τ : superconductor

Critical Scaling and Universaity Classes

short-range interactions (e.g. magnetic) \Rightarrow small $\xi_0 \Rightarrow$ large τ quantities typically behave like $|T-T_C|^{\lambda}$:

- $c \propto \tau^{-\alpha}$ = $(\frac{|T_C T|}{T_C})^{-\alpha}$ (i.e. not a jump!)
- $\eta \propto \tau^{-\beta}$
- $\chi \propto \tau^{-\gamma}$
- $\xi \propto \tau^{-\nu}$
- Universal relations between them known, e.g., α + 2β + γ = 2.
- Values depend on dimension d and symmetry of order parameter
 ⇒ 'universality class'

Knowledge about them from 'scaling theory'

Scaling Theory

- Near T_C , correlation length diverges
- Making everything bigger by some factor should not 'essentially' change situation

$$G(\lambda^b B_0) = \lambda G(B_0) \tag{6}$$

- Indeed the case in second-order phase transitions: a few 'global features' more important than 'local details'
- idea applied to Ising model:
 - · Collect spins into bigger 'block spin'
 - close enough to T_C , $\xi(T)\gg L_{\rm block}$
 - block spin $S_b \approx \pm L_{\rm block}^d$
 - Same model as before, but with modified parameters.
 - repeat

Renormalization Group

More elaborate scheme based on scaling arguments:

- scheme:
 - go to larger scales/ lower energies/ ...
 - some couplings are going to get smaller ('irrelevant')
 - some get bigger ('relevant')
 - in between: 'marginal': maybe important, maybe not
- different microscopic models have similar phase transitions
- finds few relevant aspects out of many microscopic features

Spatial variation: Ginzburg-Landau

 $\Phi = \int {
m d}^3 r \; \phi(\vec{r})$, e.g.: surface of a finite system, variation of η costs energy. Parameter G fixes length scale of 'acceptable' variation:

$$\Phi = \int d^3r \left(A\eta^2(\vec{r}) + B\eta^4(\vec{r}) + G(\nabla \eta(\vec{r}))^2 \right)$$
 (7)

(superconductivity) What if G < 0? Similar to B < 0, we need

higher-order terms like $E(\nabla^2 \eta(\vec{r}))^2$.

Example: spirals

Relevant terms $Gq^2\eta^2 + Eq^4\eta^2$

$$\frac{\partial \Phi}{\partial q^2} = G\eta^2 + 2Eq^2\eta^2 = 0 \quad \Rightarrow \quad q_{\min}^2 = -\frac{G}{2E} > 0 \tag{8}$$

Topological defects

- available topological defects determined by symmetry class (homotopy group)
- point defects: vortices (e.g. superconductors)
- line defects: domain walls
- very stable
- Lifshitz invariants
 - · lack of inversion symmetry
 - free energy can cotnain terms linear in gradient
 - system likes variation even for G > 0
 - allow 'particle-like' solutions to GL equation: defects (e.g. skyrmions)

Superconductivity: GL I

- Order parameter: complex scalar (or 2d vector)
- \blacksquare Quite a bit known about spatial dependence (magnetic field) \Rightarrow Ginzburg-Landau equation

$$\Phi = \int d^2r \left(A|\psi(\vec{r})|^2 + B|\psi(\vec{r})|^4 + G|\nabla\psi(\vec{r})|^2 + \dots \right) =$$

$$= \int d^2r \left(a \frac{T - T_C}{T_C} |\psi(\vec{r})|^2 + \frac{b}{2} |\psi(\vec{r})|^4 + \frac{1}{2m} |\nabla\psi(\vec{r})|^2 + \dots \right)$$
(9)

- Known symmetries: gauge invariance; consistent 'trick' $-i\hbar\nabla \rightarrow -i\hbar\nabla \frac{e^*}{c}\vec{A}$
- Need functional derivative w.r.t. $\psi(\vec{r})$ and w.r.t. \vec{A} : charged electrons modify electromagnetic field.

