An introduction to extreme value statistics (part 2/2)

Nicholas R. Moloney

Dresden October 06, 2015 Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics DNA replication times in Xenopus Laevis Order parameter in percolation EVS in trees EVS of some Gaussian processes Integer partitions and the ideal Bose gas

Range of applications Overview/statistical physics

J.-P. Bouchaud, M. Potters *Theory of Financial Risks* Cambridge University Press (2000)

D. Sornette Critical Phenomena in Natural Sciences Springer (2006)

M. Clusel, E. Bertin Int. J. Mod. Phys. B **22**, 3311 (2008)

S. N. Majumdar, A. Pal arXiv:1406.6768v3 (2014)

J.-Y. Fortin, M. Clusel J. Phys. A: Math. Theor. **48**, 183001 (2015) Introduction

Introduction

Review

Review

Lecture notes

Range of applications Modelling

R. W. Katz, M. B. Parlange, P. Naveau Adv. Water Resour. **25**, 1287 (2002)

A. J. McNeil, R. Frey J. Empir. Financ. **7**, 271 (2000)

T. Antal *et al.* Eur. Phys. Lett. **88**, 59001 (2009)

J. Bechhoefer, B. Marshall Phys. Rev. Lett. **98**, 098105 (2007)

S. Hallerberg, J. Bröcker, H. Kantz
In Nonlinear Time Series Analysis in the Geosciences,
R. V. Donner, S. M. Barbosa (eds), Springer (2008)

Hydrology

Finance

Astronomy

Cell biology

Prediction/Forecasting

Range of applications Disordered systems

J.-P. Bouchaud, M. Mézard J. Phys. A: Math. Gen. **30**, 7997 (1997) Random energy model

S. N. Majumdar, P. L. Krapivksy Physica A **318**, 161 (2003) **Hierarchical correlations**

G. Biroli, J.-P. Bouchaud, M. Potters J. Stat. Mech. P07019 (2007) **Disordered systems**

Y. V. Fyodorov Physica A **389**, 4229 (2010) Logarithmic correlations

S. N. Majumdar, G. Schehr

J. Stat. Mech. P01012 (2014)

Random matrices

Range of applications

Dynamical systems

C. Nicolis, V. Balakrishnan, G. Nicolis Phys. Rev. Lett. 210602 (2006)

M. Ghil *et al.* Review Nonlin. Processes Geophys. **18**, 295 (2011)

J. M. Freitas Dynamical Systems **28**, 302 (2013)

H. Aytaç, J. M. Freitas, S. Vaienti Trans. Amer. Math. Soc. **367**, 8229 (2015) Extreme events in chaotic dynamics

EVS in chaotic dynamics

EVS in deterministic and random dynamical systems

Gallery of correlations

Time series

$$\langle x(t')x(t'+t)\rangle \sim t^{-\gamma}$$

$$g(r) \sim r^{-(d-2+\eta)}$$

Trees

 $g(i,j) \propto$ length of shared path

Random matrices

 $\begin{pmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \qquad P[\lambda_i]$

$$P[\lambda_i] \propto \exp\left[-\beta\left(\frac{N}{2}\sum_{i=1}^N \lambda_i^2 - \frac{1}{2}\sum_{i\neq j}\ln|\lambda_i - \lambda_j|\right)\right]$$

Outline

Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics DNA replication times in Xenopus Laevis

Order parameter in percolation EVS in trees EVS of some Gaussian processes Integer partitions and the ideal Bose gas

DNA replication in Xenopus Laevis

Bechhoefer, Marshall 2007

FIG. 1. Schematic of DNA replication model. Space-time diagram showing multiple origins (filled circles), each expanding symmetrically at constant velocity. Domains coalesce when they meet (open circles).

