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1. Introduction

It is a fact of everyday experience that matter in thermo-
dynamic equilibrium exists in different macroscopic phases. 

Example: Ice, liquid water, and water vapor are each a phase of water
as a collection of macroscopic numbers of H2O molecules
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Schematic phase diagram of water
TP – triple point    (𝑇tp = 273 K, 𝑝tp = 0.6 kPa)

C  - critical point  (𝑇c = 647 K, 𝑝c = 22 MPa)



1. Introduction
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More realistic pressure-temperature phase diagram of water
(from www.lsbu.ac.uk/water/phase.html) 



1. Introduction

The change of  a phase can be 

 gradual  Path A: continuous crossover  from liquid to gas 

(via a supercritical fluid)

or  
 abrupt   Path B: liquid/gas transition

Path C: liquid/solid  transition (symmetry breaking!)
Path D: along the coexistence curve from a two-phase system 

into a single (“fluid”) phase 

In case that the change is abrupt, a phase transition takes place at well 
defined values of the parameters that determine the phase boundary
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1. Introduction                                                                            Basics

Phase
● state of matter in which all macroscopically physical properties of

a material are uniform on a macroscopic length scale 

● characterized by a thermodynamic function, typically the 
(Helmholtz) free energy ℱ (or the Gibbs free energy 𝒢 = ℱ + 𝑝𝑉)

● Equilibrium: the most stable state defined by lowest possible 𝒢(𝑇, 𝑝)

 The description and analysis of phase transitions requires the use of
thermodynamics and statistical physics

Phase Transition

● drastic (abrupt) change of macroscopic system properties as the system 
parameters (like temperature and pressure)  are smoothly varied

● point in the parameter space where the thermodynamic potential 
becomes non-analytic
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(a) (d)(b) (c) (e)



1. Introduction                                                                            Basics 

Physical origin of thermal (“classical”) phase transitions: 

● driven by thermal fluctuations

● competition between internal energy 𝑬 and entropy 𝑺
which together determine the free energy 𝓕 = 𝑬 − 𝑻𝑺

𝑬 favors order ⟺ 𝑺 privileges disorder

A different story:    Quantum Phase Transitions 

● phase transitions at absolute zero temperature triggered by varying some
non-thermal control parameter (like magnetic field or pressure)

● QPT describes an abrupt change in the ground state of a many-body system
due to its quantum fluctuations
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⇝ S. Sachdev,  Quantum phase transitions (Cambridge, 2011)

⇝ M. Vojta, Thermal and Quantum Phase transitions
(Lectures at the Les Houches Doctoral Training School in Statistical Physics 2015,

http://statphys15.inln.cnrs.fr)



1. Introduction                                                                            Basics 

Phase transition ⇝ point in parameter space where a thermodynamic
potential non-analytic

Existence of Phase transitions ?

Free energy ℱ = −
1

𝑘𝑇
ln 𝒵

Partition function 𝒵 =  

states

𝑒−𝐻/𝑘𝐵𝑇 ≡ Tr 𝑒−𝐻/𝑘𝐵𝑇

𝒵 is a sum of exponentials of (−
𝐻

𝑘𝐵𝑇
)

 in a finite system the partition function of any system is a finite sum of 
analytic functions of its parameters and is therefore always analytic

 a non-analyticity can only arise in the thermodynamic limit
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1. Introduction                                                                            Basics 

A simple mathematical example:

Function 𝑓  1 2 𝑥, 𝑁 ≡  𝑘=1
𝑁 𝑒−𝑥𝑘

𝑘  1 2

is for finite 𝑵 an infinitely differentiable function of 𝑥

⟹ 𝑓  1 2 𝑥, 𝑁 is analytic
However, 

𝑓  1 2 𝑥 = lim
𝑁→∞

𝑓  1 2 𝑥, 𝑁 =
 

𝜋

𝑥
singular

part

+  rest
regular

part

Physical relevance ?  Energy of an ideal Bose gas 𝐸 = 𝐸 −
𝜇

𝑘𝐵𝑇

𝐸′′(𝑥)~𝑓  1 2 𝑥
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1. Introduction                                                                            Basics 

Order Parameter

● observables whose values discriminate between the various phases 
● measures how microscopic elements generating the macroscopic phase

are ordered or in a similar state

Examples:
Phase Transition                             Order Parameter
paramagnetic-ferromagnetic             spontaneous magnetization          
liquid-gas transitions                           difference of densities
liquid-solid                                            shear modulus
superfluid-normal liquid                     superfluid density

Order parameter has not to be a scalar. There are phase transitions where the
order parameter has the form of  a complex number, a vector,  … , 
a group element of a symmetry group.
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1. Introduction                                                                            Basics 

● order parameter often associated with breaking of a symmetry 
(order parameter measures the “degree of asymmetry” in the broken symmetry 
phase, the “ordered” phase)

Ordering of the particles has not be in real space, can also be in
momentum space (example: superfluid transition of He-4 at 2.2K).
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Behavior of the spontaneous magnetization 𝑚 = − lim
ℎ→0