Superconductivity: GL II

• Minimisation w.r.t. $\vec{A}(\vec{r})$ give equation defining a current:

$$\frac{1}{4\pi}\vec{\nabla}\times\vec{B} = \frac{\hbar e^*}{2mc} \left(\psi^* \left(-i\vec{\nabla} - \frac{e^*}{\hbar c}\vec{A}\right)\psi - \psi\left(i\vec{\nabla} - \frac{e^*}{\hbar c}\vec{A}\right)\psi^*\right) \tag{10}$$

With $\vec{\nabla} \times \vec{B} = \frac{4\pi}{a} \vec{j}$, one gets

$$\vec{j} = \frac{\hbar e^*}{2m} \left(\psi^* \left(-i \vec{\nabla} - \frac{e^*}{\hbar c} \vec{A} \right) \psi - \psi \left(i \vec{\nabla} - \frac{e^*}{\hbar c} \vec{A} \right) \psi^* \right) , \qquad (11)$$

where $e^* = 2e$.

• Minimisation w.r.t. $\psi(\vec{r})$ and $\psi^*(\vec{r})$ determine order parameter:

$$\frac{1}{2m} \left(-i\hbar \vec{\nabla} - \frac{e^*}{c} \vec{A} \right)^2 \psi(\vec{r}) + a \frac{T - T_C}{T_C} \psi(\vec{r}) + b |\psi(\vec{r})|^2 \psi(\vec{r}) = 0$$
(12)

Looks like Schrödinger equation: 'wave function of the August 31, zondensate'

Microscopic variant and BCS theory

- Some attractive electron-electron interaction
- (via phonons, see isotope effect; also note that this is long-range ⇒ mean-field good)
- Attraction only between electrons close to Fermi level, but let's simplify.

$$H = \sum_{\vec{k},\sigma} (\epsilon_{\vec{k}} - \mu) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} + \frac{1}{2} \sum_{\vec{k},\vec{k}'} V_{\vec{k},\vec{k}'} c_{\vec{k},\sigma}^{\dagger} c_{-\vec{k},\sigma'}^{\dagger} c_{-\vec{k}',\sigma'} c_{\vec{k}',\sigma} . \quad (13)$$

- Perturbation theory in $V_{\vec{k},\vec{k}'}$ does not work: preserves a Fermi-liquid at all orders, which is not the ground state
- try mean-field theory

BCS theory I

- Possible mean-field decoupling with terms $\langle c^{\dagger}_{\vec{k},\sigma}c_{\vec{k}',\sigma}\rangle c^{\dagger}_{-\vec{k},\sigma'}c_{-\vec{k}',\sigma'}$ can describe magnetic order
- alternative mean-field decoupling:

$$c_{\vec{k},\sigma}^{\dagger} c_{-\vec{k},\sigma'}^{\dagger} c_{-\vec{k}',\sigma'} c_{\vec{k}',\sigma} \rightarrow \langle c_{\vec{k},\sigma}^{\dagger} c_{-\vec{k},\sigma'}^{\dagger} \rangle_{c_{-\vec{k}',\sigma'}} c_{\vec{k}',\sigma}$$

$$+ c_{\vec{k},\sigma}^{\dagger} c_{-\vec{k},\sigma'}^{\dagger} \langle c_{-\vec{k}',\sigma'} c_{\vec{k}',\sigma} \rangle$$

$$- \langle c_{\vec{k},\sigma}^{\dagger} c_{-\vec{k},\sigma'}^{\dagger} \rangle \langle c_{-\vec{k}',\sigma'}^{\dagger} c_{\vec{k}',\sigma}^{\dagger} \rangle. \tag{14}$$

• For $V(\vec{k}, \vec{k}') = V_0$ and singlet pairing:

$$H_{\rm MF} = \sum_{\vec{k},\sigma} (\epsilon_{\vec{k}} - \mu) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - \Delta^* \sum_{\vec{k}} c_{-\vec{k},\downarrow} c_{\vec{k},\uparrow} - \Delta \sum_{\vec{k}} c_{\vec{k},\uparrow}^{\dagger} c_{-\vec{k},\downarrow}^{\dagger} - \frac{|\Delta|^2}{V_0} .$$

$$(15)$$

www.uni-stuttgart.de

BCS theory II

- biguadratic, almost there!
- Particle-hole transformation for ↓ electrons → Nambu spinor

$$H_{\rm MF} = \sum_{\vec{k}} (c_{\vec{k},\uparrow}^{\dagger}, h_{\vec{k},\downarrow}^{\dagger}) \begin{pmatrix} \epsilon_{\vec{k}} - \mu & -\Delta^* \\ -\Delta & -(\epsilon_{-\vec{k}} - \mu) \end{pmatrix} \begin{pmatrix} c_{\vec{k},\uparrow} \\ h_{\vec{k},\downarrow} \end{pmatrix} - \frac{|\Delta|^2}{V_0}$$
(16)