 $\sim 3\times 10^9~\text{bases}$

- $\sim 10^5 \mbox{ replication origins}$
- $\sim 1 {\rm kb}/{\rm min}$ fork velocity
- ~ 20 min replication time
- $\sim 10^{-4}$ failure probability

DNA replication in Xenopus Laevis

Bechhoefer, Marshall 2007

FIG. 2 (color online). Replication-time distribution function, fixing the mode to be $t^* = 38$ minutes. Markers are results from Monte Carlo simulations (3000 trials per simulation); solid lines are fits to the Gumbel distribution.

Outline

Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics DNA replication times in Xenopus Laevis Order parameter in percolation EVS in trees EVS of some Gaussian processes Integer partitions and the ideal Bose gas

Percolation

Fraction occupied by the largest cluster is the order parameter.

Subcritical percolation ($p \ll p_c$)

Duxbury, Leath 1987; Bazant 2000; Borgs et al. 2001; van der Hofstad, Redig 2006

largest cluster $\sim \log L$

overall largest cluster is the largest cluster from uncorrelated blocks

Critical percolation ($p = p_c$)

Hovi, Aharony 1996; Sen 2001; Borgs et al. 2001

largest cluster $\sim L^D$ (D = 91/48)

correlations span the system! non-trivial distribution emerges

Supercritical percolation ($p \gg p_c$) Borgs et al. 2001

largest cluster $\sim L^d$

largest cluster is extensive: sum up contributions from uncorrelated blocks

Percolation

P. M. Duxbury, P. L. Leath J. Phys. A: Math. Gen. **20**, L411 (1987) Largest cluster in subcritical percolation

J.-P. Hovi, A. Aharony Phys. Rev. E **53**, 235 (1996) Clusters in critical percolation

M. Z. Bazant Largest cluster in subcritical percolation Phys. Rev. E 62, 1660 (2000)

P. Sen Largest clusters in critical percolation J. Phys. A: Math. Gen. **34**, 8477 (2001)

C. Borgs *et al.* Finite-size scaling of largest cluster Commun. Math. Phys. **224**, 153 (2001)

R. van der Hofstad, F. Redig J. Stat. Phys. **122**, 671 (2006) Largest clusters in non-critical percolation

Outline

Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics

DNA replication times in Xenopus Laevis Order parameter in percolation

EVS in trees

EVS of some Gaussian processes Integer partitions and the ideal Bose gas

Majumdar, Krapivsky 2000

Analogy between 1-0 behaviour and wave fronts (c.f. $\partial_t \phi = \partial_{xx} \phi + \phi - \phi^2$)

$$\mathbb{P}(\ell_{n+1} \ge x) = F_{n+1}(x) = [(1-p)F_n(x) + pF_n(x-1)]^2$$

initial condition: $F_0(x) = \begin{cases} 1, & x \le 0\\ 0, & x > 0 \end{cases}$

Tracking the tip of the front

$$\begin{array}{c}
q_n = F_n(0) - F_n(1) \\
= 1 - F_n(1)
\end{array}$$

Substitute $q_n = 1 - F_n(1)$ into recursion relation for F_n :

$$q_{n+1} = 2(1-p)q_n - (1-p)^2 q_n^2$$

p < 1/2: wave front is 'pinned'

Wave front gets pinned at a finite $\langle \ell_n \rangle$ as $n \to \infty$.

 $F_n(x)$ approaches a stationary distribution:

$$\mathcal{G}(x) = [(1-p)\mathcal{G}(x) + p\mathcal{G}(x-1)]^2$$

Iterate, starting with $\mathcal{G}(0) = 1$, to obtain $\mathcal{G}(1), \mathcal{G}(2), \dots$

$p \ge 1/2$: wave front is 'depinned'

Wave front travels as a fixed shape \mathcal{F}^2 located at $\langle \ell_n \rangle \approx v(p)n$:

$$F_{n+1}(x) \to \mathcal{F}^2(x - v(n+1))$$
$$F_n(x) \to \mathcal{F}^2(x - vn)$$
$$F_n(x-1) \to \mathcal{F}^2(x - v-1)$$

Substitute into recursion relation:

$$\mathcal{F}(z-v) = (1-p)\mathcal{F}^2(z) + p\mathcal{F}^2(z-1), \quad z = x - vn.$$

Behind the front, $1 - \mathcal{F}(z) \approx e^{\lambda z}$. Substitute and linearise:

$$v_{\lambda}(p) = -rac{\log[2(1-p)+2pe^{-\lambda}]}{\lambda}.$$

Front selects $v_{\lambda^{\star}}(p)$.