𝜕𝑔 𝑇,ℎ

𝜕ℎ

of a system exhibiting spontaneous ferromagnetism for  𝑇 < 𝑇𝑐



1. Introduction                                                                            Basics

Correlation Length 𝝃

● distance over which the fluctuations of the microscopic degrees of 
freedom (e.g., in a magnetic system: local spins) are significantly 
correlated with each other

[A spin at any site tends to align all adjacent spins in the same direction as itself
to lower the energy – this tendency is opposed by that of entropy]

 the fluctuations in two parts of the material much further apart than 𝜉
are effectively disconnected from each other

● 𝝃 is usually of the order of a few interatomic spaces

 this is the reason why already small collection of atoms  may give a 
good idea of the macroscopic behavior of the material (neglecting 
surface effects)

● actual value of 𝝃 depends on the external conditions determining the
state of the system (like temperature and pressure)

● near a critical point 𝝃 has to grow (the system has to be prepared for
a fully ordered state)
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1. Introduction Basics

Classification of Phase Transitions

“Classical” classification (Paul Ehrenfest,  1933)

Phase transitions are named by the order of derivative of free energy
that first shows a discontinuity

(Modern) classification (M.E. Fisher)

discontinuous (or first order) transition ↔ continuous transition

A material can show both discontinuous and continuous transitions 
depending on the conditions!
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first order: second order:



1. Introduction                                                                            Basics

Discontinuous transitions

First order derivative of the free energy shows a discontinuity
(transitions involve a latent heat)

Examples:  melting of a three-dimensional solid, 
condensation of a gas into a liquid

Properties: 

● two (or more)  states on either side of the transition point  coexistent
exactly at  the point of transition 
Slightly away, however, there is generically a unique phase whose properties are
continuously connected to one of the co-exist phases at the transition point 
 expect a discontinuous behavior in various thermodynamic quantities

as we pass the coexistence line

● often hysteresis or memory effects are observed 
(since the continuation of a given state into the opposite phase may be 
metastable so that system may take a macroscopically long time to readjust)

● correlation length is (generally) finite
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1. Introduction                                                                            Basics

Continuous transition

Second or higher derivatives show a discontinuity or divergence
(all first order derivatives of free energy are continuous)

Examples: paramagnetic-ferromagnetic transition
liquid-gas transition at the critical point
superfluid transition

Properties: 

● correlation length becomes effectively infinite
 fluctuations are correlated over all distance scales 
 whole system is forced to be in a unique, critical phase

● fluctuations on all length scales (⇝ “critical opalescense”)
 system is scale invariant

● difference in energy density or magnetization (volume density)
between the phases go (smoothly) to zero 

Special type of continuous transitions: “infinite-order” phase transitions
Example: Kosterlitz–Thouless transition in 2-dim. XY model 
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2. Critical Phenomena

Continuous phase transitions  ⇝ Critical Phenomena:

Anomalous phenomena in the region around a critical point, 
where two or more phases become indistinguishable

Essential feature of critical phenomena: 
fluctuations at all length scales which occur simultaneously 
causing a non-analytic behavior of physical quantities

⟹ 3 major factors that complicate a theoretical description:

● non-analyticity of the thermodynamic potentials

● absence of small parameters (no normal perturbative methods are applicable)

● equal importance of all length scales

It was necessary a whole new way of thinking about such phenomena 

⟹ Renormalization Group
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2. Critical Phenomena                                          Critical Exponents

Degree of singularity or divergence of physical quantities near 𝑻𝒄
is described by critical exponents (critical indices)

Experiments show that the relevant thermodynamic variables exhibit power-law 
dependences on the parameters specifying the distance away from the critical point.

𝑡 =
𝑇−𝑇𝑐

𝑇𝑐
≡ 𝑡 reduced temperature  (“distance” from CP)     

Definition of Critical exponents (here for magnetic materials):  

Exponent              Definition                                                         Conditions
𝛼 Specific heat         c(𝑡)~ 𝑡 −𝛼 ℎ = 0
𝛽 Spontaneous magnetization m(t) ~(−𝑡)𝛽 𝑇 ≤ 𝑇𝑐 , ℎ = 0

𝛾 Magnetic susceptibility 𝜒 =
𝜕𝑚

𝜕ℎ 𝑇
~ 𝑡 −𝛾 ℎ = 0

𝛿 Critical Isotherm   𝑚 ℎ ~ ℎ  1 𝛿 sgn ℎ 𝑡 = 0
𝜈 Correlation length 𝜉~ 𝑡 −𝛾 ℎ = 0
𝜂 Correlation function G(𝑟)~𝑟−𝑑+2−𝜂 𝑡 = 0, ℎ = 0
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2. Critical Phenomena                                        Strong Correlations