Diagonalize:

$$\begin{pmatrix} \gamma_{\vec{k},\uparrow} \\ \gamma_{-\vec{k},\downarrow}^{\dagger} \end{pmatrix} = U \begin{pmatrix} c_{\vec{k},\uparrow} \\ c_{-\vec{k},\downarrow}^{\dagger} \end{pmatrix} = \begin{pmatrix} u_{\vec{k}}^* & v_{\vec{k}} \\ -v_{\vec{k}}^* & u_{\vec{k}} \end{pmatrix} \begin{pmatrix} c_{\vec{k},\uparrow} \\ c_{-\vec{k},\downarrow}^{\dagger} \end{pmatrix} \tag{17}$$

BCS theory III

i

$$H = \sum_{\vec{k},\sigma} E_{\vec{k}} n_{\vec{k},\sigma} + E_0 \quad \text{with} \quad E_{\vec{k}} = \sqrt{(\epsilon_{\vec{k}} - \mu)^2 + |\Delta|^2}$$
 (18)

- n is the number operator for γ : ground state has none
- ground state:

$$|\psi_{\rm BCS}\rangle \propto \prod_{\vec{k},\sigma} \gamma_{\vec{k},\sigma} |0\rangle \propto \prod_{\vec{k}} \left(u_{\vec{k}}^* + v_{\vec{k}} c_{-\vec{k},\downarrow}^{\dagger} c_{\vec{k},\uparrow}^{\dagger} \right) |0\rangle .$$
 (19)

$$u_{\vec{k}} = \cos \theta_{\vec{k}}$$
 and $u_{\vec{k}} = \sin \theta_{\vec{k}}$ for real Δ

Gap = order parameter

Self-consistency equation:

$$\Delta = \frac{V_0}{2} \sum_{\vec{k}} \frac{-\Delta}{E_{\vec{k}}} \ . \tag{20}$$

- $\Delta = 0$ one possible solution: no superconductivity
- For $V_0 < 0$ (attraction!), more solutions $\frac{2}{|V_0|} = \sum_{\vec{k}} \frac{1}{E_{\vec{k}}}$ possible
- $\Delta_{\sigma,\sigma'}(\vec{k}) = \sum_{\vec{k}'} V_{\vec{k},\vec{k}'} \langle c_{-\vec{k}',\sigma'} c_{\vec{k}',\sigma} \rangle$ complex number
- See also: complex order parameter from before
- BCS ground state is coherent state: has defined phase
- Broken symmetry: gauge invariance

'Brute-force' numerics: Markov-chain Monte Carlo

Method:

- ullet Start with some (e.g. random) configuration, energy E_0
- Change it a bit \Rightarrow E_1
- Accept change with probability $\max(1, \mathrm{e}^{-\beta E_1}/\mathrm{e}^{-\beta E_0})$
- Do this 'long enough'

Advantages:

- 'Unbiased': Good when you have not much of an idea
- Flexible

Disadvantages:

- 'Long enough' can be prohibitive
- Especially hard near phase transitions, for many quantum problems
- · Finite systems can be misleading

Alan Sokal: 'Monte Carlo is an extremely bad method, it should be used only when all alternative methods are worse.'

Quantum Phase Transitions

- Phase transitions driven by T, entropy, thermal fluctuations
- Phase transition may also be driven by other parameter
- Different Hamiltonian ⇒ different ground state
- ullet Transition can be first order, i.e., 'the same' for finite T
- Or at T = 0
- Quantum fluctuations dominate
- signatures seen at higher T

Spin liquids and Topological Phase transitions

- So far: Interactions ⇒ ordered phase, chracterized by order parameter
- Other possibility: interactions, but no pattern
- Example: Frustration
- Additional ingredient: Quantum mechanics
- New concept: 'topological order'
- Example: fractional Quantum Hall
- 'Non-local' order