Bramson 1978; Brunet, Derrida 1997; Ebert, van Saarloos 1998; Majumdar, Krapivsky 2000

(Majumdar & Krapivsky 2000)

FIG. 1. The propagating front for the cumulative distribution $P_{n}(x)$ of the minimal length for the bimodal distribution with p = 0.8.

$$\langle \ell_n \rangle = \begin{cases} c(p), & p < 1/2\\ (\log 2)^{-1} \log \log n, & p = 1/2\\ v(p)n, & p > 1/2 \end{cases}$$

Hierarchichal structure is rather generic...

 $\mathbb{P}(\min_{k} E_{k}^{(n+1)} > x) = F_{n+1}(x) = \left[\int_{0}^{\infty} \mathrm{d}\epsilon F_{n}(x-\epsilon)\rho(\epsilon)\right]^{2}$

- Write down recursion relation between F_n and F_{n+1} .
- Identify conditions for travelling wave solution.
- Linearise wave equation.
- Calculate wave speeds, etc.

S. N. Majumdar, P. L. Krapivksy Phys. Rev. E **62**, 7735 (2000)

E. Ben-Naim, P. L. Krapivksy, S. N. Majumdar Phys. Rev. E **64**, 035101(R) (2001)

D. S. Dean, S. N. Majumdar Phys. Rev. E **64**, 046121 (2001)

S. N. Majumdar, P. L. Krapivksy Phys. Rev. E **65**, 036127 (2002)

D. S. Dean, S. N. Majumdar J. Phys. A: Math. Gen. **35**, L501 (2002)

S. N. Majumdar, P. L. Krapivksy Physica A **318**, 161 (2003) Extremal paths on random Cayley trees

Extremal paths on random Cayley trees

Polymers on random binary trees

Polymers, binary search trees

Fragmentation, *m*-ary search

Overview article

Outline

Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics

DNA replication times in Xenopus Laevis Order parameter in percolation EVS in trees EVS of some Gaussian processes Integer partitions and the ideal Bose gas

 $\langle X(s)X(t)\rangle = \min(s,t) - st$

(Berman's condition fails)

$$\mathbb{P}(\max_{t} x_{B}(t) \le m) = \frac{W_{m}(x_{t} = 0, t \mid x_{0} = 0, 0)}{W(x_{t} = 0, t \mid x_{0} = 0, 0)},$$

where transition probability $W_m(x_t, t | x_0 = 0, 0)$ satisfies

$$\begin{pmatrix} \frac{\partial}{\partial t} - \frac{1}{2} \frac{\partial^2}{\partial x^2} + V_m(x) \end{pmatrix} W_m = 0 V_m(x) = \begin{cases} 0, & x < m, \\ \infty, & x \ge m. \end{cases}$$

Reflection principle

Reflection principle

 $W_m(0, t \mid 0, 0) = W(0, t \mid 0, 0)$ – overcounting term

Reflection principle

 $W_m(0, t \mid 0, 0) = W(0, t \mid 0, 0)$ – overcounting term

Reflection principle

Mean-subtracted Brownian bridge

Watson 1961

Define a new Gaussian process by substracting the bridge's mean:

$$x_W(t) := x_B(t) - \int_0^t \mathrm{d}t' \, x_B(t').$$

'Watson' bridge has correlations

$$\langle X(s)X(t)\rangle = \min(s,t) - \frac{1}{2}(s+t) + \frac{1}{2}(s-t)^2 + \frac{1}{12}.$$