(Two-point) correlation function

G  𝑟 −  𝑟′ ≡ 𝛿  𝑚  𝑟 𝛿  𝑚  𝑟′ =  𝑚  𝑟  𝑚  𝑟′ −  𝑚  𝑟  𝑚  𝑟′

measures the correlation between fluctuations 𝛿  𝑚  𝑟 ≡  𝑚  𝑟 -  𝑚  𝑟
at point  𝑟 and  𝑟‘

here:  𝑚  𝑟 operator of local magnetization density at point   𝑟
(e.g., spin)

… − thermal average, 𝑚 =  𝑚  𝑟 =
1

𝒵
Tr  𝑚  𝑟 𝑒−𝐻/𝑘𝐵𝑇

Note:
For 𝑇 ≠ 𝑇𝑐:   G 𝑟 ~ 𝑒−  𝑟 𝜉 (for 𝑟 ≫ 𝜉)          exponential decay

For 𝑇 = 𝑇𝑐:   G(𝑟)~ 𝑟−𝑑+2−𝜂 slow decay in  a power manner
(valid for 𝑑 > 2) (fluctuations at all length scales)
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2. Critical Phenomena                                   Strong Correlations

Why at 𝑇 = 𝑇𝑐 the correlation function 𝐺(𝑟) cannot decrease 
exponentially with distance 𝑟 ?

Relation between (uniform) susceptibility 𝜒 and 𝐺(𝑟) :

𝜒 = −  
𝜕2𝑔

𝜕ℎ2
ℎ=0

= ~  d𝑑𝑟 𝐺(𝑟)

(from fluctuation-dissipation theorem)

Since 𝜒 diverges for 𝑇 → 𝑇𝑐 ⟹ r. h. s. = infinite at 𝑇 = 𝑇𝑐

⟹ 𝐺 𝑟 ~𝑟−𝜏 at 𝑇 = 𝑇𝑐 with 𝜏 ≤ 𝑑

and 𝜉(𝑇) → ∞
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2. Critical Phenomena                                      Universality 

Although systems with large correlations lengths might to be 
very complex …. they also show some beautiful simplification. 

One of these is the phenomenon of universality.

Many properties of a system close to 𝑇𝑐 turn out to be largely 
independent of microscopic details of the interaction

Instead: Systems fall into one of a relatively small number of 
different classes, each characterized only by global features, 
such as the symmetries of underlying Hamiltonian
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2. Critical Phenomena          Universality

Critical exponents:   ● pure numbers

● depend only on the universality class 
(materials consisting of very different microscopic
constituents can have the same exponents)

Universality class is only determined by 

(1) the dimensionality of the system 

(2) the symmetry of its order parameter 

(3) the range of interaction

⟹ Theoretical challenge  - to explain why such non-trivial powers occur
- to predict their actual values
- microscopic understanding of universality

(final answer  ⇝ Renormalization Group)
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2. Critical Phenomena                                         Scaling Laws

The occurrence of power laws describing a system is a symptom of scaling 
behavior.

Not all exponents are independent! 

There are simple relations between the exponents (scaling laws)

From thermodynamics (rigorous) relations:       𝛼 + 𝛽 + 2𝛾 ≥ 2

𝛽 1 + 𝛿 ≥ 2 − 𝛼

Experiments and simulations for model systems show that the inequalities 
are rather equations and that there are additional relations

⟹ scaling hypothesis

(final proof by Renormalization Group)
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2. Critical Phenomena                                    Scaling Laws

Scaling hypothesis (Benjamin Widom, 1965):

In the vicinity of a continuous phase transition the density of (Gibbs) 
free energy 𝑔 𝑡, ℎ can be written as the sum of 
a slowly varying regular part 𝑔reg and a singular part 𝑔sing

𝑔 𝑡, ℎ = 𝑔reg 𝑡, ℎ + 𝑔sing 𝑡, ℎ

with the singular part being a (generalized) homogeneous function

𝒈𝐬𝐢𝐧𝐠 𝒕, 𝒉 = 𝝀−𝒏𝒈𝐬𝐢𝐧𝐠 𝝀∆𝒕𝒕, 𝝀𝜟𝒉𝒉

𝜆 is an arbitrary (dimensionless) scale factor
exponents are charact. for a given universality class

Consequence:   Since  𝜆 is arbitrary ⟹ may set 𝜆 = 𝑡 −1/Δ𝑡

⟹ 𝒈𝒔𝒊𝒏𝒈 𝒕, 𝒉 = 𝒕 𝒏/𝜟𝒕𝝍± 𝒉/ 𝒕 𝜟𝒉/𝜟𝒕

(singular part of free energy and of any other thermodynamic quantity
have a homogeneous form, 𝜓 is an arbitrary function)
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2. Critical Phenomena                   Scaling Laws

Take derivatives  𝑔sing 𝑡, ℎ = 𝑡 𝑛/Δ𝑡𝜓± ℎ/ 𝑡 Δℎ/Δ𝑡

with respect to 𝑡, ℎ

then set ℎ = 0 and assume that close to 𝑇𝑐 the derivatives of 𝑔 𝑡, ℎ
are  dominated by its singular part

⟹ Scaling Laws:   𝟐 − 𝜶 = 𝟐𝜷 + 𝜸 Rushbrooke Identity 

𝜸 = 𝜷 𝜹 − 𝟏 Widom Identity

From assumption that also correlation function is a homogeneous function:  

𝟐 − 𝜶 = 𝒅𝝂 Josephson Identity 

𝜸 = 𝝂 𝟐 − 𝜼 Fisher Identity

(all scaling laws will be strictly proved by Renormalization Group)
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3. Microscopic Models

For a microscopic approach to phase transitions and critical 
phenomena

… need of simple models that show a phase transition

Very useful:       Ising Model
can be solved exactly in 

𝑑 = 1 (⇝ tutorial)

𝑑 = 2 (without external field)

Heisenberg Model 

August 14-15, 2017 Phase Transitions and the 

Renormalization Group - An Introduction 
25



3. Microscopic Models

Ising model (Ernst Ising 1925, Wilhelm Lenz 1920)

– paradigm of a simple system exhibiting a well defined phase transition

Model based on three assumptions:

(1)  objects (“particles”) are located on the sites of a 𝑑-dim. crystal lattice
(one particle on each site)

(2)  each particle “𝑖” can be only in one of two possible states 𝑠𝑖 = ±1
(“particle’s spin”)

(3)  Hamiltonian (energy function) is given by           

ℋ = −𝐽  

𝑖,𝑗

𝑠𝑖𝑠𝑗 − ℎ  

𝑖

𝑠𝑖

𝑖, 𝑗 denotes the sum over all nearest neighbors 𝑖 and 𝑗

𝐽 interaction parameter   (𝐽 ≷
ferromagnetic

antiferr.
interaction)

ℎ external magnetic field (expressed in units of energy)
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3. Microscopic Models                                                    Ising Model

Feature of the Ising model:  

● global symmetry at ℎ = 0 under the transformation 𝑠𝑖 → −𝑠𝑖
at all sites 

⟹ ℤ𝟐 symmetry (“Ising symmetry”)
simplest discrete symmetry group: consisting only 2 elements {1,-1}

● ℤ2 symmetry also present in the high temperature paramagnetic phase 
with “magnetization” 𝒎 = 𝒔𝒊 = 𝟎
(any two configurations that have all spins reversed enter the partition function
with equal weight)

● in the low temperature ferromagnetic phase: magnetization 𝒎 ≠ 𝟎

⟹ ℤ2 symmetry evidently broken.
In the absence of an external magnetic field is nothing that
explicitly breaks the symmetry in the Hamiltonian

Spontaneous  symmetry breaking in the ordered phase !
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3. Microscopic Models                                                    Ising Model

To obtain correct results for the ordered phase within the 
formalism of equilibrium statistical mechanics: 

● have to restrict the space of configuration over which the summation 
in the partition function

𝒵𝑁 𝑇, ℎ =  𝑠1=±1  𝑠2=±1 …  𝑠𝑁=±1 𝑒−  ℋ 𝑘𝐵𝑇

is performed. 
● calculate first the magnetization in a finite external field and 

take then the limit of zero magnetic field after the thermodynamic limit
has been taken

𝑚 = − lim
ℎ→0

𝜕𝑔 𝑇, ℎ

𝜕ℎ
𝑇

with 𝑔 𝑇, ℎ ≔ lim
𝑁→∞

1

𝑁
−𝑘B𝑇 ln 𝒵𝑁 𝑇, ℎ

Exact results for the Ising Model : 𝒅 = 𝟐:   𝒌𝐁𝑻𝒄 =
𝟐𝑱

𝐥𝐧 𝟏+ 𝟐

𝐝 = 𝟏: 𝒌𝐁𝑻𝒄 = 𝟎 (⇝ tutorial)
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3. Microscopic Models                                                    Ising Model

Physical applications

● uniaxial ferromagnets and antiferromagnets

● lattice Gas (statistical model for the motion of atoms)
occupation number  𝑛𝑖 =

1+𝑠𝑖

2
= 0 or 1

● lattice binary mixture (cell 𝑖 is occupied by atom “A” or “B”)

● spin glasses ( 𝐽 → 𝐽𝑖𝑗 with 𝐽𝑖𝑗 random distributed)

It is obvious to generalize the Ising model 

● consider also interactions between second nearest neighbord, 
third nearest neighbors, …

… model with weak interaction of infinite range 𝐽𝑖𝑗 →  𝐽 𝑁 for all 𝑖, 𝑗

● to higher discrete symmetries ⇝ “clock models”

● to continuous symmetries in the plane ⇝ XY model 
or in the space ⇝ Heisenberg model
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3. Microscopic Models                                        Heisenberg Model

Heisenberg model 

ℋ = −𝐽  

𝑖,𝑗

 𝑠𝑖 ∙  𝑠𝑗 − ℎ  

𝑖

 𝑠𝑖

vector spin model ,  𝑠𝑖
2

= 1

Hamiltonian is  at ℎ = 0 invariant under  a simultaneous rotation
of all spins by the same angle