This depends only on time differences:

$$\langle X(s)X(s+t)\rangle = \frac{1}{12} \left[1 - 6|t|(1-|t|)\right].$$

Fourier decomposition

$$a_k, b_k \stackrel{d}{\sim} N(0,1)$$

$$\frac{\sqrt{2}}{\pi} \sum_{k=1}^{\infty} \frac{a_k}{k} \sin \pi kt \qquad \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{\infty} \frac{1}{k} \left(a_k \sin 2\pi kt + b_k \cos 2\pi kt \right)$$

Signal construction

$$h(t) \propto \sum_{k=1}^{n} \frac{1}{k^{\alpha/2}} \left[a_k \cos\left(\frac{2\pi k}{T}t\right) + b_k \sin\left(\frac{2\pi k}{T}t\right) \right], a_k, b_k \stackrel{d}{\sim} N(0, 1)$$
white $1/f$ Edwards Mullins single mode mode wilkinson Herring $mode$

$$\alpha = 0 \qquad 1 \qquad 2 \qquad 4 \qquad \alpha \rightarrow \infty$$
weaker correlations correlations

Maximum relative height: Raychaudhuri et al. 2001

Extremes of Gaussian processes

S. M. Berman Ann. Math. Stat. **33**, 502 (1964)

P. Biane, J. Pitman, M. Yor Bull. Amer. Math. Soc **38**, 435 (2001)

S. N. Majumdar, A. Comtet J. Stat. Phys. **119**, 777 (2005)

G. Györgyi *et al.* Phys. Rev. E **75**, 021123 (2007)

Y. V. Fyodorov, J.-P. Bouchaud J. Phys. A: Math. Theor. **41**, 372001 (2008)

H. J. Hilhorst, P. Calka, G. Schehr J. Stat. Mech. P10010 (2008) MRH for Edwards-Wilkinson $(1/f^2)$

MRH for $1/f^{\alpha}$ noise

Berman's condition

Review

MRH for 1/f noise

Random accelaration process $(1/f^4)$

Antal et al. 2001

where ε_k are standard exponential variables.

Antal et al. observed that

 $w^2 \stackrel{d}{\sim}$ Gumbel!

Rényi 1953; Bertin 2005

$$\begin{matrix} & & & \\ 0 & X_{1,n} & X_{2,n} \end{matrix}^{w^2} \\ X_{n,n} & = \max\{X_{1,n}, \dots, X_{n,n}\} \end{matrix}$$

Interpret the partial sums

$$X_{m,n} := \sum_{k=1}^{m} \frac{\varepsilon_k}{n-k+1}, \quad m \le n$$

as marking the positions of a collection of ordered points $X_{m,n}$. In particular

$$w^2 = X_{n,n} = \max\{X_{1,n}, \ldots, X_{n,n}\}.$$

Rényi 1953; Bertin 2005

Starting from a collection of iid standard exponentials

$$f_{\varepsilon_1,\ldots,\varepsilon_n}(y_1,\ldots,y_n) = \prod_{k=1}^n \exp(-y_k) = \exp\left(-\sum_{k=1}^n y_k\right),$$

change variables with

$$x_m = \sum_{k=1}^m \frac{y_k}{n-k+1}, \quad \left|\frac{\partial y_i}{\partial x_j}\right| = n!$$

to obtain

$$f_{X_{1,n},...,X_{n,n}}(x_1,...,x_n) = n! \exp\left(-\sum_{k=1}^n x_k\right) \mathbf{1}_{\{x_1 < \dots < x_n\}}$$
$$f_{X_1,...,X_n}(x_1,...,x_n) = \exp\left(-\sum_{k=1}^n x_k\right) = \prod_{k=1}^n \exp(-x_k).$$

Rényi 1953; Bertin 2005

Rényi's representation

$$\{X_{m,n}, m=1,\ldots,n\} \stackrel{d}{\sim} \left\{\sum_{k=1}^{m} \frac{\varepsilon_k}{n-k+1}, m=1,\ldots,n\right\}$$

implies roughness of 1/f noise

$$w^2 = \max\{X_1,\ldots,X_n\} = X_{n,n} \stackrel{d}{\sim}$$
Gumbel,

where X_k , ε_k are standard exponentials.