⟹ 𝕆𝟑 symmetry 
(rotations in three dimension ⇒ a continuous symmetry)

Symmetry of ℋ Heisenberg different from Ising Hamiltonian
⟹ different symmetry of order parameter ⟹ different critical indices  
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4. Scaling                                                         Kadanoff Construction

The Kadanoff construction (Leo Kadanoff, 1966)

● provides a heuristic explanation for the origin of scaling

● gives us an idea how to construct the renormalization group

Starting Point:  correlation length diverges at the critical point, 𝜉(𝑇)
𝑇→𝑇c

∞

⟹ spins at different spatial positions are strongly correlated
⟹ close to 𝑇c fluctuations are present on all length scales
⟹ scale invariance of the system

Consider an Ising model 
( with spins 𝑆𝑖 = ±1 at sites 𝑖 on a 𝑑-dimensional hypercubic lattice) 

 ℋ ≡ −𝛽ℋ = +  𝐽  <𝑖,𝑗> 𝑆𝑖𝑆𝑗 +  ℎ  𝑖 𝑆𝑖

with „reduced“ variables   𝐽 ≡ 𝐽/𝑘B𝑇,   ℎ ≡ ℎ/𝑘B𝑇
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4. Scaling                                                       Kadanoff Construction

The Kadanoff construction consists of 3 stages:

Step 1: 

Divide the original Ising lattice with lattice constant 𝑎 into blocks with 𝜆𝑑

single spins (𝑑 = dimension of the lattice, 𝑎 < 𝜆𝑎 ≪ 𝜉)
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● Grouping of site spins into  blocks (here 𝜆=3)

● ● ● ● ● ● ● ● ●

Step 2

Replace the 𝜆𝑑 spins inside each block by a single „block“ spin 𝑆𝛼
′

(with 𝛼 = 1, … , 𝑛, where 𝑛 = total number of blocks).
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4. Scaling                                                        Kadanoff Construction

Assumption: Block spins 𝑆𝛼
′ behave exactly like original Ising spins 𝑆𝑖

(only 𝑆𝛼
′ ±1 possible !)

𝑆𝛼
′ =

1

𝜆𝑑
 𝑖𝜖𝛼 𝑆𝑖 ≈ ±1

(since 𝜆𝑎 ≪ 𝜉, we expect that most spins within a block will be of 
the same sign majority rule is a very reasonable approximation)

Assumption:  Hamiltonian for the system of block spins with lattice 
constant 𝜆𝑎 has  the same form as the original Hamiltonian,
but with different coupling parameters  𝐽′,  ℎ′

 ℋ′ = + 𝐽′  

<𝛼,𝛼′>

𝑆𝛼
′ 𝑆𝛼′

′ +  ℎ′  

𝛼

𝑆𝛼
′

(assumption seems to be reasonable, since due to 𝜉 → ∞ the Ising 
system can be thought to consist of clusters of correlated individual 
spins as well as of clusters of correlated block spins)
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4. Scaling                                                         Kadanoff Construction

Step 3:

„Return“ to the original site lattice by dividing all length by 𝜆.

coarse graining 

(here 𝜆=2)

rescaling

Goal of the procedure:

● make a „coarse graining“ so as to reduce the number of degrees of 
freedom of the system

● even if we do not know the exact solution of the problem (for either the 
site lattice or the block lattice) a comparison of these two problems 
can provide us with valuable information 
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4. Scaling                                                        Kadanoff Construction 

Hamiltonian has the same structure in terms of both lattice sites and blocks

⟹ assume that the form of the partition function will be the same 

⟹ thermodynamic potentials for the two models are similar. 

For the Gibbs free energy as function of 𝑡 ≡ (𝑇 − 𝑇c)/𝑇c and ℎ holds:

𝑔 𝑡′, ℎ′

Gibbs free energy
per block

=  𝜆𝑑

number of spi𝑛𝑠
per block

∙ 𝑔(𝑡, ℎ)

Gibbs free energ
per site

Now we need to relate ℎ′ to ℎ and  𝑡′ to 𝑡 !

Parameters for the block lattice ℎ′, 𝑡′ depend on  ℎ, 𝑡 and on 𝜆

Assumption of Kadanoff:  ℎ′ = 𝜆∆ℎℎ ; 𝑡′ = 𝜆∆𝑡 ∙ 𝑡

(simplest possible relation consistent with the symmetry requirements)

⟹ 𝒈 𝝀∆𝒕𝒕, 𝝀∆𝒉𝒉 = 𝝀𝒅𝒈(𝒕, 𝒉) scaling hypothesis (with 𝒏 = 𝒅)
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4. Scaling                                                        Kadanoff Construction 

Kadanoff construction gives an intuitive explanation

for the scaling hypothesis and the related properties

What remains to be done  ??

● to demonstrate explicitly that 

Kadanoff’s assumptions are valid

● to obtain the values for all the critical exponents 

corresponding to a given model
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5. Renormalization Group                                           Introduction

Mean-field theories (see lectures on statistical mechanics) like

Weiss’ theory of ferromagnetism 
(an effective external field replaces the interaction of all the other
particles to an arbitrary particle)

Landau theory (an effective theory of the order parameter)

lose its internal consistency for spatial dimension 𝑑 < 4 and lead to 
incorrect results for the  critical exponents.

Need a better theory  when fluctuations play vital roles!

Aim: 
● to understand, both qualitatively and quantitatively the critical 

phenomena

● to proof the scaling hypothesis for both free energy density and
correlation function

● to find the critical exponents

⟹ Renormalization Group
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5. Renormalization Group                             Introduction

Starting point: 

● system of 𝑵 interacting particles (𝑵 large) described by a  
Hamiltonian

 𝓗 ≡ −𝜷𝓗

Key idea of RG: 

● successive decimation of degrees of freedom  

● RG is a group of transformations 𝓡
(in strict sense a semi-group, since no inverse transformation) 

from a “site lattice” with lattice constant unity and Hamiltonian  ℋ
to a “block lattice” with lattice constant 𝜆 and Hamiltonian  ℋ′

without changing the form of the partition function

𝓩𝑵
 𝓗 = 𝓩  𝑵 𝝀𝒅  𝓗′
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5. Renormalization Group                            Formal Steps

Formal steps of RG: 

(1)  Transformation of the Hamiltonian (decimation or “coarse graining”)

 𝓗 ⟶  𝓗′ = 𝓡  𝓗

𝓡 is the RG (super-)operator, in generally,  a complicated
non-linear transformation of the coupling parameters

The RG transformation 𝓡 reduces the total number of degrees of 
freedom by a factor  𝝀𝒅, leaving 𝑵′ =  𝑵 𝝀𝒅

⟹ decimation/“coarse graining” 

and does not change the partition function  𝓩𝑵′
 𝓗 ′ = 𝓩𝑵

 𝓗

postulate !

examples: ● partial trace over 𝑁 − 𝑁′ degrees of freedom

𝑒
 𝓗′ = 𝑒𝓡  𝓗 = Tr𝑁−𝑁′ 𝑒

 𝓗

● integrating out fluctuations of fields 𝜓 which

occur on length scales finer than 𝝀
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5. Renormalization Group                   Formal Steps

(2)  Rescaling of all lengths

To restore the spatial density of the degrees of freedom all lengths are
rescaled  by a factor 𝝀: 

𝒓 ⟶ 𝒓′ =
𝒓

𝝀
(for momenta: 𝒑 ⟶ 𝒑′ = 𝝀𝒑 )

(3)  Renormalization of the variables (spins, magnetization field)

To restore the relative size of the fluctuations the variables will be  
renormalized (… to restore the contrast of the original “picture”)

𝝍(𝒓) ⟶ 𝝍 ’( 𝒓′) =
𝟏

𝜻
𝝍 𝒓 ( ζ<1)

RG operator 𝓡 depends on 𝝀 and 𝜻

(the real challenge: to find a transformation 𝓡)
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(1)  Coarse graining

(2) Rescaling

𝒙′ =
𝟏

𝝀
𝒙

(3) Renormalization

𝝍′ =
𝝍

𝜻

5. Renormalization Group                            Formal Steps

Our first three steps:



5. Renormalization Group                        Fixed Point of RG

(4)  Repeat the transformation
 𝓗′′ = 𝓡  𝓗′ = 𝓡 𝓡  𝓗 = ⋯

(5)  Since 𝓗 depends on the coupling parameters 
(e.g.,  𝐽 ≡ 𝐽/𝑘B𝑇,  ℎ; more general a whole set of couplings)

the RG operator 𝓡 acts on the space of coupling parameters 

A fixed point of RG transformation is a point in coupling parameter
space (defining a fixed point Hamiltonian  𝓗∗) where 

𝓡  𝓗∗ =  𝓗∗ (  ℋ∗ is invariant under the transformation)

Why RG fixed points physical significant?

For the correlation length:        𝜉 = 𝜉  ℋ ⟶ 𝜉′ = 𝜉  ℋ′ =
1

𝜆
𝜉  ℋ

⟹ at the fixed point 𝜉[ℛ  ℋ∗

 ℋ∗

] =
1

𝜆
𝜉  ℋ∗ ⟹ 𝝃 = 𝟎 or 𝝃 = ∞
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5. Renormalization Group                                   Fixed Points of RG

Fixed point with 𝝃 = ∞

describes a critical point (𝑇 = 𝑇c)

⟹ critical fixed point

Fixed point with 𝝃 = 𝟎

describes a system 
in the high-temperature limit (completely random)

or
in the low-temperature limit (completely ordered)