A. Rényi

Acta Mathematica Scient. Hungar. IV, 191 (1953)

T. Antal *et al.* Phys. Rev. Lett. **87**, 240601 (2001)

E. Bertin Phys. Rev. Lett. **95**, 170601 (2005)

E. Bertin, M. Clusel

J. Phys. A: Math. Gen. 39, 7607 (2006)

Order statistics

Roughness of 1/f noise

Order statistics, global fluctuations

Order statistics, global fluctuations

Outline

Range of applications

Gallery of correlations

Illustrations of EVS in statistical physics

DNA replication times in Xenopus Laevis Order parameter in percolation EVS in trees EVS of some Gaussian processes Integer partitions and the ideal Bose gas

 $\Omega(E)$ = number of ways of partitioning an integer *E* into a sum of (indistinguishable) positive integers.

E.g. $\Omega(5) = 7$:

 $\Omega(E)$ = number of ways of partitioning an integer *E* into a sum of (indistinguishable) positive integers.

E.g. $\Omega(5) = 7$: 5 4 + 13 + 23 + 1 + 12 + 2 + 12 + 1 + 1 + 11 + 1 + 1 + 1 + 1

 $\begin{array}{c|c} \epsilon_4 & & & 0 \\ \hline \epsilon_3 & \bullet & & 1 \\ \hline \epsilon_2 & & & 0 \\ \hline \epsilon_1 & \bullet & 2 \\ \hline \epsilon_0 & \text{ground state} & n_0 \end{array}$

 ϵ_k

 ϵ_5

summands expansion Young diagram

Bose gas

 n_k

0

 $\Omega(E, N) =$ number of ways of partitioning *E* with *N* integers.

Hardy, Ramanujan 1918; van Lier, Uhlenbeck 1937; Erdős, Lehner 1941; Auluck, Kothari 1946

• Number of partitions grows rapidly (e.g. $\Omega(E = 1000) \approx 2.4 \times 10^{31}$).

$$\Omega(E) \sim \frac{1}{4\sqrt{3}E} \exp\left(\pi \sqrt{\frac{2}{3}}E^{1/2}\right).$$

▶ Probability of partitioning *E* with *N* integers converges $(E, N \gg 1)$ to Gumbel distribution!

$$\frac{\sum_{N'=1}^{N} \Omega(E, N')}{\Omega(E)} \sim \exp\left[-\exp\left(\frac{N-b_E}{a_E}\right)\right]$$
$$a_E = \frac{\sqrt{6}}{\pi} E^{1/2}$$
$$b_E = \frac{1}{\pi} \sqrt{\frac{3}{2}} E^{1/2} \log E.$$

Auluck, Kothari 1946; Comtet, Leboeuf, Majumdar 2007

$$\Omega(E) = \sum_{\{n_k\}} \delta\left(E - \sum_{k=1}^{\infty} n_k \epsilon_k\right)$$
$$\mathcal{Z}(\beta) = \sum_E \Omega(E) e^{-\beta E} = \prod_{k=1}^{\infty} \frac{1}{1 - e^{-\beta \epsilon_k}}.$$