⟹ trivial fixed point

● (in general) a RG transformation has several fixed points

● each fix point has its own basin of attraction
(all points within this basin ultimately reach the fixed point after an 
infinite number of transformations ℛ)
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5. Renormalization Group
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(A) Initial state: 
Clusters of down spins (white points) 
and up spins (black points) of all sizes 
(due to the fact that at the critical 
point we have fluctuation at all length 
scales)

(B) Result after one block spin
transformation (coarse-graining by 
“majority rule” for a 3x3 block + 
rescaling by a linear factor 3): picture 
looks very much like the first (clusters 
of all size), (A) and (B) are statistically 
the same

𝑇 = 𝑇c

Figures from J. Cardy, Scaling and Renormalization in Statistical Physics



5. Renormalization Group
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(C) Initial state for 𝑇 > 𝑇c : 
picture looks not so much different 
from (A)  (system is only slightly 
above 𝑇c)

(D) Result after one block spin
transformation of  (C): picture looks more 
random (missing of large clusters) 
⟹ a few transformation already change 
the system state to a total random one

𝑇 > 𝑇c

Figures from J. Cardy, Scaling and Renormalization in Statistical Physics



5. Renormalization Group                              Critical Manifold

● for all points in the basin of attraction of a critical fixed point: 𝝃 = ∞
⟹ critical manifold (critical surface)

Proof:  𝜉  ℋ = 𝜆𝜉  ℋ′ = 𝜆2𝜉  ℋ′′ = ⋯ = 𝜆𝑛𝜉  ℋ 𝑛

Since lim
𝑛→∞

 ℋ 𝑛 =  ℋ∗ and 𝜉  ℋ∗ = ∞ for a critical fixed point,

r.h.s. becomes infinity ⟹ 𝜉  ℋ = ∞
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← Critical surface 



Renormalization Group Scaling Fields and Flow Diagrams

(6) study of local RG flow close to a fixed Point

● linearization of 𝓡 in the vicinity of  𝓗∗

 𝓗′ = 𝓡  𝓗 = 𝓡  𝓗∗ + ∆ 𝓗 =  𝓗∗ + 𝓛∆ 𝓗 + ⋯

𝓛 linear (super-)operator with 
eigenvectors (eigenoperators) 𝑄𝑗 and eigenvalues 𝜇𝑗: 

𝓛𝑄𝑗 = 𝜇𝑗𝑄𝑗

ℛ and therefore ℒ and 𝜇𝑗 depend on 𝜆: 𝜇𝑗 = 𝜇𝑗(𝜆) = 𝜆𝑙𝑗

(it follows from the semi-group   properties of RG)

● expansion of  ∆ 𝓗 by a set of eigenoperators 𝑄𝑗:

∆ 𝓗 =  𝑗 ℎ𝑗 𝑄𝑗 ⟹  𝓗 =  𝓗∗ +  𝑗 ℎ𝑗 𝑄𝑗

coefficients  ℎ𝑗: characterize the properties of parameter space
near the fixed point 

⇝ called (linear) scaling fields  
(by construction  ℎ𝑗 = 0 at a fixed point)
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Renormalization Group           Scaling Fields and Flow Diagrams

● can express  ℋ and therefore also the density of free energy

as function of the scaling fields :        𝒈  𝓗 =  𝒈 ℎ1, ℎ2, ℎ3, . . .

´ 𝓡  𝓗 = 𝓡  𝓗∗ +  𝑗 ℎ𝑗 𝑄𝑗 =  𝓗∗ +  𝑗 ℎ𝑗𝓛 𝑄𝑗 =  𝓗∗ +  𝑗 ℎ𝑗 𝜆𝑙𝑗𝑄𝑗

=  𝓗′ =  𝓗∗ +  

𝑗

ℎ𝑗′ 𝑄𝑗

⟹ ℎ𝑗′ = 𝜆𝑙𝑗 ℎ𝑗

⟹ For 𝑙𝑗 > 0:   scaling field increases (for starting field ℎ𝑗
(0)

≠ 0)
with iterations ⟹ RG flow is repelled from the FP
⟹ corresponding ℎ𝑗 called “relevant” scaling fields”

𝑙𝑗 < 0:   scaling field decreases (for starting field ℎ𝑗
(0)

≠ 0)

with iterations ⟹ ℎ𝑗 called “irrelevant” scaling fields
𝑙𝑗 = 0:    ⟹ “marginal” scaling fields (has to retain corrections  

of quadratic order)

Note: The notion of relevance (irrelevance, …) is only  relative to a 
particular FP
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Renormalization Group Scaling Fields and Flow Diagrams
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𝒉𝒊 with  𝒍𝒊 < 𝟎 ⟹ 𝒉𝒊 irrelevant

𝒉𝒋 with   𝒍𝒋 > 𝟎 ⟹ 𝒉𝒋 relevant

If we start near a  critical FP 𝐶, but not at a critical manifold, then the flow 
away from 𝐶 is determined by relevant scaling fields (with relevant
eigenvalues)  ⟹ 𝐭he exponents 𝒍𝒋 associated  with relevant couplings 𝒉𝒋 of 

a critical FP are closely related to the critical exponents!

The irrelevant scaling fields correspond to directions of flow into the FP.



Renormalization Group                          Results

Consequences from RG for free energy and correlation function

 𝒈  𝓗′ =  𝒈 𝓡  𝓗 =  𝒈  𝓗∗ +  𝑗 ℎ𝑗 𝜆𝑙𝑗𝑄𝑗 =  𝒈 𝜆𝑙1ℎ1, 𝜆𝑙2ℎ2, …

= lim
𝐿′→∞

1

𝐿′ 𝑑
ln𝓩𝑵′

 𝓗′ = lim
𝐿→∞

1

𝐿/𝜆 𝑑
ln𝓩𝑵

 𝓗 = 𝜆𝑑 𝒈 ℎ1, ℎ2, …

For the singular part of  𝒈:    

 𝒈sing ℎ1, ℎ2, … = 𝜆−𝑑 𝒈sing 𝜆𝑙1ℎ1, 𝜆𝑙2ℎ2, …

⇒ with ℎ1 = 𝑡, ℎ2 = ℎ ⇒ proof of scaling hypothesis 

⇒ with 𝜆𝑙1ℎ1 = 𝜆𝑙1 𝑡 = 1 ⟹  𝒈sing 𝑡, ℎ, ℎ3, … = 𝑡  𝑑 𝑙1 𝒈sing ℎ𝑡  −𝑙2 𝑙1

⇒ critical exponents 
𝛼 = 2 −  𝑑 𝑙1 , 𝛾 = ⋯

Using the renormalization rule 𝜓  𝑟 = 𝜁 𝜓’(  𝑟′) for the spin variables:

⇒ proof of scaling hypothesis for correlation function 𝐺(𝑟; 𝑡, ℎ)
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Renormalization Group                         Results

Renormalization Group  and universality ?

A universality class consist of all those critical models which flow into a

particular critical fixed point 

(To each universality class correspond a different critical FP)

Example:  Ferromagnetic system

● critical phenomena observed for 𝑡 ≡
𝑇−𝑇c

𝑇c
= 0 and ℎ = 0

Slight deviations from 𝑡 = ℎ = 0 will drive the system away from the CP

⟹ ℎ1 ≡ 𝒕 and ℎ2 ≡ 𝒉 corresponds to relevant scaling fields 

● variables other than 𝑡 and ℎ, represented by the scaling fields ℎ3, ℎ4, …,

do not effect the essential features like critical exponents

⟹ 𝒉𝟑, 𝒉𝟒, … correspond to irrelevant scaling fields 
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Renormalization Group                           Results

Consider an Ising model with nearest-neighbor and next-nearest-neighbor
interaction:

 ℋ ≡ −𝛽ℋ = + 𝐽1  

<𝑖,𝑗>

𝑆𝑖𝑆𝑗 +  𝐽2  

𝑖,𝑗=𝑛.𝑛.𝑛.

𝑆𝑖𝑆𝑗 +  ℎ  

𝑖

𝑆𝑖

with „reduced“ variables   𝐽1,2 ≡ 𝐽1,2/𝑘B𝑇,   ℎ ≡ ℎ/𝑘B𝑇
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ℋ = −𝐽  

𝑖,𝑗

𝑠𝑖𝑠𝑗 − ℎ  

𝑖

𝑠𝑖

Schematic flow diagram for Ising
model with n.n. and n.n.n. interaction:
Since here ℎ = 0 we have only 
one relevant scaling field + one 
irrelevant field (relative to C)



Renormalization Group                                                   Realizations 

In practice many different ways of implementing the RG 
procedure:

Generally, 2 kinds: real space RG and momentum-space RG 

(1) Real space RG

● applied to discrete systems on a lattice in real space

● Migdal-Kadanoff real space RG

performing partial traces over the Hilbert spaces associated with
certain block spins

For 1-dimensional Ising model ⇝ tutorial

a quite clever and illustrative approach for 𝑑 ≥ 2 is the 
“Bond-Moving Technique” 

(however with some uncontrolled approximations)

August 14-15, 2017 Phase Transitions and the 

Renormalization Group - An Introduction 
53



Renormalization Group                                     Realizations 

(2) Momentum-space RG 

● Applied  to translationally invariant systems whose properties can 

described by an effective field theory 

● Most popular implementation (“RG ala Wilson”)

based on mode elimination in momentum space by introducing
a cut-off separating long-wavelength fluctuations from short-
wavelength fluctuations

for a sharp cutoff ⟶ “Momentum shell RG”
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Step 1: all fields with 𝑘 in the shell between  𝛶 𝜆 < 𝑘 < 𝛶 are removed
Step 2: rescaling of all wave vectors 𝑘 ⟶ 𝑘′ = 𝜆𝑘1 ⟶
Step 3: renormalization of the fields  𝜓𝑘 ⟶ 𝜓

𝑘′
′ = 1

𝜁
𝜓𝑘

(1) (2,3)
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