Saddle point approximation:

$$\Omega(E) \approx e^{\mathcal{S}(\beta_0, E)},$$

where β_0 maximises

$$S(\beta, E) = \log \mathcal{Z}(\beta) + \beta E.$$

Using

$$E = \sum_{k=1}^{\infty} \frac{\epsilon_k}{e^{\beta_0 \epsilon_k} - 1} \approx \int_0^{\infty} \mathrm{d}\epsilon \, \frac{\epsilon}{e^{\beta_0 \epsilon} - 1} = \frac{\pi^2}{6\beta_0^2},$$

one recovers Hardy-Ramanujan:

$$\Omega(E) \approx \exp\left(\pi\sqrt{\frac{2}{3}}E^{1/2}\right).$$
_{53/50}

Auluck, Kothari 1946; Comtet, Leboeuf, Majumdar 2007

$$\sum_{N'=1}^{N} \Omega(E, N') = \tilde{\Omega}(E, N) = \sum_{\{n_k\}} \delta\left(E - \sum_{k=1}^{\infty} n_k \epsilon_k\right) \theta\left(N - \sum_{k=1}^{\infty} n_k\right)$$
$$\mathcal{Z}(\beta, z) = \sum_{E, N} \tilde{\Omega}(E, N) e^{-\beta E} z^N = \prod_{k=1}^{\infty} \frac{1}{1 - z e^{-\beta \epsilon_k}},$$

Saddle point approximation:

$$\tilde{\Omega}(E,N) \approx e^{S(\beta_0,z_0,E,N)},$$

where β_0, z_0 maximise

$$S(\beta, z, E, N) = \log \mathcal{Z}(\beta) + \beta E - N \log(z).$$

Saddle points fix

$$E = \sum_{k=1}^{\infty} \frac{\epsilon_k}{z_0^{-1} e^{\beta_0 \epsilon_k} - 1} \approx \int_0^{\infty} \mathrm{d}\epsilon \, \frac{\epsilon}{z_0^{-1} e^{\beta_0 \epsilon} - 1} = \frac{\mathsf{Li}_2(z_0)}{\beta_0^2}$$
$$N = \sum_{k=1}^{\infty} \frac{1}{z_0^{-1} e^{\beta_0 \epsilon_k} - 1} \approx \int_0^{\infty} \mathrm{d}\epsilon \, \frac{1}{z_0^{-1} e^{\beta_0 \epsilon} - 1} = -\frac{\log(1 - z_0)}{\beta_0}.$$

Auluck, Kothari 1946; Comtet, Leboeuf, Majumdar 2007

Take large *N* limit ($z \uparrow 1$) to recover Erdős-Lehner:

$$rac{ ilde{\Omega}(E,N)}{\Omega(E)} \sim \exp\left[-\exp\left(rac{N-b_E}{a_E}
ight)
ight]$$
 $a_E = rac{\sqrt{6}}{\pi}E^{1/2}$
 $b_E = rac{1}{\pi}\sqrt{rac{3}{2}}E^{1/2}\log E.$

This calculations holds for equally spaced energy levels $\epsilon_1 = 1, \epsilon_2 = 2, \ldots$

What about for $\rho(\epsilon) = \nu \epsilon^{\nu-1}$?

Density of states $\rho(\epsilon) = \nu \epsilon^{\nu-1}$ for different 1*d* potentials

Density of states $\rho(\epsilon) = \nu \epsilon^{\nu-1}$ for different 1*d* potentials

Density of states $\rho(\epsilon) = \nu \epsilon^{\nu-1}$ for different 1*d* potentials

partition into powers > 1

partition into integers

G. H. Hardy, S. Ramanujan Proc. London Math. Soc. **17**, 75 (1918)

C. van Lier, G. E. Uhlenbeck Physica, **4**, 531 (1937) Asymptotics of integer partitions

Ideal quantum gas, saddle point methods

P. Erdős, J. Lehner Duke Math. J. **8**, 335 (1941) Asymptotics of integer partitions, Gumbel

F. C. Auluck, D. S. Kothari Proc. Cambridge Philos. Soc. **42**, 272 (1946) Equally-spaced energy levels, Gumbel

A. Comtet, P. Leboeuf, S. N. Majumdar Phys. Rev. Lett. **98**, 070404 (2007) Power law-spaced energy levels, EVS